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1. Introduction

Under the assumption that the log-price process of a financial asset follows a Brownian motion, it
is well-known that using the widely accessible information on daily high and low prices, additional
to opening and closing prices, increases the efficiency of volatility estimation dramatically. Major
references include Parkinson’s development of a simple range-based volatility estimator (Parkinson
(1980)), the derivation of an optimal volatility estimator among certain functionals of opening,
high, low, and closing (OHLC) prices by Garman and Klass (1980), Rogers and Satchell (1991),
correcting the downside bias due to discrete observation of the continuous price process, and Yang
and Zhang (2000), extending the initial model framework of range-based volatility estimation from
a driftless Brownian motion to the case of a non-zero drift rate. One drawback of the developed
highly efficient OHLC-based volatility estimators, however, is their sensitivity with respect to vio-
lations of the Brownian motion assumption, which, in turn, allows their application for testing the
specification of a Brownian motion, see Becker et al. (2007).
Until recently, the focus of using OHLC price data was on univariate volatility analysis. Using the
argument that no arbitrage should be possible, Brandt and Diebold (2006) suggested a strikingly
simple way to exploit the efficiency of OHLC-based variance estimators for covariance estimation
by considering a two asset portfolio and expressing the covariance of the two-asset returns in terms
of the portfolio return variance, additional to the two individual asset return variances. While
the absence of triangular arbitrage in foreign exchange markets provides an immediate application,
however, for stock returns the high and low prices of two-asset portfolios typically are not available,
unless high frequency data is used, see Brunetti and Lildholdt (2008). A promising new strand of
research on correlation estimation using OHLC price data has been initiated by an important result
of Rogers and Shepp (2006), which gives the product moment of the extreme values of two corre-
lated Brownian motions with correlation ρ as a function of the latter. Based on this result, Rogers
and Zhou (2008) derive a correlation (covariance) estimator from OHLC data under the assump-
tion of two correlated standard Brownian motions. In a first step, an estimator is constructed as a
linear combination of the nine product moments between the open-high, open-low and open-close
returns of two Brownian motions, which is unbiased if the two processes are either uncorrelated or
perfectly correlated, and has minimum variance, when the processes are uncorrelated. In a second
step, using the result by Rogers and Shepp, it is corrected for its bias in case of non-zero and
non-perfect correlation.
In the present paper, we raise awareness of the concept of the Balanced Excess Return (BER),
which is the difference (in absolute values) of the upper and lower wick in the Japanese-candlestick
representation of OHLC prices, and use it to improve OHLC-based correlation estimators. Under
the framework of a (standard) Brownian Motion we derive the univariate distribution of the BER.
In the bivariate case, we calculate its correlation ρW as a function of the process correlation ρ using
the Rogers-Shepp result. In the light of the newly introduced concept we interpret the Rogers-Zhou
estimator as a weighted average of two estimators - one based on the close returns and a second
one based on the BERs. The interpretation allows us to explain some of the shortcomings of the
Rogers-Zhou estimator and suggest small but influential modifications. In a simulation study we
study the properties unbiasedness and efficiency of the suggested estimators under the framework
of the baseline model. We show that the modified Rogers-Zhou estimator is nearly unbiased and
efficient even compared to the Brandt-Diebold estimator provided it uses the same amount of high-
frequency data. In a next step we study the robustness of the estimators in the presence of jumps
and excess kurtosis as in jump diffusion models. We back up our findings using real data from four
major financial markets.
This paper is built as follows. In section 2 we define the BER and study its theoretical properties
under the framework of a Brownian Motion. In section 3 we revise and improve correlation esti-
mators based on the BERs. Section 4 contains a simulation study on the BER-based estimators,
while an empirical study is provided in section 5. A summary of our results is given in section 6.
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2. Balanced Excess Returns under the Brownian Motion framework

Consider a log-price process. Assume that without loss of generality the opening price is normalized
to one, i.e., the log-price process starts with zero at market opening. Let H be the highest, L be the
lowest and C be the close log-price of this process. Due to the normalization of the opening price,
H, L and C can equivalently be understood as the daily highest, lowest and close (log-)returns,
respectively, and this is the way we will refer to these variables in the remaining part of the paper.
In terms of the Japanese-candlestick representation of the OHLC prices, C is the body of the
candlestick. Let

wu := H −max(0, C) and wl := − (L−min(0, C))

be the upper and, respectively, the lower wick of the candlestick. The difference of the wicks is
given as

W := wu − wl = H −max(0, C) + L−min(0, C) = H + L− C

In the following we label the difference of the wicks as the Balanced Excess Return (BER), because
it can be interpreted as the balance between the maximal possible profit (H−max(0, C)) and
the maximal possible loss (L−min(0, C)) beyond the open-close band. Figure 1 illustrates the
difference of the wicks along with the body of the candlestick and the range for a (discretized)
Brownian Motion starting at zero.
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Figure 1. Candlestick body (C), range and wicks’ difference (BER) of a log-price process following a Brownian
Motion starting at 0.

Under a (univariate) standard Brownian Motion (BM), the distribution of the BER can be
derived as (see Appendix A for more details):

∂P (W < u)

∂u
=

∞∑
k=1

16k2

(4k2 − 1)2
1√
2π
e
−

(2ku)2

2 =

∞∑
k=1

8k

(4k2 − 1)2
φk(u), (1)
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where φk(u) is the density function of a normally distributed random variable with zero mean
and variance 1/(2k)2. Consequently, the density of the BER is a weighted average (with weights
summing to one) of scaled densities of normally distributed random variables. However, the BER
is not normally distributed.
Using the density in (1) the first two moments of the BER can be easily obtained:

E(W ) = 0

E(W 2) =

∞∑
k=1

2

k(4k2 − 1)2
= 3− 4ln2

Alternatively one can use the Vasicek’s generating function of high, low and close given in Appendix
C, Garman and Klass (1980). By means of simple scaling one obtains the mean and the variance
of the BER in the more general case when the volatility parameter σ, σ > 0, is not restricted to
one:

E(W ) = 0 and V (W ) =
(
3− 4ln(2)

)
σ2 ≈ 0.22741σ2 (2)

Note that W has a much smaller variance than C. Furthermore, Klößner (2007) shows that for all
Lévy processes (BM being a special case) it holds:

(W,C)
D
= (−W,C) (3)

Klößner actually considers a version, in which the random variables are standardized by the range -
see (15) on p.5 in Klößner (2007). The author first shows that (3) holds for intraday time-reversible
processes and subsequently proves that Lévy processes are intraday time-reversible. Note that the
underlying results for the proof of (3) can also be found in the proof of Lemma 1 in Klößner (2010).
From (3) follows that the BER is symmetric around zero and has a zero mean independent of the
value of the drift parameter under much more general conditions. An overview of moments and
correlations between the BER, C and the range, denoted with l, and their squares is given in
Table 1.

Correlation
Mean/σ Variance/σ2 C l W

C 0 1 1 0 0
l 1.5958 0.2261 0 1 0
W 0 0.2274 0 0 1

Mean/σ2 Variance/σ4 C2 l2 W 2

C2 1 2 1 0.8406 -0.2156
l2 2.7726 3.1316 0.8406 1 0.064
W 2 0.2274 0.1155 -0.2156 0.064 1

Table 1. Moments and correlations of (pairs of) C, l, W and their squares

Several results are worth pointing out:

• C, l, W are pairwise uncorrelated, i.e.:

Corr(C, l) = Corr(C,W ) = Corr(l,W ) = 0 (4)
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This property can be used in empirical studies to pin down deviations from the BM assump-
tion. Note that the zero correlation between C and W holds for all Lévy processes - a result,
which follows from (3).

• C, l, W are not independent (since their squares are correlated).
• C2 and W 2 are negatively correlated, which implies negative dependence between them.

Next we consider a bivariate driftless BM. Although the bivariate distribution of the BER has not
been derived yet, a recent result in Rogers and Shepp (2006) has made it possible to calculate the
mean of the cross product of the two BERs. For notational purposes for the rest of this section we
introduce an index i to denote the marginal log-price process (i = 1, 2).
Rogers and Shepp derive the mean of the product of the maxima in a bivariate BM as a function
of the process correlation ρ (−1 < ρ < 1):

E(H1H2) =σ1σ2c
∗(ρ), where

c∗(ρ) := cosα

∫ ∞
0

cosh να

sinh νπ/2
tanh νγdν (5)

with ρ = sinα, α ∈ (−π/2, π/2) and 2γ = α + π/2. For the values -0.5, 0 and 0.5 one obtains
explicit result for the function c∗(ρ). The results are summarized in Table 2 where we also include
the well-known values of E(H1H2)/σ1σ2 at the boundary points of the parametric space of ρ, for
which c∗(ρ) is not defined.

ρ -1 -0.5 0 0.5 1

E(H1H2)/σ1σ2 2ln2-1 0.5 2/π 0.75
√

3− 0.5 1
Table 2. Exact values of E(H1H2)/σ1σ2

For values of ρ other than the ones listed above, c∗(ρ) needs to be computed numerically.
Using Rogers and Shepp’s result it can be shown that for the correlation between W1 and W2

(denoted by ρW ) it holds:

ρW =
E(W1W2)

σ1σ2(3− 4ln2)
=

2(c∗(ρ)− c∗(−ρ))− ρ
3− 4ln2

=: g(ρ) (6)

Consequently the correlation of the BERs is a function of ρ.
In particular Figure 2 shows that ρW is an odd function for ρ and that it is invertible. Obviously,

the nonlinearity of the dependence between ρW and ρ is very mild following the mild nonlinearity
of the dependence between c∗(ρ) and ρ as noted in Rogers and Shepp (2006). The largest absolute
difference occurs in the vicinity of ρ = ±0.64. Moreover, it holds |ρW | ≤ |ρ|, while equality holds
only for the cases ρ = −1, 0 or 1.
Having outlined important properties of the BERs under the BM framework, we discuss their use
for correlation estimation in the next section.

3. Correlation estimation based on the BERs

The BERs were (implicitly) used for correlation estimation in Rogers and Zhou (2008) for the
first time. Under the assumption of a standard bivariate BM, the authors derive the following
correlation estimator as a solution to an optimization problem based on the nine cross-functionals
of highs, lows and close returns:

ρ̂0 =
1

2
C1C2 +

1

2
· (H1 + L1 − C1)(H2 + L2 − C2)

3− 4ln2
=

1

2
C1C2 +

1

2
· W1W2

3− 4ln2
(7)
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Figure 2. Correlations of the BERs and the close returns as functions of ρ

The estimator has a minimum variance (1/2) for ρ = 0 and is unbiased for ρ = −1, 0 and 1.
However, it is generally biased. To cope with this problem Rogers and Zhou suggest a multi-period
estimator

ρ̂RZ := φ−1(¯̂ρ0) (8)

with

¯̂ρ0 :=
1

N

N∑
j=1

ρ̂0;j , (9)

where ρ̂0;j is the estimator in (7) calculated for day j, j = 1, ..., N , N ∈ N, and φ(ρ) is the mean
of ρ̂0 as a function of ρ:

φ(ρ) := E(ρ̂0) =
1

2
ρ+

1

2
· 2(c∗(ρ)− c∗(−ρ))− ρ

3− 4ln2

with c∗(·) given in (5). Note that φ−1(·) is used as a correction function for the bias of the estimator
¯̂ρ0.
The authors provide no interpretation of ρ̂0 other than the output of the formulated optimization
problem. However, introducing the concept of BER allows us to gain valuable insights in this
estimator, which in turn provide ideas for an improvement. Before we address this issue, we set
the stage by defining a r0−type of correlation estimators.

Definition 1 Let (X,Y ) be a two-dimensional random vector. Assume that the first two (central)
moments of X and Y , say µX , µY and respectively σ2X , σ

2
Y , exist and are known. Given a sample

(X1, Y1), (X2, Y2), ..., (XN , YN ) of length N , N > 2, the estimator of the correlation between X and
Y given as

1

N

∑N
j=1(Xj − µX)(Yj − µY )√

σ2X

√
σ2Y

6
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is labeled an r0−type correlation estimator.

Comparing this estimator with the classical Pearson correlation given as:

1

N

∑N
j=1(Xj − X̄)(Yj − Ȳ )√

1

N

∑N
j=1(Xj − X̄)2

√
1

N

∑N
j=1(Yj − Ȳ )2

with X̄ =
1

N

N∑
j=1

Xj and Ȳ =
1

N

N∑
j=1

Yj ,

we observe that an r0−type estimator makes use of the known means and variances by substituting
them for their respective sample equivalents in the classical Pearson correlation estimator.
In terms of the Rogers-Zhou estimator we provide the following interpretation: ¯̂ρ0 (and respectively
ρ̂0, which is a special case of ¯̂ρ0 when N = 1) can be considered as an equally weighted average of
two r0-type correlation estimators:

¯̂ρ0 =
1

2

 1

N

N∑
j=1

C1,jC2,j +
1

N

N∑
j=1

W1,jW2,j

3− 4ln2

 =:
1

2
(¯̂ρ0;C + ¯̂ρ0;W ) (10)

The first one, ¯̂ρ0;C , is based only on the candlestick bodies and makes full use of the known zero
means and unit variances. It is an unbiased estimator for the correlation parameter ρ. The second
estimator, ¯̂ρ0;W is an unbiased estimator for the correlation of the wicks’ differences ρW (see (6)),
which also makes full use of their known means and variances (see (2)). Because ρ and ρW differ
except for the cases ρ = −1, 0 and 1, the estimator ¯̂ρ0 is an average of unbiased estimators of two
different correlations and consequently it is biased for either of them. This explains the need for
the bias correction given in (8) when estimating ρ.

In the light of this interpretation we can identify and explain several problems plaguing ¯̂ρ0,
which lies in the core of the Rogers-Zhou estimator.

- ¯̂ρ0 is drift-dependent

Rogers and Zhou acknowledge this problem but provide no solution to it. The reason for the
drift-dependency is the fact the two r0−type estimators assume zero mean of the close returns
and, respectively, for the BERs. Whereas, as pointed out earlier, for the latter the zero-mean
assumption is robust, this is not the case for the close returns.

- ¯̂ρ0 is generally not restricted to the admissible range [-1,1]

While the Cauchy-Bunyakoksky-Schwarz inequality restricts the Pearson correlation estimator
to [-1,1], this is not true for r0−type estimators. Consequently, especially for large absolute values
of ρ and small N , ¯̂ρ0 can take values outside the admissible range. In such cases Rogers-Zhou esti-
mator in ρ̂RZ given in (8) is not defined. Applying a truncation on ¯̂ρ0 will introduce a downside bias.

- r0−type estimators are generally not asymptotically efficient

To make this point clear, we will consider the case of correlation estimation in the bivariate
normal model when the means and variances are known. This case is relevant for the Rogers-Zhou
estimator since the close returns are normally distributed (although, as shown earlier, the BERs are
not). Let (X1, Y1), (X2, Y2), ..., (XN , YN ) be a sample of length N , N > 2, from a bivariate normal
distribution with known means and variances and unknown correlation ρ. Let ρ̂G0 be a r0−type
estimator and ρ̂GS be the classical Pearson estimator using sample variances to standardize the

7
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covariance. We use the superscript G to indicate that the sample comes from a normal distribution,
while the subscript S in the Pearson correlation estimator emphasizes on the fact that it relies on
information from the sample for the means and the variances. Then the asymptotic distribution
of the two estimators is:

√
N(ρ̂G0 − ρ)

D−→ N
(
0, 1 + ρ2

)
(11)

√
N(ρ̂GS − ρ)

D−→ N
(
0, (1− ρ2)2

)
(12)

It is straightforward to show that V (XiYi) = 1 + ρ2 for all i and consequently V (ρ̂G0 ) =
1 + ρ2

N
.

Applying the Central Limit Theorem then yields (11). See Cramér (1971) for (12). The results hold
also for the case when the means are unknown and have to be estimated.
ρ̂G0 is asymptotically inefficient compared to ρ̂GS since:

1 + ρ2 ≥ (1− ρ2)2

with equality obtained for the case ρ = 0. This result can be viewed as a paradox since ρ̂G0 uses
more information compared to ρ̂GS . A possible explanation is that the additional information of the
known moments is not used in the correct way (as opposed, for example, to a maximum-likelihood
estimator).
Another issue concerning the estimator in (8) is its complexity. In particular, φ−1(·) needs to be
calculated numerically except for the cases listed in Table 2. This can be done using suitable
statistical software but an approximation can simplify its practical application. First, note that
since ¯̂ρ0;W estimates the “wrong” correlation, a correction can be imposed only on it instead of
correcting the combined estimator ¯̂ρ0. Consequently, we are interested in approximating g−1(·)
given in (6) rather than φ−1(·). The approximation should be an odd function in ρW , which is in
line with Rogers and Zhou’s observation that a quadratic approximation is not useful. In particular
we seek a polynomial of power three such that:

ρ = α1ρ
3
W + α2ρ

2
W + α3ρW + α4

The results in Table 2 imply the following relations:

ρ -1 0 0.5 1

ρW -1 0 3
√
3−5

6−8ln2
1

and thus the vector with the polynomial coefficients α should solve the following system:

Bα = z,

where (setting 3
√
3−5

6−8ln2
=: k)

B =


−1 1 −1 1
0 0 0 1
k3 k2 k 1
1 1 1 1

 and z =


−1
0

0.5
1


One easily obtains α ≈ (−0.1958, 0, 1.1958, 0)′. Setting α∗ = 1.1958, the approximation can be
summarized as follows:

ρ ≈ α∗ρW + (1− α∗)ρ3W = 1.1958ρW − 0.1958ρ3W , (13)

8
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which is indeed an odd function of ρW .
To cope with the problems listed above we propose the following slight but influential modifications
to the Rogers-Zhou estimator:

1) Substitute the inefficient r0−type estimators with Pearson-type estimators using sample
means and variances

2) Correct the estimator for ρW with the approximated correction function given in (13)

In that way we propose the following BER-based correlation estimator:

ρ̂J :=
1

2
(ρ̂C + 1.1958ρ̂µ;W − 0.1958ρ̂3µ;W ), where (14)

ρ̂C :=

∑N
j=1(C1,j − C̄1)(C2,j − C̄2)√∑N

j=1(C1,j − C̄1)2
∑N

j=1(C2,j − C̄2)2
and

ρ̂µ;W :=

∑N
j=1W1,jW2,j√∑N

j=1W
2
1,j

∑N
j=1W

2
2,j

(15)

with C̄i = 1
N

∑N
j=1Ci,j , i = 1, 2. The subscript µ in ρ̂µ;W indicates that the estimator uses the

known (zero) means. There is no need to demean the BERs since their zero-mean property holds
under the general class of Lévy processes.
Some of the asymptotic properties of the proposed estimator can be derived using already available
results for the (multivariate) asymptotic distribution of the Pearson correlation coefficient. First
note that the latter is consistent and asymptotically normal - see (Lehmann 1999, p.317) for
example. Thus ρ̂C and ρ̂µ;W are consistent for ρ and ρW , respectively. Due to the approximation,
however, ρ̂J is not consistent for ρ. In fact, it is consistent for (α = 1.1958)

ρα =
1

2

(
ρ+ αρW + (1− α)ρ3W

)
,

which in general differs from ρ except for the cases stated in Table 2. This is not a major drawback.
First, note that for small to medium sized finite samples, the MSE is dominated by the variance
and the contribution of the approximation error is negligible. We note that the difference between
the true value and the approximation, evaluated numerically on a fine grid, is not larger than
0.001554991 in absolute value. Second, a consistent estimator can be obtained using the true
correction function. The estimator:

ρ̂J ;g =
1

2
(ρ̂C + g−1(ρ̂µ;W ))

with g(·) given in (6) is consistent for ρ. The result follows from Slutsky’s theorem and the fact
that g−1(·) is continuous.
The asymptotic distribution of ρ̂J can be obtained using a result in Neudecker and Wesselman
(1990). According to Theorem 2 on p.597, the asymptotic distribution of the sample correlation
matrix (i.e. the matrix containing the Pearson correlation estimators) of the vector (C1,W1, C2,W2)
is normal. Note that the theorem only requires that the moments of the random vector up to the
fourth order exist. Since the distribution of the vector (ρ̂C , ρ̂µ;W ) is marginal to the one of the
sample correlation matrix, it follows that:

√
N

(
ρ̂C − ρ

ρ̂µ;W − ρW

)
D−→ N(0,Σ),

9
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where
D−→ denotes convergence in distribution and Σ is a certain variance-covariance matrix. A

precise expression of Σ would require, among other results, moments of higher order of cross-
products of BER. These have not been derived yet. For x := (x1, x2)

′ define

h(x) =
1

2

(
x1 + αx2 + (1− α)x32

)
Applying the delta method then gives

√
N(ρ̂J − ρα) =

√
N
[
h
(
(ρ̂C , ρ̂µ;W )′

)
− h

(
(ρ, ρW )′

)] D−→ N(0, δΣδ′)

with δ = 1
2(1, α+3(1−α)ρ2W ). Consequently, ρ̂J is asymptotically normal. Using similar arguments,

it can be shown that ρ̂J ;g is also asymptotically normal.
In the next section we provide insights on the properties unbiasedness, efficiency and robustness of
ρ̂J in comparison with other estimators discussed in the present paper. We note at this stage that
provided there is no censoring, ρ̂RZ is nearly unbiased because, as noted above, the non-linearity of
the correction function is only mild. On the other hand, ρ̂J has a small sample bias. The reason for
that lies in the fact that ρ̂J can be considered as a weighted average of two Pearson-type correlation
estimators and it is well-known that the Pearson correlation estimator is biased of order O(1/N)
- see Cramér (1971) for example. Note that for small samples a bias correction for the Pearson
correlation estimator exists - see Olkin and Pratt (1958). For reasonably sized samples, however,
this bias is negligible. In terms of efficiency, there is little theoretical support on the variances of
the estimators (except for ρ̂0 when ρ = 0) for reasons stated above. Moreover, it is important to
know how sensitive are the estimators to the model assumption. Such problems are addressed in a
simulation study described in the next section.
Before we close this section we add a comment on the estimator proposed by Rogers and Zhou.
In financial applications the assumption of a standard BM (which implies that the drift and the
volatility parameters are known) is rather unrealistic. Usually the drift and the volatility parameters
need to be estimated from the sample data. Although Rogers and Zhou do not address the problem,
a feasible version of their estimator is straightforward to derive using a volatility estimator based
on the squared close returns to standardize ¯̂ρ0:

ρ̂aRZ :=φ−1

 ¯̂ρ0√
1
N

∑N
j=1C

2
1,j

1
N

∑N
j=1C

2
2,j

 = (16)

=φ−1

1

2
(

1
N

∑N
j=1C1,jC2,j√

1
N

∑N
j=1C

2
1,j

1
N

∑N
j=1C

2
2,j

+
1
N

∑N
j=1W1,jW2,j√

1
N

∑N
j=1C

2
1,j

1
N

∑N
j=1C

2
2,j(3− 4ln2)

)


One cannot help but notice that the estimator for ρW employs a peculiar mix of theoretical (3 −
4ln2) and sample variances (1/N

∑N
j=1C

2
i,j) when estimating the variance of the BERs. Note that

the variance of the BERs standardized by the estimated scaling parameter is only approximately
3− 4ln2. Thus, even though ρ̂aRZ can be further adjusted to account for a non-zero drift, the core
difference between the feasible Rogers-Zhou estimator and ρ̂J lies in the estimation of the BER
variance. For finite samples:

(3− 4ln2)
1

N

N∑
j=1

C2
i,j 6=

1

N

N∑
j=1

W 2
i,j , i = 1, 2

10
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and thus the distribution of
1

N

∑N
j=1W1,jW2,j√

1

N

∑N
j=1 C

2
1,j

1

N

∑N
j=1 C

2
2,j(3−4ln2)

and ρ̂µ;W may differ substantially. We

investigate the effect of this difference on the unbiasedness and the efficiency of the estimators in
the next section.

4. Simulation study

First we start by studying the properties unbiasedness and efficiency of the correlation estimators
of interest under the framework of a standard BM. In a next step we study the performance of the
estimators in the presence of jumps and excess kurtosis.
The competing estimators are:

• the classical estimator ρ̂C , which is based on the candlestick body and neither uses additional
information on highs and lows, nor relies on known moments (serving as a benchmark). In this
way the simulation study differs from the one in Rogers and Zhou (2008), where the inefficient
¯̂ρ0;C - see (10) - is used as a benchmark.

• Rogers-Zhou’s ρ̂RZ , which additionally incorporates information on the wick’s difference and
relies on known means and/or variances

• its feasible version ρ̂aRZ
• the modified Rogers-Zhou estimator ρ̂J proposed in the present paper and
• the Brand-Diebold correlation estimator proposed in

Brandt and Diebold (2006)

The latter estimator is defined as:

ρ̂BD :=
1

2λ1λ2

∑N
j=1(l

2
w,j − λ21l21,j − λ22l22,j)√∑N

j=1 l
2
1,j

∑N
j=1 l

2
2,j

, (17)

where λ1, λ2 are real and lw,j is the range of a portfolio from the two assets with weights λ1 and
λ2. Obviously, ρ̂BD requires additional information on the portfolio range, which is not readily
available in general. Brandt and Diebold (2006) list several exceptions, the most notable being the
foreign exchange market in the absence of triangular arbitrage. In the general case, however, in
order to obtain the portfolio range one needs to reconstruct the path of the portfolio return using
high-frequency data. For this reason it is debatable if the estimator can be classified as a correlation
estimator based on daily OHLC prices and thus the comparison with the other estimators can be
regarded as “unfair”. Nevertheless, we include ρ̂BD in the present simulation study for completeness
and emphasize that the study provides useful insights in terms of the efficiency and robustness of
this estimator.

4.1. Comparison of the correlation estimators under the BM assumption

To compare the estimators under the original framework we simulate random samples of the follow-
ing tuple (C1, l1,W1, C2, l2,W2, C1−2, l1−2,W1−2) for sample sizes N = 25 and N = 250 (roughly
corresponding to the amount of one month respectively one year of daily data). Each sextuple
(C1, l1,W1, C2, l2,W2) is obtained by simulations of discretizations of correlated BMs with f = 500
steps, which, in case of a 24-hour trading day, corresponds to a price observation every 2.88 min-
utes. The triple (C1−2, l1−2,W1−2) gives the close return, the range and the BER of a portfolio
with weights λ1 = 1 and λ2 = −1. Each sample is replicated M = 10, 000 times. In that way the
simulation study in the present work differs from the simulation study in Rogers and Zhou (2008).
In the latter N is set to one while M = 20, 000 and the efficiency of ρ̂0 rather than that of ρ̂RZ
is reported. However, for the evaluation of the bias the authors calculate ρ̂RZ applied on the full
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ρ ρ̂C ρ̂BD ρ̂RZ ρ̂aRZ ρ̂J
Mean

0.9 0.897 0.899 0.869 0.880 0.895

0.8 0.793 0.798 0.782 0.801 0.791
0.7 0.693 0.699 0.694 0.716 0.691
0.6 0.591 0.598 0.594 0.613 0.588
0.5 0.492 0.499 0.494 0.508 0.488

0.4 0.395 0.399 0.399 0.410 0.392
0.3 0.292 0.298 0.297 0.305 0.291
0.2 0.195 0.199 0.199 0.205 0.195

0.1 0.095 0.099 0.098 0.100 0.096
0.0 -0.003 -0.000 -0.000 -0.000 -0.001

N ·Variance
0.9 0.046 0.008 0.362 0.302 0.029

0.8 0.157 0.029 0.487 0.408 0.097
0.7 0.304 0.056 0.553 0.490 0.182

0.6 0.461 0.089 0.585 0.532 0.280

0.5 0.617 0.121 0.589 0.536 0.374
0.4 0.750 0.155 0.597 0.581 0.452

0.3 0.905 0.186 0.585 0.600 0.519

0.2 0.971 0.206 0.586 0.627 0.562
0.1 1.035 0.224 0.608 0.669 0.609

0.0 1.020 0.227 0.583 0.641 0.597√
N ·MSE

0.9 0.214 0.090 0.622 0.558 0.172

0.8 0.398 0.170 0.703 0.639 0.314
0.7 0.552 0.237 0.744 0.704 0.429
0.6 0.680 0.299 0.765 0.732 0.532

0.5 0.786 0.348 0.768 0.733 0.615
0.4 0.866 0.394 0.773 0.764 0.673
0.3 0.952 0.432 0.765 0.775 0.722
0.2 0.986 0.453 0.766 0.792 0.750

0.1 1.017 0.473 0.780 0.818 0.781
0.0 1.010 0.476 0.763 0.801 0.773

Table 3. Bivariate standard BM, N = 25, M=10,000 replications

“sample” size M = 20, 000. We report results only for (the more realistic for financial markets)
positive correlations (ρ ∈ {0, 0.1, ..., 0.9}), the results for negative correlations are similar.
Estimates lying outside the admissible range are censored to the corresponding lower or upper
bound. We calculate the mean, the variance and

√
N ·MSE (to which we refer as root mean

squared error (RMSE)) of the 5 competing estimators over the M replications. The results for
N = 25 and N = 250 are reported in Table 3 and Table 4 respectively. In the following we dispose
of the “hat” when denoting the estimated variance of the estimators to ease the notation.

4.1.1. Small sample bias. Most estimators show no noticeable bias when N = 25. The only
exceptions are ρ̂RZ and ρ̂aRZ . For larger (absolute) values of ρ both estimators are biased towards
zero due to the imposed censoring. For 0.1 < ρ < 0.8, the feasible Rogers-Zhou estimator suffers
from an upward bias, the reason for which seems to be the variance estimator of the BER. For
ρ > 0.8 this upside bias cancels out to some extent with the downside bias introduced through the
censoring. The Pearson-based estimators (ρ̂C and ρ̂J) show a small downside bias which is in line
with the theory. When the sample size is increased to 250, all estimators are virtually unbiased.
It is interesting to note that Brandt-Diebold estimator ρ̂BD is also unbiased. This may seem
surprising since the range-based variance estimators, which build ρ̂BD, suffer from disretization
bias. The explanation is that the bias in the numerator and in the denominator cancel out on
average. In fact it is straightforward to show that for a driftless BM ρ̂BD is a consistent estimator for
the true correlation parameter independent of the sampling frequency, provided that the sampling
frequency is the same for the two assets and the portfolio.
Table 3 shows that even for N = 25 the difference between the true value of ρ and the estimated
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ρ ρ̂C ρ̂BD ρ̂RZ ρ̂aRZ ρ̂J
Mean

0.9 0.899 0.900 0.897 0.901 0.900

0.8 0.799 0.800 0.798 0.801 0.800
0.7 0.699 0.700 0.699 0.700 0.699
0.6 0.599 0.600 0.598 0.600 0.598
0.5 0.499 0.500 0.499 0.501 0.499

0.4 0.399 0.400 0.398 0.399 0.398
0.3 0.301 0.300 0.300 0.301 0.300
0.2 0.200 0.200 0.200 0.200 0.199

0.1 0.100 0.100 0.100 0.100 0.099
0.0 0.000 -0.000 -0.000 -0.000 -0.000

N ·Variance
0.9 0.038 0.008 0.558 0.616 0.023

0.8 0.134 0.028 0.594 0.573 0.080
0.7 0.264 0.058 0.612 0.517 0.164

0.6 0.413 0.090 0.613 0.479 0.255

0.5 0.554 0.122 0.598 0.495 0.347
0.4 0.720 0.156 0.601 0.496 0.429

0.3 0.815 0.180 0.601 0.538 0.506

0.2 0.945 0.214 0.596 0.572 0.560
0.1 0.996 0.227 0.605 0.601 0.607

0.0 1.015 0.237 0.610 0.617 0.625√
N ·MSE

0.9 0.194 0.090 0.749 0.785 0.151

0.8 0.366 0.169 0.771 0.757 0.284
0.7 0.514 0.240 0.782 0.719 0.405
0.6 0.643 0.299 0.784 0.692 0.506

0.5 0.745 0.350 0.774 0.703 0.589
0.4 0.849 0.394 0.776 0.704 0.656
0.3 0.903 0.425 0.776 0.733 0.712
0.2 0.972 0.462 0.772 0.756 0.748

0.1 0.998 0.476 0.778 0.775 0.779
0.0 1.007 0.486 0.781 0.785 0.790

Table 4. Bivariate standard BM, N = 250, M=10,000 replications

mean of ρ̂BD is never larger than 0.002 in absolute value. However, when the sample size is much
smaller, the effect of the sampling variation is larger and the estimator is biased. This explains the
downside bias of ρ̂BD reported in Table 1 (Brandt and Diebold 2006, p.7) when N = 1.

4.1.2. Efficiency. In the following section, similar to Garman and Klass (1980), we define
efficiency of an estimator B compared to an estimator A as the variance ratio V (A)/V (B). An
efficient estimator then is the estimator with the smallest variance within a set of (nearly) unbiased
estimators. Efficiency gains of B over A, in turn, are defined as the percentage increase of V (A)
over V (B).
Both Tables 3 and 4 show that it pays to use Pearson-based rather than r0−type estimators for
the close returns and BERs. The results from the simulation study are in line with the theoretical
results from the bivariate normal model - ρ̂J outperforms ρ̂RZ (except for the vicinity of zero) with
the efficiency gains increasing with increasing absolute value of ρ. In particular, the efficiency gains
for ρ = 0.9 amount to 1248%. Thus, paradoxically as it may sound, it pays off not to use any a
priori information on the variance of the excess returns. More precisely, such information should
not be used if it is not used appropriately.
The feasible estimator ρ̂aRZ performs slightly better than ρ̂RZ in terms of efficiency but it is
still outperformed by ρ̂J . Consequently, there are indications that the estimators ρ̂µ;W and

1

N

∑N
j=1W1,jW2,j√

1

N

∑N
j=1 C

2
1,j

1

N

∑N
j=1 C

2
2,j(3−4ln2)

indeed differ in distribution.

For both sample sizes ρ̂J completely outperforms the benchmark estimator with efficiency gains
around 65%. On the other hand, ρ̂C is more efficient than ρ̂RZ for |ρ| > 0.5 although it makes
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no use of information on the wicks. For smaller absolute values of ρ the latter estimator is more
efficient but its efficiency gains are not as impressive as when compared to ¯̂ρ0;C (as in Rogers and
Zhou (2008)). Consequently, it pays to include BERs for the estimation of ρ but this should be
done in the “right” way.
When data on the portfolio OHLC is available, ρ̂BD clearly outperforms all other competitors for
both sample sizes. Its efficiency gains with respect to ρ̂aRZ for the case ρ = 0.9 are impressive -
4514% (N = 25) and 6975% (N = 250). The results in Table 3 and Table 4 provide interesting
insights on the inefficiency of the estimator ρ̂BD when information on the entire path of the two
BMs is used in order to derive the daily highs and lows of the composite process (as is the case
in the simulation study). To make this point clear consider dividing the day in 10 subintervals
with OHLC data available for each subinterval. Consequently, for 25 days there will be 250 pairs
of close returns and BERs, correlated with ρ respectively ρW , available, i.e. ρ̂J can be calculated
on 250-observation-basis. This means that the variance of this estimator will roughly correspond
to the variance of ρ̂J implied in Table 4. Then in terms of efficiency of the two estimators one
can compare 250 · V (ρ̂J) (reported in Table 4) with 25 · V (ρ̂BD) (reported in Table 3) multiplied
by 10. Then it becomes clear that ρ̂J completely outperforms ρ̂BD even though it uses even less
information than the latter estimator (only OHLC data for the subperiods as opposed to the whole
(discretized) path). It is fair to note that in this case the BER will be calculated from 50 rather than
500 observations per interval but ρ̂J will not be seriously affected by this discretization problem
because on the one side, as pointed out in Rogers and Zhou (2008), the BERs suffer less than the
range from the discretization errors and, on the other side, the estimator based on BERs enters ρ̂J
(only) with weight 0.5.
To highlight these arguments we conduct an additional simulation, which marks the situation
described in the previous paragraph. In particular we divide each of 25 days into 10 subintervals of
equal length and simulate discretizations of correlated BMs with f = 50 steps for each subinterval.
In that way we obtain quadruples (C1,W1, C2,W2) for each subinterval. Next we use the close
returns from the subintervals to construct the path of the portfolio with weights, as before, λ1 = 1
and λ2 = −1. From the path containing 10 observations we obtain the daily range of the portfolio.
The daily range of the two assets is calculated in a similar way, i.e. using paths constructed from
subintervals’ close returns. Although the observed daily range for the two assets is available, this
approach allows the discretization bias of the portfolio’s volatility estimator to be the same as the
discretization bias of the respective estimators for the two assets. This is done to the advantage of
ρ̂BD because it could still profit from the canceling out effect of the bias. We calculate ρ̂J using
the 25 · 10 = 250 pairs of close and excess returns, while ρ̂BD is calculated from the 25 daily triples
of ranges.
The simulation is replicated M = 10, 000 times and the (sample) means, variances (scaled by 250)
and RMSE (scaled by

√
250) are reported in Table 5.

Mean 250· Variance
√

250· RMSE
ρ ρ̂J ρ̂BD ρ̂J ρ̂BD ρ̂J ρ̂BD

0.9 0.899 0.899 0.023 0.126 0.152 0.355
0.8 0.799 0.798 0.083 0.441 0.290 0.665
0.7 0.698 0.698 0.167 0.901 0.410 0.950
0.6 0.597 0.597 0.260 1.374 0.512 1.173
0.5 0.496 0.497 0.358 1.945 0.601 1.395
0.4 0.397 0.397 0.436 2.426 0.662 1.558
0.3 0.298 0.298 0.506 2.759 0.712 1.662
0.2 0.199 0.199 0.562 3.141 0.750 1.772
0.1 0.099 0.097 0.597 3.404 0.773 1.845
0.0 -0.000 0.000 0.595 3.445 0.771 1.856

Table 5. Comparison of ρ̂J with Brandt-Diebold type of estimators using the same amount of information.
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The results are expected. Reducing the sampling frequency by 10 times has little effect on the
unbiasedness of ρ̂J . As expected the estimator ρ̂BD also remains unbiased. However, in terms of
efficiency the Brandt-Diebold estimator is completely outperformed by the modified Rogers-Zhou
one with ρ̂J being around 5 times more efficient for every ρ in the table. Consequently, when ρ̂J is
calculated using the same high-frequency data as ρ̂BD, i.e. when the two estimators are compared
on a fair basis, then the one proposed in this paper performs better.
We conclude that as long as the assumption of a bivariate BM is satisfied and no additional
information is available for the calculation of ρ̂BD, the estimator proposed in the present paper ρ̂J
is nearly unbiased and efficient in the set of studied estimators. Rogers-Zhou estimator ρ̂RZ is not
only limited in application but is also for larger absolute values of ρ the worst performing estimator
even compared to the benchmark.
Before we close this section, we provide numerical arguments supporting the theoretical results
regarding the asymptotic distribution of ρ̂J . In particular, for ρ = 0, 0.1, ..., 0.9 we simulate M =
1000 replications of samples (C1,W1, C2,W2) of length N = 1500. For each sample we calculate
ρ̂J and apply a Jarque-Bera test on the M estimates. The p-values are provided in Table 6. The
results are in line with the theory - all p-values are greater than any standard significant level,
which means that the Null hypothesis of a normal distribution cannot be rejected.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p-value 0.553 0.306 0.953 0.298 0.496 0.260 0.377 0.358 0.160 0.151

Table 6. p-values from the Jarque-Bera test on a sample of M = 1000 ρ̂J estimates, each calculated from a sample
of N = 1500 pairs of close returns and BERs.

4.2. Robustness check

In this section we consider the effects of jumps and excess kurtosis on the studied estimators under
the framework of Merton Jump Diffusions introduced in Press (1967).

Definition 2 Let (Wt)t∈[0,1] be a standard BM, µ ∈ R, σ > 0, Nt a Poisson process with intensity

λ > 0 and
∑Nt

i=1 Yi an independent from (Wt)t∈[0,1] Compound Poisson process with Yi ∼ N(µJ , σ
2
J).

Then the stochastic process X = (Xt)t∈[0,1] with

Xt = µt+ σWt +

Nt∑
j=1

Yj

is a Merton Jump Diffusion (MJD).

According to this definition (Xt)t∈[0,1] is a BM with drift µ and scaling parameter σ, subjected
to a finite number of random jump discontinuities occurring with exponential interarrival times
(see (Madan and Seneta 1987, p.154)). In finance, such jumps are caused by the arrival of news
with influence on the whole market (change in the interest rate for example) or specifically on the
individual assets (earnings announcements for example).
In case µ = 0, the characteristic function of the return Xt, t ∈ [0, 1] is:

ψXt(x) = exp{− tx
2σ2

2
+ λt(exp{ixµJ −

x2σ2J
2
} − 1)},

where i denotes the imaginary unit. Using ψXt(x) it can be shown that the tail of Xt is heavier
than the tail of a Gaussian return, whereas its distribution is symmetric when µJ = 0.
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Next we construct correlated MJDs using the following procedure. Let Z0, Z1 and Z2 be three
independent MJD with (the same) parameters µ = µJ = 0, σ, σJ and λ. For 0 ≤ ρ ≤ 1 the two
processes

Xi =
√
ρZ0 +

√
1− ρZi i = 1, 2 (18)

are jump diffusions with characteristic functions of the returns

ψX1,t
(x) = ψX2,t

(x) = exp{− tx
2σ2

2
+

+ λt(exp{−
x2ρσ2J

2
} − 1) + λt(exp{−

x2(1− ρ)σ2J
2

} − 1)},

correlated with ρ. We provide the following interpretation of the construction in (18).
√
ρZ0 is the

(scaled) market component with systematic shocks, occurring at the same time and with the same
size for the individual asset price processes. As opposed to it,

√
1− ρZ1 and

√
1− ρZ2 represent

the (scaled) idiosyncratic components, whose shocks are independent from one another and from
Z0. Please note that X1 and X2 differ from the classical definition of a MJD in that their jump part
is a sum of two compound Poisson processes with generally different variances (ρσ2J and (1−ρ)σ2J),
although the intensity parameter, the parametric family for the distribution of the jumps and the
respective means are identical.
In the present work we simulate discretizations of the jump diffusions given above with µ = 0,
µJ = 0, σ =

√
0.5, σJ =

√
0.5 and λ = 1 so that the means and the variances of the close

returns are respectively zero and unity, whereas the excess kurtosis varies between 0.375 and 0.75
depending on ρ. The simulation technique for a discretized MJD is the following.

• Step 1: Simulate f = 500 normal rvs with zero mean and variance 1/f .
• Step 2: Simulate f = 500 exponentially distributed rvs with parameter λ = 1. Cumulate the

resulting series in order to determine the points of time, at which the jumps occur. Leave out
values greater than unity.

• Step 3: For each of the points of time from Step 2 simulate a normally distributed rv with
zero mean and variance 0.5 in order to determine the size of the jump.

• Step 4: Add the jumps to the increments of the random walk for the corresponding period so
that the increments of a MJD are obtained (we use the convention that the jumps occur at the
end of the time interval). These increments have zero means and variances 1

f (σ2+λσ2J) = 0.002.

Conduct Step 1 to Step 4 for each of the three processes Z0, Z1 and Z2. Finally

• Step 5: Obtain the increments of X1 and X2 in accordance with (18).
• Step 6: Build the cumulative sums of the increments from Step 5.

The rest of the simulation is analog to the procedure described in section 4.1 with sample size
N = 250 and number of replications M = 10, 000. For each ρ ∈ {0, 0.1, ..., 0.9} the means and the
RMSE of the four estimators (we drop the estimator ρ̂RZ and consider only its feasible version) of
interest over the M replications are reported in Table 7.

The classical estimator is robust against the change in the underlying process and remains nearly
unbiased. Its variance, however, has slightly increased, which leads to an increased RMSE compared
to Table 4. The reason for that is the fact that the close returns are no longer normally distributed.
ρ̂BD is mildly affected by the change in the underlying process, which reflects in a small bias
towards zero (especially in the vicinity of 0). As opposed to the Brandt-Diebold estimator, ρ̂aRZ has
a considerable bias towards zero. The source of the bias is twofold. On the one hand, the variance
of the excess returns is no longer 3−4ln2. On the other hand, the relation between ρ and ρW given
in (6) and consequently the correction in (8) are no longer valid. For these reasons ρ̂aRZ is very
sensitive to the change of the underlying process. ρ̂J still depends on the relation between ρ and
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ρ ρ̂C ρ̂BD ρ̂aRZ ρ̂J ρ̂C ρ̂BD ρ̂aRZ ρ̂J
Mean

√
N ·MSE

0.9 0.900 0.898 0.821 0.889 0.215 0.121 1.476 0.255
0.8 0.800 0.798 0.732 0.785 0.399 0.218 1.298 0.416
0.7 0.699 0.699 0.643 0.685 0.555 0.295 1.129 0.527
0.6 0.599 0.599 0.553 0.587 0.695 0.363 0.994 0.603
0.5 0.498 0.500 0.463 0.491 0.804 0.415 0.891 0.656
0.4 0.399 0.399 0.372 0.395 0.882 0.453 0.814 0.700
0.3 0.300 0.297 0.282 0.301 0.939 0.479 0.757 0.735
0.2 0.199 0.193 0.190 0.205 0.982 0.504 0.734 0.775
0.1 0.100 0.084 0.096 0.106 1.005 0.555 0.712 0.786
0.0 0.001 -0.033 0.001 0.001 1.003 0.718 0.692 0.774

Table 7. Correlated bivariate jump diffusions, parameters µ = µJ = 0, σ2 = σ2
J = 0.5, λ = 1, N = 250, M=10,000

replications

ρW but does not employ any assumption of the theoretical variances of the (standardized) BERs.
Consequently, it is more robust than ρ̂aRZ , which reflects in a smaller bias. In terms of RMSE,
none of the estimators shows a clear advantage over its competitors for all studied values of ρ. The
choice of a correlation estimator in this case is, therefore, debatable.
One possibility to improve on the performance of ρ̂J in practical applications is to use Monte Carlo
simulations to estimate the relation between ρ and ρW . Then the estimated relation can be used
to correct ¯̂ρ0;W . This can be done, however, under the condition that a suitable multivariate model
has been fit to the data.

5. Empirical study

To back up the results from the simulation study with empirical evidence, we conduct an empirical
study, which is centered around the modified Rogers-Zhou estimator

ρ̂J :=
1

2

(
ρ̂C + g−1(ρ̂µ;W )

)
,

where, in order to avoid any inaccuracy due to the approximation of g−1(·), we use the exact
correction rather than its approximation. We want to know if there is a statistically significant
difference in the mean of ρ̂J and the classical estimator ρ̂C , which is the Pearson’s sample correlation
coefficient applied on the candlestick bodies. This would implicitly answer the question if the
correction g−1(·) of the BER correlation is adequate. If it is not, we want to learn more about the
relation between ρ, the correlation of the candlestick bodies, and ρW . Furthermore, we want to
check if ρ̂J retains the efficiency gains over ρ̂C promised by the simulation study in section 4.1 when
the estimators are applied on real data. Our empirical study follows the set-up in Rogers and Zhou
(2008), where the authors conduct a small-scale empirical study on four assets from the American
stock market. Our goal is to extend the number of asset pairs and to include other major stock
markets. We note also that the authors compare the r0−type estimators, while we concentrate on
the more efficient Pearson-based correlation estimators.
Throughout this section, returns (high, low, close) are related to the open price rather than to
the previous close. Correlation estimators are calculated from (non-overlapping) small-size samples
of length N = 25. This ensures that the sample of correlation pairs is large enough, while the
assumption of a constant correlation is still plausible. We note that in the empirical study in
Rogers and Zhou (2008) the authors also use small-size samples with N = 1.
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5.1. Data

The empirical study in this section concentrates on four major stock markets - the American, the
German, the French and the UK one. In particular we study pairs of constituents of the following
benchmark indices - the Dow Jones Industrial Average (DJI) for the American, the “Deutscher
Aktienindex” DAX for the German, the CAC 40 (or simply CAC) for the French and the FTSE
100 (or simply FTSE) index for the UK market. The first two indices consist of 30 large publicly
traded companies trading on the local stock exchange markets, whereas the third consists of 40
and the fourth consists of 100 such companies.
The data source is Thompson Reuters’ statistical database DataStream. The data used for the
study is filtered from:

• days with “not annotated” (NA) entries. Mostly weekends and bank holidays.
• days on which no trading takes place, i.e. open price equals low, high and close price.
• days with irregularities in the data such as high price being lower than open and/or close

price, respectively low price being higher than open and/or close price.

For the data cleaning we assume the following approach. Days with NA entries and days without
trading are deleted from the data so that only days with actual, simultaneous (for all studied assets
on the particular market) trading are considered. With respect to the irregularities we set 1) the
high price equal the maximum of open, high and close price and 2) low price equal the minimum
of open, low and close price.
For the American market we consider 28 constituents of DJI dropping Kraft foods and JPMorgan
Chase due to incomplete data. This results in

(
28
2

)
= 378 pairs of assets. OHLC data is collected

from 1993-10-01 until 2012-02-23. In that way we obtain 4625 = 25 · 185 complete records of daily
OHLC prices for this time period. For the German market we consider 28 out of 30 constituents
of DAX with the exceptions being Deutsche Brse AG and BASF. The former is omitted due to
incomplete data, while the latter is left out due to a large amount of irregularities. The time series
span from 2000-12-19 until 2012-02-23, i.e. 2825 = 25 · 113 days with actual, simultaneous for all
28 assets trading. In terms of the French market we consider 37 constituents of CAC (The missing
assets are EDF (DataStream code F:EDF), GDF SUEZ (F:GDF) and LEGRAND (F:LRRS)),
resulting in

(
37
2

)
= 666 pairs of assets. The time series span from 2002-01-28 until 2012-02-23,

which leads to 2450 = 25 · 98 complete OHLC records for all assets. Last but not least, 83 out of
102 FTSE assets are used for the study on the UK market (19 are left out because of incomplete
records). The number of pairs is then

(
83
2

)
= 3403. Starting from 2002-08-29 we collect until 2012-

02-23 altogether 2050 = 25 · 82 complete “clean” OHLC records for all considered assets.

5.2. Set up of the study

The four markets are studied separately and the procedure for all of them is analogous. First, from
the daily OHLC data for each asset on each day the pair of close returns and BERs is calculated.
Then we divide the data for each asset in M non-overlapping samples of length 25, M = 185 for
the American, M = 113 for the German, M = 98 for the French and M = 82 for the UK markets.
The number of pairs is denoted by N∗ with N∗ = 378 for the American and the German markets,
while N∗ = 666 for the French and N∗ = 3403 for the UK markets. For each sample k, k = 1, ...,M ,
the pair (ρ̂i;k;C , ρ̂i;k;J) is calculated, where i indicates the asset pair, i = 1, ..., N∗. Thus on each
market we obtain M ·N∗ pairs of Pearson-based correlation coefficients. Note that in the following
we use ρ̂i;k;µ;W to denote the correlation estimator of the BERs given in (15) calculated for the
asset pair i from sample k.
The methodology we employ has been suggested in Rogers and Zhou (2008). In particular, for each
asset pair we calculate the sample means and the sample standard deviations of the two correlation
estimators. In a next step we calculate the respective confidence intervals with confidence level
approximately 95 % (mean ± 2 · 1√

M
standard deviation). For the construction of the intervals
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we use the asymptotic distribution of the correlation estimators. To demonstrate that this is a
reasonable approach we conduct a small empirical analysis on the estimates. To gain a feeling of
their distribution, we randomly choose two pairs of assets from the American market (3M - AT &
T and GE - Travelers Companies) and plot histograms of the empirical distribution of ρ̂i;k;C and
ρ̂i;k;J for each asset pair in Figure 3.
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Figure 3. Histograms of estimates from ρ̂i;k;C (Classical) and ρ̂i;k;J (Modified RZ) for the asset pairs 3M - AT & T
and GE - TRV. The solid red line is the density of a normal distribution with mean and variance equal the sample
counterparts for each case.

The histogram analysis confirms that for the chosen estimates the normal assumption is not
unjustified. To generalise this result we conduct a Jarque-Bera test on every sample of correlation
estimates (from both classical and modified Rogers-Zhou estimators) for each market. We sum-
marise the results in Table 8, which reports the absolute and percentage number of cases, for which
the hypothesis of normal distribution of the estimates has been rejected at 5 % significance level.

# %
DJI 103 0.136
DAX 117 0.155
CAC 141 0.106
FTSE 284 0.042

Table 8. Summary of p-values in absolute (#) and percentage (%) numbers from the Jarque-Bera test, which lie
below 5% for each market.

These results confirm the findings from the histogram analysis, i.e. that the normal approximation
is reasonable.
When the CI are constructed, we inspect if the means of the estimators lie in each other confidence

intervals. Furthermore we compare the variance ratios defined as V̂ ar(ρ̂C)/V̂ ar(ρ̂J).

5.3. Results and discussion

5.3.1. Mean comparison of ρ̂C and ρ̂J . We provide a summary of the mean comparison of
ρ̂C and ρ̂J in Table 9. The first column gives the number of asset pairs for the particular market. In
the following two columns the number (in absolute and percentage terms) of asset pairs is given, for
which the sample mean of ρ̂J , say ¯̂ρJ , lies in the confidence interval derived from ρ̂C , say CI(¯̂ρC).
For the next two columns it is the other way round. The 6th and the 7th columns give the number
of pairs, for which both sample means lie in the overlapping part of the two intervals. In the last
two columns the number of pairs is given, for which the sample mean of ρ̂J lies under the lower
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(a) (b) (a) ∧ (b) ¯̂ρJ < ρ̂LC
N∗ # % # % # % # %
378 184 0.487 116 0.307 116 0.307 194 0.513

DAX 378 145 0.384 102 0.270 102 0.270 233 0.616
CAC 666 259 0.389 208 0.312 208 0.312 407 0.611
FTSE 3403 2044 0.601 1596 0.469 1596 0.469 1359 0.399

Table 9. Mean comparison of ρ̂C and ρ̂J , (a) gives the number - absolute (#) and percentage (%) - of cases for
which ¯̂ρJ ∈ CI(¯̂ρC); (b) gives the number - absolute (#) and percentage (%) - of cases for which ¯̂ρC ∈ CI(¯̂ρJ). ρ̂LC

denotes the lower bound of CI(¯̂ρC).

N∗ Min LH Median UH Max # %
DJI 378 1.067 1.347 1.451 1.524 1.884 0 0.000
DAX 378 0.991 1.284 1.392 1.530 2.309 1 0.003
CAC 666 0.672 1.198 1.298 1.408 2.003 17 0.026
FTSE 3403 0.739 1.312 1.438 1.584 2.370 32 0.009

Table 10. Statistics of the variance ratios V̂ ar(ρ̂C)/V̂ ar(ρ̂J), LH stands for lower-hinge, UH stands for upper-hinge.

bound of the confidence interval derived from ρ̂C , say ρ̂LC . The rows correspond to the studied
market with the benchmark index labeling the market.
Several things should be pointed out. First, the percentage pairs, for which the mean differences of
the two estimators are well within sampling error, is not negligible but still low. It is around 30 %
for the American, the German and French market and slightly higher - slightly less than 50% - for
the UK one. If the sample mean of ρ̂C lies in the confidence interval from ρ̂J , then the opposite is
also true. Moreover, the percentage pairs for which the confidence interval derived from ρ̂C covers
the ¯̂ρJ is higher than the other way round. This indicates that ρ̂J is generally less volatile than
ρ̂C (see below). Last but not least, in all cases, in which the estimated mean of ρ̂J is not in the
confidence interval derived from ρ̂C , it lies below the lower bound.
We make the following conclusions. The bias correction g−1(·) is not a bad approximation of the
relation between ρW and ρr, but there is room for improvement. There is a clear indication that
for a greater part of the studied asset pairs, the gap between ρr and ρW is much larger than is the
case under the BM model.

5.3.2. Variance comparison of ρ̂J and ρ̂C . Next we compare the variance ratios of the
estimators ρ̂J and ρ̂C in Table 10. In the first five columns (not counting the column with N∗) we
give the minimum, the lower-hinge, the median, the upper-hinge and the maximum (i.e. the five-
number summary) of the N∗ variance ratios for each market. In the last two columns we give the
number - the absolute (#) and the percentage (%) one - of the asset pairs, for which the variance
ratio is less than one. For completeness we plot in Figure 4 the variance ratios of the pairs from
each market ordered by size.

The results are reassuring. For all markets the efficiency gains through the additional information
on the BER correlation is around 40% on average (slightly higher for DJI and FTSE, and a little
lower for CAC). This is comparable with the results from the simulation study in section 4.1 (see
Table 3), where the efficiency gains of ρ̂J over ρ̂C are around 65% (depending on ρ). Note that for
some asset pairs the efficiency gains even exceed 100%. Moreover, depending on the market there
are no or very few cases, for which the estimated variance of ρ̂C is smaller than that of ρ̂J .Therefore,
we conclude that ρ̂J retains its advantages in terms of efficiency when applied on empirical data.
Before we close this section we provide an interesting insight. It builds on the idea that market
turmoil causes prices to jump, which in turn diverges ρW from ρ further than postulated by a
BM (see Section 4.2). In that respect we suggest a simple test for indicating “calm” periods on the
market. These could be months or years, for example. The approach is cross-sectional. In particular
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Figure 4. Variance ratios of different asset pairs from the four major stock markets

for each period we apply a paired t-test on the N∗ observations (ρ̂i;k;C , ρ̂i;k;J) corresponding to the
N∗ pairs of asset from the particular market. More precisely we test the hypothesis that there is
no significant difference in the estimators’ means:

H0 : E(ρ̂i;k;C − ρ̂i;k;J) = 0 for all i=1,....,N∗

with k fixed. Non-rejection of the null-hypothesis can be regarded as an indication for a “calm”
period. Notice that

ρ̂i;k;C − ρ̂i;k;J =
1

2

(
ρ̂i;k;C − g−1(ρ̂i;k;µ;W )

)
,

i.e. in other words we test if the correction g−1(·) is adequate.
We conduct a small empirical study on this problem and briefly sketch the results. We are interested
in pinning down “calm” years on the four aforementioned markets and set N = 250, i.e. we calculate
ρ̂C and ρ̂J from samples of size 250. The sample years roughly correspond to calender years. In
that way we study the period 1994-2011 for the American, 2001-2011 for the German, 2003-2011
for the French and the UK markets. We pin down two “calm” years on the American market (1995
and 1996), one on the French (2005) and none on the German and the UK ones. For the rest there
is a significant difference in the mean of the two estimators, which we interprete as an indicator
for market turmoils.

6. Conclusion

In the present paper we introduced the concept of the BER, which is the difference of the wicks in
a Japanese candlestick, and derived its distribution under a standard BM. In a next step we used
it to improve correlation estimators based on components of daily-data Japanese candlesticks. In
particular, we showed that using Pearson-type correlation estimators for the close returns and the
BERs rather than r0− types as suggested in Rogers and Zhou (2008) increases the efficiency and
the robustness of the Rogers-Zhou estimator. Another contribution of the present paper is a simple
approximation of the correction function for the latter estimator, which eases its application. A
large-scale empirical study confirmed that considering BERs as in ρ̂J leads to an increased efficiency
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compared to the classical estimator based only on the candlestick body.
Future research can concentrate on transferring the BER-based estimators in the high-frequency
field, as Bannouh et al. (2009) did in terms of the Brandt-Diebold estimator. On the one side, it
will be interesting to study the properties of ρ̂J in the presence of microstructure noise and non-
synchronuous trading. Note that in this case the estimator will be applied on interval OHLC data
with frequency lower than a day. On the other side, in the framework of jump diffusions with finite
activity, if the interval length is sufficiently small, there will be only one jump in each interval. The
latter will affect the body but not the (balanced) wicks. Consequently, in a jump diffusion where the
correlation of the BM components differs from the correlation of the jump components, estimators
based on the BER could potentially filter the later and provide information on the former. Such
estimators would then be “jump-robust”. Finally, the assumption of constant correlation in the BM
model could be relaxed. An example of models that allow for dynamic correlation can be found in
Engle (2002). Extending this framework to accommodate the dynamics of the correlation of BERs
poses a challenging task for future research.

Appendix A

The joint density of the random vector (H,L,C)′ is given for a ≤ z ≤ b, a ≤ 0, b ≥ 0 as (see 1.15.8,
p.174 in Borodin and Salminen (2002)):

∂P (L < a,H < b,C < z)

∂a∂b∂z
=

=
2√

2πσ3

∞∑
k=−∞

(
2k2e−

(z+2k(b−a))2

2σ2
((z + 2k(b− a))2

σ2
− 1
)
−

2k(k + 1)e−
(z−2a+2k(b−a))2

2σ2
((z − 2a+ 2k(b− a))2

σ2
− 1
))

We set σ = 1. The joint density of the close returns, the range and the BER is obtained using the
transformation

W = H + L− C
l = H − L
C = C

implying
u = b+ a− z
s = b− a
z = z

Denote the system of linear equations defined by the equations above as (u, s, z) = g((a, b, z)).

Further denote h(a, b, z) = ∂P (L<a,H<b,C<z)
∂a∂b∂z (i.e. the trivariate density of high, low and close) and

f(u, s, z) = ∂P (C<z,l<s,W<u)
∂z∂s∂u (i.e. the trivariate density of close, range and BER). According to the

density transformation rule:

f(u, s, z) = h(g−1(a, b, z))|J |,

where J is the Jacobian of the transformation, i.e. the determinant of the matrix with first order
partial derivatives of g−1(·). In particular this matrix is:

1
2 −

1
2

1
2

1
2

1
2

1
2

0 0 1


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with |J | equal 1
2 .

Applying the density transformation rule above we obtain the following joint density function

∂P (C < z, l < s,W < u)

∂z∂s∂u
=

=
1√
2π

∞∑
k=−∞

(
2k2e

−
(z + 2ks)2

2
(
(z + 2ks)2 − 1

)
−

2k(k + 1)e
−

((2k + 1)s− u)2

2
(
((2k + 1)s− u)2 − 1

))
(19)

for |z| + |u| ≤ s < ∞. Please note that this joint density function can also be used to obtain the
marginal densities of C and l.
Integrating over the range yields the following joint density function of C and W :

∂P (C < z,W < u)

∂z∂u
=

=
1√
2π

∞∑
k=−∞

(
ke
−

(z + 2k(|u|+ |z|))
2 (z + 2k(|u|+ |z|))−

2k(k + 1)

2k + 1
e
−

(
(2k + 1)(|u|+ |z|)− u

)
2

(
(2k + 1)(|u|+ |z|)− u

))
(20)

for u and z both ∈ (−∞,+∞). It remains to integrate the bivariate density function over the close
return. The result is the (marginal) density function of the BER

∂P (W < u)

∂u
=

4√
2π

∞∑
k=−∞

(
k2

4k2 − 1
e
−

(2ku)2

2 − k(k + 1)

(2k + 1)2
e
−

(
(2k + 1)|u| − u

)2
2

)

for u ∈ (−∞,+∞). It can be shown that the density above can be further simplified to the following
expression:

∂P (W < u)

∂u
=

∞∑
k=1

16k2

(4k2 − 1)2
1√
2π
e
−

(2ku)2

2 =

∞∑
k=1

8k

(4k2 − 1)2
φk(u), (21)
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Klößner, S. (2010) A high-low-based omnibus test for symmetry, the Lévy property, and other hypotheses
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