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Abstract— The localization and identification of vertebrae in
spinal CT images plays an important role in many clinical
applications, such as spinal disease diagnosis, surgery planning,
and post-surgery assessment. However, automatic vertebrae
localization presents numerous challenges due to partial visibil-
ity, appearance similarity of different vertebrae, varying data
quality, and the presence of pathologies. Most existing methods
require prior information on which vertebrae are present in a
scan, and perform poorly on pathological cases, making them
of little practical value. In this paper we describe three novel
types of local information descriptors which are used to build
more complex contextual features, and train a random forest
classifier. The three features are progressively more complex,
systematically addressing a greater number of limitations of the
current state of the art.

I. INTRODUCTION

The task of localizing and identifying vertebrae plays an
important role in the context of numerous clinical tasks. For
example, it is crucial in the diagnosis of spinal problems
such as slipped vertebrae, herniated disks, and vertebrae
degeneration [9], as well as for a range of surgical procedures
such as spinal biopsies, lumbar discectomies, or insertions of
pedicle screws [8].

A common physical method of vertebrae localization
focuses on the tactile sensing of spinous processes through
the skin. [8]. The surgeon usually searches for a specific
vertebra, e.g. the first thoracic or the first cervical, and then
continues making subsequent ones [8]. Unfortunately, this
can be an error-prone and time-consuming process which
becomes even more challenging in the presence of significant
amounts of fatty tissue [8].

A different type of manual vertebrae localization con-
cerns the localization in electronic images e.g. by marking
salient points in X-ray computed tomography (CT) scans
with the aid of a computer. However, this process too is
time-consuming, takeing up to 15 minutes per patient to
localize 11 vertebrae [9]. An additional challenge is posed
by the fact that CT scans often capture only a portion
of the entire spine [2] which makes it more difficult to
identify reliably a reference vertebra (e.g. the first thoracic
or cervical, as mentioned before) without prior information
of which segment of the spine is visible.

The premise driving the development of automatic meth-
ods lies in the expectation that higher consistency, and
time and labour efficiency, can be achieved. Nevertheless,
this is a not a simple task but one marked with several
major challenges. For example, CT data acquired using

different scanners exhibits variations in resolution and noise
characteristics. Moreover, the field view of scans can vary
significantly and is often limited [7], and thus lacks full
contextual information. The structure of the spinal column
also poses inherent difficulties by its repetitive appearance
which makes it challenging to distinguish between differ-
ent vertebrae. The presence of pathologies, such as severe
scoliosis, complicates the task further by making it difficult
to impose strong geometric constraints on the inter-vertebral
relationships. Lastly, when present, metal surgical implants
increase contrast around bone boundary thus adding further
confounds [7].

The key contributions of the work described in the present
article are three novel types of features used to describe
3D volumes employed in a random forest based automatic
vertebrae localization framework, and their evaluation on
the largest real-world data set available for public use. In
particular, due to computational limitations the existing algo-
rithms in the literature rely on excessively lossy 3D volume
descriptors — the simple average of 3D CT scan intensity in
the volume — thereby discarding any information on intensity
variation or its spatial distribution. The features we describe
herein are also compact and thus computationally feasible for
use, and address the aforementioned limitations. Specifically,
we describe features based on (i) the entropy of intensity, (ii)
the maximum entropy intensity histogram, and (iii) the 3D
local binary patterns. These respectively capture the amount
of intensity variability, the distribution of intensity variability,
and intensity variability with spatial information.

II. METHOD DETAIL

In this section we describe the overall localization frame-
work, as well as three novel cuboid features.

A. Overview

At its core our algorithm employs random forest based
classification. As we will elaborate on in detail shortly, the
input to this classifier comprises features which combine
spatially local CT data descriptors as well as contextual,
spatially long range information. The former, being appli-
cable and built from any local descriptors are discussed first,
in Section II-C. The three novel types of local CT volume
descriptors we propose are detailed in Section II-E. The first
of these, based around local entropy seeks to address the key
limitation of previous work which, as we highlighted already,
discards a significant amount of relevant information for



the sake of computational tractability. Our feature retains a
higher amount of salient information without compromising
on efficiency. The two subsequent features present further
enchantments, being able to capture an even greater amount
of relevant information while retaining computational feasi-
bility in practice.

B. Dense label generation from sparse manual annotations

Our random forest based approach inherently demands a
supervised learning framework. While conceptually simple,
this setting poses a serious practical challenge due to the
volume of data needing to be labelled. Labelling all CT
voxels manually is clearly practically implausible. For this
reason we adopt automatic dense label generation from a
small, sparse seed set of manual labels. Our dense labelling
approach comprises the following steps:

1) Vertebra specific centroid weight v, (x) is computed
for all voxels (3D loci within a CT scan) x and all
vertebrae v. Given a training image [ and the manually
annotated location of the vertebra centroid c,:

2

o () = exp {”Cha’”} M
Clearly the function produces large values for points
z closer to c¢,. To distinguish vertebrae and the back-
ground, the corresponding background weight is cal-
culated as:

Pp(z) =1— max Py (). (2)

2) Weight distribution for each vertebra and the back-

ground is used to compute the corresponding vertebra
likelihood:
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3) Hard label value for each voxel is obtained by finding
vertebrae with the highest likelihood value from step

2. The training voxel x is thus labelled by the hard
label I:

p(l|lz) = 3)
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This process assigns labels densely to all CT voxels produc-
ing sphere like label clusters, as illustrated in Figure 1.

C. The use of contextual information

Capturing local CT scan intensity alone is not sufficient
to distinguish between two different vertebrae as different
vertebrae have similar appearances. Therefore the use of
contextual information spanning a greater spatial range is
necessary.

To build a contextual feature v, we consider two cuboid
volumes (F} and F5) offset from a CT voxel of interest x.
The corresponding contextual feature is computed as the
difference of cuboid descriptors v(xz) = d(F1) — d(F»).
Figure 2 illustrates the idea conceptually in two dimensions.
Shown are two rectangles (i.e. cuboids in 3D), F} and F5,
displaced by d; and ds relative to voxel x. Local descriptors
are computed for the two rectangles and thus the contextual

feature based on their difference. Offsets dq, do, and area of
box for each feature are randomly chosen before training a
random forest tree.

Calculating average intensity can be time consuming espe-
cially when dealing with large number of feature and training
data. However through the use of the 3D integral image
(i.e. the integral volume) representation, the computation can
be made dramatically faster [4]; indeed, our implementation
adopts this approach.

D. Vertebra centroid estimation

Applying a trained random forest on an input CT scan
results in multiple positive labels for each vertebra. From
these the best estimate of the vertebra centroid needs to be
estimated [1]. We achieve this by employing the well-known
mean shift algorithm which operates in an iterative fashion,
adjusting the current estimate to be at the point to the average
point of neighbourhood density until the local maximum is
reached [3]. The mean shift function is defined as below:
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where w(x;) is the weight corresponding to z; and K (x—x;)
is the value of the kernel function evaluated at = — =x;.
After calculating m(x), x is updated (shifted) to m(z), and
the process repeated convergence. To avoid local minima,
multiple starting voxels are considered and the one with

highest density chosen, where the density function ¢(z) is
defined as follows:

m(x)
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In this work we used the standard Gaussian kernel, and the
weighting function w(z) = p(v|f(x)).

E. Local CT volume descriptors

As we noted earlier, the existing state of the art uses
an exceedingly simple local information descriptor of a
cuboid, in the form of its average value. This choice is
largely dictated by the need for computational efficiency,
given the size of training data and memory requirements for
training a random forest. The limitations of such a simple
descriptor are readily apparent. Firstly, no information on
the variability of intensity within the cuboid is retained.
Moreover, no geometric information corresponding to this
variability is captured either. Hence, we describe three novel
features which address these limitations while imposing no,
or minimal additional memory requirements.

1) Entropy based feature: The first and simplest feature
we propose as more descriptive than that used by the current
state of the art is based on the entropy of CT scan voxel
intensities within a cuboid. In particular, we first create a
histogram of the corresponding values (in our experiments
we used a four bin histogram) and then compute its entropy.
This feature can be seen to capture more in terms of informa-
tion content within the voxel but no geometric information.
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Fig. 2. Conceptual illustration of contextual feature building from local
descriptors, in two dimensions.

2) Histogram based feature: Like the previous feature, the
second feature we propose herein also does not capture any
geometric information but it does retain a greater amount of
local intensity content. In particular, instead of ‘collapsing’
the aforementioned histograms into a single value (entropy
or, as in previous work, the average value), we use these
short histograms as features themselves.

3) 3D local binary pattern based feature: The local
binary pattern (LBP) is a feature which has been used with
great success in a wide range of 2D image understanding
tasks, such as texture analysis and face recognition [5], [10].
The elementary LBP descriptor considers an image patch
of size 3 x 3 pixels. By comparing the values of the 8
neighbouring pixels with the value of the central pixel, the
neighbourhood is mapped to a series of binary digits (0 or
1) depending on whether a specific pixel has a smaller value
than the central pixel or not. The 8 bit sequence corresponds
to an integer in the range [0,127] and describes the local
appearance. The cuboid descriptor we propose here applies
the same idea in 3D, i.e. using a neighbourhood of size 26
(3 x 3 x3—1) voxels.

III. EVALUATION

In this section we describe the experiments we conducted
to evaluate the proposed cuboid representations in the context
of the wider algorithmic framework we adopted.

(©)

Sparse manual annotations of vertebrae centroids (yellow circles) and the corresponding dense positive labels (differently coloured spheres, or

TABLE I
SPARSE LANDMARKS ACCOMPANYING IMAGE 2804506.

Point T Y z
T11_center 72.95 54.6734 240
T12_center 739119 51.467 210
L1_center 79.6834 44,7335 177.5
L2 _center 82.5692 36.0762 145
L3 _center 80.966 30.6253 110
L4 _center 68.461 30.946 70
L5_center 54.3528 54.0321 30

A. Data

We used a publicly accessible data set of 224 X-ray
computed tomography scans collected and released by Mi-
crosoft Research. All images in the corpus are stored as three
dimensional metaimages (mhd) commonly used in medical
imaging research [6]. The size of images varies between
approximately 50 megabytes to 120 megabytes. In total, the
corpus takes up around 20.4 gigabytes.

Accompanying each metaimage is a landmark file which
contain sparse annotations of vertebrae centroid positions.
Table I illustrates the information contained in the file. In
the case shown, image #2804506 contains seven vertebrae:
2 thoracic (T11 and T12) and 5 lumbar vertebrae (L1, L2,
L3, L4, and LS5). The three floating numbers associated with
each vertebra specify the coordinates of its centroid, localized
manually. Note that most scans do not include the entire
vertebrae set.

B. Methodology and parameters

To ensure robust results and lack of experimental bias,
we employed the standard five-fold cross-validation protocol.
The values of the parameters of the main method used in all
experiments are summarized in Table II, while those of the
mean shift algorithm used for centroid estimation are shown
in Table III.



TABLE I
KEY METHOD PARAMETERS USED FOR OUR EXPERIMENTS.

Parameter Value
Number of trees 10

Total features 10,000
Candidate features 200
Candidate threshold 10
Minimum samples in node 8
Minimum box offset 0 mm
Maximum box offset 100 mm
Minimum box size 2 mm
Maximum box size 100 mm

TABLE III
MEAN SHIFT PARAMETERS USED FOR OUR EXPERIMENTS.

Parameter Value
Number of starting points 100
Maximum iteration 40,000
Delta 0.00001

Number of highest density points considered 50,000

C. Results

To obtain baseline performance, we first evaluated our
method using the simple, cuboid average features employed
by the current state of the art. The results are summarized
in Table IV and corroborate the findings reported in the
literature: the approach is broadly successful but with much
room for improvement left. In particular, note that the
correct vertebra identification rate is highly dependent on the
vertebra type, being best for cervical, and worst for lumbar
and sacral complexes.

Equivalent results obtained using the 3D LBP based de-
scriptor we described in Section II-E are shown in Table V.
Consistently worse performance than that achieved with the
simple average cuboid representation can be seen throughout
the table both in terms of accuracy and precision. Similar
trends were noticed for the other two features (detailed
statistics are not included due to a lack of space). Though
at first sight this highly surprising result is disappointing,

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS (STATISTICS OF LOCALIZATION
ERROR IN PIXELS AND ID RATE) USING THE SIMPLE, CUBOID AVERAGE
FEATURES USE BY THE CURRENT STATE OF THE ART AS REPORTED IN
THE LITERATURE.

Vertebrae set Mean STD  Median ID rate
All 21.03 2343 14.35 74.93%
Cervical 1473 2242 10.47 90.18%
Thoracic 22770 23.66 15.97 70.82%
Lumbar and sacral 23.18 2299 16.72 69.80%

TABLE V
SUMMARY OF EXPERIMENTAL RESULTS (LOCALIZATION ERROR
STATISTICS AND ID RATE) USING OUR 3D LBP BASED FEATURE.

Vertebrae set Mean STD  Median ID rate
All 2998 41.31 19.02 65.64%
Cervical 2244 4481 14.67 81.74%
Thoracic 3276 41.01 20.57 61.16%
Lumbar and sacral 31.41 38.23 21.09 60.37%

we believe that our findings both call for more examination
of the reasons behind it, as well as illuminate future work
directions. In particular, we believe that the more expressive
nature of our features inherently requires a larger training
data set. In that sense, our comparison can be interpreted at
being unfair towards the novel features.

IV. SUMMARY

In this paper we considered the problem of localizing
human vertebrae in three dimensional CT scan data. We
proposed three new types of local features aimed at over-
coming the limitations of those used by the current state of
the art — namely, the loss of local appearance and geometric
information. Our findings derived from experiments on the
largest public data set of CT scans of pathological cases
should help guide future research efforts.
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