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Summary  27 

Sexual dimorphisms in animal vocal behaviour have been successfully explained by sexual 28 

selection theory (e.g. mammals: [1-5]; birds: [6, 7]; anurans: [8, 9]) but this does not usually 29 

include alarm calls, which are thought to be the product of kin or individual selection (e.g. 30 

[10, 11]). Here, we present the results of playback experiments with wild Diana monkeys, a 31 

species with highly dimorphic predator-specific alarms, to investigate the communication 32 

strategies of males and females during predator encounters. First, we simulated predator 33 

presence by broadcasting vocalisations of their main predators, leopards or eagles. We found 34 

that males only produced predator-specific alarms after the females had produced theirs, in 35 

response to which the females ceased alarm calling. In a second experiment, we created 36 

congruent and incongruent situations, so that the calls of a predator were followed by 37 

playbacks of male or female alarms with a matching or mismatching referent. For congruent 38 

conditions, results were the same as in the first experiment. For incongruent conditions, 39 

however, the males always gave predator-specific alarms that referentially matched the 40 

females’ calls, regardless of the previously displayed predator. In contrast, females always 41 

gave predator-specific alarms that matched the predator type, regardless of their own male’s 42 

subsequent calls. Moreover, the females persistently continued to alarm call until their own 43 

male produced calls with the matching referent. Results show that males and females attend to 44 

the informational content of each other’s alarm calls but prioritise them differently relative to 45 

experienced external event, a likely reflection of different underlying selection pressures. 46 

 47 

 48 

  49 
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Results and Discussion 50 

 51 

Male primates often play a more active role in predator defence than the rest of the group, 52 

hereby taking considerable risks for their own survival. In some primates, males take the 53 

threat experienced by other group members into account, independent of their own exposure 54 

[12], and adjust their behaviour depending on the presence and awareness of other group 55 

members [13, 14]. In Diana monkey groups (Cercopithecus diana) the single adult male 56 

regularly attacks crowned eagles (Stephanoaetus coronatus) and mobs leopards (Panthera 57 

pardus), while directing his loud and conspicuous alarm calls at them [15]. This type of anti-58 

predator behaviour is extremely dangerous and males can suffer considerable mortality, as 59 

indicated from remains of male guenons beneath eagle nests [16]. Although male antipredator 60 

behaviour is highly efficient in dissuading predators (e.g. [17]) and in distracting attention 61 

from vulnerable group members, males often engage in anti-predator behaviour only after 62 

considerable delays, typically after the females have started giving alarm calls.  63 

 64 

Here, we were interested in how females and males coordinate their anti-predator and alarm 65 

call behaviour. Given the observed delay in male responses, we investigated whether males 66 

adjust their anti-predator behaviour to the females’ and whether females monitor and 67 

influence the male’s behaviour.  68 

  69 

Diana monkeys live in stable groups in the dense West African forests with one reproductive 70 

male and several adult females with their offspring [18]. Both sexes produce general alert 71 

calls and predator-specific alarm calls [19, 15], which are sexually dimorphic ([20-22]; Fig. 72 

1). Male vocal behaviour is restricted to responses to threats, usually predators such as 73 

leopards or eagles, but also to alarm calls of other species and neighbouring males. Females, 74 

in contrast, possess a rich vocal repertoire used in a range of social contexts and to predators. 75 
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Male alarm calls are much louder and lower-pitched than the females’ and carry over 76 

considerable distances, suggesting that they also serve in male-male competition, a likely 77 

result of sexual selection [23]. Although both females and males usually call in response to 78 

predators, the coordination and social dynamics between the two sexes during their alarm call 79 

responses have never been analysed. 80 

 81 

We carried out field playback experiments with different wild groups of Diana monkeys by 82 

mimicking the presence of one of their main predators, a leopard (simulated by growls) or a 83 

crowned eagle (simulated by shrieks). Both sexes responded to both predator models by 84 

uttering series of acoustically distinct alarm calls [24] and other call types, in particular alert 85 

calls to leopards (males and females) and contact calls to eagles (females only).   86 

 87 

We found that the females consistently started calling before the group’s male (LMM, ß = 88 

0.41, SE = 0.18, df = 21, t = 2.242, p = 0.035), despite the fact that the predator information 89 

was simultaneously available to all individuals (Table S1). Despite this sex difference, there 90 

was neither an effect of predator type (ß = -0.23, SE = 0.167, df = 21, t = -1.382, p = 0.181) 91 

nor an interaction between sex and predator (ß = 0.127, SE = 0.234, df = 21, t = 0.544, p = 92 

0.592) on response latencies.  93 

 94 

To leopards, females typically first uttered general alarm calls (Fig. 1c), followed by leopard-95 

specific alarm calls. Males showed the same pattern, but this transition only occurred after the 96 

first female emitted a leopard alarm, in response to which the male switched from general to 97 

leopard alarms (before vs. after first female leopard alarm: N = 11, W = 120, p<0.001). We 98 

found the same pattern in response to eagles: as soon as the first female emitted an eagle-99 

specific alarm, the male gave his eagle-specific alarm sequences, but never before (table 1). 100 

This apparent female-induced change in male calling behaviour had a follow-on effect on the 101 
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females’ own calling behaviour: once the male produced his predator-specific alarm calls, the 102 

females’ own predator-specific alarm call rates decreased rapidly (before vs. after male 103 

alarms: eagles: N = 11, W = 103, p = 0.004; leopards: N = 11, W = 144, p<0.001).  104 

 105 

One explanation for the observed pattern is that it is a mere by-product of the fact that the 106 

average Diana monkey group consists of multiple adult females and one adult male only, 107 

suggesting that the probability to first respond to a predator was higher for the females. We 108 

consider this an unlikely explanation because male calling was often very delayed, sometimes 109 

close to a minute after the predator playback (Table S1). More plausible is that the males 110 

monitored the females’ alarm calling behaviour and only became active after they produced 111 

predator-specific alarm calls.  112 

 113 

To investigate whether the two sexes monitored each other’s vocal behaviour, we carried out 114 

a second experiment with playbacks of pairs of stimuli. To this end, predator calls (eagle 115 

shrieks or leopard growls, S1) were followed by a sequence of predator-specific male or 116 

female alarm calls (S2). In each group, the male and the females were tested separately. When 117 

focussing on a single male, we played back the calls of a predator first, followed by congruent 118 

or incongruent predator-specific alarm calls of his own females (recorded earlier). Similarly, 119 

when focussing on a group’s females, we played back the calls of a predator, followed by 120 

congruent or incongruent predator-specific alarm calls of their own single male (recorded 121 

earlier; table 1). Congruent conditions were predator calls followed by referentially 122 

corresponding alarm calls (e.g. leopard growls followed by female leopard alarms) while 123 

incongruent conditions were predator calls followed by referentially different alarm calls (e.g. 124 

leopard growls followed by female eagle alarms).  125 

 126 
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Based on results of Experiment 1, we predicted that, if males indeed followed the alarm 127 

calling behaviour of their own females, they should always adjust their calls to the females’ 128 

calls, regardless of the predator type perceived before, in both congruent and incongruent 129 

conditions. In contrast, for the females we predicted that they should respond directly to the 130 

predator, regardless of subsequent male alarm calls.  131 

 132 

Results showed that males always produced predator-specific alarm calls that matched the 133 

females’ own predator-specific alarm calls, regardless of prior predator calls (table 1). This 134 

change in male vocal behaviour may be interpreted as a type of behavioural conformity, as 135 

previously described for animals in feeding contexts [25]. Males appear to match the females’ 136 

alarm calls to advertise their willingness to engage in the anti-predator behaviour requested by 137 

the females.  138 

 139 

An alternative interpretation is that males were unable to recognise predator vocalisations and 140 

thus followed the females’ assessments. We consider this an unlikely explanation since males 141 

produce the referentially correct alarm calls rapidly if they detect a predator visually (KZ 142 

personal observations) or if they respond to other primate species’ alarm calls [26, 27].  143 

 144 

Females, in contrast, always produced predator-specific alarms that matched the predator type 145 

presented to them, regardless of the males’ responses. Furthermore, females decreased their 146 

alarm call rates in congruent conditions (leopard growls  male leopard alarms: N = 13, W = 147 

81, p<0.001; eagle shrieks  male eagle alarms: N = 9, W = 36, p = 0.002, table 1). In 148 

contrast, they continued their predator-specific alarm calling in incongruent conditions 149 

(leopard growls  male eagle alarms: N = 12, W = 71, p = 0.504; eagles shrieks  male 150 

leopard alarms: N = 14, W = 12, p = 0.035, table 1).  151 

 152 
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Overall, females decreased call rates more in congruent conditions than they increased call 153 

rates in incongruent conditions (LMM, ß = -2.172, SE = 0.241, df = 20, t = -9.019, p < 0.001, 154 

Fig. 2), suggesting that referential congruence had an effect on the direction and magnitude of 155 

female predator-specific alarm call rates.  156 

 157 

In contrast, changes in males’ alarm calling rates were unaffected by the referential 158 

congruence between predator type and female calls (LMM, ß = 0.546, SE = 0.259, df = 17, t = 159 

2.106, p = 0.076). For males, in other words, it seems more important to adjust to the 160 

referential content of female alarm calls, overriding the necessity to respond to the predator 161 

type perceived. We are not aware of any comparable evidence in the animal communication 162 

literature, in which callers prioritise information provided by other individuals over their own 163 

assessments [28]. 164 

 165 

The females’ predator-specific alarm calling can be explained by kin selection as an evolved 166 

strategy to inform offspring and other kin about the nature of a threat and, as shown here, to 167 

stimulate male anti-predation defence. Although male Diana monkeys are often found at the 168 

group’s periphery and rarely participate in social interactions [18], the females depend on 169 

them to confront predators as ‘hired guns’ [29, 30], a hypothesis already tested in other 170 

primate studies [31]. As a result, females may persist in alarm calling if their male produces 171 

calls to a danger they do not perceive as most relevant. However, if a male changes his calls 172 

to match the females’, they may interpret this as his readiness to engage in the anti-predation 173 

behaviour indicated by them. In response, females and other group members switch to more 174 

cryptic behaviour, using the male’s vocal behaviour as kind of a “stopping rule” [32] and 175 

benefiting from the male attracting the predator’s attention and driving it away. At the 176 

proximate level, females appear to trust their own assessments more than the male’s, perhaps 177 

because the sex ratio is biased towards females who will therefore identify a predator more 178 
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rapidly than the single male and because males often respond to the alarm calls of 179 

neighbouring males, regardless of local events.  180 

In evolutionary terms, it is less clear why males produce alarm calls against their own better 181 

knowledge. In particular, such behaviour could be maladaptive if it elicits inappropriate anti-182 

predator behaviour in others. However, because single males often forage away from the 183 

group they may often not be aware of local events, and may therefore be willing to accept the 184 

females’ assessments regardless of their own experience. Moreover, in dense forest habitats, it 185 

is usually difficult to unequivocally identify a predator and double predation events are not 186 

uncommon, suggesting that males may often perceive situations as ambiguous. Nevertheless, 187 

kin selection may also explain why resident males adjust their own responses to the females’ 188 

if they have sired offspring with them. However, kin selection cannot explain the vocal 189 

behaviour of immigrant males who are equally active in their anti-predation behaviour (CS & 190 

KZ, unpublished data), before having offspring in the group. As mentioned earlier, males do 191 

not benefit directly, as confrontations with both predators are very dangerous for them.  192 

An alternative explanation therefore is that male antipredator behaviour has been under 193 

additional sexual selection pressure. Females can be attentive to males’ acoustic cues to infer 194 

and compare the males’ physical characteristics and momentary physical conditions [33, 34]. 195 

It is therefore possible that male antipredator behaviour and calling functions to advertise a 196 

commitment to defend the group and that this has evolved in response to sexual selection 197 

pressure. A link between anti-predator behaviour and reproductive success has also been 198 

suggested for grey-cheeked mangabeys (Lophocebus albigena), as the highest-ranking males 199 

engaged most in predator mobbing behaviour [35]. To test the sexual selection hypothesis 200 

more directly, it would be necessary to investigate whether males that conform to females are 201 

more readily accepted during immigration attempts, have longer tenure and produce more 202 

surviving offspring than males who prioritise their own assessments of predatory threat, a 203 
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considerable challenge under field conditions [36-38]. Male replacements are rare events, but 204 

if they occur females have been observed to react in hostile ways, suggesting an element of 205 

female choice (CS, unpublished data). Likewise, adult females can attack intruding solitary 206 

males, with the established male and younger individuals playing a more passive role. 207 

In sum, we have shown that female and male Diana monkeys influence each other during 208 

predator encounters in their use of predator–specific alarm calls. Females’ alarm calls induce 209 

male anti-predator behaviour and determine the call types used by males, while male alarm 210 

calls appear to signal a commitment to engage in the anti-predator strategy delineated by the 211 

females. This pattern has most likely arisen from selection pressures acting differently on the 212 

two sexes, with males’ being under sexual selection and trying to maximise their tenure by 213 

providing anti-predator services and females being predominantly driven by kin selection and  214 

trying to minimise predation by engaging males as “hired guns”. 215 

 216 

Experimental procedures 217 

Subjects and Playback presentation 218 

We collected data from wild Diana monkey groups unhabituated to human presence 219 

(Experiment 1: N=22 groups; Experiment 2: N=14 groups) between July 1994, June 1995, 220 

July to November 1996, January to June 1997, and February 2000 by KZ (Experiment 1) and 221 

August to December 2013 by CS (Experiment 2). We located groups largely by auditory cues 222 

throughout a large area of Taï National Park, Ivory Coast, near the ‘Station de Recherche en 223 

Ecologie de Taï’ (Supplemental Experimental Procedures).  224 

 225 

Playback stimuli consisted of 15s of leopard growls (N=3) or eagle shrieks (N=3), 226 

respectively, either presented alone (Experiment 1) or followed after 3s by a sequence of N=3 227 

male or female predator-specific alarm calls, respectively (Experiment 2). As Diana monkeys 228 
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recognise familiar individuals by their voices [39] we only used alarm calls previously 229 

recorded from the same group (resulting in an overall pool of N=14 sequences of female and 230 

male calls, respectively). Each group was tested no more than once in each condition.  231 

 232 

In Experiment 1, the predator sounds were broadcasted with a Sony WM-D6C recorder, 233 

connected to a Nagra DSM speaker-amplifier, and vocal responses were recorded with a 234 

Sennheiser ME80 microphone and a Sony TCM-3000 cassette recorder. In Experiment 2, 235 

playback stimuli (predator sounds and subsequent Diana monkey alarm calls) were presented 236 

with an iPod Nano, connected to an AER alpha speaker-amplifier. Vocal responses were 237 

recorded with a Sennheiser ME80 microphone and a Marantz PMD 660 solid-state recorder. 238 

After each trial, we avoided the surrounding area (radius > 500m) for at least two weeks for 239 

experiments with the same stimulus type to avoid habituation. 240 

 241 

Response analysis 242 

Recordings on analogue cassette tapes were digitised using COOL EDIT 2000 software 243 

(Syntrillium Software Corporation, Phoenix, USA). Acoustic analyses were carried out using 244 

PRAAT (5.1.29). We analysed the first minute of vocal responses following each playback, 245 

the critical time period during which alarm calls were usually emitted. While it was possible 246 

to allocate male alarm calls to one specific individual, this was not possible for the adult 247 

females who typically forage in the upper forest canopy [40], which makes individual 248 

identification impossible for unhabituated groups. Analyses were therefore carried out at the 249 

group level. We only analysed groups of similar sizes (approx. 20 individuals, i.e. about 5-8 250 

adult females).  251 

 252 

Statistical analyses 253 

Due to the high number of conditions in Experiment 2 (N=8) with low trial numbers per 254 
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condition, we opted for an analysis strategy based on non-parametric tests by comparing call 255 

rates before and after the simulated conspecific alarms. For consistency, we used two-tailed 256 

Wilcoxon signed rank tests in both experiments.  257 

 258 

For Experiment 1, we analysed whether the males changed their calling behaviour in response 259 

to females, by comparing the rate of predator-specific calls emitted before and after the first 260 

predator-specific female alarm call. The same analysis was conducted for females before and 261 

after the male emitted his specific alarms. We also analysed the latencies to call (continuous 262 

target variable) using a LMM (linear mixed model, Gaussian error distribution, identity-link 263 

function) to identify effects of sex and playback stimulus (fixed factors) on calling behaviour. 264 

To control for group differences, we included “group” as a random factor. Corrected Akaike’s 265 

information criteria (AICc) values were compared to select the most parsimonious model. To 266 

control for normal distribution of residuals, we first conducted a Shapiro Wilk test on the raw 267 

data, which revealed a non-normal distribution (W=0.791, p<0.001). Latencies were thus log 268 

– transformed to normally distributed residuals (W=0.964, p=0.279) and then entered for the 269 

LMM.  270 

 271 

For Experiment 2, we compared the number of predator-specific calls for females and males 272 

before and after the other sex’ alarm calls (predator-specific male alarms for females, 273 

predator-specific female alarms for males) in each condition, including a Bonferroni 274 

correction (α=0.006). Differences in call rates between congruent and incongruent conditions 275 

were compared by means of a LMM (Gaussian error distribution; identity-link function) with 276 

“group” as a random factor.  277 

 278 

Statistical analyses were conducted using R v. 13.0.1. 279 

 280 
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Playback Target  N Calls before conspecific alarms  Calls after conspecific alarms 

Predator calls (S1) Conspecific alarms (S2)   Mean  ± SD Min Max  Mean  ± SD Min Max 

Experiment 1 

Leopard  
- 

 

Females 
 

11 

 

2.00 ± 0.91 

 

1 

 

4 
 

 

0.01 ± 0.05 

 

0.00 

 

0.18 

  Males 0.09 ± 0.28 0 1  1.91 ± 0.66 1.00 3.00 

Eagle  - Females 
11 

1.45 ± 0.89 1 4  0.67 ± 0.86 0.00 3.00 

  Males 0.00 ± 0.00 0 0  1.90 ± 0.18 0.70 6.00 

Experiment 2 

Leopard 

 

Male leopard  

 

Females 

 

13 

 

1.77 ± 0.79 

 

1 

 

3 
 

 

0.00 ± 0.00 

 

0.00 

 

0.00 

Leopard Male eagle  Females 12 1.55 ± 0.72 1 3  1.20 ± 1.17 0.30 2.00 

Eagle Male eagle  Females 9 1.66 ± 0.47 0 1  0.00 ± 0.00 0.00 0.00 

Eagle Male leopard  Females 14 1.25 ± 0.80 0 3  2.27 ± 0.74 1.00 3.80 

Leopard Female leopard  Male 10 0.00 ± 0.00 0 0  1.92 ± 1.04 0.80 3.70 

Leopard Female eagle  Male 9 0.00 ± 0.00 0 0  0.83 ± 0.54 0.30 1.20 

Eagle Female eagle  Male 8 0.00 ± 0.00 0 0  1.26 ± 0.56 0.67 3.67 

Eagle Female leopard Male 10 0.00 ± 0.00 0 0  1.27 ± 0.48 0.67 2.17 

 397 
Table1. Descriptive statistics of alarm call responses in Experiments 1 & 2. For Experiment 2, incongruent conditions (S1 and S2 with different 398 
referents) are indicated in bold.  399 

 400 
 401 
 402 
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Fig. 1: Spectrographic representations of Diana monkey alarm calls. Spectrograms illustrate 403 
a) male eagle alarm call sequence, b) male leopard alarm call sequence, c) male general alarm 404 
call sequence, d) female eagle alarm call sequence, e) female leopard alarm call sequence and 405 
f) female general alarm call sequence. 406 
 407 
Fig. 2: Changes in predator-specific alarm calling. Differences between call rates before and 408 
after playbacks of conspecific alarm calls (S2) for congruent (S1 and S2 with same referents) 409 
and incongruent (S1 and S2 with different referents) playback conditions in males (grey) and 410 
females (white). The horizontal line indicates equal call rates before and after S2 (delta values 411 
above the line indicate increased calling after S2, delta values below represent decreased call 412 
rates). Box plots indicate the first and third quartiles and the median. Whiskers indicate 413 
responses of 1.5 times the height of the box; circles indicate outliers.  414 
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Table S1. Response latencies [s] in Experiment 1 

female leopard alarms female eagle alarms male leopard alarms male eagle alarms 

Group 1 4 20 13 38 

Group 2 2 1 39 38 

Group 3 13 18 19 59 

Group 4 2 11 60 11 

Group 5 9 21 47 60 

Group 6 15 12 27 12 

Group 7 8 8 25 9 

Group 8 9 12 11 15 

Group 9 7 13 10 22 

Group 10 4 9 7 31 

Group 11 3 11 9 18 

Supplemental Experimental Procedures 

For Experiment 1, we located groups throughout a 50km2 study area, mostly by acoustic cues. We then 

determined the likely location of the majority of the group members, including the male, before approaching to 

about 20m in order to broadcast one of two possible predator sounds to all group members. The males’ responses 

obtained by these experiments have been previously analysed under another focus [S1-3]. 

For Experiment 2, we located groups in the same way, but then approached either the majority of females or the 

single male (depending on test condition) provided they were at least 50m apart from each other. The target (i.e. 

the single male or the adult females) was approached from a direction from which no other group members were 

present. To simulate a spatially plausible situation, we broadcasted the playback stimuli from the general 

direction of the group (for male targets) or from the general direction of the male (for female targets). This way 

we were able to prevent the females (or the single male, respectively) from responding to the predator calls 

before hearing the male’s (or the females’) alarm calls. 

We individually identified groups by their estimated size, location in the study area and the composition of the 

polyspecific associations. Sometimes it was possible to additionally confirm the identity of a group by the 

acoustic quality of the male alarm calls, which are individually distinct. If it was not possible to unambiguously 

identify a group (for example, if a group was encountered in the overlapping zone between two similarly sized 

neighbouring groups) we postponed the experiment to another day. 

After the identity of a group was determined, the experimenter positioned the equipment and then conducted an 

observational period of at least 10 min to describe the group’s general behaviour. Trials were not carried out in 

case of any unusual event, such as the appearance of another mammal (e.g., bushbuck, duiker), an encounter 

with a neighbouring group, naturally occurring alarm calling, or the presence of chimpanzees or other predators. 

We additionally monitored the behaviour of any associated monkey species and the approximate distance of the 

male from the group. We then started the pre-playback recording period, which lasted between 3-5min during 

which the group’s baseline vocal behaviour was recorded. We then broadcasted the playback stimulus and 

recorded the monkeys’ vocal responses for at least 5min or until the group returned to baseline behaviour, 

indicated by cessation of alarm calls and resumption of female social calls. This was typically combined with a 

decrease in vigilant behaviour (scanning) and a return to foraging or resting behaviour.  

We excluded trials from further analysis if the monkeys’ responses were elicited by an external disturbance, such 

as a real predator (N=5), a neighbouring group (N=7), other monkey species’ alarm vocalisations, including 

Supplemental Data



 

during experiments before the target called (N=13), or a terrestrial mammal (N=3). On a few occasions we failed 

to obtain recordings of sufficient quality due to technical problems or noisy external conditions (N=8).  
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