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Abstract: In this paper, high order systems are reformulated as first order systems which
are then numerically solved by a collocation method. The collocation method is based on Carte-
sian discretisation with 1D-integrated radial basis function networks (1D-IRBFN) [1]. The present
method is enhanced by a new boundary interpolation technique based on 1D-IRBFN which is in-
troduced to obtain variable approximation at irregular points in irregular domains. The proposed
method is well suited to problems with mixed boundary conditions on both regular and irregular
domains. The main results obtained are (a) the boundary conditions for the reformulated problem
are of Dirichlet type only; (b) the integrated RBFN approximation avoids the well known reduc-
tion of convergence rate associated with differential formulations; (c) the primary variable (e.g.
displacement, temperature) and the dual variable (e.g. stress, temperature gradient) have similar
convergence order; (d) the volumetric locking effects associated with incompressible materials in
solid mechanics are alleviated. Numerical experiments show that the proposed method achieves
very good accuracy and high convergence rates.

Keywords: RBF, collocation method, elasticity, Cartesian grid, mixed formulation, first order
system, volumetric locking, incompressibility.

1 INTRODUCTION

Traditional finite element methods (FEM) [2] and boundary element methods (BEM) have been
based on weak-form formulations. Recently, weak-form meshless (meshfree) methods are being
developed as an alternative approach. Weak-form methods have the following advantages [3, 4]
a) they have good stability and reasonable accuracy for many problems; b) Neumann bound-
ary conditions can be naturally and conveniently incorporated into the same weak-form equation.
However, elements have to be used for the integration of a weak form over the global problem
domain [5] and the numerical integration is still computationally expensive for these weak-form
methods. On the other hand, collocation methods are based on strong-form governing equations
and have been found to possess the following attractive advantages [3, 6–9] a) they are compu-
tationally efficient since there is no need for numerical integration of the governing equations; b)
the implementation is simple; c) implementation of Dirichlet boundary conditions is very straight-
forward. However, the strong-form approach is less stable due to the pointwise nature of error
minimisation and results in typically poorer accuracy for problems governed by partial differential
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equations with Neumann-type boundary conditions such as solid mechanics problems with traction
(natural) boundary conditions. Furthermore, some strong-form methods such as finite difference
and pseudo spectral methods are restricted to rectangular domains.

Therefore, many efforts have been made to develop techniques for handling the Neumann-
type boundary conditions such as direct collocation, fictitious points, regular grids, and dense
nodes in the derivative boundaries [10]; Hermite-type collocation [11, 12]. Recently, Zhang et
al [13] suggested Least-squares collocation meshless method which can improve the accuracy of the
solution in comparison with the one of standard collocation method. Onate et al [14] introduced
a stabilization technique by adding artificial terms in both governing equations and Neumann
boundary conditions, however, these terms only serve the stabilization purpose and their suitability
is restricted to some special problems. Liu and Gu [15,16] proposed a meshfree weak-strong-form
method, in which the weak form is applied to the subdomain concerned with Neumann boundary
conditions and strong form to the one with Dirichlet boundary conditions. Pan et al [17] presented
meshless Galerkin least-squares method by making use of Galerkin method in the boundary domain
and least-squares method in the interior domain. Hu et al [18, 19] introduced the weighted radial
basis collocation method in which the residual error on the Neumann boundary is treated by a
proper scaling weight. Atluri et al [20, 21] proposed a “mixed” collocation technique, however,
stable solutions are obtained with resort to the local weak form at nodal points for stress and
the penalty method for Neumann boundary conditions. Libre et al [22] proposed a stabilized
collocation scheme for radial basis functions (RBF) by increasing the shape parameter of RBF and
the number of collocation points around the Neumann boundaries, however, increasing the shape
parameter leads to increased ill-conditioning. Lee and Yoon [23] introduced generalized diffuse
derivative in a collocation method.

In recent years, increasing attention has been drawn to the development of first-order system
formulation. In earlier works of Cai et al [24, 25], they developed the theory of first-order system
formulation for general second-order elliptic PDEs. This methodology has been then extended to
the Stokes equations [26] in two and three dimensions, elasticity problems [27–29], and boundary
value problems with Robin boundary conditions [30]. However, the efforts have been mainly
concentrated in using weak-form Galerkin or weak-form least-squares formulation. For example,
Jiang and Wu [31] presented the least-squares finite element method; Park and Youn [32] introduced
the least-squares meshless method and Kwon et al [33] subsequently extended this method to
elasticity problems. Relatively few works have been done with first-order system formulation
based on strong-form method.

Following a strong-form approach, this paper describes a new efficient collocation method using
integrated radial basis function network (IRBFN) and Cartesian grid [1] for the numerical mod-
elling of certain problems governed by second order PDEs in both regular and irregular domains.
Firstly, the governing equations are written or re-written as a first order system “mixed” formu-
lation where both primary (e.g. displacement, temperature) and dual (e.g. stress, temperature
gradient) variables are approximated independently. Secondly, a new technique based on 1D-
IRBFN is introduced to easily interpolate variables along curved boundaries. The mixed boundary
conditions are easily and directly accommodated as a result of the first-order formulation while the
new boundary interpolation technique overcomes the challenge traditionally posed by Cartesian-
grid discretisation of irregular domains [34]. In the present approach (a) the mixed boundary
conditions for the original second-order system are of Dirichlet type only for the reformulated first-
order problem; (b) the integrated RBFN approximation is able to capture very sharp gradient (or
boundary layer) [35, 36] and avoid the well known reduction of convergence rate associated with
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differential formulations; (c) the primary variable (e.g. displacement, temperature) and the dual
variable (e.g. stress, temperature gradient) have similar convergence order; (d) the volumetric
locking effects associated with incompressible materials in solid mechanics are alleviated without
any extra effort. (In contrast, in meshless weak form approaches, special treatments need to be
done in the case of incompressible materials, for instance, Dolbow and Belytschko [37] introduced
reduced integration procedure, Chen et al [38] proposed the pressure projection technique for the
purpose of alleviating the incompressible locking.) Moreover, the generation of a Cartesian grid
is a straightforward task and therefore the cost associated with spatial discretisation is greatly re-
duced in comparison with that associated with FE generation. Numerical experiments show that
the proposed method achieves very good accuracy and high convergence rates.

The remainder of the paper is organized as follows. The physical problem and its mathematical
model are defined in section 2. The numerical formulation for the mathematical model is presented
in section 3. The proposed method is illustrated by numerical examples in section 4. Section 5
concludes the paper.

2 PROBLEM FORMULATIONS

2.1 First-order systems

Cai and co-workers [24–29] studied the behaviour of equivalent first-order formulations of second-
order systems and found that FE implementation of such first-order systems yields uniform optimal
performance. The higher-order differential equations are transformed to first-order differential
equations by introducing new dual variables. Both primary and dual variables are independently
interpolated and have shape functions of the same order. It is noticed that in general all higher-
order differential equations can be transformed to first-order differential equations [24, 30]. The
resulting first-order system of governing equations can be written as follows.

Lu = f , in Ω (1)

Bu = g, on Γ (2)

where Ω is a bounded domain in R
d, d = 1, 2, 3, Γ the boundary of Ω, L is a first-order linear

differential operator

Lu = L0u +

d∑

i=1

Li

∂u

∂xi

, (3)

in which uT = [u1, u2, ..., um] is a vector of m unknown functions (including primary and dual
variables) of xT = [x1, x2, ..., xd], Li the coefficient matrices which characterize the differential
operator L, f a given function in the domain, B a boundary algebraic operator, and g a given
function on the boundary. Examples of problems formulated as first-order systems are given in the
following sections.
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2.2 Two-dimensional Poisson equation

Consider the following two-dimensional Poisson equation

∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2
= f(x, y) in Ω, (4a)

φ(x, y) = g(x, y) on ΓD, (4b)

∂φ(x, y)

∂n
= h(x, y) on ΓN , (4c)

where Ω is a bounded domain in R
2, ΓD and ΓN the boundary of Ω on which the Dirichlet and

Neumann boundary condition are imposed, respectively, n = (nx, ny)T the outward unit normal
on ΓN , and f , g and h the given functions on Ω, ΓD and ΓN , respectively.

A first-order formulation is obtained by introducing the dual variables in (4) as follows

∂φ(x, y)

∂x
− ξ(x, y) = 0 in Ω and on ΓD

⋃
ΓN , (5a)

∂φ(x, y)

∂y
− η(x, y) = 0 in Ω and on ΓD

⋃
ΓN , (5b)

∂ξ(x, y)

∂x
+

∂η(x, y)

∂y
= f(x, y) in Ω and on ΓD

⋃
ΓN , (5c)

φ(x, y) = g(x, y) on ΓD, (5d)

nxξ + nyη = h(x, y) on ΓN . (5e)

2.3 Linear elasticity problems

Consider the following two-dimensional problem on the domain Ω bounded by Γ = Γu

⋃
Γt

∇ · σ = b in Ω, (6a)

u = ū on Γu, (6b)

σ · n = t̄ on Γt, (6c)

in which σ is the stress tensor, which corresponds to the displacement field u and b is the body
force, n the outward unit normal on Γt. The superposed bar denotes prescribed value on the
boundary.

The governing equations (6) are closed when a constitutive relation is specified for σ. Here
the linear Hooke’s law is used to describe the σ − u relation. By choosing displacement u as
primary variables and stress σ as dual variables, the governing equations remain first-order, which
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are written for plane stress case as follows

∂u

∂x
−

1

E
σx +

µ

E
σy = 0, (7a)

∂v

∂y
+

µ

E
σx −

1

E
σy = 0, (7b)

∂u

∂y
+

∂v

∂x
−

2(1 + µ)

E
τxy = 0, (7c)

∂σx

∂x
+

∂τxy

∂y
= bx, (7d)

∂τxy

∂x
+

∂σy

∂y
= by, (7e)

u = ū on Γu, (7f)

σ · n = t̄ on Γt, (7g)

where µ is Poisson ratio and E Young’s modulus. By introducing the dimensionalless stress tensor
s = σ/E, the above first-order system can be rewritten as follows

∂u

∂x
− sx + µsy = 0, (8a)

∂v

∂y
+ µsx − sy = 0, (8b)

∂u

∂y
+

∂v

∂x
− 2(1 + µ)sxy = 0, (8c)

∂sx

∂x
+

∂sxy

∂y
= bx, (8d)

∂sxy

∂x
+

∂sy

∂y
= by, (8e)

u = ū on Γu, (8f)

s · n = t̄ on Γt. (8g)

3 NUMERICAL FORMULATIONS

In a number of methods, approximations of spatial derivatives are less accurate because differ-
entiation magnifies errors. Madych [39] estimated that MQ-RBF enjoys spectral convergence of
order O(λ

a

h ), where 0 < λ < 1, a is the shape parameter and h is the maximum mesh size.
A differential formulation with spatial derivatives of order δ reduces convergence rate of MQ to
O(λ

a

h
−δ). To increase the accuracy and the convergence rate of MQ, several approaches have been

proposed such as a) increasing a or decreasing h or both [22], b) integrated methods of Mai-Duy
and Tran-Cong [1, 40–42] and c) using higher order MQ, e.g. ϕi = (r2

i + a2
i )

β , where β > 1
2 [43].

To avoid the reduction of convergence rates due to differentiation and enhance the stability of
the collocation-based numerical schemes in the case of Neumann type boundary value problems,
in the present work we use Cartesian grid technique to discretise governing equations obtained by
first-order formulation as follows.
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3.1 1D-IRBFN approximation

For the sake of completeness, the 1D-IRBFN approximation for 2D problems in [1] is reproduced
as follows. Consider a grid point/regular point x (x = (x, y)T ) (Figure 1). Along the horizontal
line passing through this point, one can use IRBFNs to construct the expressions for the function
u and its derivatives with respect to x. The construction process can be described as follows. The
second-order derivative of u is first decomposed into RBFs; the RBF network is then integrated
twice to obtain the expressions for the first-order derivative and the function itself

∂2u(x)

∂x2
=

N∑

i=1

w(i)g(i)(x) =

N∑

i=1

w(i)H
(i)
[2] (x), (9)

∂u(x)

∂x
=

N∑

i=1

w(i)H
(i)
[1] (x) + c1, (10)

u(x) =

N∑

i=1

w(i)H
(i)
[0] (x) + c1x + c2, (11)

where N is the number of nodal points (interior and boundary points) on the line, {w(i)}N
i=1 are

RBF weights to be determined, {g(i)(x)}N
i=1 are known RBFs, H[1](x) =

∫
H[2](x)dx, H[0](x) =∫

H[1](x)dx, and c1 and c2 are integration constants. Here, it is referred to as a second-order
1D-IRBFN scheme, denoted by IRBFN-2. The present study employs multiquadrics (MQ) whose
form is

g(i)(x) =
√

(x − c(i))2 + a(i)2, (12)

where c(i) and a(i) are the centre and the RBF width/shape parameter of the ith RBF. The width
of the ith RBF can be determined according to the following simple relation

ai = βdi, (13)

where β is a factor, β > 0, and di is the distance from the ith centre to its nearest centre. The set
of centres is chosen to be the same as the set of the collocation points. It is more convenient to
work in the physical space than in the network-weight space. The values of the variable u at the
N nodal points can be expressed as

u(x(1)) =

N∑

i=1

w(i)H
(i)
[0] (x

(1)) + c1x
(1) + c2, (14)

u(x(2)) =

N∑

i=1

w(i)H
(i)
[0] (x

(2)) + c1x
(2) + c2, (15)

· · · · · · · · · · · · · · ·

u(x(N)) =

N∑

i=1

w(i)H
(i)
[0] (x

(N)) + c1x
(N) + c2, (16)

or in a matrix form

û = H

(
ŵ
ĉ

)
, (17)
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x1 2 3 N

Figure 1: Domain discretization. The boundary and interior points used for constructing the
IRBFN approximations at point x are highlighted. The intersections of the grid lines and the
boundary (e.g. points 1, N) are referred to as irregular if they do not coincide with grid points.
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where û = (u(1), u(2), · · · , u(N))T , ŵ = (w(1), w(2), · · · , w(N))T , ĉ = (c1, c2)
T , and H is a known

matrix of dimension N × (N + 2) defined as

H =





H
(1)
[0] (x(1)) H

(2)
[0] (x(1)) · · · H

(N)
[0] (x(1)) x(1) 1

H
(1)
[0] (x(2)) H

(2)
[0] (x(2)) · · · H

(N)
[0] (x(2)) x(2) 1

· · · · · · · · · · · · · · · · · ·

H
(1)
[0] (x(N)) H

(2)
[0] (x(N)) · · · H

(N)
[0] (x(N)) x(N) 1




.

Using the singular value decomposition (SVD) technique, one can write the RBF coefficients in-
cluding two integration constants in terms of the meaningful nodal variable values

(
ŵ
ĉ

)
= H−1û. (18)

It is noted that the purpose of using SVD here is to provide a solution whose norm is the smallest
in the least-squares sense. By substituting (18) into (9)-(11), the values of u and its derivatives
with respective to x at point x can now be computed by

∂2u(x)

∂x2
=

(
H

(1)
[2] (x), H

(2)
[2] (x), · · · , H

(N)
[2] (x), 0, 0

)
H−1û, (19)

∂u(x)

∂x
=

(
H

(1)
[1] (x), H

(2)
[1] (x), · · · , H

(N)
[1] (x), 1, 0

)
H−1û, (20)

u(x) =
(
H

(1)
[0] (x), H

(2)
[0] (x), · · · , H

(N)
[0] (x), x, 1

)
H−1û. (21)

Substituting a discrete approximation of u and its first-order derivatives as given in (21) and
(20) into (1) and (2) and using the collocation method at all the nodes of Ω and Γ, one obtains
the linear algebraic system as presented below.

Let NΩ denote the number of interior nodes, ND the number of nodes on the Dirichlet boundary,
NN the number of nodes on the Neumann boundary, mp the number of primary unknowns and
md the number of dual unknowns associated with a node, the number of nodal unknowns is
generally (NΩ + ND + NN )(mp + md). If one collocates the governing equations (1) at NΩ interior
nodes and the boundary conditions (2) at (ND + NN) boundary nodes, the number of obtained
equations is (NΩ(mp + md) + NDkD + NNkN ), where kD and kN are the number of equations
from the boundary conditions per node on the Dirichlet and Neumann boundaries, respectively.
Consequently, the number of equations is less than the number of unknowns on the boundaries since
kD and kN are usually less than mp + md, respectively. To overcome this deficiency, we propose
a new scheme for the treatment of boundary conditions of the first-order collocated system as
follows. The governing equations (1) is collocated at all the interior and boundary nodes, yielding
(NΩ+ND+NN)(mp+md) equations. The boundary conditions are imposed by collocating equation
(2) at all the boundary nodes, i.e. the obtained system has (NΩ +ND +NN)(mp +md)+NDkD +
NNkN equations. The final system is obtained by removing NDkD +NNkN appropriate equations
corresponding to the governing equations collocated at the boundary nodes. Consequently, the
number of equations of the resulting system is equal to the number of nodal unknowns and it can
be rewritten in a compact form

Au = f̄ . (22)
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Another possible treatment of the boundary conditions in this case is that both governing
equations (1) and boundary conditions (2) are imposed at all the boundary nodes. As a result,
the number of equations is greater than the number of unknowns, and the resulting system can
be solved in the least-square sense. However, our numerical study indicates that the least-squares
scheme provides poorer accuracy than the proposed scheme.

3.2 Irregular boundary interpolation technique

Consider a representative irregular boundary as shown in Figure 2, Cartesian grid based methods
generally are not able to represent irregular nodes (e.g. points 1, N in Figure 2) on this boundary
and the 1D-IRBFN is no exception. To interpolate variables at irregular points, a new boundary
interpolation technique based on 1D-IRBFN is introduced as follows.

If the curve (irregular boundary) is a function of x and y, i.e. ζ = ζ(x, y), and x = x(ζ) and
y = y(ζ), a function value f = f(x, y) is invariant with respect to ζ coordinate system (i.e. the
natural coordinate system)

f = f(x, y) = f [x(ζ), y(ζ)] = f(ζ). (23)

From (23), we have the following relation

∂f

∂ζ
=

∂f

∂x

∂x

∂ζ
+

∂f

∂y

∂y

∂ζ
, (24)

which can be used for determining ∂f
∂x

(or ∂f
∂y

) at the irregular nodes if ∂x
∂ζ

, ∂y
∂ζ

and ∂f
∂y

(or ∂f
∂x

) are

known. In general, f(ζ), x(ζ), y(ζ) and their corresponding derivatives can be approximated by
1D-IRBFN. To illustrate the proposed scheme, let the irregular boundary be a circle, we need to
determine ∂f

∂x
at the “square” nodes on the circle (Figure 2). We have the relations

ζ(x, y) ≡ θ(x, y) = arctan(y/x), (25)

x = r cos(θ), y = r sin(θ), (26)

f(θ) = f [x(θ), y(θ)] = f, (27)

∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ
, (28)

where r is the radius of the circle. In general, if f(θ) is not available analytically, it can be
approximated by a 1D-IRBFN, ∂f

∂y
(∂f

∂x
) of these nodes can be approximated along the vertical

(horizontal) lines. Therefore, ∂f
∂x

(∂f
∂y

) can be easily obtained by using (28).

4 NUMERICAL EXAMPLES

For error estimation and convergence studies, the discrete relative L2 norm of errors of primary
and dual variables are defined as

Lφ
2 =

√
∑M

i=1

(
φ

(i)
e − φ(i)

)2

√
∑M

i=1

(
φ

(i)
e

)2
, (29)
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x

y
ζ = ζ (x,y)

Figure 2: 1D interpolation scheme for irregular boundary

Lξη
2 =

√
∑M

i=1

[(
ξ
(i)
e − ξ(i)

)2

+
(
η
(i)
e − η(i)

)2
]

√
∑M

i=1

[(
ξ
(i)
e

)2

+
(
η
(i)
e

)2
] , (30)

for Poisson equation and

Lu
2 =

√
∑N

i=1

(
(ux)

(i)
e − (ux)(i)

)2 (
(uy)

(i)
e − (uy)(i)

)2

√
∑N

i=1

[(
(ux)

(i)
e

)2

+
(
(uy)

(i)
e

)2
] , (31)

Lσ
2 =

√
∑M

i=1

[(
(sx)

(i)
e − s

(i)
x

)2

+
(
(sy)

(i)
e − s

(i)
y

)2

+
(
(sxy)

(i)
e − s

(i)
xy

)2
]

√
∑M

i=1

[(
(sx)

(i)
e

)2

+
(
(sy)

(i)
e

)2

+
(
(sxy)

(i)
e

)2
] , (32)

for elasticity problems, where M is the number of unknown nodal values and the subscript “e”
denotes the exact solution. The convergence order of the solution with respect to the refinement
of spatial discretization is assumed to behave as

L2(h) ≈ αhλ = O(hλ), (33)
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where h is the maximum grid spacing in either x or y direction, α and λ are the parameters of the
exponential model, which are found by general linear least square formula in this work. It is noted
that the value of the shape parameter β in (13) is 1 for all the following numerical examples.

4.1 Poisson equation in regular domains

Consider the following Poisson equation

∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2
= −2π2 cos(πx) cos(πy), (34)

defined in Ω = [0, 1] × [0, 1], subject to the Dirichlet boundary condition

φ(0, y) = cos(πy), on x = 0, (35)

and the following Neumann boundary conditions

∂φ(1, y)

∂x
= 0, on x = 1, (36a)

∂φ(x, 0)

∂y
= 0, on y = 0, (36b)

∂φ(x, 1)

∂y
= 0, on y = 1. (36c)

(36d)

The corresponding exact solution is given by

φ(x, y) = cos(πx) cos(πy). (37)

Figure 3 shows the geometry of the problem and the domain discretisation based on a uniform
Cartesian grid with 11 × 11 collocation points (CPs). The obtained results with 11 × 11 CPs
are presented in Figures 4-8. The solution for the primary unknown φ(x, y) on three Neumann
boundaries obtained by the present method and the exact solution are plotted in Figures 4-6, the
solution for the dual unknowns ξ(x, y) (on y = 0 and y = 1) and η(x, y) (on x = 0 and x = 1)
are shown in Figure 7 and Figure 8, respectively. From these figures, it can be seen that both the
Dirichlet and Neumann boundary conditions are imposed exactly by the present method and the
present solutions excellently agree with the exact solutions.

To study the convergence behavior of the solution, a number of uniform grids, namely 11× 11,
21 × 21, 31 × 31, 41 × 41, 51 × 51, 71 × 71, 81 × 81, 121 × 121 and 141 × 141 CPs is employed
in computation. The h is equivalent to the maximum grid space (in x direction) for all numerical

examples. The convergence behaviours for φ(x, y) (Lφ
2 ) and its derivatives (Lξη

2 ) are shown in

Figure 9. It can be observed that the error Lφ
2 is slightly lower than Lξη

2 , the convergence rates for
φ(x, y) and (ξ(x, y), η(x, y)) are O(h3.26) and O(h3.5), respectively. At the finest grid, the relative

error Lφ
2 and Lξη

2 are 1.0458 × 10−7 and 1.1958× 10−7, respectively.
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Figure 3: Poisson equation in regular domains: domain discretisation with 11 × 11 points.

4.2 Poisson equation in a multiply-connected domain

To illustrate the proposed interpolation technique for irregular boundaries, we consider the Poisson
equation in example 4.1 with a multiply-connected domain as shown in Figure 10, where the
Dirichlet boundary condition is prescribed on the left edge and right edge as

φ(−2, y) = cos(πy), (38a)

φ(2, y) = cos(πy), (38b)

and the Neumann boundary condition is given on the other edges: upper edge, lower edge and
curve edge as follows

∂φ(x, 2)

∂x
= 0, (39a)

∂φ(x,−2)

∂y
= 0, (39b)

nx

∂φ(x, y)

∂x
+ ny

∂φ(x, y)

∂y
= q(x, y), on x2 + y2 = 1, (39c)

where n(nx, ny) is the outward unit normal to the curve, q(x, y) = −nxπ sin(πx) cos(πy)−nyπ cos(πx) sin(πy).
With the above boundary conditions, the exact solution is given as in example 4.1.
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Figure 4: Poisson equation in regular domain - solution of φ(x, y) obtained by the proposed method
in comparison with exact solution: along y = 1.

In the case of irregular domains, the irregular boundary interpolation technique in section
3.2 is employed to improve the performance of 1D-IRBFN approximation. Figures 11-13 shows
the numerical results by the present method along the curved boundary (Neumman boundary
condition). It can be seen that the obtained results are in good agreement with the exact solution.

The convergence of the method is investigated with 120, 512, 3232, 4688, 6716, 9984 and 16084
nodes (which are based on uniform grids of 11×11, 24×24, 62× 62, 75×75, 90×90, 110×110 and
140×140 nodes) as plotted in Figure 14. The convergence rates for φ(x, y) and its derivatives

are O(h2.57) and O(h2.40), respectively. At the finest grid, the relative error Lφ
2 and Lξη

2 are
9.455 × 10−4 and 1.345 × 10−3, respectively. The obtained results indicate that the proposed
boundary interpolation technique greatly improves accuracy of 1D-IRBFN in irregular domains.

4.3 Poisson equation in irregular domain

The Poisson equation in example 4.1 is examined in a more complicated irregular domain as shown
in Figure 15. The Dirichlet boundary conditions on the upper edge and the left edge are given as
follows.

φ(0, y) = cos(πy), on x = 0, (40a)

φ(x, 0) = cos(πx), on y = 0. (40b)
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Figure 5: Poisson equation in regular domain - solution of φ(x, y) obtained by the proposed method
in comparison with exact solution: along y = 0 .

The Neumann boundary conditions on the inner arc and the outer arc are, respectively

nx

∂φ(x, y)

∂x
+ ny

∂φ(x, y)

∂y
= q(x, y), on x2 + y2 = 1, (41a)

nx

∂φ(x, y)

∂x
+ ny

∂φ(x, y)

∂y
= q(x, y), on x2 + y2 = 4, (41b)

where q(x, y) = −nxπ sin(πx) cos(πy) − nyπ cos(πx) sin(πy).
The complexity is increased with the Neumann boundary conditions on two curved boundaries.

Making use of the proposed boundary interpolation scheme, the irregular boundaries can be ac-
curately represented as in the following obtained results. A number of grids of 77, 275, 1459 and
2872 CPs is used for computation. Figure 16 numerically shows the convergence behavior of the
method. The convergence rates of the present method for primary variable φ and dual variables
(ξ, η) are O(h3.88) and O(h3.43), respectively. At the finest grid, the relative error Lφ

2 and Lξη
2 are

1.375× 10−5 and 1.016× 10−4, respectively.

4.4 Linear elastic cantilever beam

The performance of the present method is now evaluated, using the problem of a cantilever beam
subject to parabolic shear load at the end x = 0 as shown in Figure 17.
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Figure 8: Poisson equation in regular domain - solution of η(x, y) obtained by the proposed method
in comparison with exact solution: (a) along x = 0, (b) along x = 1.
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Figure 12: Poisson equation in a multiply-connected domain: solutions along curved boundary
ξ(x, y) with 512 nodes.
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Figure 17: Cantilever beam: mathematical model.
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Figure 18: Cantilever beam: discretisation model with 20 × 5 CPs.
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Figure 19: Cantilever beam: uy(x, y) along y = 0 with 20 × 5 CPs (µ = 0.3).
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Figure 20: Cantilever beam: sxy along Dirichlet boundary x = L with 20 × 5 CPs (µ = 0.3).
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Figure 21: Cantilever Beam (µ = 0.3): sx solution with 20 × 5 CPs (a) along y = D/2, (b) along
y = −D/2.
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2 and convergence rates.

The following parameters are used for the problem: L = 4.8 and D = 1.2. The beam has a
unit thickness. Young’s modulus is E = 3 × 106 , Poisson’s ratio is µ = 0.3 (also µ = 0.5) and
the integrated parabolic shear force is P = 100. Plane stress condition is assumed and there is no
body force.

The exact solution for this problem was given by Timoshenko and Goodier (1970) as

σxx(x, y) =
P (L − x)y

I
(42a)

σyy(x, y) = 0 (42b)

τxy(x, y) =
−P

2I

(
D2

4
− y2

)
(42c)

The displacements are given by

ux =
Py

6EI

[
(6L − 3x)x + (2 + ν)

(
y2 −

D2

4

)]
(43)

uy =
−Py

6EI

[
3νy2(L − x) + (4 + 5ν)

Dx2

4
+ (3L − x)x2

]
(44)

The exact displacement (43) and (44) are applied on the Dirichlet boundary x = L. In the Galerkin
formulation, the traction-free boundary condition is automatically met but in a collocation scheme,
the the traction-free condition must be explicitly enforced.

Figure 19 shows a comparison of the exact solution and that of the present method (with
a regular grid of 5 × 20 CPs) for the beam deflection uy(x, y) along the x-axis. An excellent
agreement between the analytical and numerical results is observed. Figure 20 and Figure 21
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Figure 24: Cantilever beam (µ = 0.3: comparison of efficiency between the proposed method and
FEM. Computational cost (second) versus L2 relative error norm in displacement.

illustrate the comparison between analytically calculated solutions and the numerical results for
sxy along x = L and sx along upper and lower edges. Again, the plots show that numerical solution
and exact solution are in excellent agreement, which is confirmed by the error measures as shown
in Figure 22. The present results compare very favourably with those of Zhang et al [13] and Pan
et al [17]. Thus, compared with the standard collocation method, the present method has a good
accuracy and stability for this problem.

For the convergence studies, a number of regularly distributed grids of 20 × 5, 36× 9, 52× 13,
68× 17, 84× 21, 124× 31 and 164× 41 CPs is employed for both compressible material (µ = 0.3)
and incommpressible material (µ = 0.5) cases. The convergence behavior in the case of µ = 0.3
are shown in Figure 22, which indicates that the present method has a very good stability and
accuracy with a convergence rate of 3.1265 and 3.0557 for displacement and stress, respectively.
At the finest grid, the relative error Lu

2 and Lσ
2 are 5.102 × 10−6 and 4.802 × 10−6, respectively.

Moreover, unlike the displacement-based formulation, in which the accuracy for stress variables
is much lower than that for the displacement variables, the proposed method obtained a higher
accuracy and convergence rate for the stress field as well.

The robustness of the proposed method in the incompressible limit is also examined. The
cantilever beam problem is analyzed with different values of Poisson ratio: µ = 0.499, µ = 0.49999,
and µ = 0.5. Our numerical experiments indicate that the volumetric locking can be alleviated by
the present approach without any extra effort even in the case of µ = 0.5, for which the convergence
behavior is presented in Figure 23, showing good stability and high accuracy. The convergence
rates for displacement and stress variables are O(h3.215) and O(h3.0), respectively. At the finest
grid, the relative error Lu

2 and Lσ
2 are 4.818 × 10−6 and 4.869 × 10−6, respectively.

In term of efficiency, the computational costs versus error in displacement norm of the proposed
method and FEM (using Q4 element) are plotted in Figure 24. The comparisons in Figure 22 and
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Figure 25: Cantilever beam (µ = 0.3): comparison of efficiency between the proposed method
and the most efficient ES-PIM and ES-RPIM. Differential computational cost (DCC) of different
methods in comparison with FEM (CPU time of FEM − CPU time of the reference method) at
the same level of relative error in displacement norm.

24 demonstrate that not only the accuracy and order of convergence but also the efficiency of the
former exceed those of the latter. Furthermore, the efficiency of the proposed method is compared
with that of the latest meshfree method, namely the edge based smooth point interpolation methods
(ES-PIM and ES-RPIM) [44], by plotting the differential computational cost (DCC) of the methods
in comparison with the FEM (DCC = CPU time of FEM − CPU time of the reference method)
at the same level of relative error in displacement norm (Figure 25). It can be observed that
the proposed method is less efficient than ES-PIM(T3) (the most efficient one among the ES-PIM
family) but more efficient than ES-RPIM(T6) (the most efficient one among the ES-RPIM family).

4.5 Linear elastic infinite plate with a circular hole

In this example, an infinite plate with a circular hole subjected to unidirectional tensile load of 1.0
in x direction as shown in Figure 26 is analyzed. The radius of the hole is taken as 1 unit. Owing
to symmetry, only the upper right quadrant [0, 3]× [0, 3] of the plate is modeled (Figure 27).

In this problem, plane stress conditions are assumed with elastic isotropic properties E = 103,
µ = 0.3 (also µ = 0.5). The exact solution to this problem was given by Timoshenko and Goodier
(1970) as follows
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Figure 26: Infinite plate with a circular hole.

σx(x, y) = σ

[
1 −

a2

r2

[
3

2
cos(2θ) + cos(4θ)

]
+

3a4

2r4
cos(4θ)

]
, (45a)

σy(x, y) = −σ

[
a2

r2

[
1

2
cos(2θ) − cos(4θ)

]
+

3a4

2r4
cos(4θ)

]
, (45b)

τxy(x, y) = −σ

[
a2

r2

[
1

2
sin(2θ) + sin(4θ)

]
−

3a4

2r4
sin(4θ)

]
, (45c)

where (r, θ) are the polar coordinates, a the radius of the hole.
The corresponding displacements, in plane stress case, are given by

ux(x, y) = σ
(1 + µ)

E

[
1

1 + µ
r cos(θ) +

2

1 + µ

a2

r
cos(θ) +

1

2

a2

r
cos(3θ) −

1

2

a4

r3
cos(3θ)

]
(46a)

uy(x, y) = σ
(1 + µ)

E

[
−µ

1 + µ
r sin(θ) +

1 − µ

1 + µ

a2

r
sin(θ) +

1

2

a2

r
sin(3θ) −

1

2

a4

r3
sin(3θ)

]
(46b)

The boundary conditions of the problem are as follows. The tractions which correspond to
the exact solution for the infinite plate are applied on the top and right edges, the symmetric
conditions are applied on the left and bottom edges, and the edge of the hole is traction free.

The obtained results with 493 CPs are plotted in the Figures 28-29. Figure 28 expresses a
comparison of displacement ux(x, y) along y = 0 by the numerical method and the exact solution.
This figure shows that the obtained result is in good agreement with the analytical solution. Figure
29 demonstrates a comparison of stress sx(x, y) a long x = 0 by the proposed method and the
exact solution. An excellent agreement of the numerical stress and the exact one can be observed
in this figure.

The convergence behaviour of the proposed method in this example is studied with 116, 213,
493, 1136, 1872 and 2691 CPs, which are based on the uniformly distributed grids. The convergence
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Figure 27: Infinite plate with a circular hole: domain discretisation with 493 CPs.

curves for a compressible case (µ = 0.3) are presented in Figure 30. A good stability and high
accuracy are obtained in this problem as shown in the figure. The same rates of convergence are
observed for displacement and stress. The convergence rates for displacement and stress variables
are O(h4.141) and O(h4.028), respectively. At the finest grid, the relative error Lu

2 and Lσ
2 are

8.687× 10−4 and 6.221× 10−4, respectively.
The above configurations of collocation points are also employed to examined the performance

of the present method in the case of incompressible materials (µ = 0.5). The convergence behavior
is presented in Figure 31. Like the cantilever beam example, the obtained results indicates that the
volumetric locking due to incompressibility is alleviated. A good accuracy and high convergence
rate are obtained even in the case of µ = 0.5 as shown in Figure 31. The convergence rates for
displacement and stress variables are O(h4.183) and O(h4.118), respectively. At the finest grid, the
relative error Lu

2 and Lσ
2 are 1.147×10−3 and 8.086×10−4, respectively. Unlike standard collocation

method, which is very unstable for elasticity problems with traction boundary conditions [13, 17],
the present method shows a superior accuracy and stable convergence.

5 CONCLUSION

This paper reports a successful solution approach for problems governed by high order PDEs
where the governing equations are reformulated as first-order systems. Such first-order systems
are then numerically modelled with Cartesian grid discretisation and 1D-IRBFN, which is efficient
(Cartesian grid) and yields high order accuracy (IRBFN), as illustrated by a variety of test problems
with regular as well as irregular domains.
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