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Abstract

Collapsing magnetic traps (CMTs) have been suggested as one of the mechanisms that could con-

tribute to particle energisation in solar flares. The basic idea behind CMTs is that charged particles

will be trapped on the magnetic field lines below the reconnection region of a flare. This thesis

discusses a number of important new aspects in particle energisation processes in CMTs, based

on the model by Giuliani et al. (2005).

In particular, we extend previous studies of particle acceleration in this CMT model to the rel-

ativistic regime and compare our results obtained using relativistic guiding centre theory with

results obtained using the non-relativistic guiding centre theory. The similarities and differences

found are discussed.

We then present a detailed study of the question, what leads to the trapping or escape of par-

ticle orbits from CMTs. The answer to this question is investigated by using results from the

non-relativistic orbit calculations with guiding centre theory and a number of simple models for

particle energy gain in CMTs. We find that there is a critical pitch angle dividing trapped particle

orbits from the escaping particle orbits and that this critical pitch angle does not coincide with the

initial loss cone angle.

Furthermore, we also present a calculation of the time evolution of an anisotropic pressure ten-

sor and of the plasma density under the assumptions that they evolve in line with our kinematic

MHD CMT model and that the pressure tensor satisfies the double-adiabatic Chew-Goldburger-

Low (CGL) theory.

Finally, we make a first step to introduce Coulomb scattering by a Maxwellian background plasma

into our guiding centre equations by changing them into a set of stochastic differential equations.

We study the influence of a static background plasma onto selected particle orbits by pitch an-

gle scattering and energy losses, and look at its effect on the particle energy and the trapping

conditions.
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Chapter 1

The Sun: A Brief Overview

The Sun is the closest Star to us and hence it can be studied observationally in great detail. Due

to the energy generated in the Sun’s core, the temperature of both the interior and the atmosphere

in general are so high that all matter is ionised. Such ionised gas is often called plasma, i.e. a

collection of free charged particles (electrons, protons and ions). The Sun is therefore an ideal

“laboratory” for studying naturally occurring plasma processes. In the following we will first give

a brief overview of the general structure of the Sun (interior and atmosphere) and then discuss

solar flares and in particular particle acceleration, which is the topic of this thesis.

1.1 Stratified Structure of the Sun

The Sun is held together by its own gravitational force which always points towards its centre

(Priest, 1982). The interior is made up of three major zones: the core, radiative zone and the

convection zone moving outwards from the centre of the Sun. The atmosphere of the Sun is

made of the photosphere, chromosphere, transition region and the corona moving outwards in the

direction of interstellar medium. In the next two sections we will give a brief overview of these

regions.

1.1.1 The Interior

The core is the innermost part of the Sun. It is about 0.25RJ 1 in radius and it is the hottest

(1.5 × 107K) and the densest (1.6 × 105) kg m−3 region of all the Sun’s structures. Inside the

core energy is generated by nuclear fusion processes. The radiative zone is the region in between

≈ 0.25RJ to 0.7RJ where the generated energy is transferred upwards through about 70% of

the Sun’s radius. Its density and temperature drop from 2.0 × 104 kg m−3 to 10 kg m−3 and

8 × 106K to 5 × 105K from the bottom to the top of the radiative zone. The convection zone is

the outermost zone where convection transfers the energy to the solar surface (Dwivedi, 2003).

It extends from about 0.7RJ right up to the visible surface on the Sun (about 2.0 × 105 km in

1One solar radius, RJ = 6.955× 108m = 6.955× 105km
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1.1 Stratified Structure of the Sun 6

depth) where the temperature and density drop from 10 kg m−3 to 4× 10−4kg m−3 and 5× 105K

to 6.6× 103K from the bottom of the convective zone to the top of the solar surface.

1.1.2 The Atmosphere

The photosphere is the lowest part of the solar atmosphere and can be identified with the Sun’s

visible surface (Golub and Pasachoff, 1997). It is the densest (1023 m−3) region in the solar atmo-

sphere, with a temperature of ≈ 5800K. It is a very thin region (about 550 km thick) from which

most of the Sun’s visible light escapes (Priest, 1982). Just above the photosphere lies the chro-

Figure 1.1: Event viewed in 304 Angstrom wavelength of extreme ultraviolet light on the 31
August 2012 by the AIA instrument on SDO. A filament breaks off from an active flaring region.
Credit: NASA’s Solar Dynamics Observatory.

mosphere. One would expect the temperature of the solar atmosphere above the photosphere to

decrease with increasing height. However, over a range of ≈ 5000 km (i.e. less than a thousandth

of RJ) the temperature of the solar atmosphere rises from 4300K at its base in the chromosphere

to near coronal temperatures of almost 1MK (Gibson, 1977). The region in between the chromo-

sphere and the corona in which this sharp temperature change occurs is known as the transition

region. Over the height of about 2000 km to about 7000 km above the photosphere the tempera-

ture in this region increases by ≈ 1MK (Golub and Pasachoff, 1997).

The solar corona is the high temperature (> 1MK), low density part (about 1015 m−3) of the

Sun’s atmosphere, where the primary emission falls in the Ultra-violet (UV) and X-ray region

of the electromagnetic spectrum. Observations made over a range of wavelengths show that the

corona is highly dynamic and spatially structured (inhomogeneous) where an example for such

a dynamic process can be seen in Fig. 1.1, showing a filament eruption (Golub and Pasachoff,
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1997). The reason for the inhomogeneity in the structure of the corona is the Sun’s magnetic field.

Generally the magnetic field in the corona consists of two distinct topological types: open and

closed field lines (Sturrock et al., 1986). A coronal hole for instance, can be seen as an open mag-

netic field line phenomenon which appears darker and plasma continually flows outwards along

these open field lines to give rise to what is called the solar wind, and coronal loops which may

be seen as closed magnetic field lines (Priest, 1982).

One feature of the Sun’s magnetic field is its cyclic behaviour (Sturrock et al., 1986). Traditionally

the solar cycle is measured by counting the number of sunspots; cooler regions of stronger mag-

netic field which appear darker than the surrounding solar surface. One solar cycle “on average”

lasts 11 years. At the end of an 11 year cycle the polarity on the Sun reverses and it takes one more

cycle (in total 22 years) for the polarity to be restored. Maximum number of sunspots represent

solar maximum, where solar activity on the Sun increases and minimum number of sunspots rep-

resent solar minimum, where solar activity on the Sun decreases. Therefore, the magnetic fields

of the Sun, “of which a sunspot is the most intense example” (Priest, 1982) influences the phase

and evolution of features like flares in the solar atmosphere which we will look at next.

1.2 Solar Flares

A flare is a localised, sudden transient brightening in the solar atmosphere. Seen as the most pow-

erful event observed on the Sun (Fletcher et al., 2011), flares are often observed across a broad

range of wavelengths, from gamma rays at the short wavelength end with high energy (above

100keV to some hundred of MeV) to radio waves at the long wavelength end with low energy

(about 10−10eV). It is generally considered to be a slow accumulation of magnetic energy and its

subsequent fast conversion into bulk flow, thermal (heating), non-thermal (acceleration) and ra-

diation energy in the solar atmosphere. The durations of flares range from seconds to hours where

energies in excess of 1025J can be released. With the release of this energy charged particles like

electrons, protons and heavy nuclei are heated and accelerated in the solar atmosphere. In general,

we expect high energy radiation to be generated when non-thermal (energetic) electrons interact

with low energy (thermal) protons. This process is called bremsstrahlung (braking radiation). In

a flare, this process is assumed to happen when non-thermal high energy electrons generated by

the energy release in a flare, interact with the dense plasma of the lower solar atmosphere, e.g. the

chromosphere. This results in the emission of radiation over a broad range of wavelengths.

X-ray observations are a key diagnostic tool used in flare observations. X-ray observations from

flares can be observed both in thermal (Soft X-rays (SXRs)) and non-thermal (Hard X-rays (HXRs))

energy ranges. SXRs in solar flares have a range of energies from about 0.1 − 10keV and HXRs
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from about 10keV − 1MeV. Assuming that electron bremsstrahlung is the correct mechanism by

which high-energy radiation is generated during a flare, HXR emission provide information on the

spectral, spatial and temporal variation of the high energy electrons in the flare. HXR emission is

mainly observed from the lower part of the solar atmosphere (chromosphere), but recent results

from RHESSI show that coronal HXR emission from solar flares is much more common than

previously thought. Coronal HXR sources are of particular interest as they occur closest to where

electron acceleration is believed to happen. Furthermore, because of the low plasma density in

the corona compared to the chromosphere, it is currently an open question how the HXR emis-

sion (and in some cases γ emissions) in coronal/loop-top sources is generated (e.g. see review

by Krucker et al., 2008). Solar flares most often occur in regions of strong magnetic field called

active regions, which are associated with sunspots. Therefore, the frequency with which flares

occur is also correlated to the solar cycle.

Figure 1.2: Left: Solar flare of 21 March 2011, observed in EUV by SDO. Credit: NASA’s Solar
Dynamics Observatory. Right: A flare arcade characteristic of the gradual phase in the flare
evolution observed with TRACE in UV on the 14th of July 2000. (Adapted from the TRACE
website.)

The evolution of a flare can be divided into two main stages/phases: impulsive phase and gradual

phase. There may be a third stage where some initial sign of activity know as pre-flare phase is

also observed before the impulsive phase. A brief description of each phase is given below.

In the pre-flare phase, brightenings in UV to SXR wavelengths have been reported. These bright-

enings can start a few minutes before the onset of the impulsive phase and correspond to plasma

temperatures of roughly 1− 3MK (e.g. see observational review by Fletcher et al., 2011).

The impulsive phase is believed to happen when the primary energy release occurs in the evo-

lution of a flare. This phase in the flare activity lasts from seconds to tens of minutes where the

temperature can reach 10− 20MK. Observations of HXR and γ rays emissions during the impul-

sive phase are interpreted as evidence for the acceleration of electrons and proton/ions during this

phase respectively, with radiation being caused by bremsstrahlung as mentioned above.

The gradual phase in the flare evolution is characterised by a slow decay in SXR and microwave

emission. It is during this phase that one observes a series of post flare loops as seen in the right
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hand image in Fig. 1.2. The flare loops are filled with hot dense plasma due to chromospheric

evaporation where plasma from the chromospheric region is forced to expand into the corona as

it is rapidly heated by particle energy deposition during the impulsive phase of the flare. These

hot loops subsequently cool down during this phase of the flare evolution. This phase may last for

several hours, however this very much depends on the characteristic of the flare itself (Fletcher

et al., 2011).

As mentioned before flare emission can be observed across all of the electromagnetic spectrum.

In particular, HXR, EUV and white-light (Hα) emissions are mainly observed from the lower

regions of the solar atmosphere as seen on the left hand figure in 1.2. These emissions are thought

to be associated with the foot points of magnetic field lines which have undergone magnetic re-

connection. However, as mentioned before coronal sources in HXRs are also detected (Krucker

et al., 2008).

1.3 Acceleration Mechanisms in Solar Flares: Overview

The production of a significant number of high energy particles within a short period of time is a

main feature of a solar flare. Currently the release of magnetic energy from stressed coronal mag-

netic fields is believed to be the primary source of energy in solar flares (see e.g. review papers by

Miller et al. (1997); Aschwanden (2002); Neukirch (2005); Krucker et al. (2008); Fletcher et al.

(2011)). This energy is converted into bulk flow energy, thermal and non-thermal particle energy

and radiation energy. How this energy is divided up and why a large fraction of this energy goes

into non-thermal energy is still an important question in solar physics (see Miller et al. (1997); Em-

slie et al. (2004), 2005; Sui et al. (2005) and Krucker et al. (2008) for discussions). As discussed

above, with the detection of various types of emissions particularly SXR, HXR and γ rays, there is

clear evidence of heating and particle acceleration occurring during a flare. HXRs are evidence of

electron acceleration whereas γ ray emissions are considered evidence of ion/proton acceleration.

In this section we will give a brief outline of some of the different acceleration mechanisms which

could be responsible for generating high-energy particles in solar flares. Fig.1.3 attempts to give

a schematic overview of the possible location of several acceleration mechanisms which could be

at work during a flare (Neukirch et al., 2007). Some of the proposed acceleration mechanisms

(see reviews by Miller et al. (1997); Aschwanden (2002); Neukirch (2005); Krucker et al. (2008);

Zharkova et al. (2011); Cargill et al. (2012) are: (1) direct current electric field acceleration in the

magnetic reconnection regions; (2) stochastic acceleration due to 2nd order Fermi acceleration by

turbulence or resonant wave-particle interactions; (3) shock acceleration where the reconnection
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outflow encounters strong magnetic field regions beneath the reconnection site; (4) relaxing mag-

netic field lines moving downwards could also accelerate particles. The main topic of this thesis

is the investigation of point (4) in the list above. This particle acceleration mechanism is called

Collapsing Magnetic Traps (CMTs).

Figure 1.3: Sketch of the general magnetohydrodynamic (MHD) flare scenario.(Neukirch et al.,
2007)

The electron flux required in large flares would imply that the part of the corona in which the flare

occurs would have to be completely devoided of electrons in a very short amount of time (sec-

onds). There is also the associated problem of large and complex magnetic fields being generated

due to particle beams travelling down to the chromosphere, as well as the closure of the large scale

return current systems due to charge balance. These problems have so far not been solved in any

satisfactory manner.

Next we will give a brief outline of some of the different acceleration mechanisms that have

been suggested for particle energisation in solar flares.
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1.3.1 DC Electric Field Acceleration

In general, charged particles will be accelerated by electric fields. Therefore, it is logical to look

at plasma processes which are associated with electric fields capable of explaining the observed

particle energies. A process which has been discussed for decades as being key to particle ac-

celeration in flares is magnetic reconnection (e.g. see reviews by Zharkova et al., 2011; Cargill

et al., 2012). It is widely accepted that magnetic reconnection plays a crucial role in solar flares.

Furthermore, magnetic reconnection is naturally associated with large-scale electric fields parallel

to the magnetic field (see e.g. Schindler, 2006). Theoretical and observational estimates show that

typical electric field strengths in a flare can be of the order of 102 − 103V/m. These values are

much larger than the so-called Dreicer field ED. This Dreicer field (see e.g. Aschwanden, 2004b)

indicates the electric field strength needed for the accelerated particles to overcome the decelera-

tion by Coulomb collisions with the thermal background plasma. The Dreicer field ED is given

by (e.g. Aschwanden, 2002),

ED =
qi ln Λ

4πε0λD2 ≈ 6.10−3
[ ρ

1015m−3

] [ T

106K

]−1 V

m
(1.1)

where qi is the charge of a particle, ε0 = 8.8542×10−12Fm−1 is permittivity of free space, ln Λ is

the Coulomb Logarithm and for typical coronal values is of the order 20. λD =
√

[ε0kBT ]/[ρiqi2]
is the Debye length, where kB = 1.3807× 10−23JK−1 is the Boltzmann constant, T is the tem-

perature in Kelvin and ρ is the plasma density. The DC electric field models are generally divided

into the (weak) sub-Dreicer model and the (strong) super-Dreicer model. This division is reached

by the comparison of E‖ to the Dreicer field ED.

When the parallel electric fields associated with magnetic reconnection exceed the Dreicer field,

we speak of a super-Dreicer acceleration mechanism. The simplest models for solar flares usually

only involve a single reconnection site (e.g. current sheet or X-point). Given the large electric

fields associated with magnetic reconnection, reaching the particle energies required to explain

the intense flare emissions is not a problem. However, due the small size of the non-ideal re-

gion where E‖ 6= 0, it is very difficult to generate the required particle fluxes (see e.g. Wood and

Neukirch, 2005). More recent models suggest that multiple reconnection sites could be present in

flares and this may help to alleviate the problem with generating the necessary particle fluxes (see

Cargill et al., 2012, for review). There have also been suggestions of flare particle acceleration by

sub-Dreicer electric fields (see e.g. Neukirch et al., 2007, for discussion). Such fields would need

to be maintained over large distances and it is unclear how this could be achieved.
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1.3.2 Stochastic Acceleration

Stochastic acceleration mechanisms are processes by which particles can either gain or loose en-

ergy over short time scales but on average gain energy over longer time scales. Many such mecha-

nisms have been suggested for solar flares (see e.g. Miller et al., 1997) and no complete overview

will be attempted here.

One class of stochastic acceleration is based on the interaction of particles with small-amplitude

waves (“wave turbulence”), where particle energisation occurs due to resonance between the par-

ticle motion and the waves (e.g. between the gyro-frequency and the wave frequency). Some

issues associated with such acceleration mechanisms are as follows: 1) the frequency/time scales

of the particle motion and the wave have to match. This is, for example not to easy to achieve for

electrons and magnetohydrodynamic (MHD) waves, hence other wave modes are needed to make

wave-particle resonance mechanisms work for electrons. 2) as particles are accelerated, they move

out of the resonance with the waves that have accelerated them and to have a continually working

mechanism, a broad spectrum of waves is needed.

Another class of acceleration mechanisms is based on strong turbulence, in which the perturba-

tion amplitudes are non-linear. While it has been suggested that such mechanisms could operate in

flares (see e.g. Miller et al., 1997), work has been somewhat limited, particularly due to our lack

of understanding of plasma turbulence. Details of the acceleration mechanism usually depend

strongly on the assumptions made for the plasma turbulence.

1.3.3 Shock Acceleration

It is well known from other areas of astrophysics that shocks can be very efficient particle acceler-

ators (e.g. shock formation during a supernova). Hence, particle acceleration by shocks has been

suggested for solar flares as well. In particular, for flares, over the last few years the possibilities

of a fast shock being formed where the reconnection outflow encounters the strong magnetic field

region beneath the reconnection site (see Fig. 1.3) has been discussed (see e.g. Mann et al., 2009;

Warmuth et al., 2009).

Two main mechanisms are usually associated with particle acceleration by shocks. The first one

is called drift acceleration and is very similar to DC-electric field acceleration. In this process,

particles moving along the shock front, gain energy from the shock electric field (see e.g. Miller

et al., 1997). Particles can also gain energy if the magnetic field increases in the downstream

direction due to the approximate conservation of the magnetic moment. The second mechanism

is called diffusive shock acceleration. In this process the particles are scattered back to the shock
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numerous times by interacting with moving scattering centres (waves/turbulence). This allows the

particles to gain more energy than in a single shock crossing (see e.g Fermi, 1949). For shock ac-

celeration to be effective in generating the energies observed in flares (typically 20− 100keV, see

e.g. Neukirch et al., 2007), the injected particles need to have relatively high energies compared

to the typical thermal energies in the corona. This is often considered to be a problem for shock

acceleration in solar flares.

1.4 Collapsing Magnetic Trap Models: Overview

It has been suggested (see e.g. Somov and Kosugi, 1997) that as reconnecting magnetic field lines

in solar flares relax/collapse to lower altitudes, they could capture pre-accelerated particles es-

caping from the reconnection current sheet and accelerate them further in a so-called collapsing

magnetic trap (CMT). Newly reconnected field lines are frozen into the reconnection outflow, and

are carried downwards. As the field lines collapse, the magnetic field strength increases with time.

When the outflow is very fast and encounters the strong magnetic field below the flaring region a

fast shock could form (see e.g. Somov and Kosugi (1997) for discussion of a CMT model with

shocks). However, we will not investigate this possibility in this thesis.

Some evidence of stressed pre-flare magnetic field relaxation into a lower energy state, suppos-

edly by shrinkage of magnetic field lines due to reconnection at higher altitudes has been found in

observations. Forbes and Acton (1996) for example found loop shrinkage of about 20% and 32%
over 2 hours and 8 hours respectively in two separate events using observations from the Yohkoh

satellite. Reeves et al. (2008), using data from Hinode, found in two events, plasma loops that

change from a cusp-like shape to a more rounded configuration. In both cases, loop shrinkage of

about 17% − 27% was measured. These observational results are of the later phases of the flare

evolution and evidence of faster loop evolution at earlier stages has yet to be reported, but, theo-

retically is expected. Observations of coronal loop shrinkage showing a correspondence with field

line shrinkage in the core of a flare during the impulsive phase (i.e. “implosion”) was reported by

Simões et al. (2013). More examples on implosion can be found in Liu et al. (2009) and Liu et al.

(2012).

There are two major effects contributing to the particle acceleration in this model, namely, first or-

der Fermi and betatron acceleration. Generally in a CMT, first order Fermi acceleration happens

when there is an increase in parallel energy of the trapped particles due to longitudinal/bounce

invariance. Defined as J =
�
p‖ds, this invariant is associated with the bouncing motion between

mirror points, which are located either between the legs of the relaxing loops or at the fast-mode

loop-top shock (see Fig. 1.3). A decrease in the length of the field lines in a CMT leads to a de-
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crease in the distance between the mirror points. The decrease in spatial length of the collapsing

magnetic field lines must on average be accompanied by the same increase in the parallel momen-

tum p‖ of the trapped particles for J to remain conserved. Betatron acceleration is the increase in

perpendicular energy of the trapped particle due to the adiabatic invariance of magnetic moment.

Defined as µ = mv2⊥
2B , it is associated with the gyro-motion of the particle around magnetic field

lines. As the magnetic field lines are transported out of the reconnection region the magnetic field

strength increases with time. The same increase in the magnetic field magnitude B must be ac-

companied by the same increase in the perpendicular energy of the trapped particle for µ to remain

conserved. Hence, the conservation of the particle’s magnetic moment and the bounce invariant

(see e.g Grady et al., 2012) give rise to the possibility of increase in the particle’s kinetic energy

by betatron acceleration and by first order Fermi acceleration (see e.g. Somov and Kosugi, 1997;

Bogachev and Somov, 2005). A more detailed discussion of these two mechanisms will be given

in Chapter 2.

Particle acceleration processes in CMTs have been investigated by Somov & co-workers using

simple CMT models. For example, Bogachev and Somov (2001, 2005, 2007, 2009) investigated

acceleration efficiencies between betatron and Fermi effects, evolution of energy distribution and

the effect of coulomb collisions in CMTs respectively. In particular, Bogachev and Somov (2005)

and (2007) found that thermal sources are formed in the trap when betatron acceleration dominates

and non-thermal sources when electrons are accelerated by the Fermi mechanism. Due to the sim-

ple geometry of their CMT model they were able to separate the two acceleration mechanisms.

The physics behind this model can be found in Somov (2004) which we will discuss in Chapter 4

alongside another simple model by Aschwanden (2004a). This decoupling of the mechanisms is

not seen in more detailed models which we will discuss next.

Karlicky & co-workers looked into acceleration processes in CMTs with the viewpoint of find-

ing an explanation for the formation of HXR and radio loop-top sources. Karlický and Kosugi

(2004) used a very simple test-particle numerical model, which includes Coulomb collisions and

pitch angle scattering. They investigated particle acceleration and heating processes by betatron

type acceleration in CMTs and found the high energy electrons accumulated in the central part of

the CMT. In the latter parts of the collapse all these high energy particles escape from the trap.

Karlický (2005) and (2006) investigated the downward motion of X-ray loop-top sources and

modelled the X-ray emission of the April 6, 2001 flare respectively. Subsequently, Karlický and

Bárta (2006) used a 2D MHD simulation to model a CMT. They found particles are accelerated

by the simultaneous operation of betatron and Fermi acceleration in CMT.

Minoshima et al. (2010) used a 2D relativistic drift kinetic approach where pitch angle scatter-

ing and Coulomb energy losses was neglected. Betatron acceleration was found to enhance the

velocity distribution in the perpendicular direction, resulting in the generation of HXR emissions
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at the loop-top where almost all the electrons were trapped at the loop-top. Minoshima et al.

(2011) for the same model included energy dependent pitch angle scattering. They found inter-

mediate energy particles at higher altitudes, consistent with above the loop-top HXR sources and

lower and higher energy electrons at lower altitudes, consistent with microwave emissions. For

this energy dependent distribution, they found more particles enter the loss cone and are lost from

the trap.

Winter et al. (2011) investigated a case for long lived HXR loop-top sources that initially begin at

the loop apex, move down the loop legs and then move up to the loop apex for a static magnetic

field (see Reeves et al., 2012, for further investigation using this model). Recently, Simões and

Kontar (2013) looked at four flares and found 2-8 times more electrons trapped at the loop tops.

An explanation for these results is believed to be due to magnetic trapping and pitch angle scatter-

ing caused by turbulence causing the particles to remain at the loop top and not to enter the loss

cone.

Giuliani et al. (2005) set up the frame work for an analytical non-relativistic CMT model in 2D

and 2.5D, with a vanishing velocity field (bulk flow) in the invariant direction, i.e. vz = 0. The

basic magnetic field is created by two point sources and the evolution of the electromagnetic field

is described through the ideal kinematic MHD equations. The evolution of the model is given in

terms of the time dependent Eulerian to Lagrangian coordinate transformations. For a given set of

initial conditions the flow field v, the magnetic field B, and the electric field E can be determined

from the given transformation. Since the gyro-radius and gyro-period of the electrons are much

smaller compared to typical time and length scales of the collapsing trap, the trajectories of the

particles were determined using the non-relativistic guiding centre theory (Northrop, 1963).

Giuliani et al. (2005) found that trapped particles were accelerated due to the curvature terms in

the parallel equations of motion, a result confirmed by Karlický and Bárta (2006). Subsequently,

Grady and Neukirch (2009) investigated the effect of a shear flow in the invariant direction for a

2.5D and fully 3D non-relativistic model. They found similar energy gains by a factor of 5 or 6,

which was consistent with the energy increase found by Giuliani et al. (2005) without a shear flow.

More recently, Grady et al. (2012) further investigate the energisation processes in a symmet-

ric and an asymmetric 2 trap model. They found for a symmetric trap, most of the particle orbits

remain trapped during the collapse time. They also found that, not surprisingly, different initial

positions (x, y), initial energies E and initial pitch angles θ have an effect on the position of the

mirror points, the energy gain of the particle orbits and on whether they remain trapped or escape.

In particular, they found that the particle orbits that gain most energy during the trap collapse

2For an asymmetric trap model, they found smaller energy gains and and a large number of particles escape from
the trap.
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have initial pitch angles θ close to 90◦ and initial positions in a weak magnetic field region in the

middle of the trap. These particle orbits having the largest energy gain remained trapped during

the collapse and due to their pitch angle staying close to 90◦ have mirror points very close to the

centre of the trap. Grady et al. (2012) argue that these particle orbits are energised mainly by the

betatron mechanism. Other particle orbits with initial pitch angles closer to 0◦ (or 180◦) seem

to be energised by the Fermi mechanism at the beginning, but as already pointed out by Giuliani

et al. (2005) and corroborated by Grady et al. (2012), these particle orbits gain energy when pass-

ing through the centre of the trap where the field line curvature has its maximum. At later stages

these particle orbits also seem to be undergoing mainly betatron acceleration.

For this thesis, we will utilise and build upon the findings from Giuliani et al. (2005) and Grady

et al. (2012). After an overview of guiding centre theory and the CMT model of Giuliani et al.

(2005) in Chapter 2, we begin our investigation in Chapter 3 were we will compare non-relativistic

particle orbits with relativistic particle orbits. In Chapter 4 we investigate the trapping and escape

conditions for CMT models through comparing the evolution of the loss cone angle and particle

pitch angle in our model. In Chapter 5 the pressure and density evolution in our model using

the double-adiabatic approximation is investigated and in Chapter 6 we take the initial steps into

introducing Coulomb collisions into the CMT model. The discussion and conclusions in Chapter

7 conclude the main body of this thesis.



Chapter 2

Overview of Particle Orbit Theory and the
Giuliani et al. (2005) CMT Model

In this thesis we describe the evolution of charged particles in a given electric field, E, and a given

magnetic field, B, by calculating their orbits/trajectories and neglecting the back reaction of the

particle motion on the fields. This is known as Test Particle Orbit Theory. Consider a charged

particle qi, with mass mi at a position ri(t) moving in given E and B field. We use both the

non-relativistic equation of motion (in SI units) which is given by,

mi
d

dt
(ṙi) = qi [E(r, t) + ṙi ×B(r, t)] , (2.1)

and the relativistic equation of motion which is,

mi
d

dt
(ṙiγ) = qi[E(r, t) + ṙi ×B(r, t)]. (2.2)

Here, c = 2.9979 × 108 ms−1 is the speed of light in vacuum and γ = 1/
√

1− v2/c2 is the

Lorentz factor. The quantities with the dots, i.e. ṙ, r̈ and so on represent the first derivative, sec-

ond derivative and so on with respect to time.

In principle, the motion of a charged particle in our CMT model is determined by integrating

the full particle orbit equations of motion as stated above. Integrating the full particle orbit equa-

tions would mean taking many time steps in order to resolve the gyro-motion and hence for the

particle to move a considerable distance along the field lines. However, we can make use of the

vast separation of length and time scales between the gyrational motion of the particle orbits and

the MHD length-scales (L) for our models. Denoting the Larmor or gyro-radius of a particle

by rL, T as the characteristic time scale and the Larmor or gyro-frequency as Ω, the conditions

rL � L and 2π
T � Ω are always very well satisfied (see detailed discussion later in this chapter).

This means that we can use the so called guiding centre equations of motion, which average over

the gyro-motion and hence eliminate the need for very small time steps (see Fig. 2.1). The guiding

centre equations are split into one equation describing the time evolution of the parallel velocity,

v‖(t), of the guiding centre and the other equation describing the time evolution of the guiding

centre position , R(t), perpendicular to the magnetic field direction. We start by looking at the

17
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Figure 2.1: (a) shows the exact motion of the particle and (b) shows the guiding
centre trajectory. Image adapted from the IPO blog http://www.iopblog.org/
2010-schools-lecture-part-6/new-picture-10/

non-relativistic and relativistic equations for the parallel velocity, which are given by Northrop

(1963) as,

Non-Relativistic(
m

q

)
dv‖

dt
= ���

0
E‖ −

µ

q

∂B

∂s
+ (

m

q
)uE · (∂b

∂t
+ v‖

∂b
∂s

+ uE · ∇b), (2.3)

Relativistic

m
d(γv‖)
dt

=
dp‖

dt
=
�
��>

0
qE‖ −

µr
γ

∂

∂s

[
B

(
1− E⊥

2

c2B2

)1/2
]

+ mγuE · (∂b
∂t

+
v‖

γ

∂b
∂s

+ uE · ∇b), (2.4)

where

• m, q and c are the particle rest mass, charge and speed of light.

• b = B
B is the unit vector along the magnetic field B.

• s is the coordinate along the magnetic field lines.

• v‖ = b · Ṙ is the particle velocity parallel to B.

• v⊥ is the particle velocity perpendicular to B (also know as the gyro-velocity).

• The electric field E = (0, 0, E⊥) is given by ideal Ohm’s law, where E‖ = 0.

• uE = E×b
B is the E×B drift velocity perpendicular to both E and B.

http://www.iopblog.org/2010-schools-lecture-part-6/new-picture-10/
http://www.iopblog.org/2010-schools-lecture-part-6/new-picture-10/
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• µ = W⊥
B = mv⊥

2

2B is the non-relativistic magnetic moment (see detailed discussion later).

• µr = m(γv⊥)2

2B is the relativistic magnetic moment (see detailed discussion later).

The blue term in the above equations represent the magnetic mirror force. The green term is due

to the curvature of the field lines.

The part of the guiding centre equations describing the perpendicular motion of the guiding centre

to the magnetic field is:

Non-Relativistic

Ṙ⊥ =
b
B
×
[
−E +

µ

q
∇B +

m

q

(
v‖
∂b
∂t

+ v‖
2∂b
∂s

+ v‖uE · ∇b +
∂uE
∂t

+ v‖
∂uE
∂s

+ uE · ∇uE

)]
, (2.5)

Relativistic

Ṙ⊥ =
b

B(1− E⊥2/c2B2)
×
{
−
(

1− E⊥
2

c2B2

)
E

+
µr
γq
∇
[
B

(
1− E⊥

2

c2B2

)1/2
]

+
mγ

q

(
v‖
db
dt

+
duE
dt

)

+
v‖E‖

c2
uE +

µr
γq

uE
c2

∂

∂t

[
B

(
1− E⊥

2

c2B2

)1/2
]}

, (2.6)

where E⊥ � cB or E⊥
B � c has been assumed in the relativistic equations. The terms in red in

both equations represent the E×B drift velocity and give the largest contribution to the perpendic-

ular velocity component. For ideal MHD, the E×B drift is usually identical to the perpendicular

component of the MHD flow velocity. Since this drift is independent of charge and mass of the

particle, it is the same for both electrons and ions.

The blue term is the gradient B drift (grad-B) which is in the direction of B × ∇B. Gener-

ally, it arises due to the transverse spatial gradient of the magnitude of B. For a particle moving

into a strong field region, the gyro-radius decreases since rL ∝ 1
B or as it moves into a weak field

region, the gyro-radius increases. Hence, such a gradient causes the circular motion of the charged

particle to be smaller in radius in regions of larger B than in regions of smaller B. The difference

in gyro-radii is what causes the drift. Contrary to the E × B drift, the grad-B drift does depend

on the charge, causing oppositely charged particles to drift in opposite directions perpendicular to

both B and ∇B.
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The terms in black results from the spatial and time derivatives of the magnetic and electric fields

and include, e.g., what is usually called the curvature drift.

As mentioned before, some important assumptions need to be made in order for guiding cen-

tre theory to be valid. These are: (i) 2π
T � Ω, where Ω = qiB

mi
is the gyro-frequency and T is the

characteristic time, (ii) rL � L, where rL is the gyro-radius and L is the characteristic length-

scale.

To give a more detailed calculation, we now compare typical gyro-radii with typical length-

scales for the MHD models we will use later. The non-relativistic electron gyro-radius is re =
2.38Te1/2B−1cm and the proton/ion gyro-radius is ri = 1.02× 102µ1/2Z−1Ti

1/2B−1cm, where

the electron temperature, Te and the ion temperature, Ti is expressed in eV units. The ion mass

(mi) expressed in units of the proton mass µ = mi/mp = 1, the charge state z = 1 and B is the

magnetic strength in Gaussian cgs units. For a magnetic field strength of 10G and a typical solar

coronal temperature of 102eV , the approximate values for the gyro-radii are, re ≈ 2.38cm and

ri ≈ 1.02× 102cm. For the relativistic case, the electron gyro-radius is

re =
mc2

eB
(γ2 − 1)1/2 (cgs)

= 1.70× 103(γ2 − 1)1/2B−1cm, (2.7)

where, e = 4.8032× 10−10 (statcoul), me = 9.1094× 10−28 (g), c = 2.9979× 1010 (cm/s) and

magnetic field strength is B measured in Gauss. The relativistic proton gyro-radius is

rp =
mc2

eB
(γ2 − 1)1/2 (cgs)

= 3.13× 106(γ2 − 1)1/2B−1, cm (2.8)

where mp = 1.6726 × 10−24 (g). All of the equations above for the gryo-radii (non-relativistic

and relativistic) are taken exactly from NRL Book (2007). The typical gryo-radii are clearly much

smaller than our MHD length-scales which are of the order 107m.

Therefore, Guiding Centre Theory and the concept of adiabatic invariants (see later) is a good

approximation for the purpose of the studies in this thesis.

2.1 Adiabatic Invariants

As already mentioned in Section 1.4 the acceleration processes operating in CMTs can be under-

stood at a basic level by using the two main adiabatic invariants. The first invariant, the magnetic
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moment µ, is associated with the gyro/circulatory motion of a particle around a magnetic field

line. The second invariant, the longitudinal/bounce invariant J , is associated with the mirroring

of a particle back and forth along the field line.

2.1.1 The Invariance of µ

The proof of µ being an adiabatic invariant can be found in many text books on plasma physics.

Following for example, Boyd and Sanderson (2003) we consider a static axially symmetric mag-

netic field which is increasing slowly in the direction of z as seen in Fig. 2.2. Using the solenoidal

constraint for B in cylindrical polar coordinates gives,

∇.B =
1
r

∂

∂r
(rBr) +

∂Bz
∂z

= 0

1
r

∂

∂r
(rBr) = −∂Bz

∂z
(2.9)

rBr = −
�
r
∂Bz
∂z

dr.

Since |Br| � Bz and the magnetic field is approximately constant over one Larmor orbit, the

above equation becomes

Br(rL) ' −rL
2
∂Bz
∂z
' −rL

2
∂B

∂z
.

The same approximation for the z component of Eqn. 2.1 gives

m
dv‖

dt
= |q||v⊥|Br(rL)

= −W⊥
B

∂B

∂z

= −µ∂B
∂z

, (2.10)

where q is the charge of the particle, µ = W⊥
B , with W⊥ = mv⊥

2

2 the perpendicular particle

energy and B is the magnetic field strength. Multiplying Eqn. 2.10 with the parallel velocity of

the particle v‖ ≡ dz
dt and using the chain rule gives

d

dt
(
1
2
mv‖

2) = −µv‖
∂B

∂z
= −µ∂B

∂t
. (2.11)

Since

d

dt
(
1
2
mv⊥

2) ≡ d

dt
(µB), (2.12)

adding equations 2.11 and 2.12 and using energy conservation givesB dµ
dt = 0. Since the magnetic
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Figure 2.2: Particle moving in an inhomogeneous magnetic field towards increasing B and os-
cillating between the two end points. Adapted from http://www.kshitij-school.
com/Study-Material/Class-12/Physics/Magnetic-fields/
Motion-of-a-charged-particle-in-a-uniform-magnetic-field.aspx

.
field strength B 6= 0,

dµ

dt
= 0, (2.13)

which implies that the magnetic moment is constant for all times to the order of approximation

used above. An important point needs to be made here. Above we have been looking at a time-

independent magnetic field and thus the total energy will remain constant. For the case of a CMT

the magnetic field is time-dependent, meaning the energy is no longer conserved, however, the

physical principles will remain the same. In the next section the most important consequence

from the invariance of µ for the purpose of this thesis, namely, its effect on particle trapping and

escape will be discussed.

2.1.2 Magnetic Mirrors

Let us now assume that a particle, for which µ is conserved, is moving towards a region of in-

creasing magnetic field strength, as shown in Fig. 2.2. As the magnetic field strength B increases,

the perpendicular energy W⊥ must also increase due to the conservation of µ. The increase in the

particle’s perpendicular velocity v⊥ is known as betatron acceleration. From the conservation of

energy this means that W‖ must decrease. Hence for some value of B the parallel velocity can

become zero (W‖ = 0) and the particle pitch angle θ = 90◦. At this point the particle cannot

penetrate further into the magnetic field and is reflected back towards weaker fields, with decreas-

ing pitch angle. The point at which the particle is reflected is called the mirror point. A field

http://www.kshitij-school.com/Study-Material/Class-12/Physics/Magnetic-fields/Motion-of-a-charged-particle-in-a-uniform-magnetic-field.aspx
http://www.kshitij-school.com/Study-Material/Class-12/Physics/Magnetic-fields/Motion-of-a-charged-particle-in-a-uniform-magnetic-field.aspx
http://www.kshitij-school.com/Study-Material/Class-12/Physics/Magnetic-fields/Motion-of-a-charged-particle-in-a-uniform-magnetic-field.aspx
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configuration as seen in Fig. 2.2 with two mirror points is known as a magnetic bottle or adiabatic

mirror trap (see e.g. Boyd and Sanderson, 2003).

Of course, whether particles mirror or not depends on the details of the magnetic field config-

uration and the specifics of the particle orbit. To investigate this in more detail, one can look at

the velocity vector v geometrically. As seen in Fig. 2.3 we have

Figure 2.3: The v‖ and v⊥ components of the

velocity vector v.

• v‖ = v cos(θ) v⊥ = v sin(θ),

• µ = mv2 sin2(θ)
2B ,

• µ ≡ W
Bm

(W‖ = 0) at the mirror point.

• sin2(θ)/B = 1/Bm = constant which

gives

sin(θ) = (
B

Bm
)1/2.

Here, θ is the particle pitch angle, Bm is the mirror point magnetic field, where the expression

on the right hand side ( B
Bm

)1/2 represents the magnetic field ratio for which mirroring will oc-

cur. Whether a particle remains trapped in a magnetic bottle depends on if this ratio is ≤ or >

( B
Bmax

)1/2. Here, Bmax represents the maximum field strength in the magnetic bottle.

If (Bm ≤ Bmax) then sin(θ) > ( B
Bmax

)1/2, and the particle is reflected. If (Bm > Bmax)

then sin(θ) ≤ ( B
Bmax

)1/2, and the particle escapes. The ratio ( B
Bmax

)1/2 represents sin(α), where

α is the loss cone angle which can be expressed as,

α = arcsin(
1
R

)1/2. (2.14)

Here, R = Bmax
B is called the mirror ratio. For an increasing magnetic field strength the mirror

ratio R decreases, causing the loss cone angle α to increase. For a decreasing magnetic field

the mirror ratio begins to increase, causing α to decrease. In a CMT like in a magnetic bottle

particles will be reflected back and forth when θ > arcsin( 1
R)1/2 = α and are lost when θ ≤

arcsin( 1
R)1/2 = α. We will investigate the trapping and escape conditions for our CMT model in

Chapter 4.
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2.1.3 The Longitudinal Adiabatic Invariant

The second adiabatic invariant important in the study of collapsing magnetic traps is the longitu-

dinal invariant, J, defined by

J =
�
p‖ds (2.15)

where p‖ is the parallel momentum of the particle, ds is the line element of the guiding centre path

and the integral is taken over one complete bounce of the guiding centre. The proof of this quantity

being invariant is given in Boyd and Sanderson (2003). This invariant arises due to the charged

particle being reflected back and forth between mirror points and it proves useful in situations in

which the mirror points are no longer static. Let the position of the mirror points be denoted by s1

and s2 at one time and by s1
′ and s2

′ at some other time. The invariance of J means that, denoting

s1 − s2 = s0 and s1
′ − s2

′ = s0
′ that

v‖
′s0
′ = v‖s0.

This implies that

v‖
′ ' v‖

s0

s0
′ .

If the ratio s0
s0′

> 1, then the parallel velocity of the particle will increase. This is the basis behind

first order Fermi acceleration.

Betatron and Fermi acceleration mechanisms associated with the invariance of magnetic moment

µ and bounce invariant J , respectively, are important in the study of CMTs.

2.2 Theoretical Setup for the CMT Model

We start by outlining the approach to the CMT modelling used in Giuliani et al. (2005). Their

CMT model uses: (1) A kinematic description of the magnetic field obeying ideal Ohm’s Law,

assuming that the CMT is outside the non-ideal reconnection region (i.e. E‖ = 0). (2) A time

dependent transformation from Eulerian to Lagrangian coordinates which gives the time evolution

of: the flow field, v(x,t), the magnetic field, B(x,t) and the electric field, E(x,t). The ideal kinematic

MHD equations,

E + v ×B = 0 (Ideal Ohm’s Law), (2.16)
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∂B
∂t

= −∇×E (Faraday’s Law), (2.17)

∇ ·B = 0 (solenoidal Constraint), (2.18)

describe the evolution of electric and magnetic fields for a given flow field v(x, t). These equa-

tions provide the general framework for our analytical CMT model. We in addition assume that

the magnetic field is translationally invariant in the z-direction and that the flow velocity has van-

ishing vz . A Cartesian coordinate system x = (x, y, z) is set up as: x-axis is parallel to the

photosphere, y-axis is perpendicular to the photosphere, representing the height above the solar

surface, and the z-axis is perpendicular to both the x-axis and y-axis, representing the invariant

direction.

Under the assumptions of translational invariance one can use a flux function A(x, y, t) (equal

to the z-component of the vector potential A where B = ∇ ×A) to write the magnetic field in

the form

B = ∇A× ez +Bzez, (2.19)

which automatically satisfies Eqn. 2.18. The other two equations, namely, the ideal Ohm’s law

and Faraday’s Law can be written as

dA

dt
=
∂A

∂t
+ v.∇A = 0, (2.20)

∂Bz
∂t

+∇.(Bzv) = 0, (2.21)

with the electric field given by

E = −∂A
∂t

= −∂A
∂t

ez. (2.22)

In principle equations 2.20 and 2.21 have to be solved for a given flow field v(x, t). In the the-

ory of Giuliani et al. (2005), instead of defining the flow field directly, it is given implicitly by

choosing a time-dependent transformation between Lagrangian and Eulerian coordinates. The

coordinate transformation will be denoted by x0(x, y, t), y0(x, y, t), where x0 and y0 are the posi-

tions of fluid elements at a time t = t0. The advantage is that one can then immediately solve Eqn.

2.20 using a flux function A(x, y, t) = A0(x0, y0) as an initial condition or, as was the choice of

Giuliani et al. (2005), final condition.

In Giuliani et al. (2005) and this thesis the flux function A0 is given by

A0 = c1 arctan
(
y0 + d/L

x0 + w

)
− c1 arctan

(
y0 + d/L

x0 − w
)
. (2.23)
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where usually we have chosen L = 10Mm as the characteristic length of the loop, d = L, x0

and y0 give the two coordinates of the two monopoles places that x0 = −L/2, y0 = −d and

x0 = L/2, y0 = −d respectively. This flux function represents a potential magnetic field loop

at time t0 (we assume that t0 → ∞) created by two line sources of strength c1 = 150G (one of

positive and one of negative polarity) located at the positions (−w,−d) and (w,−d) below the

lower boundary. All lengths here are scaled to the fundamental length scale L. Following Giuliani

et al. (2005), we choose w = 0.5 and d = L, creating a symmetric magnetic loop (Fig. 2.4) 1 .

Figure 2.4: Magnetic field lines for the CMT model at the initial normalised time t = 1.05, final
collapse time t = 2.0 and the asymptotic state (t→∞) respectively.

The equation for the evolution of the transformation has the same form as the flux function

A(x, y, t) due to the flux being transported with the plasma flow (frozen-in condition). These

time dependent transformations between Eulerian and Lagrangian coordinates are (Giuliani et al.,

2005)

x∞ = x, (2.24)

y∞ = (at)b ln
[
1 +

y

(at)b

]{
1 + tanh [(y − Lv/L)a1]

2

}
+
{

1− tanh [(y − Lv/L)a1]
2

}
y. (2.25)

1A point to note here is that for a loop like magnetic field model in the asymptotic limit, Eqn. 2.23 is chosen. If a
different magnetic field structure is required then a different flux function can be chosen.
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Lv is the characteristic height above which the magnetic field is stretched by the transformation.

Below this height the magnetic field is largely unchanged. The parameter a1 determines the scale

over which this transition from unstretched to stretched field takes place, whereas a and b are

parameters which are related to the timescale of the evolution of the CMT. We use the same values

for the parameters as Giuliani et al. (2005), i.e. a = 0.4, b = 1.0, Lv/L = 1.0 and a1 = 0.9. The

transformations x∞ and y∞ represent the final coordinate values for the fluid element as t→∞.

Using the final coordinates gives the added advantage of being able to use the transformations for

both stretching and collapsing of the field lines (Giuliani et al., 2005). The behaviour of y∞ as a

Figure 2.5: Graph of the transformation 2.25 at an initial time t = 1.05 (green) and for larger
times t → ∞ (black) are shown. Length scales are normalised with respect to L = 10Mm. The
graph has an initial sharp transition at y = 1 where the function seems to be growing and has an
almost plateau behaviour on the right. The transformation approaches the straight line in black
y∞ = y as t→∞. (See analytical calculation below).

function on y is given illustrated in Fig. 2.5. For large t

y

(at)b
� 1⇒ y � (at)b ⇒ y1/b � at⇒ t� y1/b

a
. (2.26)

When t satisfies this condition then the argument of the ln in transformation 2.25 can be expressed

as a Taylor series. This gives

y∞ = (at)b
[

y

(at)b
− y2

2(at)2b
+

y3

3(at)3b
+ . . .

]{
1 + tanh[(y − Lv/L)a1]

2

}
+
{

1− tanh[(y − Lv/L)a1]
2

}
y.
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As t→∞ it follows,

y∞ ∼ y
{

1 + tanh[(y − Lv/L)a1]
2

}
+
{

1− tanh[(y − Lv/L)a1]
2

}
y = y. (2.27)

As can be seen in Fig. 2.5, as t→∞ the green line representing the evolution of y∞ approached

the straight line in black. One can see from the figure that this transformation is a one-to-one

transformation between y ∈ [0,∞) and y∞ ∈ [0,∞), which insures that there is one and only one

unique solution for any time and prevents any singularities occurring in the model.

2.2.1 Velocity, Electric and Magnetic Fields

In general going from Lagrangian coordinates

x0 = x0(x, y, t)ex + y0(x, y, t)ey (2.28)

to Eulerian coordinates,

x = xex + yey, (2.29)

since x0(x, y, t) and y0(x, y, t) are constants, the total time derivative of Eqn. 2.28 is

0 =
dx0

dt
=
∂x0

∂x

dx

dt
+
∂x0

∂y

dy

dt
+
∂x0

∂t

0 =
dy0

dt
=
∂y0

∂x

dx

dt
+
∂y0

∂y

dy

dt
+
∂y0

∂t
.

Since vx = dx
dt and vy = dy

dt , from the transformations 2.24 and 2.25 the two equations above

become

�
�
�7

0
∂x0

∂t
+
�
�
�7

1
∂x0

∂x
vx +

�
�
��7

0
∂x0

∂y
vy = 0 ⇒ vx = 0

∂y0

∂t
+
�
�
�7

0
∂y0

∂x
vx +

∂y0

∂y
vy = 0 ⇒ vy = −

∂y0
∂t
∂y0
∂y

In our model the magnetic field and the electric field is given by

B =
∂A

∂y
ex − ∂A

∂x
ey,

E = −∂A
∂t

ez
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where we have assumed Bz = 0 and velocity field vz = 0. In particular, if we enforce that the

field lines of the collapsing trap relax to a loop like structure described by the flux function

A(x, y, t) = A0(x∞(x, y, t), y∞(x, y, t)),

the x and y components of the magnetic field and the z component of the electric field at time t

are given by

Bx =
∂A

∂y
=
∂A0

∂x∞

∂x∞
∂y

+
∂A0

∂y∞

∂y∞
∂y

, (2.30)

By = −∂A
∂x

= −
(
∂A0

∂x∞

∂x∞
∂x

+
∂A0

∂y∞

∂y∞
∂x

)
. (2.31)

Ez = −∂A
∂t

= −
(
∂A0

∂x∞

∂x∞
∂t

+
∂A0

∂y∞

∂y∞
∂t

)
(2.32)

The evolution of Bz is given by the z-components of the induction equation whereby

∂B
∂t

= ∇× (v ×B),

∂Bz
∂t

= −v · ∇Bz −Bz∇ · v = −∇ · (Bzv),

∂Bz
∂t

+ ∇ · (Bzv) = 0. (2.33)

The evolution of Bz has the same form as the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (2.34)

Hence, when comparing Eqns. 2.33 and 2.34 if we find an expression for the evolution of Bz
the same expression for the evolution of ρ can be used. Eqn. 2.33 is solved using the Jacobian

determinant Jc of the time-dependent transformation

x = x(x0, t) = (x(x∞, y∞, t), y(x∞, y∞, t), t).

Jc satisfies the equation

1
Jc

DJc
Dt

= ∇.v,

with the initial condition Jc = 1 at t = t0. Expanding Eqn. 2.33 gives

∂Bz
∂t

+ v.(∇Bz)︸ ︷︷ ︸
DBz
Dt

+ Bz(∇.v)︸ ︷︷ ︸
Bz( 1

Jc

DJc
Dt

)

= 0,
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where D
Dt = ∂

∂t + (v.∇) is the convective derivative. This gives,

1
Bz

DBz
Dt

= − 1
Jc

DJc
Dt

. (2.35)

Integrating both sides of Eqn. 2.35 with respect to time results in

ln(Bz) = − ln(Jc) + ln(I),

BzJc = I, (2.36)

where I represents the constant of integration. Eqn. 2.36 can be seen as representing the invariance

of magnetic flux through an infinitesimal area, where Bz is the magnetic field strength in the

invariant direction, Jc is a measure of the area and I is the flux. A similar equation will be used in

Chapter 5 where the behaviour of the pressure and density in the CMT model is investigated. Once

the spatial and temporal derivatives of the electric and magnetic fields are found they are used in

the guiding centre equations of motion (see Eqns. 2.3- 2.6) to calculate the particle trajectories in

the CMT model.



Chapter 3

Examination of Particle Energisation and
Motion in a Relativistic CMT

The main aim of this chapter is to examine the relativistic particle orbits in the fully analytical

2.5D CMT model developed by Giuliani et al. (2005) and Grady et al. (2012). These papers only

consider particle trajectories/orbits in the non-relativistic regime but find that particles in the initial

energy range they investigated are accelerated to mildly relativistic energies. Here we go a step

further and replace the non-relativistic guiding centre equations with their relativistic counterparts

taken from Northrop (1963). Using the guiding centre approximation which was discussed in

detail in Section 2.2, in Section 3.1 the results obtained from the relativistic calculations will

be compared with results obtained from the non-relativistic particle orbit calculations which are

presented fully in Grady (2012)1. In Section 3.2 the effects of different initial conditions, i.e.,

initial pitch angle, initial injection position and initial energy using the relativistic code will be

discussed and compared with the non-relativistic results. The chapter ends with discussions and

conclusions.

3.1 Particle orbits and energy evolution for different initial energies

As a starting point for investigating the differences between relativistic and non-relativistic guiding

centre orbits, modifications were made to the non-relativistic code through introducing relativistic

guiding centre equations. For the relevant files in the numerical code which were written for

the purpose of this study see Appendix A.1. For a typical test particle the particle orbit and

energy graphs using the relativistic approximation are compared with results obtained from the

non-relativistic approximation. The normalised relativistic drift equations of motion in the code

are

Ṙ⊥ = uE +
1

Ω0t0

{
b
B
×
[
µr∇B
γ

+ γ(v‖
db
dt

+
duE
dt

) +
v0

2

c2γ
µruE

∂B

∂t

]}
+

v0
2

c2
v‖E‖

b
B
× uE (3.1)

1For the entirety of this thesis we only use a 2.5D model, however a generalisation into a 3D model was initially
presented in an appendix in Giuliani et al. (2005) and investigated in Grady (2012).

31
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and

dv‖

dt
= uE · db

dt
+ Ω0t0

E‖

γ
− µr
γ2

∂B

∂s

− Ω0t0
v0

2

c2

v‖

γ

(
Ṙ⊥ + bv‖

)
·E

− v0
2

c2

µr
γ2

∂B

∂t
v‖. (3.2)

For the full derivation for the normalised equations see Appendix A.2. Equation 3.2 is obtained

from applying the product rule to the left hand side of Eqn. 2.4 and using the energy equation

(Northrop, 1963)

d

dt
(m0c

2γ) = q(Ṙ⊥ + bv‖) ·E +
µr
γ

∂B

∂t
, (3.3)

where Ω0 = qB0

m0
is the gyro-frequency of the charged particle m0 is the rest mass of the charged

particle, v0 is the normalisation velocity and t0 is the normalisation time. In Eqn. 3.1 the terms
1

Ω0t0
and v20

c2
give very small contributions. Therefore, the main contributing term is the E × B

drift or denoted as uE in the equations.

The non-relativistic kinetic energy of the particle averaged over a gyro-period, EK , is given by

Ek =
mv‖

2

2
+ µB +

muE
2

2
, (3.4)

where
mv‖

2

2 is the parallel energy of the particle, µB is the rotational energy about the guiding

centre (i.e. the perpendicular energy) and muE
2

2 is the energy associated with the perpendicular

drift of the particle which give a negligible contribution. In the relativistic regime however, the

total energy of the particle cannot be separated into different components and is expressed as

Ek = Erest(γ − 1), (3.5)

where Erest = mc2 ≈ 511keV is the rest mass energy of an electron and the Lorentz factor is

γ = 1/
√

1− v2/c2. The absolute particle velocity is given by v =
√
v2
‖ + v2

⊥ + u2
E . Recalling

that v⊥2 = 2µrB
mγ2 , the Lorentz factor can be expressed as

γ =

√√√√ 1 + 2µrB
c2

1− v2‖+u
2
E

c2

. (3.6)

The evolution of the energy expressions 3.4 and 3.5 and the particle trajectories will be investigated

in detail in this section. We investigate four cases and will look at differences in particle orbit and

energy evolution for a specific test particle using the non-relativistic and relativistic particle orbit
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codes.

3.1.1 Case 1

We start by looking at a test particle with the initial conditions as seen in Table 3.1. The test

Range of initial conditions for Case1
θstep = 1 ystep = 1
θmin = 160◦ ymin = 4.2L
θmax = 160◦ ymax = 4.2L
xstep = 1 Estep = 1
xmin = 0L Emin = 5.5keV
xmax = 0L Emax = 5.5keV

Table 3.1: Initial injection position, pitch angle and energy set up for the simulation.

particle starts at an initial pitch angle θinit = 160◦ and initial kinetic energy Einit = 5.5keV . The

particle injection position is (x, y, z) = (0, 4.2L, 1.25 × 10−6L). Fig. 3.1 gives the trajectory

of the test particle and the evolution of the kinetic energy calculated with the relativistic and

non-relativistic equations. The panel on the left shows the particle trajectories for the relativistic

and non-relativistic case. The relativistic orbit in turquoise is overplotted on the non-relativistic

graph in black. The second panel on the right shows the energy evolution for the particle. The

black line represents the total energy evolution for the non-relativistic orbit and the turquoise

graph represents the energy evolution for the relativistic orbit. Looking at the energy graphs

a step like pattern is seen which is a consequence of the exchange of parallel and perpendicular

kinetic energy. Giuliani et al. (2005) speculated the mirror term was responsible for the continuous

exchange between the parallel and perpendicular energies causing an oscillatory behaviour in

the total non-relativistic energy. Since the initial kinetic energy, Einit = 5.5keV , is not highly

relativistic there are no visible discrepancies seen in the orbit plots in Fig. 3.1. This can be

explained by looking at the right hand graph in Fig. 3.1 where the total Ek for the non-relativistic

case is given by Eqn. 3.4, Ek = mv‖
2

2 + µB + muE
2

2 and for the relativistic case by Eqn. 3.5,

Ek = mc2(γ − 1). Table 3.2 gives the starting energy and the final energy for the particle,

Table 3.2: Minimum and maximum particle energies
Relativistic Non-Relativistic Energy difference

Emin(eV ) 5500 5500 0
Emax(eV ) 14609.776 15017.167 407.391

obtained from the relativistic and non-relativistic codes. For this case the discrepancy between the

final energies obtained from the non-relativistic and relativistic code is 407.391eV . We can see

from Fig. 3.1 the discrepancy between the two energy graphs is relatively small. Rearranging the



3.1 Particle orbits and energy evolution for different initial energies 34

Figure 3.1: Left: The graph of test particle trajectory in the x-y plane for a non relativistic particle
and a relativistic particle. Right: The graph for the energy evolution for Einit = 5.5keV where
the black line represents the non-relativistic result and the turquoise graph the relativistic result.
Length scales are normalised to L = 10Mm and the simulation runs for a finite time of 95
seconds.

relativistic energy equation 3.5 for γ gives

γ =
Ek
Erest

+ 1, (3.7)

where the rest mass of an electron is Erest ≈ 511keV . Rearranging γ for v gives,

v =
√

(1− 1
γ2

)c. (3.8)

The initial starting energy given by the non-relativistic and relativistic code is 5.5keV . Table

Table 3.3: γ & v for the relativistic case.
Relativistic γ v

Emin(eV ) 1.0107 0.145c,
Emax(eV ) 1.0286 0.234c.

3.3 shows the results for γ and v for the initial starting energy and final particle energy from the

relativistic code. For Ek(min) = 5.5keV using Eqns. 3.7 and 3.8,

γ =
5500

511000
+ 1 ≈ 1.0107

v =
√

1− 1
γ2
c ≈ 0.145c

For Ek(max) = 14609.775eV , γ = 14609.776
511000 + 1 ≈ 1.0286 and v =

√
1− 1

γ2 c ≈ 0.234c. Also to

reach the same energy using the relativistic code takes longer, since γ increases as the velocity of

the particle v approaches 0.234c. As a result of this relativistic effect the energies calculated using



3.1 Particle orbits and energy evolution for different initial energies 35

Figure 3.2: Left: The graph of test particle trajectory in the x-y plane for a non relativistic particle
and a relativistic particle. Right: The graphs for the energy evolution for Einit = 50.5keV where
the black line represents the non-relativistic result and the turquoise graph the relativistic result.
Length scales are normalised to L = 10Mm and the simulation runs for a finite time of 95
seconds.

the relativistic code will be smaller compared to the non-relativistic case at the same time. This

discrepancy is shown more clearly in the highly relativistic cases which will be discussed next in

sections 3.1.2, 3.1.3 and 3.1.4.

3.1.2 Case 2

For this test particle case, the initial conditions for pitch angle and position are the same as for case

1, however, the initial particle energy is now Einit = 50.5keV . Like in the previous case, Fig.3.2

gives the trajectories and the energy evolution of the particles. The panel on the left shows the

particle trajectories, where the relativistic turquoise result is overplotted on to the non-relativistic

result in black. Small changes in the particle orbits become more prominent as the starting energy

is increased. The discrepancy can be seen close to the foot points, where the relativistic orbit has

higher mirror points than the non-relativistic orbit. Looking at the right panel the discrepancy

between the energy graphs can also been seen. Table 3.4 gives Emin and Emax for the particle

Table 3.4: Minimum and maximum particle energies
Relativistic Non-Relativistic Energy difference

Emin(eV ) 50500 50500 0
Emax(eV ) 113441.02 137902.88 24461.863

obtained from the relativistic and non-relativistic particle orbit code. The initial starting energy

given by the non-relativistic and relativistic code is 50.5keV . Table 3.5 shows the results for

γ and v for the energies Emin and Emax for t = 0s and t = 95s respectively. Initially for

Einit = 50.5keV , γ = 1.098 and v = 0.414c at t = 0s. For the final time of t = 95s at Emax =
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113441.02keV , γ = 1.22 and v = 0.574c. For this case the discrepancy between the final energy

for the relativistic orbit and the non-relativistic orbit is approximately 24461.863eV , a significant

difference from the result seen in case 3.1.1 which was 407.391eV . With increasing starting

energy Einit, the relativistic effects are enhanced due to the particle travelling at v = 0.414c.
Since γ increases as the velocity of the particle approaches 0.574c, to reach the same velocity

using the relativistic code takes even longer, hence the energies calculated using the relativistic

code will be even smaller compared to the non-relativistic case.

Table 3.5: γ & v for the relativistic case.
Relativistic γ v

Emin(eV ) 1.098 0.414c
Emax(eV ) 1.22 0.574c

3.1.3 Case 3

For this test particle case, the initial conditions for initial pitch angle and position are the same as

before, however, the initial particle energy is nowEinit = 100keV . Like in the previous two cases,

Figure 3.3: Left: The graph of test particle trajectory in the x-y plane for a non relativistic particle
and a relativistic particle. Right: The graphs for the energy evolution for Einit = 100keV where
the black line represents the non-relativistic result and the turquoise graph the relativistic result.
Length scales are normalised to L = 10Mm and the simulation runs for a finite time of 95
seconds.

Fig. 3.3 gives the trajectories and the energy evolution of the particles. Changes in the particle

orbits become more prominent as the starting energy is increased significantly. The discrepancy

can be seen again clearly at the foot points where the relativistic orbit has higher mirror points

than the non-relativistic orbit. The discrepancy between the energy graphs, seen clearly in Fig.

3.3 is much more prominent than the previous two cases since the initial energy Einit = 100keV
is already mildly-relativistic. Table 3.6 gives Emin and Emax for the particle for the relativistic
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Table 3.6: Minimum and maximum particle energies
Relativistic Non-Relativistic Energy difference

Emin(eV ) 100000 100000 0
Emax(eV ) 198979.76 273068.12 74088.351

Table 3.7: γ & v for the relativistic case.
Relativistic γ v

Emin(eV ) 1.1957 0.548c
Emax(eV ) 1.389 0.694c

and non-relativistic cases, where Table 3.7 shows the results for γ and v for the energies Emin
and Emax for t = 0s and t = 95s respectively. Initially for Emin = 100keV , γ = 1.1957 and

v = 0.548c at t = 0s. For the final time of t = 95s, Emax = 198979.76keV gives γ = 1.389 and

v = 0.694c. For this case the discrepancy between the final energy for the relativistic orbit and

the non-relativistic orbit is approximately 74088.351eV , a significant increase to the differences

seen in Case 1 which is 407.391eV and 24461.863eV in Case 2.

3.1.4 Case 4

For this final case, the initial conditions for pitch angle and position are the same as before, how-

ever, the initial particle energy is now Einit = 200keV . Fig.3.4 gives the trajectory and the

energy evolution of the particles. Again changes in the particle orbits become more prominent

as the starting energy is increased significantly compared to the previous cases. The discrepancy

Figure 3.4: Left: The graph of test particle trajectory in the x-y plane for a non relativistic particle
and a relativistic particle. Right: The graphs for the energy evolution for Einit = 200keV where
the black line represents the non-relativistic result and the turquoise graph the relativistic result.
Length scales are normalised to L = 10Mm and the simulation runs for a finite time of 95
seconds.
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again is seen clearly at the foot points where the relativistic orbit has much higher mirror points

than the previous cases.The initial kinetic energy Einit is now mildly relativistic and the discrep-

ancy between the energy graphs can be seen clearly in the figure. Table 3.8 gives Emin and Emax

Table 3.8: Minimum and maximum particle energies
Relativistic Non-Relativistic Energy difference

Emin(eV ) 200000 200000 0
Emax(eV ) 339488.68 546157.38 206668.71

Table 3.9: γ & v for the relativistic case.
Relativistic γ v

Emin(eV ) 1.391 0.695c
Emax(eV ) 1.664 0.799c

for the particle obtained from the relativistic and non-relativistic particle orbit codes, and Table 3.9

shows the results for γ and v for the energiesEmin andEmax for t = 0s and t = 95s, respectively.

Initially for Einit = 200keV , γ = 1.391 and v = 0.695c at t = 0s. For the final time of t = 95s
at Emax = 339.49439keV , γ = 1.664 and v = 0.799c. For this case the discrepancy between the

final energy for the relativistic orbit and the non-relativistic orbit is approximately 206.66871keV .

This is a significant difference in energy compared to the other cases seen previously.

A point to mention here that for an energy of 5keV , γ ≈ 1.01. The relativistic electron gyro-

radius (see Eqn. 2.7) for a magnetic field strength of B = 150G, re = 1.6 cm. For an energy of

200keV , γ ≈ 1.39. The relativistic electron gyro-radius, re = 10.94 cm. Both these gryo-radii

are much smaller than the typical length scales in our CMT model which is of the order 107m. So

even for strongly relativistic energies the guiding centre approximation remains valid.

As the initial energy is systematically increased, two main differences between the relativistic and

non-relativistic approximations are seen. First, the final particle energy calculated using the rela-

tivistic approximation is always smaller than the non-relativistic case. This is due to the Lorentz

factor affecting the terms in the equation of motion by reducing the size of the contributing terms.

Secondly, the mirror points for the particles using the relativistic approximation are much higher

than the non-relativistic case. This may be due to terms in the parallel guiding centre equation

becoming smaller as γ increases with increasing particle velocity. Higher mirror points in the

relativistic case might lead to more particles being trapped in the model since the particles do not

travel all the way down to the foot points.
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3.2 Effects of particle initial conditions on energy gain

In this section we will look at the effects of different initial pitch angle θinit, energy Einit and

injection positions in the x and y directions. Like in the last section, the results obtained from the

relativistic particle orbit code will be directly compared with the results from Grady (2012) and

Grady et al. (2012) and will be presented as case studies.

3.2.1 Case 1

Grady et al. (2012) found that the initial injection positions, pitch angle θinit and initial energy

Einit can affect the particle trapping time, location of mirror points and therefore the energy

gain of the particles. The list below shows the initial conditions for 13310 particle orbits using

the relativistic guiding centre approximation. For this case, 11 values for the pitch angle, θstep,

injection position in the x direction, xstep, in the y direction, ystep and for energy,Estep are chosen.

• Injection position: 11 values of x between −0.5L to 0.5L and 11 values of y between 1L
to 5L.

• Initial energy: 11 values of energy between 5keV to 6keV .

• Initial pitch angle: 10 values of pitch angle θ between 10◦ to 170◦.

Multiplying all theses values for position, energy and pitch angle gives 13310 particle orbits. Table

Range of initial conditions for Case 1
θstep = 10 ystep = 11
θmin = 10◦ ymin = 1L
θmax = 170◦ ymax = 5L
xstep = 11 Estep = 11
xmin = −0.5L Emin = 5keV
xmax = 0.5L Emax = 6keV

Table 3.10: Initial injection position, pitch angle and energy set up for Case 1.

3.10 summarises range of initial conditions for pitch angle, position and energy. In Fig. 3.5 the

final energy of the particles starting with different initial injection position, pitch angles and en-

ergies are shown. The horizontal axis shows the initial particle pitch angle and the vertical axis

shows the initial energy of the particle orbit. Each box on the graph represents one specific parti-

cle orbit. Here 10 × 11 particle orbits are selected, i.e., 110 particles where the colours indicate

their final energy once the magnetic trap has stopped for a finite time. The colour bar on the right

indicates the final energy of the particle. It can be seen that the highest energy particles come
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Figure 3.5: Final energy of the particles starting with different initial injection positions, initial
pitch angles and initial energies is shown. It can be seen that the highest energy particles come
from regions in the middle of the trap with initial pitch angles close to 90◦.

from an initial injection position close to the middle of the trap and an initial pitch angle close to

90◦. Comparing this result obtained of Grady (2012), the energy range in the non-relativistic case

is approximately 4.98 − 317keV . However, in the relativistic case it is 4.98 − 255keV , which

gives a difference in the final energy of 60keV for the highest energy. The two plots in Fig. 3.6

show the final particle position of all the particles that remain trapped in the model with their cor-

responding final energies. The plot on the left is calculated using the non-relativistic case and the

relativistic case on the right. Grady (2012) found particle orbits are kept close to the centre and

are trapped at the loop top. The red region in the middle representing the highest energy particle

orbits, which is more visible in the left plot (non-relativistic), implies there are less particle orbits

with the highest energy gain when using the relativistic code than when using the non-relativistic

code. The highest particle energy from the non-relativistic approximation (left-graph) is approxi-

mately 3.17× 105eV whereas in the relativistic case its 2.55× 105eV .

The previous experiment was repeated for higher initial energies Einit set between 50− 100keV .

The two top figures in Fig. 3.7 show the final particle position with the corresponding final energy.

On the left the highest energy gain is about 5.32×106eV worked out with the non-relativistic par-

ticle orbit code. These particles with the highest energy have a Lorentz factor of γ ≈ 11.41 and

speeds of v = 0.996c. On the right the highest energy gain is about 1.99 × 106eV worked out

with the relativistic particle orbit code. These particles have a Lorentz factor of γ ≈ 4.89 and a

speed of v = 0.978c.
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Figure 3.6: Graphs of final particle position with the corresponding final energy. Left non-

relativistic and Right relativistic results. Both these graphs have an initial starting energy of 5keV
to 6keV .

Figure 3.7: Graph of final particle position with the corresponding final energy. Left non-

relativistic and Right relativistic results. Top two plots have initial starting energy Einit = 50keV
to 100KeV and bottom two plots have Einit = 100keV to 200keV .
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We then increase the initial energy Einit to values between 100 − 200keV . The bottom two

plots in Fig 3.7 shows again the final particle position with the corresponding final energy. On the

left the highest energy gain is about 1.07× 107eV , implying these particles have a Lorentz factor

of γ ≈ 21.93 and speeds of v = 0.99c. On the right the highest energy gain is about 3.13×106eV ,

implying these particles have a Lorentz factor of γ ≈ 6.125 and a speed of v = 0.99c. Not all

of the particles will remain in the trap for the duration of t = 95s as some will escape the trap

depending on their initial pitch angles. The escaped particles are all represented by the points

shown in Figures 3.6 and 3.7 along the x axis when y = 0.

From looking at the final energies of the particles for all three setups it is clear that the results

obtained with the non-relativistic particle orbit code are not valid for this range of initial energies.

Even starting with initial energy Einit = 5−6keV (left figure in 3.6 where Emax = 317keV ) the

final velocity for the highest energy gain (v ≈ 0.78c) is already mildly relativistic.
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3.2.2 Case 2

The following case is for test particle orbits with a fixed initial energy of Einit = 5.5keV . This

initial energy is similar to the initial energy used by Grady (2012) and Grady et al. (2012) in the

investigation with a non-relativistic code. The list below is the initial conditions for 10000 particle

orbits using the relativistic guiding centre code. Here, 100 values for the initial pitch angle, θinit,

10 values for the injection position in the x direction and 10 values for the injection position in

the y direction are chosen. Therefore

• Injection position: 10 values of x between−0.5L to 0.5L, 10 values of y between 1L to 5L
and 1 value of z = 1.25× 10−6L.

• Initial energy: 1 value of energy 5.5keV .

• Initial pitch angle: 100 values of pitch angle θ between 10◦ to 170◦.

Range of initial conditions for Case 2
θstep = 100 ystep = 10
θmin = 10◦ ymin = 1L
θmax = 170◦ ymax = 5L
xstep = 10 Estep = 1
xmin = −0.5L Emin = 5.5keV
xmax = 0.5L Emax = 5.5keV

Table 3.11: Initial injection position, pitch angle and energy set up for Case 2.

Table 3.11 gives the minimum and maximum values for the pitch angle, x position, y position

and the energy. In Figs. 3.8 and 3.9 the ratio of the final particle energy to the initial particle

energy against different starting initial pitch angles for different combinations of particle positions

in x and y are shown. Each box represents a specific particle coordinate in the trap with the

same starting energy Einit = 5.5keV for different initial pitch angles. The red points indicate

all the particles that have escaped from the trap. From the figure it can be seen that the highest

energy ratio comes from a location in the middle of the trap at a height of 2.2Mm, where this

represents a coordinate (0, 2.2L, 1.25×10−6L). Comparing this with the finding in Grady (2012)

the location where the highest energy ratio occurs is the same as the non-relativistic guiding centre

approximation. However, looking at the energy ratios for the relativistic and non-relativistic case

at this coordinate, it can be seen that in Fig. 3.8 the ratio is between 40−45 for the relativistic case

and for the non-relativistic case seen in Fig. 3.9 this energy ratio is between 50− 55. Looking at

location (0, 4.2L, 1.25 × 10−6) specifically, the secondary peaks seen for small and large angles

are believed to be a result of first order Fermi acceleration. We make a point of exploring this

location further in chapter 4 when we look at the trapping and escape conditions for our CMT

model.
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Figure 3.8: The ratio of final/initial energy against initial pitch angle using the relativistic guiding

centre approximation. All particle orbits start with the same initial energy (5.5keV ). Red points

show which particle orbits escape.
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Figure 3.9: The ratio of final energy to initial energy against initial pitch angle using the non-

relativistic guiding centre approximation. All particle orbits start with the same initial energy

(5.5keV ). Red points show which particle orbits escape. Grady et al. (2012) found the position in

the trap is also key for maximum energy gain alongside particle orbits starting with pitch angles

close to 90◦.



3.2 Effects of particle initial conditions on energy gain 46

3.2.3 Case 3

The following case is for a test particle orbit with a fixed injection position of x = 0.1L, y = 2.0L
and z = 1.25 × 10−6L. Using the relativistic guiding centre code the effects of different initial

pitch angle and initial energy on the energy gain of this specific test case is investigated. The list

below shows the initial conditions for 10000 particle orbits. For this case, 10 values for the pitch

angle θinit and 10 values for energy Einit are chosen. The injection position here is kept constant

at coordinates (0.1L, 2.0L, 1.25× 10−6L). Therefore,

• Injection position: 1 value of x = 0.1L, 1 value of y = 2.0L and 1 value of z = 1.25 ×
10−6L.

• Initial energy: 100 values of energy between 5keV to 6keV .

• Initial pitch angle: 100 values of pitch angle θ between 10◦ to 170◦.

Range of initial conditions for Case 3.
θstep = 100 ystep = 1
θmin = 10◦ ymin = 2L
θmax = 170◦ ymax = 2L
xstep = 1 Estep = 100
xmin = 0.1L Emin = 5keV
xmax = 0.1L Emax = 6keV

Table 3.12: Initial injection position, pitch angle and energy set up for Case 3.

Table 3.12 gives the minimum and maximum values for the initial pitch angle, particle injection

position and energy. Figure 3.10 shows the graph of initial pitch angle against initial energy for a

particle starting for each orbit at (x, y, z) = (0.1L, 2L, 1.25 × 10−6), where the colour contours

represent the final energy of the particle Efinal. The colour bar on the right shows the range of

final energy in (eV ). It can be seen that the highest energy particles come from the pitch angles

close to 90◦ and start with the highest energy, consistent with Grady et al. (2012). In the relativistic

results the highest final energy for the particles is about 3.29keV , however, in the non-relativistic

case, the highest energy is found to be about 3.45keV . The white crosses at the top and bottom

of the graph show the particle orbits which escape from the magnetic trap. Figure 3.11 is for the

same initial set up as in Fig 3.10, however this time the final energy to initial energy ratio is shown

as a surface plot on the left and as a contour plot on the right. For the figure on the right the white

squares at the top and bottom again show all the particle orbits which have escaped. The colour

bar shows the range of ratios starting from ≈ 1− 5.5.
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Figure 3.10: Left:The contours of final/initial energy ratio; Right: Contours of final energy Efinal
for test particle orbits starting with different Einit = 5 − 6keV , θinit = 10 − 170◦ and starting

position (0.1L, 2.0L, 1.25 × 10−6). The white squares at the top and bottom of the graph show

the particle orbits that have escaped from the trap.

Figure 3.11: Left: The energy ratio from Fig. 3.10 as a surface plot. Right: The final/initial energy

ratio Efinal/Einitial where the colour bar shows the range of ratios. White squares represent

escaped particle orbits.
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Figure 3.12: Left:The contours of final/initial energy and Right: Contours of final energy Efinal
for test particle orbits starting with differentEinit = 100−200keV , θinit = 10−170◦ and starting

position (0.1L, 2.0L, 1.25 × 10−6). The white squares at the top and bottom of the graph show

the particle orbits that have escaped from the trap.

Figure 3.13: Left: The energy ratio from Fig. 3.12 as a surface plot. Right: The final/initial energy

ratio Efinal/Einitial where the colour bar shows the range of ratios. White squares represent

escaped particle orbits. The highest energy gain comes from particle with θinit close to 90◦ and

low starting energies as the red region seems to taper off with increasing Einit.
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Now, starting with the same initial set up but a different initial energy range Einit = 100 −
200keV Fig 3.12 and 3.13 are shown. As in the previous set up, Figure 3.12 shows the graph of ini-

tial pitch angle against initial energy for a particle starting for each orbit at (0.1L, 2L, 1.25×10−6),

where the colour contours represent the final energy of the particle Efinal. The colour bar on the

right shows the range of final energy in (eV ). It can be seen that the highest energy particles come

from the pitch angles close to 90◦ and start with the highest energy. In this case the highest final

energy for the particles is about 674keV . The white crosses at the top and bottom of the graph

again show the particle orbits lost from the trap.

Figure 3.13 is for the same initial conditions in Fig. 3.12, where the final energy to initial en-

ergy ratio is represented as a surface plot on the left and as a contour plot on the right. For the

figure on the right the white squares at the top and bottom show all the particle orbits that have

escaped. The colour bar shows the range of ratios starting from ≈ 1 − 3.4. It is found that the

energy ratio deceases as the initial energy becomes mildly relativistic. It also seems the highest

ratio comes from particle starting close to 90◦, with the lowest initial energy. This can be seen

in the surface plot where the height of the peak seems to decrease with increasing initial energy.

In the contour plot the red colour indicating the highest energy seems to taper off in the middle

region with increasing initial energy, implying that particles starting with lower starting energies

and close to 90◦ gain higher energies since relativistic effects are less dominant. Regarding the

number of escaping particles, there are more particle orbits lost from the trap in the case of lower

initial energy (Fig 3.10) than for higher initial energy (Fig 3.12). This could be connected to the

previous remarks that more particles are trapped due to higher mirror points.
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3.3 Discussions and Conclusions

We have presented a detailed comparison of the particle energisation process for the CMT model

between the non-relativistic results found by Giuliani et al. (2005) and Grady et al. (2012) and our

new findings based on relativistic guiding centre theory.

Comparing the results we find not surprisingly, the discrepancy in energies and particle orbits

grows with increasing initial energies. The final energy of the particle using the non-relativistic

guiding centre theory is generally higher than the final energy of the same particle orbit using

the relativistic theory. The discrepancy between the energies and the final energy of the particles

can be seen clearly for the case for a particle starting with Einit = 200keV as seen in Fig. 3.4.

Comparing the final energies of the same particle using the non-relativistic theory gives a final en-

ergy of almost 206keV higher than the relativistic theory. This can be explained by the reasoning

that in the non-relativistic regime the Lorentz factor γ = 1, however, as the speed of the particle

approaches the speed of light c, γ should become greater than 1. Basically, the non-relativistic

equations cease to be accurate for higher energies. Since γ is present in both the perpendicular 3.1

and parallel 3.2 equations of motion it takes longer to reach the same energy using the relativistic

code. For the case of Einit = 200keV as discussed above, γ increases to 1.664 with increasing

particle velocity. As a result of this relativistic effect the energies calculated using the relativistic

code will be smaller compared to the non-relativistic case.

Looking at the particle trajectories it seems the mirror points for the particle using the relativistic

approximation are higher than the mirror points using the non-relativistic approximation. This ef-

fect is due to the terms in the relativistic guiding centre equation for the parallel velocity becoming

smaller as γ increases with increasing energy which could result in more particles being trapped

in the relativistic model since they do not travel all the way down to the foot points. In section

3.2 we looked at the effect of different Einit, θinit and injection position of the particle as was

done in the non-relativistic approximation by Grady et al. (2012) and Grady (2012). The same

qualitative behaviour is seen in the relativistic approximation in that, the highest energy particles

come from a region in the middle of the trap, with pitch angles close to 90◦ and from a region of

weak magnetic field.

From the results presented in Figs. 3.6 and 3.7, again the final energies in the non-relativistic

approximation are higher than the energies found from the relativistic case. From looking at the

final energies of the particles for all three set ups it is clear that the energies obtained with the non-

relativistic particle orbit code are not valid for these range of initial conditions. Even starting with

initial energy Einit = 5− 6keV (left figure in 3.6 where Emax = 317keV ) the final velocity for

the highest energy gain (v ≈ 0.78c) is already mildly relativistic. Hence for the highest starting
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energy case Einit = 100 to 200keV as see in Fig. 3.7, the final energy is almost 1.0 × 104keV

using the non relativistic approximation and 3.13 × 103keV from the relativistic approximation

which are both highly relativistic. The energies obtained from the non-relativistic approximation

are determined only for comparison and are not valid energy values.

The final key finding from this comparison study is the change in the particle energy increase.

In the non-relativistic approximation it was found by Grady et al. (2012) that the particle energies

could increase by a factor of almost 50 and with the relativistic approximation this factor was

found to be lower at almost 40 as seen in Fig. 3.8. The rest of the particles again like in the

non-relativistic case experience a modest energy increase. Also in Fig. 3.13 we saw that for a

relativistic approximation the higher the initial energy, the lower the final energy of the particles.

The work done by authors like Giuliani et al. (2005), Karlický and Bárta (2006), Minoshima

et al. (2011) and Grady et al. (2012) have tried to further develop CMT models first proposed in

the 90’s e.g.(see e.g. Somov and Kosugi, 1997). Relativistic effects become an important factor

in particle energisation for velocities mildly/close to the speed of light which are observationally

evident. In this chapter we have incorporated this effect by introducing the relativistic guiding

centre equations into the Giuliani et al. (2005) and Grady et al. (2012) model. The present form of

the model is in line with findings from other models, where particle trapping at the loop top is seen

and this could give an explanation into X-ray emissions observed at coronal/loop-top sources.



Chapter 4

Loss Cone Evolution and Particle Escape in
CMTs

(Parts of this chapter have been submitted for publication in Astronomy & Astrophysics.)

The main aim of this chapter is to gain a better understanding of the conditions leading to ei-

ther particle trapping or escape in a CMT and try to answer what determines whether particles

remain trapped or escape during the evolution of a CMT. This may seem a trivial question to

answer since all particles which move into the loss cone will escape from the trap. However, at

second thought, things are not as simple as they seem for two reasons: (a) the loss cone itself

changes in time due to the changing magnetic field strength and (b) the particle pitch angle also

evolves due to betatron and Fermi acceleration. In order to set up our investigation of time evolu-

tion of particle orbit pitch angles and compare it with the loss cone angle evolution in our CMT

model, we initially outline some of the basic theory, a summary of the key findings from Grady

et al. (2012) which forms the basis for our detailed study and a numerical set up in order to look

at the evolution of the magnetic field and loss cone angle in our model. We summarise the results

of Grady et al. (2012) that are relevant for this chapter in section 4.1. The numerical results are

presented in section 4.2. In section 4.3 and 4.4 we investigate how the loss cone angle and the

particle pitch angle evolve in our CMT model for a collapse time and for a t → ∞ respectively.

In section 4.5 we then try to understand our results by comparing them with the predictions of

a number of simple models published in the literature (Aschwanden, 2004a; Somov, 2004). As

we will see, these two models make predictions about particle trapping and escape which are not

consistent with our results. These inconsistencies can be explained by different assumptions made

by the authors for their models. Hence, we construct a family of simplified models of our own

which are in line with the properties of our particle orbit calculations and compare the results for

particle trapping obtained from these models with the findings of the particle orbit calculations.

52
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4.1 Loss Cone Angle: Overview

In section 2.1.2 we discussed the relationship between the particle pitch angle θ, mirror ratio R(t)
and the loss cone angle α(t). The particle pitch angle is defined as

θ = arccos
(v‖
v

)
, (4.1)

where v‖ is the velocity of the particle along the field line and v the total velocity of the particle.

We define the mirror ratio for our CMT model as

R(t) =
Bfp
B(t)

, (4.2)

where B(t) is the value of the magnetic field in the middle of the trap (i.e. x = 0) for a particular

field line and Bfp is the foot point field strength for the same field line which represents the

maximum magnetic field strength Bmax as seen in Chapter 3. The mirror ratio R(t) is related to

the loss cone angle α(t) by

α(t) = arcsin
(

1√
R

)
. (4.3)

Therefore, as the magnetic field increases with strength, the mirror ratio will decrease and the loss

cone will increase or vise versa. For ease of notation we have omitted the spatial dependence in

the definitions of the loss cone angle and mirror ratio, but we point out here that not only will both

the loss cone angle and the mirror ratio vary with time due to the time evolution of the magnetic

field, but also from field line to field line, i.e. in space.

To apply these definitions to our CMT model we need to determine the magnetic field strength at

the top of the field line and the corresponding foot point given by the model. The magnetic field

in the CMT is given by

B = ∇A× ez +Bzez =
∂A

∂y
ex − ∂A

∂x
ey,

where we have chosen Bz = 0. In particular, if we enforce that the field lines of the collapsing

trap relax to a loop like structure described by the flux function

A(x, y) = A∞(x∞(x, y, t), y∞(x, y, t), t0),

the x and y components of the magnetic field at time t are given by

Bx =
∂A

∂y
=
∂A∞
∂x∞

∂x∞
∂y

+
∂A∞
∂y∞

∂y∞
∂y

, (4.4)
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By = −∂A
∂x

= −
(
∂A∞
∂x∞

∂x∞
∂x

+
∂A∞
∂y∞

∂y∞
∂x

)
. (4.5)

So, we have six partial derivatives to calculate. Using the transformation in Eqn. (2.25), ∂x∞∂x = 1,
∂x∞
∂y = 0 and ∂y∞

∂x = 0. The remaining three derivatives are

∂y∞
∂y =

[
1

(1+y/(at)b)

]{
1+tanh[(y−Lv/L)a1]

2

}
+ 1

2(at)b ln
[
1 + y/(at)b

] {
1− tanh2 [(y − Lv/L)a1]

}
a1

+
{

1−tanh[(y−Lv/L)a1]
2

}
+

{
−1

2 + tanh2[(y−Lv/L)a1]
2

}
a1y,

(4.6)

∂A∞
∂x∞

= − c1

(
y∞ + d

L

)(
x∞ + 1

2

)2 +
(
y∞ + d

L

)2 +
c1

(
y∞ + d

L

)(
x∞ − 1

2

)2 +
(
y∞ + d

L

)2 , (4.7)

and

∂A∞
∂y∞

=
c1(

(x∞ + 1
2) + (y∞+ d

L
)2

(x∞+ 1
2

)

) − c1(
(x∞ − 1

2) + (y∞+ d
L

)2

(x∞− 1
2

)

) . (4.8)

It follows that the expressions for Bx and By become,

Bx =
∂A∞
∂y∞

∂y∞
∂y

, (4.9)

By = −∂A∞
∂x∞

. (4.10)

Using Eqns. 4.6 - 4.8, substituting the transformation 2.25 into the expressions for Bx and By, we

find an expression for the magnetic field using B = |B| =
√
Bx

2 +By
2. One important point to

be noted here is the time dependence for the magnetic field comes from ∂y∞
∂y inBx. Also, the field

line strength at the foot point (i.e, y = 0) remains constant over time, because the transformation

given by 2.24 and 2.25 ensures that theBy component of the magnetic field on the lower boundary

does not change, although the Bx component could change in time. This change is so small that

one can regard the absolute value of the magnetic field strength at the foot point as constant.

Before we begin our investigation into what determines whether particles remain trapped or es-

cape during the evolution of a CMT model, we summarise some of the key findings of Grady

et al. (2012). The results from their study are important in initiating our study in this chapter.
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In Chapter 3 the graph of final position with corresponding particle energies from Grady et al.

(2012) can be seen on the left in Fig. 3.6. They found this result by stepping through different

positions (x, y), initial energies E and initial pitch angles θ. This consequently had an effect on

the position of the mirror points, the energy gain of the particle orbits and on whether they remain

trapped or escape. In particular they found that the particle orbits that gain most energy during the

trap collapse have initial pitch angles θ close to 90◦ and initial positions in a weak magnetic field

region in the middle of the trap. Those particle orbits having the largest energy gain remained

trapped during the collapse and due to their pitch angle staying close to 90◦ have mirror points

very close to the centre of the trap. Grady et al. (2012) argue that these particle orbits are energised

mainly by the betatron mechanism. Other particle orbits with initial pitch angles closer to 0◦ (or

180◦) seem to be energised by the Fermi mechanism at the beginning, but as already pointed out

by Giuliani et al. (2005) and corroborated by Grady et al. (2012), these particle orbits gain energy

when passing through the centre of the trap. At later stages these particle orbits also seem to be

undergoing mainly betatron acceleration.

We will make use of these results later in this chapter but going back to our motivation for this

study, we want to investigate how the loss cone angle α(t) at the loop top evolves in relation to

the particle pitch angle θ(t) at the same position. In order to gain insight into the behaviour of the

particle loss cone angle along a magnetic field line, first, knowledge about the particle position

along a field line is needed.

In this section we use this idea to build a grid along the field line and use these positions to

look at the evolution of the magnetic field B(t) and loss cone angle α(t). Consider the set up for

the coordinate system as describe in Chapter 3 for the Giuliani et al. (2005) model where the x

and z coordinate run parallel to the solar surface and y represents the height above the surface.

Using the flux function where A0(x, y) = A∞(x∞, y∞, t0) at a given time t0 expressions for x0

and y0 along the field lines can be found. The flux function describing the magnetic field in our

CMT model is given by Eqn. 2.23 as

A0 = c1 arctan
(
y0 + d/L

x0 + 1/2

)
− c1 arctan

(
y0 + d/L

x0 − 1/2

)
.

We begin by solving the above equation for x0 and y0 respectively (see Appendix B.1 for details).

From Eqn. B.4 and Eqn. B.5 the equations for the field lines are

x0 =

√
− cot

(
A0

c1

)
(y0 +

d

L
)− (y0 +

d

L
)2 +

1
4
, (4.11)
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or

y0 = −1
2

{
2d
L

+ cot
(
A0

c1

)}
+

1
2

√
cot2

(
A0

c1

)
− 4x0

2 + 1. (4.12)

Using the transformations

x∞ = x,

y∞ = (at)b ln
[
1 +

y

(at)b

]{
1 + tanh [(y − Lv/L)a1]

2

}

+
{

1− tanh [(y − Lv/L)a1]
2

}
y, (4.13)

the field lines and hence the positions in x and y are stretched in the y-direction. y∞ is normalised

with respect to L. Using the, Newton Raphson Method, we try to find the root of the non-linear

equation f(y) = y∞. As a result of this routine different values of y at different points in time

along the field lines are calculated. We can then use these values to track the evolution of B(t)
and α(t) along a specific field line.

Figure 4.1: Illustrates the magnetic field lines (black) for a collapsing magnetic trap at the final
time on the left and the start time on the right. The x-coordinates run horizontally and the y-
coordinate is perpendicular to the solar surface. The multi-coloured crosses show the coordinate
positions in x and y along the field lines.

In the Newton Raphson method the root of f(y)− y∞ = 0 is found. In order to build our grid

for each specific value of the flux function A, we carry out the following steps:

1. For x0 = 0, choose a range of values in y with a set step size ny,

∆y =
ymax − ymin
ny − 1
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y = ymin + (iy − 1)∆y

2. Calculating y∞ from Eqn. 2.25 and using this value of y∞ to find the appropriateA(x0, y∞).

3. For y = 0, choose a range of values in x with a set step size nx,

∆x =
xmax − xmin

nx − 1

x = xmin + (ix− 1)∆y (4.14)

4. Substituting the different values of x into Eqn. B.5 for y, we find a range of values for y

which lie on the field lines for A = constant.

Figure 4.1 illustrates the contours for the magnetic field line after the trap has completely collapsed

on the left and the contours for a starting time on the right hand side. For the figure on the left, we

see that for different values of x and a specific value for the flux functionAwe find a corresponding

value of y as discussed above. The contours for the magnetic field lines as seen in Fig. 4.1 are

obtained via the transformation 2.25 by:

1. The values of x∞ and y∞ corresponding with a certainA∞ are fed into the Newton Raphson

method.

2. The Newton Raphson method calculates the yinit at t = tinit for some x 6= 0 along A =
constant.

3. The coordinates (xinit, yinit) are then plotted along the field lines as seen on the right hand

side of Fig 4.1.

Using a similar approach to finding a grid along the field lines as seen in Fig. 4.1, we can find

the evolution of the magnetic field strength B(t) and consequently the evolution of the loss cone

angle α(t) at the apex of the field line (x = 0) by:

• Picking yinitial at tinitial. Substituting into the equation for y∞.

• Substituting x∞ = 0 and y∞ into A∞ in the centre of the trap.

• Solving x0 by using A = A∞ for y = 0 at the foot points.

• Calculating B(0, y, t) for all time in the centre of the trap.
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Figure 4.2: Illustrates the magnetic field lines (black) for a collapsing magnetic trap at the final
time on the left and the start time on the right. The x-coordinates run horizontally and the y-
coordinate runs vertical to the solar surface. The multi-coloured crosses show the coordinate
positions in x and y along the field lines.

• Calculating B(x∞, 0, t) for all time at the foot points of the trap.

In Fig. 4.2 each multi-coloured coordinate marks the loop top and the foot point of specific field

lines. These initial coordinates of the loop top and the foot points are fed into the Newton Raphson

method. Hence we:

• Feed the values of x∞ = 0, y∞ for a specific A0 at the foot point and the mid-plane into the

Newton Raphson method see Fig.(4.2).

• Calculate yint for tint to tfinal at x = 0 along A = constant.

• Calculate the corresponding values for the magnetic field B(t).

• Find the loss cone angle by calculating α = arcsin
(

1√
R

)
.

In the next section we analyse the data produced from this numerical code. The findings will be

important for our main goal of comparing loop top particle pitch angle evolution with loss cone

angle in the CMT model.
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4.2 Temporal and Spatial Evolution of the Loss Cone Angle α

In this section we look at the temporal and spatial evolution of the magnetic field strength B and

the mirror ratio R at the top of the field lines in our model. From these quantities the behaviour of

the loss cone angle α can be deduced. At the normalised starting time t = 1.05, position x = 0
and range of values for y starting from 1 to 5, the corresponding loss cone angles α, magnetic field

strengths Bfield, foot point magnetic field strengths Bfp and magnetic mirror ratio R are given in

the Table 4.1. At the highest point in the trap considered here, which corresponds to y ≈ 5, the loss

cone angle α starts at 10.8◦. The loss cone angle continues to gradually increase to α = 11.15◦

for y ≈ 4. Just below this point in the model the field lines are very stretched which is equivalent

to the magnetic field being weaker. The Bfield continues to decrease in value with decreasing

height until y ≈ 2. The decreasing Bfield corresponds to an increase in magnetic mirror ratio

R leading to a decrease in the loss cone angle α. For values of y < 2 the magnetic field begins

to increase again causing a decrease in R, leading to an increase in α ≈ 30◦. The final values

of all the positions discussed in Table 4.1 are given in Table 4.2 for a final time of tfinal = 2.0.

The y column represents the final height of each field line when the trap has completely stopped.

The corresponding loss cone angles show a trend of increasing from 19.73◦ at the top to 37.4◦

since there no longer is a weak magnetic field region. The magnetic field is measured in Tesla,

where the maximum magnetic field at (x, y) = (0, 0) is 0.015 Tesla at the foot points. Looking at

the values of Bfp it is seen that it remains constant for all time, a point that we mentioned at the

beginning of this Chapter.

To see how α(t) evolves at the loop top in the trap for a finite time of 95s, Fig. 4.3 shows

the variation of α as a function of y. Starting from tinit = 1.05 (first figure top row) the loss cone

α moves through the region of increasing Bfield (initial increase) then moves into the region of

decreasingBfield (initial decrease) and finally into a region of increasingBfield (second increase).

This pattern is still evident in the second row and half way through the third row. At t = 1.4775
the tenth figure (second figure, third row) the loss cone starts to completely move out of the de-

creasing Bfield region and move into an increasing Bfield region. From this point onwards the

loss cone steadily increases and reaches final value at tfinal = 2.00. A point to note here is that

each field line will have its own loss cone angle associated with it, hence if we picked a specific

height at the loop top we would track the evolution of that specific loss cone angle.

Fig. 4.4 shows the evolution of α at x = 0 for a number of field lines from t = 1.05 − 2.0,

corresponding to a finite time of 95 seconds. Starting from tinit = 1.05, as α moves out of the

region of increasing Bfield into a region of decreasing Bfield it seems there is a decline in the

growth rate for the loss cone angle α. These are shown in the plots by the points where they

are overplotted on top of each other. At t = 1.4775 the tenth figure (second figure, third row)
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Table 4.1: Values of y, α, time, magnetic field, Bfield at the middle of the trap, magnetic field,
Bfp at the foot points and mirror ratio, R for x = 0 at the initial time t = 1.05.

y(L) α (◦) Bfield (Tesla) Bfp (Tesla) R
1.0000002 29.9370515 0.0024085 0.0096708 4.0152717
1.2000000 23.5440511 0.0015043 0.0094276 6.2670965
1.3999997 17.7094941 0.0008575 0.0092672 10.8070583
1.5999992 12.5057103 0.0004303 0.0091762 21.3273106
1.7999976 8.0986821 0.0001813 0.0091327 50.3861046
1.9999903 4.8702100 0.0000657 0.0091156 138.7382050
2.1999836 3.7858708 0.0000397 0.0091085 229.3748474
2.3999889 4.8756825 0.0000657 0.0091010 138.4276886
2.6000066 6.4807736 0.0001158 0.0090874 78.4954453
2.8000016 7.9007225 0.0001713 0.0090656 52.9256287
2.9999995 9.0173274 0.0002220 0.0090353 40.7078552
3.1999996 9.8444425 0.0002630 0.0089976 34.2090378
3.4000010 10.4265914 0.0002933 0.0089539 30.5323257
3.5999982 10.8115726 0.0003134 0.0089056 28.4202728
3.8000004 11.0427445 0.0003248 0.0088542 27.2568245
3.9999971 11.1564742 0.0003295 0.0088008 26.7108059
4.2000074 11.1822417 0.0003289 0.0087463 26.5894051
4.4000001 11.1433409 0.0003246 0.0086917 26.7730064
4.6000032 11.0578812 0.0003177 0.0086373 27.1831799
4.8000054 10.9397784 0.0003091 0.0085836 27.7659283
4.9999962 10.7995435 0.0002995 0.0085309 28.4828663

corresponds to the loss cones moving through a region of increasing magnetic field Bfield. It

seems the loss cone angles begin to follow a linear growth rate from this point onwards and in the

latter stages this linear rate decreases to a point where the changes between the final four figures

is indistinguishable.

Finally Fig. 4.5 gives the plots for the variation of mirror ratio R as a function of y for dif-

ferent times. Starting from t = 1.05 and height y = 5 the mirror ratio, R begins to decrease

gradually from approximately 28.5 to 26.6 for y = 4.2 as seen in Table 4.1. From this point the

ratio begins to increase gradually corresponding to gradual decease in Bfield. From about y ≈ 3
the mirror ratio begins to increase rapidly reach R ≈ 300 at y ≈ 2.2. Finally it begins to decrease

sharply and reaches R = 4 at y = 1. This pattern is clearly illustrated by the first plot in Fig. 4.5,

where the distinctive peak corresponds to a large R implying a weak magnetic field region. The

size of this peak decreases with time until it begins to decrease linearly from t = 1.4775 onwards

since the magnetic field is no longer decreasing. The final values for the mirror ratioR at the finite

time of tfinal = 2.0 are seen in table 4.2. Therefore, Fig. 4.4 - 4.5 show the clear relationship

between loss cone evolution α(t), mirror ratio R(t) and magnetic field B(t); when the magnetic
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Table 4.2: Values of y, α, time, magnetic field, Bfield at the middle of the trap, magnetic field,
Bfp at the foot points and mirror ratio, R for x = 0 at the final time of t = 2.0.

y(L) α (◦) Bfield (Tesla) Bfp (Tesla) R
0.8856972 37.4415266 0.0035744 0.0096708 2.7055912
1.0048827 33.8947216 0.0029319 0.0094276 3.2154927
1.0899003 31.5586847 0.0025384 0.0092672 3.6507297
1.1415356 30.2114305 0.0023234 0.0091762 3.9494071
1.1672972 29.5589969 0.0022226 0.0091327 4.1090689
1.1776700 29.3000136 0.0021831 0.0091156 4.1754456
1.1819861 29.1928682 0.0021669 0.0091085 4.2034283
1.1865929 29.0789056 0.0021497 0.0091010 4.2335339
1.1949950 28.8721608 0.0021187 0.0090874 4.2890687
1.2087098 28.5376854 0.0020691 0.0090656 4.3814998
1.2281016 28.0711262 0.0020007 0.0090353 4.5160270
1.2529582 27.4840891 0.0019164 0.0089976 4.6951804
1.2828406 26.7948589 0.0018196 0.0089539 4.9208155
1.3172717 26.0233755 0.0017142 0.0089056 5.1950517
1.3558331 25.1886836 0.0016038 0.0088542 5.5207181
1.3981992 24.3081765 0.0014913 0.0088008 5.9014063
1.4441558 23.3974191 0.0013792 0.0087463 6.3414106
1.4935760 22.4709330 0.0012697 0.0086917 6.8451858
1.5464320 21.5410506 0.0011644 0.0086373 7.4177284
1.6027452 20.6234307 0.0010649 0.0085836 8.0604830
1.6625705 19.7316209 0.0009724 0.0085309 8.7731800

field increases the mirror ratio decreases which causes the loss cone angle to increase or vise versa.

Intuition would lead us to believe that in a CMT for a large mirror ratio the loss cone angle will

be small so the probability of particles being trapped is much larger. However, the magnetic field

strength on average increases as the CMT collapses. This results in the mirror ratio decreasing

and the loss cone angle increasing which consequently will lower the probability of the particles

been trapped. In the section to follow we will look at a seemingly simple question; how does the

particle pitch angle for specific test particle evolve in relation to the loss cone angle?
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Figure 4.3: Illustrates the variation of the loss cone angle with changing height at the centre of
the trap. The code runs from the normalised time of t = 1.05 to final time of tfinal = 2.0 which
corresponds to 95 seconds. Each frame is taken at 0.04275 (4.75 seconds).
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Figure 4.4: Illustrates the evolution of the loss cone at the centre of the trap where each frame is
taken at 0.04275 (4.75 seconds).
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Figure 4.5: Illustrates the variation of the mirror ratio R at the centre of the trap where each frame
is taken at 0.04275 (4.75 seconds).
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4.3 Evolution of α and θ for Two Representative Particle Orbits

We start our investigation by looking in more detail at two particle orbits starting at the same

initial position (x = 0, y = 4.2) and the same initial energy (5.5 keV), but with different initial

pitch angles of 87.3◦ (orbit 1) and 160.4◦ (orbit 2). These initial conditions are representative of

the typical behaviour of particle orbits with an initial pitch angle close to 90◦ (orbit 1), which has

very little movement along the field lines, and orbits with a much larger component of the velocity

vector parallel (or in this case anti-parallel) to the magnetic field at the initial time (orbit 2). The

two sets of initial conditions chosen here are very similar (albeit not identical) to the two examples

of orbits discussed in Grady et al. (2012) and thus the orbits (shown in Fig 4.6) are very similar

to the orbits discussed in their paper. As one can clearly see in Fig. 4.6, orbit 1 (red) remains

confined to the middle of the trap due to the fact that the initial pitch angle is close to 90◦, whereas

orbit 2 (black) has mirror points very close to the bottom boundary, but does not escape during the

time of the calculation. We also point out that after a brief initial period there is very little change

in the position of the mirror points over time, which is consistent with previous findings (Grady

et al., 2012).

Figure 4.6: Two illustrative particle orbits starting at the same initial position x = 0, y = 4.2 and
with the same initial energy (5.5 keV), but different initial pitch angle. Orbit 1 (red) has an initial
pitch angle of 87.3◦ (i.e. close to 90◦) and hence stays close to the middle of the CMT at all times,
whereas orbit 2 (black) has an initial pitch angle of 160.4◦ and has mirror points close to the lower
boundary.

To analyse the situation further, the loss cone angle at the loop-top (discussed in the previous

section) is compared with the time evolution of the pitch angles of the two particle orbits. The

results are shown in Fig. 4.7. In the figures the time evolution of the loss cone angle α for the

magnetic field line passing through the initial positions of the particle orbits at the initial time is

shown in green (towards the bottom of the plots). We also show the angle 180◦ − α (green line
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towards the top of the plots), because particle orbits will escape from the trap if their pitch angle

becomes either less than α or larger than 180◦ − α. Since the CMT we consider here has a mag-

netic field which is symmetric with respect to x = 0, the graph of 180◦ − α here is nothing but

a mirror image of the graph of α(t) when reflected at the line 90◦. The blue line marks the point

Figure 4.7: The evolution of the particle orbit pitch angle θ (black dotted line) is compared with the
evolution of the loss cone angle α (green lines) for particle orbits 1 (initial pitch angle θ = 87.3◦)
and 2 (initial pitch angle θ = 160.4◦). The blue line marks the 90◦ point. In both plots we show
the loss cone angle α(t) as defined in Eqn. (4.3) and 180◦ − α(t). As expected, the pitch angle
for orbit 1 oscillates around the 90◦ line with a slightly decreasing amplitude. Orbit 2 seems to
approach the loss cone angle and then follow it without crossing into the loss cone within the time
of the calculation.

where the pitch angle of the particle becomes 90◦. This is the point where the parallel velocity

changes its orientation and the particle begins to travel in the opposite direction. For orbit 1 (in

red) the mirror points are close to the centre of the trap and for orbit 2 (in black) the particle travels

almost all the way to the foot points before mirroring.

The initial value of the loss cone angle α for this particular magnetic field line is 11.8◦ and its

value at the end of the calculation is 23.4◦. As expected the loss cone angle generally increases

with time, because the magnetic field strength at the apex of the magnetic field line at x = 0 in-

creases with time. However, one can see from the plots that up to a time around 30 seconds the loss

cone angle is decreasing. This is a particular feature of the CMT model of Giuliani et al. (2005),

which in the initial stages of its time evolution has a region of very weak magnetic field through

which the field lines have to move first, before the field strength starts to increase again, and this

is the reason for the initial dip in the graph of the loss cone angle. The time evolution of the pitch

angle of particle orbit 1 and 2 are shown by the black dotted lines in Fig. 4.6 with orbit 1 on the

left and orbit 2 on the right. For particle 1 (θ = 87.3◦) the pitch angle of the particle through the

duration of the collapse stays close to 90◦. The oscillatory behaviour of the particle pitch angle for

this case is not as clearly visible as it is for particle 2. However, the amplitude of oscillation seems

to be decreasing as time progresses. This can be understood by recalling that Grady et al. (2012)

showed that particle orbits of this type do not experience any significant changes in their parallel
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energy. They do however gain a considerable amount of perpendicular energy due to betatron

acceleration. As the velocity of the particle v increases due to the increase in the perpendicular

velocity and the parallel velocity of the particle v‖ on average remains constant, from Eqn. 4.1 the

pitch angle θ will tend closer to 90◦.

Orbit 2 (θ = 160.4◦) shows the more interesting behaviour of the two orbits. This is a parti-

cle where the starting pitch angle is closer to the loss cone angle (180◦− 11.8◦ = 168.2◦) and has

a much larger initial v‖ than particle 1. In the first 30 seconds or so the pitch angle of the maximum

(minimum) values of θ increase (decrease) and approach the green loss cone curve. After this time

the pitch angle maxima (minima) start decreasing (increasing) and seem to come closer and closer

to the loss cone angle, but never cross into the loss cone for the time of the calculation. It looks

like the pitch angle follows the shape of the decrease (increase) of the loss cone, a result which is

different from claims made by Aschwanden (2004a) and Somov (2004) that particle orbits should

generally move into the loss cone with increasing B. These models will be discussed later on

in the chapter. For now, the general behaviour seen in orbit 1 can be explained by the increase

of the magnetic field at the apex of the trap, corresponding to an average gain in perpendicular

energy and increase in θ due to betatron acceleration, but for orbit 2 further analysis needs to be

carried out to see which acceleration mechanism is responsible for the behaviour seen in figure 4.7.

Not all the particles starting at (x, y) = (0, 4.2L) will be trapped. Hence, next we look at particle

orbits which start with the same initial position and energy as particle 1 and 2, but with initial pitch

angles θ = 5◦, 11◦, 12◦, 14◦, 15◦ and 19.6◦. These values cover a range of initial pitch angles

which start inside the initial loss cone 11.8◦, just outside the initial loss cone and up to the initial

pitch angle of 19.6◦, which is 180◦−160.4◦ as seen in Fig. 4.8. Like the labelling for Fig. 4.7 the

green line represents the loss cone angle, the black line the pitch angle and the blue line the 90◦

mirror line.

The particle orbits with θ equal to 5◦ and 11◦ (top two in Fig. 4.8) do not reach the mirror

point (the blue line in the figures), since their initial pitch angle is smaller that α, and escape the

trap. We systematically increase the pitch angle to 12◦, 14◦, 15◦ and 19.6◦. The orbits for θ = 12◦

(second row, Fig. 4.8), θ = 14◦ (third row, Fig. 4.8) and θ = 15◦ (fourth row, Fig. 4.8) perform

a number of bounces within the CMT (each bouncing for a bit longer than the one previously)

before escaping after they cross into the loss cone angle (green line). For each plot on the left

the corresponding plots on the right show blow-ups of the relevant parts of the graph where the

pitch angle crosses into the loss cone angle. In the fifth row, the plot of θ = 19.6◦ shows the same

behaviour already discussed in Fig. 4.6 for θ = 160.4◦ where the pitch angle seems to be edging

closer to the loss cone angle but never crosses it.
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Figure 4.8: The time evolution of θ (black dotted line) for the particle orbits with initial pitch

angles varying from 5◦ (top left) to 19.6◦. The two panels in the top row show the pitch angle

evolution for the two orbits with initial pitch angles of 5◦ and 11◦. Since θ < α in both cases

they are immediately lost from the trap without mirroring. The other rows show the pitch angle

evolution for particles with initial pitch angles of 12◦, 14◦, 15◦ and 19.6◦, with the full time

evolution shown on the left panels and blow-ups of the curves close to the loss cone angle in green

shown on the right. All particle orbits except the last one escape in the time period shown.
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In general for all the other angles greater that the loss cone angle α ≈ 11.8◦, it can be seen in

Fig. 4.8 that particles do get to the mirror points and are reflected back into the trap, so long as

θ ≮ α, the particle will remain trapped and is accelerated. Therefore, one could conclude that all

particles which start at (x = 0, y = 4.2) and have a pitch angle θ > 19.6◦ will be trapped for

the finite time of the trap collapse. Would this conclusion be different if we were to look at the

problem in the limit t→∞? This is the question we will investigate in the next section.

4.4 Evolution of θ and α as t→∞

What happens to the evolution of θ and α in the limit t → ∞? Does a particle orbit starting with

θ = 19.6◦ (or 160.4◦ anti-parallel) still remain trapped when t → ∞? In this section we look at

the asymptotic behaviour of the loss cone in the model and compare it the evolution of θ to see

if the particles which remained trapped for the finite time (95 seconds) will still be trapped if the

calculation is continued beyond this time. Using the definition of the magnetic field seen at the

start of this chapter, the asymptotic loss cone α∞ is analytically calculated for t → ∞. We then

compare the evolution of θ and α in the asymptotic limit numerically by increasing the stopping

time for the collapse by almost a factor of 100.

4.4.1 Analytical Results

The aim is to analytically find the asymptotic loss cone angle α∞ for a test case where (x, y) =
(0, 4.2L) for t → ∞. Recalling that α = sin−1(

√
1/R), where R = Bfp/B∞ we need to know

what Bfp and B∞ are at t→∞. The magnetic field is described by the flux function A(x, y, t0).

Since A is constant along the magnetic field lines for all time i.e. A(x, y) = A∞(x∞, y∞, t0),

from Eqn. 4.9 and 4.10 and the fact that y∞ = y at t → ∞ gives ∂y∞
∂y = 1 (see chapter 3), the

x and y component of the magnetic field Bx and By can be calculated. The y component of the

magnetic field, By(0, y∞) = 0 at the middle of the trap for all time. y∞ is given by Eqn. 2.25

where a = 0.4, y = 4.2, t = 1.05, a1 = 0.9, L = 10Mm, Lv = 10Mm and b = 1. Using

these parameters gives y∞ = 1.01. Substituting y∞ into the equation for the magnetic field at the

middle of the trap as t→∞ gives

|B∞| =
√
B2
x +B2

y =
34731.25762

120000
× 0.015T ≈ 4.3× 10−3T

Previously we mentioned that the magnetic field at the foot point remains constant for all time.

Next we want to find Bfp, the magnetic field at the foot point for the corresponding field line in
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the trap for large t. Let A∞(0, y∞) = A∞(x∞, 0). Using Eqn. B.3 gives

cot(
A∞
c1

) =
x2
∞ − 1/4 + (y∞ + d/L)

−y∞ − d/L .

Substituting y∞ = 1.01 and x∞ = 0 results in

cot(
A∞
c1

) = −1.89.

Using Eqn. 4.11 gives

x∞ = 1.069.

Substituting the values (x∞, y∞) = (1.069, 0) at the foot point results in,

|Bfp| = B(x∞, 0) =
√
B2
x +B2

y =
70058.00573

120000
× 0.015T ≈ 8.75× 10−3T.

Therefore, the asymptotic loss cone angle α∞ is approximately 44.78◦ where R = Bfp/B∞ =
2.01. Next we check to see if the analytical calculation is in agreement with the numerical results.

The highlighted boxes in Table 4.1 show the numerical values calculated in section 4.2 at the

initial time t = 1.05 for the height (x = 0, y = 4.2L) where α = 11.82◦. Looking at the high-

lighted row in table 4.3, the final value of y, α, t,Bfield,Bfp are now calculated for a much longer

time of t∞ = 101.05. It can be seen that the numerical value calculated for α∞ is in agreement

with what we calculated previously as seen in Table 4.3. From Eqn. 2.26 as t→∞ we have

t� y1/b

a
.

The constant a = 0.4, b = 1 in the transformation is fixed. In our case y = 4.2, so we have

t� (4.2)1

0.4
≈ 10.5.

We have seen in our case at t = 10.5 and above the discrepancy between one magnetic field to the

next decreases as time progresses.

All particle orbits discussed so far have been stopped at a time of 95 seconds, well before coming

close to the asymptotic limit when α∞ = 44.78◦. This raises the question whether the orbits

which remain trapped for the finite time of 95 seconds are still trapped if the stopping time in-

creases. Therefore, we have increased the stopping time for the calculation of the particle orbit

with initial pitch angle 160.4◦ (orbit shown in the top left panel of Fig. 4.9) by a factor of almost

100. It turns out that this particle orbit eventually escapes from the CMT at the time of about 234



4.4 Evolution of θ and α as t→∞ 71

Table 4.3: Table with values of y, α, Bfield at the middle of the trap, Bfp at the foot points and
mirror ratio, R for x = 0 for t→∞

y(L) α(◦) Bfield(Tesla) Bfp(Tesla) R
0.7558643 49.6993733 0.0056250 0.0096708 1.7192404
0.8272536 48.1068712 0.0052240 0.0094276 1.8046668
0.8726224 47.2094262 0.0049906 0.0092672 1.8569289
0.8979819 46.7406265 0.0048667 0.0091762 1.8855082
0.9101053 46.5232066 0.0048090 0.0091327 1.8990738
0.9148635 46.4393253 0.0047867 0.0091156 1.9043614
0.9168643 46.4037863 0.0047773 0.0091085 1.9066107
0.9190671 46.3638938 0.0047671 0.0091010 1.9091421
0.9228039 46.2993083 0.0047497 0.0090874 1.9132551
0.9287744 46.1974456 0.0047222 0.0090656 1.9197789
0.9371356 46.0553854 0.0046841 0.0090353 1.9289535
0.9475479 45.8812712 0.0046372 0.0089976 1.9403208
0.9596741 45.6816423 0.0045835 0.0089539 1.9535226
0.9730296 45.4666333 0.0045253 0.0089056 1.9679463
0.9873153 45.2411619 0.0044644 0.0088542 1.9833044
1.0020969 45.0138998 0.0044025 0.0088008 1.9990300
1.0172812 44.7848045 0.0043403 0.0087463 2.0151370
1.0323926 44.5638347 0.0042797 0.0086917 2.0309196
1.0474088 44.3496696 0.0042206 0.0086373 2.0464520
1.0625134 44.1365904 0.0041624 0.0085836 2.0621407
1.0771875 43.9358927 0.0041070 0.0085309 2.0771360

seconds (right hand boundary of the plot) 1. In order to find the initial angle dividing escaping par-

ticle orbits (for large t) from trapped particle orbits (the critical angle), the long term evolution of

particle orbits with pitch angles starting at θ = 160.0◦ and decreasing to 150.4◦ was investigated.

The results are shown in the other plots in Fig. 4.9. The top right hand graph shows the evolution

of the angles for a particle starting with θinit = 160.0◦. A decrease by only a factor of 0.4 in the

value of the initial pitch angle to 160.0◦ already increases the time the particle orbit remains in the

trap substantially to just over 400 seconds. Systematically deceasing the initial pitch angle we find

for θinit = 159.21◦ (Fig. 4.9 middle row, left) the particle orbit escapes at roughly 9000 seconds.

It is the particle orbit starting with θinit = 159.2◦ (Fig. 4.9 middle row, right) that marks the

critical angle where particles with pitch angles starting at θinit . 159.2◦ will remain trapped for

all time. The bottom graphs on the left and right hand side show clearly that the two test particles

with θinit = 155.4 and 150.4 respectively are trapped for all time.

From our results so far it seems we have particle orbits escaping from the CMT model for starting

subcritical angles (i.e. below θcritical = 159.2◦ for an initial position (x, y) = (0, 4.2L)) and

1The particle orbit code is set up to stop soon as the value of y becomes negative.
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Figure 4.9: Long term time evolution of the pitch angle for particle orbits with initial pitch angles
160.4◦, 160.0◦ and 159.21◦ (subcritical), 159.0◦ (critical) and 155.4◦ and 150.4◦ (supercritical).
Any particle starting with a subcritical angle escapes from the CMT and any particle starting with
a supercritical angle remains trapped for all time.

particle trapping for orbits starting with supercritical angles. This leads us to ask what are the

acceleration mechanisms responsible for these results? This involves looking at the perpendicular

v⊥ and parallel v‖ velocities as seen in Fig. 4.10 in the right hand column of each of the particles

discussed in Fig. 4.9.

In Fig. 4.10 the plots for the evolution of angles as seen in Fig. 4.9 for each initial pitch an-

gle are reproduced, however, with one main difference that for initial pitch angle values smaller

than 160.0◦ only the maxima and minima of the pitch angle curves are shown2. This is because

2The envelope of the curve created from the values of the pitch angle when the orbit is at the apex of the field line.
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of the large number of bounces the particle orbits undergo over the extended time period of the

calculation leading to the last four pitch angle curves seen in Fig. 4.9. As the plots for pitch angle

and loss cone evolution have already been discussed, in Fig. 4.10 the evolution of the velocities

for each particle orbit is shown in detail. In Fig. 4.10 the first and second plots in column two

show the evolution of the parallel (black) and the perpendicular velocities (blue) for the orbits

starting with θ = 160.4◦ and 160.0◦ respectively. The perpendicular velocity v⊥ of the particle

orbit initially decreases with decreasing magnetic field (one of the properties of our collapsing

magnetic trap model), then begins to increase with increasing magnetic field strength. This can

be explained through the invariance of magnetic moment since with decreasing magnetic field v⊥
decreases. When the magnetic field in the trap begins to increase so does the v⊥ of the particle

orbit. Simultaneously the parallel velocity v‖ of the particle orbit initially grows very rapidly at

the start of the collapse and seems reach a plateau (or slightly decreases) with increasing magnetic

field. For the particle orbit starting with θ = 159.2◦, 159.0◦ and 155.4◦ the initial details at the

beginning of the collapse are hard to see due to the longer calculation times for these cases. How-

ever, the apparent decrease in v‖ and the increase in v⊥ is clearly seen.

The specific feature that we would like to highlight here is that the parallel velocity shows a rapid

increase in the initial phase of each orbit and then seems to level off or even drop off slightly,

whereas the perpendicular velocity shows a more long term evolution although it levels off in the

long run. However, v⊥ is often still increasing when v‖ has already either reached its plateau or is

decreasing. We hypothesise that this behaviour is due to the initial rate of change of collapse being

high, hence the sharp increase in v‖ of the particle by Fermi acceleration. As time progresses the

rate of collapse decreases which corresponds to the levelling off or the slight decrease in v‖ as seen

in Fig. 4.10. The piling up of magnetic flux from above will cause the field strength to continue

increasing, resulting in v⊥ increasing. In general, since the growth rate for v⊥ is much longer than

the decay rate of v‖, this seems to suggest that Fermi acceleration initially dominates, however,

betatron acceleration is the main acceleration mechanism in the CMT model. Given the relation

of the pitch angle with the components of the particle velocity, as v⊥ increases with increasing

magnetic field so does the pitch angle of the particle. This could be the reason why in our model

we have particle trapping for angles as low as 21◦ or 159◦ for the set of initial conditions which

we have discussed so far. For the specific CMT model of Giuliani et al. (2005) there seems to be

a critical angle for which particle orbits starting at or above this angle will be trapped for all time

and below this angle they will eventually be lost. If we were to pick different initial conditions we

would see a similar behaviour in general, but a quantitatively different result.
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Figure 4.10: Left panel show the pitch angle evolution for the all the angles seen in Fig. 4.9
and the right panel the corresponding v‖ and v⊥. Results seem to suggest that Fermi acceleration
initially dominates, however betatron acceleration is the main acceleration mechanism.
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4.5 Particle Trapping and Escape in Simple Models

In order to gain a better understanding of the results in the previous calculations, we would like to

be able to reproduce the main features in terms of simple models for the acceleration process. We

will first look at two such models which have been published in the literature, namely the models

by Aschwanden (2004a) and Somov (2004). Details of these two models will be presented in

the following section. As we will see, neither of these models can explain the results we have

found and this can be attributed to the basic assumptions made in these models. We will hence

construct three simplified models, which are consistent with the properties of the CMT model and

compare the results regarding particle trapping and escape found using these models with our orbit

calculations.

4.5.1 Particle Trapping and Escape in Two Simple Models

In this section we look at the behaviour of the loss cone angle α and its variation with height in

two simple CMT models published in the literature. Our particular focus will be on comparing

the evolution of the loss cone angle α with the evolution of θ, the particle pitch angle in the CMT

models proposed by Aschwanden (2004a) and Somov (2004). We also discuss the assumptions

both these models make that allows α in the asymptotic limit to tend towards 90◦, allowing for all

the particles to leave the trap which is very different from the assumptions we make in our CMT

model. A point to note here is that for each specific model that is discussed in this section, the

original choice of notation by the authors is adopted when possible.

4.5.1.1 Aschwanden’s CMT Model

The set up for this model is based on X-type reconnection occurring high up in the corona. The

reconnection outflow carries the newly reconnected field lines downwards (red line in Fig. 4.11).

As the field lines relax they tend towards the semi-circular green line in Fig. 4.11 and it is assumed

the magnetic field strength becomes uniform. The evolution of the loss cone angle α as illustrated

by the blue cone in Fig. 4.11 is assumed to be

α(t) =
π

2

[
1− e−t/tI

]
,

where tI is called the“injection time”, which is a free parameter of the model. From the above

definition the loss cone angle at t = 0 is α(0) = 0 and in the asymptotic limit for t→∞, the loss

cone angle α → π
2 . As mentioned in Section 2.1.2, the mirror ratio R is related to the loss cone
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inflow inflow

outflow

outflow

1

Figure 4.11: Evolution of the newly reconnected magnetic field lines (red line), which relax from
the initial cusp shape to a force-free state (green line). As the field line relaxes the magnetic mirror
ratio reduces and the loss cone open up to 90◦.

.

angle by

R(t) =
BL
B(t)

=
1

sin2 α(t)
,

where B(t) is the magnetic field at the apex of the field line and BL is the magnetic field at the

foot point. Rearranging the above equation for B(t) and substituting the expression for the loss

cone angle gives an expression for the magnetic field strength at the apex of the field line as a

function of time,

B(t) = BL sin2
{π

2

[
1− e−t/tI

]}
.

Since the magnetic field is directly related to the evolution of the loss cone angle, when α = 0
at t = 0, the magnetic field B(0) = 0. For α → π

2 in the asymptotic limit the magnetic field

B → BL, where this is the strength of the magnetic field at the foot points of the trap. The

evolution of the magnetic mirror ratio R(t), the loss cone angle as a ratio of π
2 and the magnetic

field as a ratio of the foot point magnetic field strength BL is illustrated in Fig. 4.12. Both the
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Figure 4.12: The curves show the evolution of the magnetic field at the apex of the relaxing field
lineB(t)/BL, loss cone angle α(t)/(π/2) and mirror ratioR(t). The relaxation time is tR = 4.84
seconds, the injection time scale is tI = 1.00 seconds (Aschwanden, 2004a).

magnetic field ratio B(t)
BL

and the loss cone ratio α(t)
π
2

start from zero and qualitatively have the

same behaviour as seen by the black and red dashed lines respectively. The mirror ratio R(t)
illustrated by the blue dashed line is inversely related to the loss cone and the mirror ratio. There

are three main assumptions made in this model which are:

• Two dimensional X-point reconnection region yielding a vanishing magnetic field at the

start.

• Uniform magnetic field at t → ∞ yields a fully open loss cone after field line relaxation is

completed.

• Time independent pitch angle distribution of the accelerated particle distribution.

It follows from the first two assumptions that the asymptotic loss cone α∞ fully opens up to 90◦

allowing for all the particles to eventually leave the trap. The third assumption that the particle

pitch angle θ is time independent means that in this model the invariance of magnetic moment µ

and longitudinal invariance J are not taken into account. Hence in this model the evolution of the

particle pitch angle in relation to its loss cone angle is not considered. This model is not capable of

explaining the features we found for the particle orbit in the Giuliani et al. (2005) model, although

it correctly describes the general trend of increasing loss cone angle in a CMT.
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4.5.1.2 Somov’s CMT Model

A CMT model which does consider the invariance of magnetic moment µ as well as longitudi-

nal invariance J was given by Somov (2004). In this model the magnetic field configuration is

straightened out (see Fig. 4.13). The magnetic field B1 is uniform inside the trap, however it

increases to B2 at the mirror points indicated by the region marked out by the vertical dashed

lines. In this model, Fermi acceleration occurs if the mirror points are brought close together with

B1

B2

lm lm

L(t)

vm vm

vt

vt

1Figure 4.13: Illustrates the straighten out trap model adapted from Somov (2004). Fermi accelera-
tion is produced by magnetic mirror points moving towards each other with velocity vm. Betatron
acceleration is produced by the compression of the trap with velocity vt causing the loss cone
angle to open up fully.

the speed vm and the trap length L(t) decreases. This can be represented by the use of the di-

mensionless parameter l = L(t)/L0. During this process the magnetic field strength |B1| remains

constant and hence the perpendicular momentum does not change, i.e. p⊥ = p0⊥. The parallel

momentum, however, increases due to the invariance of J , as

p‖(l) =
p0‖

l
,

leading to first order Fermi acceleration. p0‖ here is the initial value of the parallel momentum at

t = t0.

If the thickness of the trap is decreasing, this leads to an increase of the magnetic field, B(l)
as a function of parameter l. From the invariance of the magnetic moment the transverse momen-
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tum p⊥ increases leading to betatron acceleration.

Obviously both processes will usually happen simultaneously. Due to the trap contraction the

loss cone angle defined by

θes(l) = arcsin
(
B(l)
B2

)1/2

,

tends to 90◦ in the asymptotic limit, since B(l)→ B2 meaning a uniform magnetic field structure

at the final state. Consequently, all the particles in the model will also escape.

We saw that in the models by Aschwanden (2004a) and Somov (2004) the loss cone angle fully

opens up, allowing all the particles to escape. Furthermore, whereas in investigations based on

a number of simplifying assumptions (e.g Somov and Bogachev, 2003; Somov, 2004; Bogachev

and Somov, 2005) some predictions can be made about, for example, the relative importance

of betatron and Fermi acceleration and the resulting consequences, similar predictions are much

harder to make for more detailed magnetic field models (e.g. Giuliani et al., 2005; Karlicky and

Barta, 2006; Minoshima et al., 2010; Grady et al., 2012), because the relative importance of beta-

tron vs. Fermi acceleration (i) will be different for particles with different initial conditions, (ii)

may change with time during the evolution of the CMT and (iii) will depend on the details of the

magnetic field model used.

Furthermore, it is well-known that in time dependent and curved magnetic fields the two mecha-

nisms are closely linked (see e.g. Northrop, 1963). In general, one would expect the magnetic field

strength within a relaxing magnetic loop to increase. Assuming that the magnetic field strength is

highest at the foot points and that this field strength does not change substantially, the loss cone

should generally open up during the evolution of a CMT. How much the loss cone opens depends

on the magnetic field model. For our model the asymptotic value of the loss cone angle in the limit

t→∞ is almost 44.8◦ for the particle orbit discussed in Section 4.4. The asymptotic value of the

loss cone angle does not approach 90◦ because we have an inhomogeneous asymptotic magnetic

field with a larger field strength at the foot points compared to the highest points along field lines,

and thus particle orbits can remain trapped in this CMT model (contrary to e.g. the model of

Aschwanden, 2004a). We emphasize again that the values of the loss cone angle at all times will

be different for different initial positions, but that the qualitative behaviour will be the same.

Generally, the situation we are facing with regards to escape or trapping of particle orbits in a

CMT is summarised schematically in Fig. 4.14. The red line traces out the time evolution of the

loss cone angle α(t). It generally increases from its starting value αinit to an asymptotic value

α∞ as t → ∞, although as seen above, this increase does not necessarily have to be monotonic

as shown in the sketch. We have divided the θ-t-plane in the sketch tentatively into three regions:
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1

Figure 4.14: Sketch of the different regions in pitch angle vs. time evolution in a CMT. The red
curve represents the time evolution of the loss cone angle α(t), which starts at a value αinit and
then increases with time towards an asymptotic value α∞. We find that orbits with initial pitch
angles smaller than αinit escape immediately (blue hatched region), whereas orbits with initial
pitch angles greater than α∞ (pink shaded region) remain trapped (although see discussion in
main text). For orbits with initial pitch between αinit and α∞ (green hatched region) the outcome
depends on the relative importance of Fermi vs. Betatron acceleration. We find that usually there
is a critical value for the initial pitch angle below which particle orbits escape and above which
particle orbits remain trapped.

a region below the red curve representing the loss cone angle α (hatched blue), a region above

the asymptotic value of the loss cone angle, α∞ (shaded pink) and the region between these two

regions, where α < θ < α∞ (hatched green). Clearly, particle orbits whose loss cone angle

crosses into the blue hatched region will escape from the CMT. In particular, we found above that

all orbits with initial pitch angle below αinit are lost without even bouncing once (see Fig. 4.8).

On the other hand, orbits with initial pitch angles in the pink shaded region would be expected to

remain trapped for all times, and that is consistent with our findings above. However, we have to

mention that there could be a possibility of a CMT which increases the parallel energy of particle

orbits starting with pitch angles above α∞ in such a way that the pitch angle decreases with time

and crosses into the blue hatched region. However, based on our results so far this seems to be an

unlikely scenario. The most interesting region is the region hatched in green. As seen above, orbits

starting with pitch angles in this region can either escape from the trap if their pitch angle does not

remain above the red curve during the time evolution of the orbit, or remain trapped indefinitely

if the time evolution of the pitch angle takes it into the pink shaded region. Our results indicate

that there is a critical initial pitch angle and orbits which start with pitch angles smaller than this

critical angle will eventually cross into the blue hatched region and escape, whereas orbits with
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initial pitch angles above the critical one will remain trapped. We expect that the behaviour we

found for the specific CMT model of Giuliani et al. (2005) would at least qualitatively also be

found for other CMT models. To corroborate this statement, we will now look at how the results

we found can be understood from a more basic theoretical point of view.
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4.5.2 Trapping and Escape Using Simplified Models

In this section we attempt to develop a better understanding of the results regarding the trapping

and escape of particle orbits for the CMT model we have studied by using some basic theoretical

concepts. We will use a simplified scenario for the acceleration within a CMT taking into account

two features of the particle orbits, namely:

1. increase in parallel velocity occurs at the apex of the field lines,

2. the position of the mirror points moves very little during the evolution of the CMT.

We note that the second assumption is an approximation to facilitate the calculations made using

the particle orbit model. If it were to be exactly correct in a general CMT model it would imply

no particle orbits would ever cross the lower boundary.

Xinit = constant

ymirror = constant

vLT

1

Figure 4.15: Sketch of the basic model used to explain the results found regarding escape and
trapping of particle orbits in CMTs. The black lines represent the field lines and the straight red
lines represent the particle orbit travelling along the field lines. The field line loop tops move
downwards with speed VLT . The foot point position xinit and the mirror height ymirror are kept
constant.

We will base our model for particle acceleration on the principle first proposed by Fermi in 1949

(see e.g. Longair, 1994). We represent the magnetic field lines of our simplified model by straight

lines which the guiding centre follows (see Fig. 4.15). No acceleration in the parallel direction

takes place except when the particle passes through the moving apex of the field line (“loop top”),

where we imagine it elastically bouncing of a “wall” moving with velocity VLT . This assumption
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is supposed to mimic the increase in parallel velocity around the field line apex observed in our

full orbit results. The two lower mirror points are kept at a fixed height ymirror for all times. The

foot point length xinit is assumed to be constant along the x-axis, since the foot points are also

fixed in the full CMT model.

Due to the assumptions we made, a particle gains parallel energy every time it encounters the

field line apex. The increase in parallel speed can be calculated by looking at the mechanics of the

light object (particle) colliding with a very heavy object (“moving wall”). As we have two objects

colliding with each other (i.e. a particle with a wall), one can think of each object as seeing the

collision (event) from their point of view (frame of reference). The particle’s frame of reference

F is represented by the (x, y, t) coordinate system. The wall’s frame of reference (F ′) is repre-

sented by the (x′, y′, t′). The basis of this calculation comes from the conservation of momentum,

where the momentum of the particle is reversed, after the particle collision with the mirror (see

e.g. Longair, 1994). As a result the particle gains momentum of 2mVLT from the collision. The

total velocity of the particle after the collision is

v = v‖y + 2VLT .

For our simple models, we also assume that magnetic field strength at the field line apex is a

known function B(t) and that the field line strength remains constant at the foot points. We will

discuss examples for this function in detail later in this chapter. This allows us to determine the

time evolution of the loss cone angle for the simplified model as well as to calculate the time

development of the pitch angle at the field line apex just after each bounce.

4.5.3 The Mirror Height

Generally other assumptions have to be made to complete the simplified trap model. One of the

further assumptions we have to make for our simple model is how to determine the height of the

mirror points. Obviously, the mirror height is related to the initial pitch angle of the particle orbit,

in the sense that particles with small initial pitch angles should mirror at a smaller height than

particles with an initial pitch angle close to 90◦. We try to incorporate this feature into our simple

model mathematically by assuming that the initial length between the loop apex and the mirror

point (mirror length, lmirror) is given by the relation

lmirror = Kmf(θinit).

Here Km is a constant and f(θinit) is a function describing the dependence of the mirror length

upon the initial pitch angle θinit. It is natural to assume that particle orbits whose initial pitch

angle is equal to the initial loss cone angle αinit, mirror just at the lower boundary, i.e. for these
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yx = yinit − ymirror

∆y = y(t)− ymirror

xinit

ymirror = constantl to
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Figure 4.16: Parameters and quantities for the simplified trap model.

orbits

ltot = Kmf(αinit),

where ltot is the total length of a field line from the apex to the foot point at the initial time.

Rearranging this equation gives,

Km =
ltot

f(αinit)

⇒ lmirror =
ltot

f(αinit)
f(θinit). (4.15)

This still leaves the fact function f(θinit) to be chosen. It has to have the property that it should

vanish for θinit = 90◦ (particle orbit does not move in the parallel direction) and becomes large

for θinit close to 0◦ or 180◦. In order to satisfy these requirements we choose f(θ) = cotq(θinit),

where q is the power of the function. For our investigations we choose q = 0.1 in oder to give a

small mirror height ymirror (see Appendix C.3 for details). We will discuss the properties of this

function for this model later. Eqn. 4.15 then becomes

lmirror =
ltot

cotq(αinit)
cotq(θinit). (4.16)

From the geometry, (see Fig. 4.16) the total length of the trap ltot is related to the initial trap height

yinit through

ltot =
yinit

cos(φinit)
,

where the angle between the initial direction of the field line and the normal to the mirror surface

is φinit.
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Substituting this into Eqn. 4.16 gives,

lmirror =
yinit

cos(φinit)
tanq(αinit)
tanq(θinit)

,

where yinit, tanq(θinit), tanq(αinit) and cos(φinit) are all initial parameters at the start. From

Fig. 4.16

cos(φinit) =
yx

lmirror
, (4.17)

where yx = yinit − ymirror. Substituting this expression and Eqn. 4.16 into Eqn. 4.17 and

rearranging for the mirror height gives,

ymirror = yinit − yinit cotq(θinit)
cotq(αinit)

= yinit

[
1.0− f(θinit)

f(αinit)

]
= constant. (4.18)

When f(θinit) = f(αinit) then the mirror height becomes zero and the particle orbit will leave

the trap.

For the purpose of our investigation we will choose initial pitch angles larger than the αinit. Using

the geometry from Fig. 4.16, the equation for the evolution of φ is

tan(φt) =
xinit
y(t)

, (4.19)

and for completeness the evolution of xt, the x-component of the mirror position, is given by

xt = ∆y tan(φt) = (y(t)− ymirror) tan(φt).

Generally with decreasing y(t), φt will increase leading to xt increasing. For the purpose of our

calculations since we assume for simplicity the foot points remain constant, xt remains constant.

4.5.4 Evolution of Magnetic Field B(t)

Our choice for the magnetic field B(t) is an exponentially increasing model of the form

B(t) = B∞ −B0e
−t/τ . (4.20)
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B∞ is the final magnetic field strength at t → ∞, and τ is the free parameter which effects the

rate of decay called the e-folding time. For a starting time of t = 0 Eqn. 4.20 gives

Bstart = B(0) = B∞ −B0 ≡ ∆B0. (4.21)

For t→ tf , the final time we stop the simplified model calculation

B(tf ) = B∞ −B0e
−tf/τ ≡ ∆B∞. (4.22)

Subtracting Eqn. 4.21 from 4.22 gives

−B0e
−tf/τ +B0 = ∆B∞ −∆B0,

B0 =
∆B∞ −∆B0

1− e−tf/τ . (4.23)

Substituting the above equation for B0 into Eqn. 4.21 gives,

B∞ = ∆B0 +
∆B∞ −∆B0

1− e−tf/τ . (4.24)

Finally substituting Eqn. 4.24 into Eqn. 4.20 gives

B(t) = ∆B0 +
∆B∞ −∆B0

1− e−tf/τ − ∆B∞ −∆B0

1− e−tf/τ e−t/τ ,

= ∆B0 +
∆B∞ −∆B0

1− e−tf/τ
(

1− e−t/τ
)
. (4.25)

Generally speaking this is the expression for the evolution of the magnetic field where tf → ∞
makes the denominator in the expression tend to one and ∆B∞ = B∞. In our model we choose

Bstart = 5G, B∞ = 50G, B0 = 45G and Bfp = 100G. The magnetic field for the first two

simple models (model 1 and model 2) discussed in the next section are described by the above

equation.

The magnetic field in the final model (model 3) is given by

B(t) = BL sin2
{π

2

[
1− e−t/tI

]}
, (4.26)

taken from Aschwanden (2004a) with slight modification to match our simplified model features.

Since the magnetic field strength at t = 0 is Bstart and as t→∞ we have B(t)→ B∞, this gives

B(t) = (B∞ −Bstart) sin2
{π

2

[
1− e−t/τ

]}
+Bstart, (4.27)
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4.5.5 Loop Top Velocity VLT and Pitch Angle θ

Once the apex magnetic field strength B(t) at the loop top is known as a function of time, one can

calculate the evolution of the loss cone, α(t), and the evolution of the pitch angle, θ(t). Note that

we determine θ(t) only when a particle has just bounced off the field line apex. Noting that

tan θ =
v⊥(t)
v‖(t)

,

we can use the invariance of magnetic moment µ to find v⊥(t) in terms of the initial conditions

and B(t),

v⊥
2 =

B(t)
B(tinit)

v⊥0
2.

Hence,

θt = tan−1


√

B(t)
B(tinit)

v⊥0

v‖(t)

 (4.28)

where v‖(t) is calculated using the procedure detailed in Appendix C.1, through defining a loop

top velocity VLT . For the three simplified models we will consider, the simplest function for VLT
is chosen to be a constant in time for model 1 and for the other two models an exponentially

decreasing function i.e.

VLT = v0e
−t/tv , (4.29)

where v0 is the initial loop top velocity and tv is the time scale on which VLT drops off.

In summary the simplified model hence has the following ingredients:

• the loop top velocity VLT (t), which has to be specified as a function of time,

• the loop top magnetic field strength B(t), which has to be specified as a function of time,

• the initial height of the loop top yinit,

• the height of the mirror points ymirror, which is assumed to be constant,

• the position of the foot points xinit, which is also assumed to be constant; this will be set

indirectly by specifying the initial angle φinit of the particle orbit with the vertical.

We also have to specify conditions for the initial velocity vinit and the initial pitch angle θinit.

The equations for these quantities discussed above can in general be solved iteratively and the
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mathematical description is given in Appendix C.1. As an example the time step for the first

simple model (model 1), which will be discussed in the next section is calculated analytically in

Appendix C.2.

Guided by our CMT model discussed in Section 2.2 we generally want VLT (t) to be a func-

tion which decreases with time and has an asymptotic value of zero and B(t) to be an increasing

function of time with an asymptotic value ofB∞, say. We remark that our CMT model, as already

mentioned before has both properties for large times, but B(t) is not necessarily monotonically

increasing. We will, however, try to keep our simplified approach as simple as possible and hence

did not choose to include this property into our analysis. To avoid making any conclusions based

on just one choice of VLT (t) and B(t) we investigated three different combinations. We remark

that while we have tried to pick initial conditions and parameter values in such a way that the

results resemble the numerical values of the particle orbits calculated in the kinematic MHD CMT

model shown in section 4.3, one can only expect to recover the general behaviour of quantities

like the pitch angle or the parallel and perpendicular velocity components in a qualitative way and

one should not expect a numerically accurate representation of the full orbit calculations.

4.6 Different Combinations of the Simplified Model

For our first combination (model 1) we make the simplest possible choice for VLT (t), which

is to set it equal to a constant. To satisfy the condition that the asymptotic value of VLT (t) as

t → ∞ should be zero, we assume that VLT (t) drops to zero at a finite time tstop. In practice

we actually set VLT (t) = 0 when the field line apex has decreased below a fixed height ymin,

where ymin > ymirror. For this VLT (t) one can actually solve the algebraic equations presented

in Appendix C.1 analytically. This choice for VLT (t) is combined with a B(t) for which we have

chosen an exponentially increasing model (Eqn. 4.20). The mirror height is determined from the

initial pitch angle according to Eqn. 4.18. For this combination and the other simplified models

f(θ) = cot0.1 θ is used. This function is chosen in order to keep the mirror height as small as

possible (see Appendix C.1, Section C.3 for more detail).

Some results for model 1 are shown in Fig. 4.17. The values and parameters picked for this

case were yinit = 4.2L, φinit = 15◦, Bstart/Bfp = 0.05, Bfinal/Bfp = 0.5, τ = 0.4T and

VLT (t) = −4L/T . If we choose the same normalisation as used by Giuliani et al. (2005) with

L = 107 m and T = 100 s, we get τ = 40 s and VLT (t) = −400 km/s. The magnetic field

ratios imply that the initial loss cone angle has a value of 12.9◦ and that the asymptotic loss cone

angle is approximately 45◦.The time evolution of the pitch angle at the field line apex compared

to the loss cone angle is shown in Fig. 4.17 on the left hand column for three different initial pitch

angles with values of 22◦, 23◦ and 24◦. We selected these three values, because they straddle the
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critical initial pitch angle which divides trapping and escape for this particular simplified model.

In all three cases we start with a pitch angle that is greater than the initial loss cone angle, but

in the case of θinit = 22◦ the curve of the pitch angle crosses into the loss cone, which means

escape, whereas in the two other cases the pitch angle curves remain above the loss cone angle

curve, albeit only very slightly in the case of θinit = 23◦. One can see that the pitch angle initially

increases, but then reaches a maximum and starts to decrease (this might be difficult to see in Fig.

4.17, but one can check this numerically). This is the effect of VLT being non zero initially and

thus Fermi acceleration becomes dominant at some point in this initial stage. After VLT drops to

zero, betatron acceleration takes over and the pitch angle curves start increasing again.

The column on the right in Fig. 4.17 shows the time evolution of the parallel (black) and per-

pendicular velocities (blue) at the field line apex. The parallel velocity shows an initial increase

during the time when VLT is non-zero and after that it is constant. The perpendicular velocity

increases on a longer time scale as it is only affected by the increase in magnetic field strength.

Despite the extreme simplification of the acceleration process in this model both sets of the figures

in the left and right hand column in Fig. 4.17 show features which are qualitatively similar to the

features seen in Fig. 4.10. While this is reassuring let us first see whether this will be corroborated

by the other two simplified models that we investigated.

For model 2 the same magnetic field as in model 1 is used. The only change is made to the loop

top velocity VLT where it is described by an exponentially decreasing function i.e.

VLT = v0e
−t/τv , (4.30)

where v0 is the initial loop top velocity and τv is the time scale on which VLT drops off (see Ap-

pendix C.1 for details of this model). This time scale does not need to be the same as the time

scale τ on which B(t) increases (see Eqn. 4.20). We have chosen τv = 0.144T and τ = 0.25T
(corresponding to 14.4 seconds and 25 seconds in the Giuliani et al. (2005) normalisation). All

initial conditions and the magnetic field ratios as well as φinit have been chosen to remain the

same as model 1. Since the loop top velocity is now exponentially decreasing, v0, the initial ve-

locity is chosen to be higher than the constant velocity in case one with v0 = −10L/T , i.e. -1000

km/s for the initial velocity. The results for this case are shown in Fig. 4.18. As in model 1, we

show the plots for cases with initial pitch angles close to the critical pitch angle and straddle the

critical initial pitch angle which divides trapping and escape. The range of pitch angles for model

2 are θinit = 26◦, 27◦ and 28◦. The values for the initial pitch angle differ from the values in

model 1, because the time evolution for model 2 differs from model 1. In model 2 the magnetic

field evolves much slower than model 1. Qualitatively, however similar features as seen in the full

orbit calculations are present, with e.g. v‖ showing a stronger increase at the beginning when VLT
is large and then it levels off.
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Figure 4.17: Left: Evolution of loss cone α (red) and pitch angle θ (black) for a simplified CMT
acceleration model (model 1) with constant loop top velocity VLT (t). For these set of results the
function f(θinit) = cot0.1(θinit). Shown are the results for three different starting pitch angles
θinit close to the critical initial pitch angle. One can see that Fermi acceleration dominates at some
point in the initial phase and the pitch angle after an initial increase, begins to decrease until the
loop top motion is set to zero. At this point betatron acceleration starts dominating and the pitch
angle increases. Right: Time evolution of v⊥ (blue) and v‖ (black) for simplified model 1. The
result for three different initial pitch angles θinit close to the critical initial pitch angle are shown.
One can see that the parallel velocity increases in the initial phase while the loop top moves and
stays constant after the loop top stops moving.

For the third and final simplified model, the function for VLT and B(t) are taken from Aschwan-

den (2004a), but with slight modifications to match our simplified model features. In particular,
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Figure 4.18: Evolution of the loss cone α and the the pitch angle θ for different starting pitch
angles θinit (model 2). For these set of results the function f(θinit) = cot0.1(θinit). The evolution
of the loss cone α (red) and the pitch angle θ (blue) for an exponentially decreasing loop top
velocity VLT are shown in the left hand column. The insets for the plot on the left show the
evolution of pitch angle. Contrary to model 1 Fermi acceleration does not dominate at any time
in this case and the pitch angle curves are always increasing. Betatron acceleration is always
present in this case. The column of the right shows the evolution of v⊥ (blue) and v‖ (black). The
insets show magnifications of the initial phase of the time evolution of v‖. One can see that while
v‖ increases in the initial phase of the time evolution it does not increase fast enough to cause a
decrease in the pitch angle.

we assume that the asymptotic B(t) as t → ∞ will be smaller than the foot point field strength,

whereas Aschwanden (2004a) assumes that they are the same, implying that the asymptotic loss

cone angle approaches 90◦. We also start with a finite magnetic field strength, whereas Aschwan-
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den starts his model at a vanishing magnetic field strength at a null point in a reconnection region.

In practice we can simply start the model equations at a finite time t > 0 to avoid the vanish-

ing magnetic field strength. However, we make a slight modification to the magnetic field model

where the loop top B(t) is given by

B(t) = (B∞ −Bstart) sin2
[π

2
(1− e−t/τ )

]
+Bstart, (4.31)

so that the magnetic field strength at t = 0 is Bstart and as t → ∞ we have B(t) → B∞. We

choose the same magnetic field ratios as for the two previous cases and also keep τv and τ the

same as in case two. The loop top velocity VLT in Aschwanden’s model has the same form as

Eqn. 4.30. Similarly, all other parameters and initial conditions remain unchanged. The results

for model 3 are shown in Fig. 4.19, where the three values θinit = 27◦, 28◦ and 29◦ have been

chosen such that they are in the region close to the critical initial pitch angle which is very close to

28◦. In this case, due to the modification made to the evolution of B(t) there is an initial decrease

in the pitch angle before it starts to increase in the later stages of the evolution. This is similar

to what is seen in model 1. For model 2 the time evolution of the pitch angle differs because the

magnetic field strength B(t) increases exponentially from t = 0. Further investigations show that

when the magnetic field time scale is increased, plots showing an initial decrease in pitch angle

can be produced for this case. The third model again shows very similar qualitative features to the

guiding centre orbit calculations and to the other two simplified models discussed. In particular

these findings seem to corroborate that there is a critical initial pitch angle below which particle

orbits escape and above which particle orbits are trapped in a CMT. This critical initial pitch angle

has a value which is greater than the initial loss cone angle, but smaller than the asymptotic loss

cone α∞ and does vary from field line to field line as seen from numerical results in Table 4.3. We

have also seen that Fermi acceleration may be dominating in the initial phases of the particle orbit,

but it is betatron acceleration that will take over at some point in time and thus generally the pitch

angle of the particle will increase with time. Hence, as a concluding remark, Fermi and betatron

acceleration in realistic CMT models will generally occur simultaneously and cannot be treated

separately which is a statement also corroborated by others like Karlický and Bárta (2006).
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Figure 4.19: Evolution of the loss cone α and the the pitch angle θ for different starting pitch
angles θinit (model 3). For these set of results the function f(θinit) = cot0.1(θinit). The evolution
of the loss cone α (red) and the pitch angle θ (blue) for an exponentially decreasing loop top
velocity VLT are shown in the left hand column. The insets for the plot on the left show the
evolution of pitch angle for an exponentially decreasing loop top velocity VLT , but a modified
B(t) (see main text for details). One can see that initially the pitch angle decreases which can be
attributed to the slower increase of the loop top magnetic field (compared to model 2). After all,
betatron acceleration starts to dominate and the pitch angle increase with time. The column on
the right shows the evolution of v⊥ (blue) and v‖ (black). The insets show magnifications of the
initial phase of the time evolution of v⊥. In this case the v‖ time evolution is exactly the same as
in model 2, but v⊥ does not increase much in the initial phase, hence leading to a decrease in the
pitch angle.
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4.7 Discussion and Conclusions

We have presented a detailed investigation of the conditions which affect the trapping and escape

of particle orbits in models of collapsing magnetic traps, starting with the investigation of guiding

centre orbit calculations in the kinematic MHD CMT model of Giuliani et al. (2005). Based on

the results of our investigations and on observations made previously by Giuliani et al. (2005) and

Grady et al. (2012), we designed a simplified schematic model for CMT particle acceleration and

studied three different implementations of this schematic model, which all qualitatively corrobo-

rated our findings from the guiding centre orbit calculations.

In the models by Aschwanden (2004a) and Somov (2004) the final magnetic field strength was the

same as the foot point magentic field strength. This resulted in an asymptotic loss cone, α∞ = 90◦,
leading to all the particles escaping which could give an explanation for foot point emissions seen

in flares. However in our model and other more sophisticated models,(e.g. Giuliani et al., 2005;

Karlicky and Barta, 2006; Minoshima et al., 2010; Grady et al., 2012), the final magnetic field

strength is smaller than the foot point field strength, leading to a α∞ < 90◦. This increases the

probability of particles being trapped, which is what we and the other more sophisticated models

listed above find, which might be able to give an explanation to emissions originating higher up

in the corona (see e.g. Krucker et al., 2008). The trapping and escape mechanisms depend on how

the pitch angle of the particle orbits evolves relative to the loss cone angle in the CMT, which is a

feature we studied in detail in this chapter and it is a point neglected by Aschwanden (2004a). One

of the other assumptions in Somov (2004) is that all particles travel the full length of the field lines

per bounce period. In our case however, particles that tend to travel to the foot points are lost from

the trap. Also, it was found by Giuliani et al. (2005) that the mirror force = µ∂B∂s which causes the

confinement of the particle between bounce points does not affect the particle acceleration process

as such. It is the other terms in the guiding centre equation that are the dominating acceleration

terms, namely, the curvature terms in the parallel equation of motion (see Chapter 3 Section 2.2

for equation). Somov (2004) neglects the curvature of the magnetic field lines and therefore, is

able to look a the two main acceleration mechanism separately. However, these two mechanisms

are linked together though the curvature terms in the parallel equation of motion (Northrop, 1963)

as confirmed by Giuliani et al. (2005).

In our study we made sure we implemented the assumptions of (i) α∞ < 90◦, (ii) invariance

of magnetic moment and evolution of θ(t) in relation to α(t) and (iii) curvature of the magnetic

field lines. Our findings are as follows: (a) we showed that for each magnetic field line in a col-

lapsing magnetic trap there is a critical initial pitch angle, which divides particle orbits into trapped

orbits and escaping orbits. Furthermore, we checked to see if this angle depends on the starting

energy of the particle and found that it does not. This critical initial pitch angle is greater than
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the initial loss cone angle for the field line, but smaller than the value of the asymptotic loss cone

angle for the field line as t → ∞ (see Fig. 4.14). (b) For orbits with initial pitch angle close to

the critical value, Fermi acceleration can dominate in the initial phases, but betatron acceleration

will take over and become the dominating acceleration mechanism. In the periods where Fermi

acceleration dominates over betatron acceleration, the pitch angle will decrease and when betatron

acceleration dominates the pitch angle will increase. (c) Due to the nature of more complete CMT

models, both mechanisms will always operate simultaneously (as already stated by Karlický and

Bárta, 2006), but the efficiency of Fermi acceleration has to decrease on a particular field line

during the time evolution of a CMT because the motion of the field line must slow down. On the

other hand, the magnetic field strength can still continue to increase due to the pile-up of magnetic

flux from above.

In this chapter for simplicity, we have excluded the possibility of either Coulomb collisions, wave-

particle interactions or turbulence on the trapping or escape of particles from CMTs. Obviously,

each of these mechanisms may change the results we have found in this chapter. The effect

of Coulomb collisions on particle acceleration in simple CMT models has been considered by

Kovalev and Somov (2003), Karlický and Kosugi (2004) and Bogachev and Somov (2009). Mi-

noshima et al. (2011) have investigated the effects of pitch angle scattering by Coulomb collisions

on trapping and escape, but without considering the effect of dynamical friction and Karlický and

Bárta (2006) included the effects of Coulomb collisions in their MHD model of a CMT. We will

present the results of an initial study into the introduction of Coulomb collisions into the Giuliani

et al. (2005) model in Chapter 6.



Chapter 5

Application of the CGL Double-Adiabatic
Theory in a CMT Model

So far we have looked at individual particle orbits and neglected any collective phenomena in the

CMT. In this chapter, we use the kinematic MHD model of Giuliani et al. (2005) to investigate

how the parallel pressure P‖, the perpendicular pressure P⊥ and the plasma density ρ evolve under

the assumptions that their time evolution is determined by the CMT model. To make this possible

further assumptions are needed which will be discussed below.

It should be emphasised that the kinematic CMT model was not intended to be used for such

a calculation and hence we are stretching the limits of its validity considerably. In particular, we

do not include any back reaction of the pressure force onto the dynamics of the CMT, because we

do not solve the momentum equation, i.e. the time evolution of the plasma quantities mentioned

above remains kinematic.

The time evolution of the plasma density is determined by the continuity equation, but in or-

der to determine the time evolution of the plasma pressure one needs further equations. Due to the

nature of the CMT collapse, we have included the possibility of an anisotropic plasma pressure,

with different pressures in the direction perpendicular (P⊥) and parallel (P‖) to the magnetic field.

To describe the time evolution of P⊥ and P‖ we will use the double-adiabatic theory put forward

by Chew, Goldberger and Low (CGL Theory, Chew et al., 1956). We emphasise that this again

is a very strong assumption due to the properties of the CGL theory, e.g. that the heat flux is

completely neglected. Nevertheless, using this theory can give a first indication of how the plasma

could evolve in our CMT model. In a plasma with an anisotropic pressure, instabilities can arise.

We will check in particular the conditions for the fire-hose and mirror instability as derived under

the assumptions of the double-adiabatic theory.

As said above, in order to look at the evolution of the plasma quantities P‖, P⊥ and ρ using the

Giuliani et al. (2005) magnetic trap model a few simplified assumptions/hypotheses are made. The

main one is the use of the double-adiabatic theory. To arrive at this theory, heat flux is neglected.
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The pressure tensor is assumed to be of the form

P =

P⊥ 0 0
0 P⊥ 0
0 0 P‖

 . (5.1)

P⊥ and P‖ are the pressure components perpendicular and parallel to the magnetic field respec-

tively. Under the assumptions made in the CGL theory the evolution of perpendicular and parallel

pressure components, P⊥ and P‖, respectively, are given by the two CGL double-adiabatic equa-

tions of state:

D

Dt

(
P⊥
ρB

)
= 0, (5.2)

and

D

Dt

(
P‖B

2

ρ3

)
= 0, (5.3)

where D
Dt represents the convective derivative, ρ is the density of the plasma andB is the magnetic

field strength. A parallel can be drawn between the double adiabatic conditions, Eqns. 5.2 and 5.3,

and the adiabatic invariants, µB and J of the particle orbit (see e.g. Boyd and Sanderson, 2003,

for discussion). Since µ = mv2⊥
2B remains constant, B ∝ <v⊥>

2

2 . From Eqn. 5.2, P⊥ρB = C1, where

C1 is the constant of integration. Therefore P⊥
ρ ∝ B. Substituting for B gives

P⊥
ρ
∝ <v2

⊥>

2

where the brackets denote an average over all the particles in the fluid element. Eqn. 5.2 can be

seen as a macroscopic representation of the invariance of µB . For the second adiabatic invariant,

J , we treat the fluid element as a flux tube and use the result from ideal MHD that the length of

a flux tube, l ∝ B
ρ . From Eqn. 5.3,

P‖B
2

ρ3
= C2 which gives P‖B2 ∝ ρ3. Since B2 ∝ l2ρ2 this

gives

P‖l
2ρ2 ∝ ρ3,

P‖l
2 ∝ ρ,

P‖ ∝
ρ

l2
.

Since J =
�
p‖dl, the integral over one whole period of bouncing of the parallel momentum (p‖)

of the whole path, < v2
‖ >∝ 1

l2
. Replacing l in the above equation gives,

P‖ ∝< ρv2
‖ > .



98

Substituting for B using B2 ∝ l2ρ2 and for P‖ using the above equation gives

P‖B
2

ρ3
∝ <v2

‖>l
2 ∝ J2. (5.4)

From this reasoning Eqn. 5.3 can be seen as a macroscopic representation of the invariance of J .

In determining the evolution of the parallel pressure P‖ and perpendicular pressure P⊥ from Eqns.

5.2 and 5.3, the behaviour of the magnetic field strength B and the density ρ in the model need

to be known. To work out the evolution of the density ρ in the trap, a parallel is drawn with the

time evolution of the z-component of the magnetic field Bz from the Eqn. 2.36 in Chapter 3. This

could correspond to the mass flux ρz through an infinitesimal area remaining constant, i.e.

ρzJc = I. (5.5)

From 5.5 and the initial condition Jc = 1 at t = tinit, ρ = ρinit. It follows that

Iinit = I,

ρinit = ρJc.

Rearranging for ρ gives

ρ(x, y, t) = J−1
c ρinit(x∞(x, y, t), y∞(x, y, t), t).

Solving of J−1
c for the Giuliani et al. (2005) model gives,

J−1
c (x∞(x)) ≡ Jc(x(x∞))

=

∣∣∣∣∣∂x∞∂x ∂x∞
∂y

∂y∞
∂x

∂y∞
∂y

∣∣∣∣∣ =

∣∣∣∣∣1 0
0 ∂y∞

∂y

∣∣∣∣∣ =
∂y∞
∂y

. (5.6)

The expression for ∂y∞∂y is given by Eqn. 4.6 in Chapter 4. Therefore,

ρ = ρinit

(
∂y∞
∂y

)
= ρinitJ

−1
c , (5.7)

or

ρinit = ρ

(
∂y∞
∂y

)−1

= ρJc. (5.8)

Since the evolution of the magnetic field in the model is known, and the evolution of ρ is given by

Eqn. 5.8, we use Eqns. 5.2 and 5.3 to find the evolution of the parallel and perpendicular pressure

in the CMT model. For the calculations presented in this chapter, we always start with an isotropic
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initial condition, i.e. P‖ = P⊥ at the beginning. As a starting point we will first look at the ratio

of the parallel pressure to the initial parallel pressure,
P‖

P‖init
, the ratio of the perpendicular pressure

to the initial perpendicular pressure , P⊥
P⊥init

, the ratio of density to the initial density ρ
ρinit

and the

ratio of the perpendicular to parallel pressure P⊥
P‖

for an initial uniform density ρinit, isotropic

initial parallel pressure P‖init and isotropic initial perpendicular pressure P⊥init. After that we

investigate what happens when the initial density is stratified.

5.1 Evolution of ρ
ρinit

, P⊥
P⊥init

, P‖
P‖init

, and P⊥
P‖

Here we investigate the evolution of the ratios ρ
ρinit

, P⊥
P⊥init

,
P‖

P‖init
, and P⊥

P‖
in the Giuliani et al.

(2005) model. As a starting point we assume the initial density and initial pressures are uniform

(i.e. space and time independent). They are all set to a constant and normalised to 1. Analytical

expressions for the evolution of the magnetic field are given by Eqns. 4.4 and 4.5 in Chapter 4.

For the calculation we take the x-coordinate to run from −2L to 2L and the y coordinate to

run from 0L to 5L, where all lengths here are scaled to the fundamental length scale L = 10Mm.

The initial time is set to tinit = 1.05 and the final time tfinal = 2.0 just like the particle orbit

calculations. We begin by looking at the ratio of ρ
ρinit

and also the magnetic field ratio B
Binit

.

5.1.1 Evolution of ρ
ρinit

Recalling Eqn. 5.8 as

ρ

(
∂y∞
∂y

)−1

= ρinit

(
∂y∞
∂y

)−1

t=tinit

. (5.9)

Rearranging Eqn. 5.9 for ρ
ρinit

gives

ρ

ρinit
=

(
∂y∞
∂y

)
(
∂y∞
∂y

)
t=tinit

=
Jc

Jcinit
,

ρ = ρinit
Jc

Jcinit
. (5.10)

Therefore, the ratio of density to the initial density is

ρ

ρinit
=

Jc
Jcinit

. (5.11)

In Fig. 5.1 the evolution of ρ
ρinit

is shown for a constant initial density ρinit and constant initial
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Figure 5.1: Illustrate the evolution of ρ
ρinit

where this value rises from 1 to approximately 18.5
between the height y = 2 to y = 3. The first snapshot (top left) shows the density ratio at t = 9.5
seconds and the final figure (bottom right) for t = 95 seconds. The density only varies in the y
direction and remains constant thought in x from the direct relation to the Jacobian Jc.
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pressures, P‖init and P⊥init. The snapshots in the figure starting from the top left hand corner and

going along shows the value of the ratio plotted for every 0.095 (normalised units). Initially the

ratio is equal to one and begins to increase particularly along the y direction between y = 2 to

y = 3. The ratio in this region continues to increase until the maximum value of the ρ
ρinit

is found

to be approximately 18.58. This behaviour of ρ is directly related to the behaviour of the Jacobian

Jc = ∂y∞
∂y which has a greater rate of change in the middle of the trap than at the top or bottom,

hence the reason for the growth seen in the middle compared to the top and bottom of the trap.

The density increases by one order of magnitude during the collapse of the CMT. It is also worth

looking at the evolution of the magnetic field ratio B
Binit

as shown in Fig. 5.2 (the opposite, BinitB

is also shown in Fig. 5.3 to aid with the discussions of later quantities). In Fig. 5.2 the snapshots

starting from the top left hand corner and going along show the value of the B
Binit

plotted for every

0.095 (normalised units). Initially the ratio is equal to one and then begins to decrease everywhere

except in the middle of the trap. A distinctive peak in the ratio is seen along the y axis just below

y = 2 and just above y = 3 where the highest point is centred at approximately (x, y) = (0, 2).

This increase is related to the magnetic field lines piling up as the trap collapses leading to an

increase in magnetic field strength. The maximum value of the B
Binit

is found to be approximately

5.84 with the minimum value being of the order 0.58. As expected the opposite behaviour is

seen in Fig. 5.3 where the ratio Binit
B decreases in the middle and increases everywhere else. The

maximum value at the final time is approximately 1.72 and the minimum value is about 0.17 in

the middle of the trap.

5.1.2 Evolution of P⊥
P⊥init

We now look at the behaviour of the perpendicular pressure, P⊥
P⊥init

. Using the second constant of

motion C2 = P⊥
ρB we have

C2 = C2init,

P⊥
ρB =

P⊥init
ρinitBinit

.

Rearranging the above equation gives

P⊥
P⊥init

=
(

ρ

ρinit

)(
B

Binit

)
. (5.12)

It follows that

P⊥ = P⊥init

(
ρ

ρinit

)(
B

Binit

)
. (5.13)
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Figure 5.2: Illustrate the evolution of B
Binit

where it increases from an initial value of 1 to approx-
imately 5.84 between the height y = 2 to y = 3. The first snapshot (top left) shows the magnetic
field ratio at t = 9.5 seconds and the final figure (bottom right) for t = 95 seconds.
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Figure 5.3: Illustrate the evolution of BinitB where it decreases from an initial value of 1 to approx-
imately 0.17 between the height y = 2 to y = 3. The first snapshot (top left) shows the magnetic
field ratio at t = 9.5 seconds and the final figure (bottom right) for t = 95 seconds where the
maximum is recorded to be ≈ 1.72.
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The ratio of perpendicular pressure to the initial perpendicular pressure is

P⊥
P⊥init

=
(

ρ

ρinit

)(
B

Binit

)
. (5.14)

In Fig. 5.4 the evolution of P⊥
P⊥init

is shown for a constant initial density and pressure. Like before

the snapshots in the figure starting at the top left hand corner and going along show the value of

the ratio for different values of position x and y every 0.095 (normalised units). Starting from

an initial ratio of 1, the ratio everywhere seems to remain unchanged except for along the y axis

between y ≈ 2 to y ≈ 3 and in the centre of the trap from about x ≈ 0 and y = 2 to y = 5,

with the maximum located at the centre between y ≈ 2 to y ≈ 3. The general structure of the

figure is a superposition of ρ
ρinit

as seen in Fig, 5.1 and the ratio B
Binit

seen in Fig. 5.2. The overall

behaviour for the ratio P⊥
P⊥init

seems to follow the evolution of B
Binit

. The maximum, seen in the

centre, corresponds to the maximum seen in Fig. 5.2, which gradually increases, as seen in the

figures, reaching its highest value of approximately 106. The region either side of this maximum

comes from the behaviour of ρ
ρinit

. Therefore, the perpendicular pressure increases by up to 2

orders of magnitude during the collapse of the CMT under the assumptions made for our model.

5.1.3 Evolution of P‖
P‖init

Here we investigate the parallel pressure ratio,
P‖

P‖init
in the magnetic trap model. Making use of

the first constant of motion C1 = P‖B
2

ρ3
and the constant of integration we have

C1 = C1init,

P‖B
2

ρ3
=

P‖initB
2
init

ρ3
init

. (5.15)

Rearranging Eqn. 5.15 for the parallel pressure gives

P‖

P‖init
=
(

ρ

ρinit

)3(Binit
B

)2

.

It follows that

P‖ = P‖init

(
ρ

ρinit

)3(Binit
B

)2

. (5.16)

The ratio of parallel pressure to the initial parallel pressure is

P‖

P‖init
=
(

ρ

ρinit

)3(Binit
B

)2

. (5.17)
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Figure 5.4: Illustrate the evolution of P⊥
P⊥init

where it rises from order of 1 to approximately 106
between the height y = 2 to y = 3. The general behaviour of the ratio is a superposition of ρ

ρinit

and B
Binit

where the dominating behaviour comes from the magnetic field ratio.
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In Fig. 5.5 the evolution of
P‖

P‖init
is shown for a constant initial density and pressure. The snap-

shots in the figure starting at the top left hand corner and going along show the value of the ratio

for different values of position x and y every 0.095 (normalised units). Starting from an initial

ratio of 1 (not shown) the ratio everywhere seems to remain unchanged except for along the y

axis between y ≈ 2 to y = 3, with a distinctive minimum at the centre of the trap in this region.

The general structure of the figure is a superposition of the snapshots for ρ
ρinit

in Fig, 5.1 and the

snapshots for BinitB seen in Fig. 5.3. The overall behaviour for the ratio
P‖

P‖init
seems to follow the

evolution of ρ
ρinit

. The minimum seen in the centre corresponds to the minimum seen in Fig. 5.3.

The maximums either side of the minimum value reaches its highest value of ≈ 1.1 × 104 at the

final time tfinal = 2.0. The continually decreasing slope seen towards -2 and +2 also comes from

the magnetic field ratio. Therefore, the parallel pressure increases by up to 4 orders of magnitude

during the collapse of the CMT under the assumptions made.

5.1.4 Evolution of P⊥
P‖

and P‖
P⊥

Using the equations of state 5.2 and 5.3 the evolution of the perpendicular and parallel pressure

components are calculated in the following way:

D
Dt

(
P‖B

2

ρ3

)
= 0 ⇒ D

Dt (C1) = 0 ,

D
Dt

(
P⊥
ρB

)
= 0 ⇒ D

Dt (C2) = 0 ,

where

C1 = P‖B
2

ρ3
, C2 = P⊥

ρB .

C1 and C2 are integration constants. Using these two equations above, the pressure ratio for

the perpendicular pressure to the parallel pressure is

P⊥
P‖

=
C2

C1

B3

ρ2
. (5.18)

Making use of the fact that C1 and C2 will remain constant, we have,

C1 = C1init ⇒ C1 = P‖initB
2
init

ρ3init
,

C2 = C2init ⇒ C2 = P⊥init
ρinitBinit

.
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Figure 5.5: Illustrate the evolution of
P‖

P‖init
where it rises from order of 1 to approximately 104

between the height y = 2 to y = 3. The general behaviour of the ratio is a superposition of ρ
ρinit

and Binit
B where the dominating behaviour comes from the density ratio.
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The ratio of C2/C1 is given by

C2

C1
=

P⊥init
ρinitBinit

P‖initB
2
init

ρ3init

=
P⊥init
P‖init

ρ2
init

B3
init

. (5.19)

Substituting this into Eqn. 5.18 gives the final expression for the P⊥/P‖ as

P⊥
P‖

=
P⊥init
P‖init

ρ2
init

ρ2

B3

B3
init

=
P⊥init
P‖init

(
ρinit
ρ

)2( B

Binit

)3

=
P⊥init
P‖init

(
Jcinit
Jc

)2( B

Binit

)3

. (5.20)

Figure 5.6 shows the evolution of P⊥
P‖

for a constant initial density and pressure. Like before,

the snapshots in the figure starting at the top left hand corner and going along show the value of

the ratio for different values of position x and y every 0.095 (normalised units). Starting from an

initial ratio of 1, the ratio in general seems to decrease everywhere except in the middle of the

trap where two distinctive peaks appear. The highest peak reaches its maximum value of ≈ 2.15
located roughly at (x, y) = (0, 2). The second peak reaches its maximum value of ≈ 1.25 and is

located roughly at (x, y) = (0, 3). There is a minimum located in between these two peaks. There

are also lower values located either side of the minimum and the two peaks which reach values

as small as zero. Figure 5.6 shows the evolution of P⊥
P‖

which seems to have the one main feature

seen in Fig. 5.4, namely, the peak at (0, y) = (0, 2), however it is 2 orders of magnitude smaller

in value that P⊥
P⊥init

suggesting that the density ratio ρinit
ρ has a bigger influence in the behaviour

of this figure. Figure 5.7 show the graph for the opposite ratio,
P‖
P⊥

. In general the graph seems

to evolve in a similar way to the snapshots seen in Fig. 5.5 for
P‖

P‖init
, with the minimum value

reaching ≈ 0.46 and the maximum value being of the order 807.

5.2 A Stratified Initial Density

In this section we investigate the effect of stratifying the initial density ρinit. In the previous cases

the initial density ρinit was set to a constant. Therefore both the density evolution ρ and the ratio

of density to initial density ρ
ρinit

were found to be the same. Here we want to see if stratifying the

density will affect the ratio ρ
ρinit

in any way at later times. We make the simple assumption that at

t = tinit we have hydrostatic pressure balance. Under the assumptions of constant gravitational

acceleration and isothermal temperature (see e.g. Chapter 3 of Priest, 1982) the equation for the

density becomes

ρ = ρinite
−y/H , (5.21)
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Figure 5.6: Illustrate the evolution of P⊥
P‖

where two distinct peaks with a minimum located in
between. The maximum value is ≈ 2.15 and minimum is ≈ 0 at the final time of tfinal = 95
seconds. The general behaviour of the ratio seems to come from the magnetic field ratio.
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Figure 5.7: Illustrate the evolution of
P‖
P⊥

where there is a minimum located at the centre of the
trap at x ≈ 0 and y ≈ 2 to y ≈ 3. For other values of x the ratio varies along y ≈ 2 to y = 3 with
the lowest value being ≈ 410 and the highest value ≈ 800 at tfinal = 95 seconds. The general
behaviour seem to come from the the density ratio ρ

ρ0
.
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where H = RT
g is the pressure scale height and R = 8.3 × 103 m2s−2K−1 is the universal gas

constant. For typical coronal values where the surface gravity on the Sun g = GM�
R2
�
≈ 273m−2

where the gravitational constant G = 6.6726 × 10−11 m3s−2kg−1, the mass of the Sun M� =
1.98855× 1030 kg, the radius of the Sun R� = 6.995× 108 m and the temperature of the corona

is approximately T = 2× 106K, the pressure scale height H ≈ 61 Mm.

In Fig. 5.8 the evolution of the stratified density in the model is shown for every 0.095 (nor-

malised unit) snapshot. At the initial time t = tinit the density ρ is stratified for a height y = 0 to

y = 5, were ρ ranges from 1 to≈ 0.44 kg m−3 respectively. At t = tfinal, ρ reaches its maximum

value of approximately 13 kg m−3 where this value is less than the case for a constant density,

which gave a maximum value of ≈ 18.58 kg m−3 at the final time tfinal = 2.0. Now looking at

the behaviour of ρ
ρinit

for a stratified density it follows that

ρ(x, y, t)
ρinit(x, y, tinit)

=
��

���
�

ρinite
−y/H

(
Jc

Jcinit

)
���

���ρinite
−y/H

(
�
�
�>

1
Jcinit
Jcinit

) =
Jc

Jcinit
, (5.22)

which is the same as Eqn. 5.10. Hence, for
P‖

P‖init
, P⊥
P⊥init

, P⊥P‖ and
P‖
P⊥

the exact same behaviour

when using a stratified initial density is also seen. For the case of
P‖

P‖init
we have

P‖

P‖init
= �

��P‖init

(
ρ

ρinit

)3 (
Binit
B

)2

�
��P‖init��

��*
1(

ρinit
ρinit

)
3
�
��

��* 1(
Binit
Binit

)
2

=
(

ρ

ρinit

)3(Binit
B

)2

, (5.23)

which is the same as Eqn. 5.17 for a constant initial density ρinit. Similar calculations for P⊥
P⊥init

,
P⊥
P‖

and
P‖
P⊥

can also be carried out to show that all these quantities are independent of density

stratification when looking at ratios of different quantities.We conclude that while a stratified

atmosphere as an initial condition has an effect on single quantities such as the density, it does not

affect any ratio between quantities as the space dependent parts cancel.
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Figure 5.8: Illustrate the evolution of the stratified density ρ = ρinite
−y/H .
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5.3 Fire-hose and Mirror Instability

In the previous section we investigated the time evolution of various ratios of different plasma

quantities, particularly the ratios of
P‖
P⊥

and P⊥
P‖

as seen in Figures 5.6 and 5.7. As we have

seen, if the double-adiabatic equations hold, the plasma pressure can become anisotropic. This

immediately raises the question whether the plasma could become unstable to instabilities in an

anisotropic plasma, in particular the fire-hose and mirror instabilities.

In this section we check whether the two stability conditions derived from the double-adiabatic

theory as mentioned above, namely, the fire-hose and mirror instability (e.g. Kulsrud, 1983), are

satisfied for our CMT model. First we will check the fire-hose instability condition for a constant

and then a stratified perpendicular initial pressure P⊥0 in our model. Finally we check the mirror

instability condition for a constant and stratified density.

Before we look into these stability conditions we have to make a few remarks. The instability

calculations have been carried out for situations with uniform plasma quantities and a straight

magnetic field, all in static equilibrium. However, we are dealing with non-uniform and time-

dependent quantities. Hence, to be able to apply the instability conditions in a meaningful way,

we have to assume that a) the length scales over which the CMT model quantities change are much

larger than the wavelengths of the respective instabilities (short wavelength limit) and b) that the

time evolution of the CMT occurs on time scales which are much larger than the instability growth

rate. If these conditions are satisfied, the instability conditions can provide useful information.

A small perturbation in a garden hose with a rapid flow of water may lead to a violent motion

in the hose. Drawing an analogy from this scenario, in ideal aniotropic MHD, a magnetic flux

tube can be seen as the hose and the parallel pressure P‖ as the flow of water. If the pressure P‖
parallel to the magnetic field becomes too high the fire-hose instability can occur. The condition

for this instability in an anisotropic plasma is satisfied when (Kulsrud, 1983)

P‖ > P⊥ +
B2

µ0
, (5.24)

where P‖ and P⊥ are the parallel and perpendicular pressure, B is the magnitude of the magnetic

field and the permeability of free space, µ0 = 4π × 10−7Hm−1. Dividing Eqn. 5.24 through by

P⊥ gives

P‖

P⊥
> 1 +

B2

P⊥µ0
. (5.25)
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Since our model is assumed to satisfy coronal conditions, the plasma beta β � 1⇒ ∇P � J×B.

Therefore,

β =
gas pressure

magnetic pressure
=

P0/l0
B2/2µ0l0

=
2µ0P0

B2
,

where

B2

Pµ0
=

2
β
. (5.26)

Using the following normalisation

P⊥ = P̄⊥0P̃⊥, P‖ = P̄‖0P̃‖, B = B̄0B̃,

equation 5.25 can be rewritten as,

P̃‖

P̃⊥
> 1 +

B̄2
0

P̄⊥0µ0

B̃2

P̃⊥
. (5.27)

Substituting Eqn. 5.26 into the above equation gives

P̃‖

P̃⊥
> 1 +

2
β⊥

B̃2

P̃⊥
, (5.28)

where β⊥ = 2P̄⊥0µ0

B̄2
0

is the perpendicular plasma beta. For typical active region or flare parameters

(see e.g. NRL Book (2007)):

B̄0 = 150G = 0.015T,

µ0 = 4π × 10−7Hm−1,

n0 = 1016m−3,

mp = 1.6726× 10−27kg,

T̄0 = 2× 106K,

R = 8.3145× 103m2s−2K−1,

ρ̄0 = n0me ≈ 1.6726× 10−11 kg

m3
,

P̄0 = ρ̄0RT̄0 ≈ 0.3Pa,

we get β = 2µ0P̄0

B̄2
0
≈ 5 × 10−3 � 1. Substituting P̃⊥ = P̃⊥0( ρ̃ρ̃0 )( B̃

B̃0
) = P̃⊥0( J̃c

J̃cinit
)( B̃
B̃0

) into

the second term on the right hand side of Eqn. 5.28 gives,(
2
β⊥

)
B̃2

P̃⊥
=

(
2
β⊥

)
B̃2

P̃⊥0( J̃c
J̃cinit

)( B̃
B̃0

)
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=
(

2
β⊥

)
J̃cinit

J̃c
B̃B̃0

1
P̃⊥0

.

P̃⊥0, as mentioned previously is assumed to be constant in space and time. The effect of a stratified

initial perpendicular pressure P̃⊥0 on this quantity will be looked at later. Dropping the ∼ and

substituting the above equation into 5.28 gives,

P‖

P⊥
> 1 +

(
2
β⊥

)
Jcinit
Jc

BB0
1
P⊥0

. (5.29)

Fig. 5.9 shows the evolution of the left hand side of the inequality; the ratio of
P‖
P⊥

as a contour

plot. The evolution of this ratio was already seen in Fig. 5.7 and discussed in section 5.1.4. The

highest value was found to be ≈ 807 and the lowest ≈ 0.46 at the final time t = tfinal. The con-

tour plot clearly shows the lowest value represented by the white colour and the coloured region

between y ≈ 2 to y = 3 representing the higher values with the orange/red colour. Again, like the

figures discussed in section 5.1, each snapshot starting from the left hand corner is taken at 0.095

(normalised units) into the evolution of the quantity. Initially the ratio
P‖
P⊥

increases between y = 2
to y = 3. As time evolves the ratio increases in both directions more so in the upwards direction

from this initial region, where at the final state the initial region is the highest
P‖
P⊥

ratio. Looking

at the right hand side of the inequality seen in Fig. 5.10 the term Jcinit
Jc

, which represents the ratio
ρinit
ρ , decreases in the middle and increases either end of the minimum. This trend is seen in Fig.

5.10 where the quantity on the right hand side decreases between 2 and 3 in the y-direction. The

highest value in Fig. 5.10 is found to be ≈ 412 and the lowest ≈ 1 at the final time t = tfinal.

Further investigation into Fig. 5.10 reveals the general behaviour of the figure is dominated by the

behaviour of the B quantity.

In Fig. 5.11 the fire-hose instability condition is checked for a constant P⊥init. To represent

this inequality, locations in the trap where this condition is satisfied are shown in white and loca-

tions where the condition is not satisfied are shown in black. One can see that there is an unstable

region present in the middle of the trap between y = 2 to y = 3 and it grows upwards leaving

a stable region in the middle of the trap and two stable regions in the left and right hand corner.

These two stable regions at either end eventually disappear leaving the small island in the middle

between y = 1.5 to y = 5 as the only stable region. Between y = 0 to y = 2.0 the trap remains

stable on average for the duration of the collapse.
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Figure 5.9: Illustrate the evolution of
P‖
P⊥

ratio as a contour plot. The white and black regions
show the lower values and the coloured regions between the heights y = 2 to y = 3 represent the
highest values with the orange/red colours ≈ 800 at the final time t = tfinal.
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Figure 5.10: Illustrate the evolution of expression on the right hand side of equation (5.29) where

P⊥0 is a constant.



5.3 Fire-hose and Mirror Instability 118

Figure 5.11: Illustrate where the magnetic trap becomes fire-hose unstable when the condition in

equation (5.29) for β⊥ = 0.005 and P⊥0 is a constant. The white colour in the figures represents

the regions in the trap that become fire-hose unstable and the black regions are regions of stability.
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Next we look at the effect of a stratified initial perpendicular pressure P⊥init on the fire-hose

instability condition in the trap. Like before, working under the assumption of hydrostatic pressure

balance for a constant gravitational acceleration and isothermal temperature, the equation for the

perpendicular pressure becomes

P⊥0 = P⊥inite
−y/H , (5.30)

where H = 61 Mm is the pressure scale height for typical coronal parameters. In our model

all length scales are normalised to L = 10 Mm, so H = 6.1 and P⊥init is normalised to 1.

Substituting the stratified pressure into Eqn. 5.29 gives

P‖

P⊥
> 1 +

(
2
β⊥

)
Jcinit
Jc

BBinit
1

e−y/H
. (5.31)

Looking at Fig. 5.12, which represents the evolution of the right hand side of Eqn. 5.31 for a strat-

ified P⊥init, the same general behaviour seen in Fig. 5.11 for a constant perpendicular pressure is

seen. However, because of the stratification the right hand side of Eqn. 5.31 does not evolve to

the same extent as seen in Fig. 5.11 and the values remain ever so slightly higher than the case

for a constant P⊥init (the change is seen after the 4th significant figure). The highest and lowest

values of the right hand side for a stratified perpendicular pressure are of the same order, ≈ 412
and 1, respectively. Therefore the same is true for the fire-hose instability condition as seen in Fig.

5.13. Like before the unstable regions in the model are represented by the white colour and the

stable regions by black. Comparing this figure with Fig. 5.11 the same general evolution is seen,

however, for a stratified pressure it seems the model is more stable than in the case for a constant

perpendicular pressure.

Finally we check for the mirror instability condition in our CMT model. Complementary to the

fire-hose instability, the mirror instability propagates perpendicular to the magnetic field and it

occurs when the pressure P⊥ perpendicular to the magnetic field becomes too high. The condition

for mirror instability in an anisotropic plasma is given by (Kulsrud, 1983)

P 2
⊥

6P‖
>
B2

2µ
+ P⊥, (5.32)

where rearranging the above equation gives

P⊥
P‖

> 3
B2

µP⊥
+ 6. (5.33)

Normalising Eqn. 5.33 and dropping the ∼ gives

P̃⊥

P̃‖
> 3

B̄2
0

P̄⊥0µ0

B̃2

P̃⊥
+ 6,
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P̃⊥

P̃‖
>

6
β⊥

B̃2

P̃⊥
+ 6

P⊥
P‖

>
6
β⊥

Jc0
Jc
BB0

1
P⊥0

+ 6. (5.34)

Looking at Eqn. 5.34 a factor of 6 can be seen on the right hand side of the inequality. Kulsrud

(1983), for example, checks to see if both the fire-hose and the mirror instability expression are

identical when using kinetic theory and double-adiabatic theory. He finds the fire-hose instability

condition is the same when using both the double-adiabatic theory and the kinetic theory. How-

ever, when looking into the mirror instability condition he found the right hand side of Eqn. 5.34

was missing a factor of 6 when using kinetic theory. Here we will check to see if the mirror in-

stability condition is satisfied for the case derived using the double-adiabatic theory and the case

using kinetic theory (without a factor of 6 on the right hand side of Eqn. 5.34). We investigated the

mirror condition in Eqn. 5.34 for our model and find that there were no instabilities for a constant

and stratified P⊥0 in the trap. However when the factor of 6 was eliminated from the right hand

side of Eqn. 5.34, some regions in the model become mirror unstable as seen in Fig. 5.14 for a

constant perpendicular pressure P⊥ and for a stratified P⊥ as seen in Fig. 5.15. These regions of

instability are represented by the white colour and appear in a small region in the middle of the

trap and grow very slowly in height in the y direction as the trap evolves.
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Figure 5.12: Illustrate the evolution of expression on the right hand side of equation (5.29) for a

stratified initial perpendicular pressure P⊥0 = P⊥inite
− y
H .
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Figure 5.13: Illustrate where the magnetic trap becomes fire-hose unstable when the condition in

equation (5.29) is satisfied.
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Figure 5.14: Illustrate where the magnetic trap becomes mirror unstable when the condition in

equation (5.34) without a factor 6 included and the density in the trap is constant.
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Figure 5.15: Illustrate where the magnetic trap becomes mirror unstable when the condition in

equation (5.34) without a factor 6 included and the density in the trap is stratified.



5.4 Discussion and Conclusions 125

5.4 Discussion and Conclusions

In this Chapter we investigated the evolution of the plasma ratios ρ
ρinit

, P⊥
P⊥init

,
P‖

P‖init
, P⊥P‖ using the

Giuliani et al. (2005) CMT model. The density increased by one order, the perpendicular pressure

by two orders, the parallel pressure by four orders of magnitude during the collapse of the CMT.

Particularly, the ratio P⊥
P⊥init

increases by up to 2 orders of magnitude, whereas the ratio
P‖

P‖init
increased by up to 4 orders of magnitude, suggesting the parallel pressure seems to be the more

dominating term compared to the perpendicular pressure. All of these results where obtained un-

der the simplified assumptions of: 1) the double-adiabatic theory i.e. no heat flux and 2) isotropic

initial pressure and uniform initial density i.e. P‖ = P⊥. On the other hand we interestingly found

that for a non-uniform initial density we obtained the same results as the case with uniform density

as seen in the results in section 5.2. Also based on the finding by Kulsrud (1983) we checked to see

if our model under the assumptions of isotropic pressure and no heat flux does become fire-hose

and mirror unstable. We found that for both constant and stratified initial pressure, the model does

become fire-hose unstable represented by the white in figures 5.11 and 5.13. For the mirror insta-

bility, using the CGL approximation, the model remains stable. However, using kinetic theory the

model does become mirror unstable, again represented by the white in figures 5.14 and 5.15.

The study in this chapter is very much dependent on the validity of the double-adiabatic theory

where heat-flux is neglected. Assuming P‖ = ρRT‖ and P⊥ = ρRT⊥, gives

P‖

P⊥
=
T‖

T⊥
.

As the ratio
P‖
P⊥

increases with time as seen in the region between y = 2 to y = 3 in Fig. 5.7, so

would the ratio
T‖
T⊥

with the current assumptions in the model. But what if heat flux were to be

included in the model? Then the temperature in the model could be affected by two competing

mechanisms; the compression from the collapsing trap could cause the temperature in the trap

to increase and at the same time heat conduction would try to decrease the temperature. With

the current assumptions made in the model, the ideal kinematic MHD equations do not include

the effects of pressure, P , on the evolution of the different variables like density, ρ, temperature,

T , the magnetic field, B, and the electric field, E. If the effects from P were to be included in

the model then the full momentum equations would also have to be solved in the system. Also,

changing the current assumption for the flow velocity, v, which only varies in the y-direction to

also varying along the x-direction, would have an effect on the different variables in the model.

These points could be seen as an outline for future work to continue with the studies initiated in

this Chapter.



Chapter 6

Introducing Coulomb Collisions into the
Giuliani et al. (2005) CMT Model: A First Step

In this chapter we look at how Coulomb collisions with a background plasma could influence

the test particle’s energy loss, travel distance, pitch angle evolution and trapping conditions for

our magnetic trap model. We would like to emphasize that the work presented in this chapter

should be seen as a set of numerical experiments which may in the future lead to more realistic

investigations. As a starting point in trying to introduce collisional effects into this model, we

make the following assumptions; the background atmosphere is static and coronal temperature is

isothermal at approximately 1 to 2 MK. In a flare, the temperature can reach 10-20 MK, which in

turn would lower the collisional cross section due to particles moving faster in a hot plasma. After

a brief discussion of the theory and general concepts used to introduce Coulomb collisions, we

begin our investigation in section 6.3 by first looking at how diffusion (pitch angle scattering) alone

effects the particle behaviour in the model. In section 6.4 we introduce energy losses alongside

the diffusion term and look at a simple numerical set up where the initial density in the collisional

model is set to a low constant value. Cases for increasing density and its effect on the particle

energy are discussed in section 6.5. Since collisions will naturally cause particles to lose energy

with increasing density, we encounter a numerical effect whereby our particle orbit code stops

operating. We investigate this point by checking what is the minimum energy required for the

particle to complete a full orbit in a finite time in section 6.6. We look at the effects of collisions

on the critical pitch angle and compare it with our findings in Chapter 4. As a final study the

consequence on the particle evolution when only pitch angle scattering is included and energy

losses are neglected is investigated. We end the chapter with our discussions and concluding

remarks.

6.1 Coulomb Collision Theory

Coulomb collisions are the binary collisions of charged particles interacting through their own

electric field Somov (2006). Aside from the effects of large scale electric and magnetic fields on

charged particle motions, Coulomb collisions are always present in a plasma where the particle

126
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velocities are not sufficient enough to overcome the two main effects, namely, pitch angle scatter-

ing and energy losses. Collisional energy losses in a non-relativistic treatment are accounted for

through the decrease of the particle velocity v as (Longair, 1981):

dE

dl
=

d

dl

(
1
2
mv2

)
= −ρ(

q2

4πε0
)2 4π
mv2

ln Λ,

m
dl

dt

dv

dl
= −ρ(

q2

4πε0
)2 4π
mv2

ln Λ,

dv

dt
= −ρ(

q2

4πε0
)2 4π
m2v2

ln Λ. (6.1)

where l is the distance a particle travels in a plasma, v =
√
v‖2 + 2µB

m

2
is the particle velocity, ρ is

the background density, q is the charge of an electron, ε0 is the permeability of free space,m is the

mass of the electron and ln Λ is the Coulomb logarithm which for coronal values is approximately

20.

The second effect, pitch angle scattering is implemented through random changes in the test

particle pitch angle. The equation describing pitch angle scattering due to Coulomb collisions

is introduced in the next section. Here we briefly discuss how we produce the random numbers

which are needed in the equation. The random/stochastic nature of this term is modelled by using

a random number generator with a normal (Gaussian) distribution. Fig. 6.1 shows a distribution

Figure 6.1: Left: Number of occurrence against bin number, where the highest distribution of
numbers is centred around the middle bin. Right: normal distribution function (black solid line)
overplotted on to the Gaussian distribution of particles from the random number generator.

of random numbers which have a Gaussian profile. The figure on the left shows the number of

bins (binsize = 0.1) against the number of occurrence for a Gaussian distribution of numbers.

The figure on the right shows the histogram for the values of the data plotted against the number

of occurrence for the Gaussian distribution centred at zero. This is a characteristic for this type

of distribution which has a mean of zero (µmean = 0) and a variance, σ2 = 1 and satisfies the
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following normal distribution function

f(x) =
1

σ
√

2π
e−

(x−µmean)2

2σ2 .

This distribution function is overplotted (black solid line) on top of the histogram on the right and

both coincide very well. The distribution of numbers seen in the figure are produced using a seed

= 0 as a test case. For different seed choices a different set of random numbers with a Gaussian

distribution will be produced and with the current modification made to the non-relativistic particle

orbit code the seed is set to the particle orbit number (i.e, particle 1 has a seed 1, particle 2 has a

seed 2 and so on).

6.2 Effects of Coulomb collisions on v and µ

To introduce Coulomb energy losses and pitch angle scattering to the model we adopt a method

similar to Fletcher (1995) (see also MacKinnon and Craig, 1991). We extend our guiding centre

equations to a set of stochastic differential equations (SDEs) with random scattering terms. From

Gardiner (1985) a set of SDEs is generally given by

dx = A(x, t)dt+ B1/2(x, t)dW(t), (6.2)

which describe the evolution of a random variable x under the influence of advective and diffusive

terms A and B. W(t) is a stochastic term used to describe the diffusion process. In practice,

it is a random number picked from an appropriate Gaussian distribution, hence the need for the

random number generator discussed in section 6.1.

In our model we use the non-relativistic guiding centre approximation to calculate the particle

trajectories (see Chapter 3). Supplemented by the appropriate stochastic terms, the quantities

which are affected by collisions in the code are v‖ and the magnetic moment µ. The equations for

both these quantities contain energy losses and pitch angle scattering, so they will be our stochas-

tic differential equations. It is through the variation of these two quantities that we introduce

Coulomb collisions into our model.

We initially choose as our two stochastic variables v and ϕ = cos θ = v‖
v , where θ is the par-

ticle pitch angle, satisfying the stochastic differential equations Fletcher (1995)

dv = Avdt, (6.3)

dϕ = Aϕdt+BϕdWϕ. (6.4)



6.2 Effects of Coulomb collisions on v and µ 129

with

Av = −K24πρ
q4

m2v2
ln Λ, (6.5)

Aϕ = −2K2 4πq4

m2

ρϕ

v3
ln Λ, (6.6)

Bϕ =
[
K2 4πq4

m2

ρ

v3
ln Λ(1− ϕ2)

]1/2

. (6.7)

where K = 1
4πε0

, Av and Aϕ are the advection terms and Bϕ is the diffusion term. Our aim here

is to transform from the stochastic variables (v, ϕ) to another pair of stochastic variables (v‖, µ)
using the following transformations

v‖ = vϕ = v cos θ, µ =
m

2B
v2(1− ϕ2). (6.8)

Using Ito’s calculus which is seen as a Taylor series expansion in a stochastic setting, we transform

the SDE’s by expanding them to second order (see Gardiner, 1985, for more details). Keeping only

the first order terms and only one second order term (dW × dW = dt) we get,

dv‖ = dv‖(t, v, ϕ)

=
∂v‖

∂v
dv +

∂v‖

∂ϕ
dϕ+

1
2
∂2v‖

∂v2
dv2 +

1
2
∂2v‖

∂ϕ2
dϕ2

+
∂2v‖

∂v∂ϕ
dvdϕ+ higher order terms. (6.9)

Since v‖ = vϕ,
∂v‖
∂v = ϕ,

∂v‖
∂ϕ = v,

∂2v‖
∂v2

= 0 and
∂2v‖
∂ϕ2 = 0, substituting equations 6.3 and 6.4 for

dv and dϕ respectively gives,

dv‖ = ϕdv + vdϕ

≡ v‖

v
dv + vdϕ

= (ϕAv + vAϕ)dt+ vBϕdWϕ (6.10)

Now for the magnetic moment

µ =
m

2B
v2(1− ϕ2),

the calculation is exactly the same as before except for the fact that the second derivative in µ with

respect to ϕ is no longer zero, which gives an extra contribution. Replacing all v‖ with µ in Eqn.

6.9 gives,

dµ = dµ(t, v, ϕ)
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=
∂µ

∂v
dv +

∂µ

∂ϕ
dϕ+

1
2
∂2µ

∂v2
dv2 +

1
2
∂2µ

∂ϕ2
dϕ2

+
∂2µ

∂v∂ϕ
dvdϕ+ higher order terms. (6.11)

Since ∂µ
∂v = mv

B (1− ϕ2) = 2µv , ∂
2µ
∂v2

= m
B (1− ϕ2), ∂µ∂ϕ = −mv2

B ϕ and ∂2µ
∂ϕ2 = −mv2

B , substituting

equations 6.3 and 6.4 for dv and dϕ respectively gives,

dµ =
(
∂µ

∂v
Av +

∂µ

∂ϕ
Aϕ +

1
2
∂2µ

∂ϕ2
Bϕ

2

)
dt+

∂µ

∂ϕ
BϕdWϕ

≡ 2µ
v
dv − v‖v

B
dϕ− v2

2B
Bϕ

2dt. (6.12)

In Eqn. 6.4 the advection term Aϕ and the diffusion term Bϕ are in constant competition with

each other. The advective/energy loss term drives the particle pitch angle scattering term towards

0, i.e. ϕ = cos θ → 0 ⇒ θ → π
2 . On the other hand, the diffusive/scattering term drives the

particle pitch angle scattering term to 1, i.e. ϕ = cos θ → 1 ⇒ θ → 0. As in Fletcher (1995)

we also use the approximation that the test particle velocities are much larger than the thermal

velocity of the scattering background plasma (i.e. v � vthermal). However, we would like to

point out that assuming a uniform background density and an isothermal coronal temperature

increases the collisional effects introduced by the advective Av, Aφ and diffusive Bφ terms. As

mentioned before this would change if the temperature were to go up which is what is seen in

flares in general. Also as mentioned in Chapter 5 the compression from the field lines as the trap

collapses could also increase the temperature, resulting in the ratio v
vthermal

going down. This

would have a direct effect of reducing the advective and diffusive terms. Hence, the assumptions

we make here are not entirely realistic but provide a good starting point to introduce collisional

effects into our model for the first time.
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6.2.1 The Collisional Guiding Centre Equations

Since we consider collisions to happen on very small scales, we may assume that there is no

displacement in the guiding centre and thus no collisional term will be added to the perpendicular

guiding centre in equation 2.5. The collisional term in Eqn. 6.10 added to the parallel guiding

centre equation
dv‖
dt in equation 2.3 gives,

dv‖

dt
= −µ

q

∂B

∂s
+ uE · (∂b

∂t
+ v‖

∂b
∂s

+ uE · ∇b) +
[
v‖

v

dv

dt
+ v

dϕ

dt

]
coll

. (6.13)

The equation for the evolution of µ is given by

dµ

dt
=

2µ
v

dv

dt
− v‖v

B

dϕ

dt
− v2

2B
Bϕ

2, (6.14)

where

dv

dt
= −K24πρ

q4

m2v2
ln Λ, (6.15)

and

dϕ

dt
= −2K24π ln Λ

q4

m2
ϕ
ρ

v3
+
[
K2 4π ln Λq4

m2
(1− ϕ2)

ρ

v3

]1/2

∆W (t). (6.16)

All the above equations are normalised and for the normalisation of the energy loss term dv
dt , for

example, see Appendix D. In the two sections which are to follow first the effects of diffusion

alone (i.e. terms in the bracket in Eqn. 6.10 and 6.12 are all set to zero) will be investigated.

We then look at how introducing energy losses with constant background density will effect the

energy and critical pitch angle required for trapping.

6.3 Effects of Pitch Angle Scattering

As a starting point to see how Coulomb collisions affect our CMT model, we begin by only con-

sidering the effects due to pitch angle scattering. In a study done by Minoshima et al. (2011) for a

different CMT model they introduce collisional effects by only including the diffusion term (pitch

angle scattering due to Coulomb collisions) and neglect the advection term which introduces en-

ergy losses to the model. They investigate the height distribution of coronal electrons by focusing

on energy dependent pitch angle scattering. They find when pitch angle scattering is not included,

the electron heights are constant, independent of energy and are mainly distributed at the loop

top. However, when they include pitch angle scattering, electron heights are energy dependent

and they are distributed to a greater extent along the field lines towards lower altitudes with the
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“intermediate energy ”electrons at higher altitudes than the “lower and higher energy” electrons at

lower altitudes. For this energy dependent distribution when diffusion is included, they find more

particles enter the loss cone and are lost from the trap. Hence we would like to check if this is

the same for our model; namely, will particle losses increase as a result of introducing pitch angle

scattering?

We begin with two test particles both starting from a position (x, y) = (0, 4.2L), a background

density of ρ = 1014 m−3 with a starting energy of Einit = 5.5keV. One particle starts with a pitch

angle θinit = 160.4◦ and the other with θinit = 87.3◦. This is similar to the initial conditions used

in Chapter 4. As mentioned in the introduction, the code is currently set up so that the chosen seed

is equal to the particle orbit number. However, the seed can be changed and we will use different

seeds for our next case study, but here the seed is chosen to be 1. The results are shown in Fig.

6.2 where the first row shows the results for θinit = 160.4◦ and the second row for θinit = 87.3◦.
In the first row, the left plot shows the evolution of the magnetic moment µ, the middle plot, the

Figure 6.2: Starting from the left, rows one and two show magnetic moment, particle trajectory
and pitch angle evolution for θinit = 160.4◦ and θinit = 87.3◦ respectively. The green repre-
sents particles which experience pitch angle scattering where ρ = 1014m−3 and black represents
particles without.

particle trajectory and the right plot the evolution of the particle pitch angle. The green colour rep-

resents the case with pitch angle scattering and the black colour represents the case with no pitch

angle scattering. In the first plot on the left the stochastic nature in the evolution of µ is clearly

seen in the green graph when pitch angle scattering is introduced. The straight line represents the

case where there is no pitch angle scattering and µ remains constant for all time. Looking at the

particle trajectories in the middle plot the particle orbit with pitch angle scattering is overplotted

on to the case without pitch angle scattering. The plot without pitch angle scattering cannot be
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seen here since the orbits coincide spatially. The same goes for the final plot representing the

evolution of the particle pitch angle and loss cone. The blue graph shows the evolution of the loss

cone identical to the same set up seen in Chapter 4. It seems that the pitch angle evolution for the

particle with scattering matches the case without any scattering. The second row in Fig. 6.2 looks

at the same variable as discussed for the above but now the initial pitch angle is θinit = 87.3◦. It

seems that for higher pitch angles a very small difference in the orbits can be seen as shown in the

middle graph. We also looked to see if increasing the density ρ to 1015 m−3 and 1016 m−3 had

Figure 6.3: Illustrates the magnetic moment evolution, particle trajectory and pitch angle evolution
for a particle with θinit = 160.4◦. The green represents pitch angle scattering with a density of
ρ = 1016 m−3. The mirror points for a particle with scattering is higher and the pitch angle seems
to be moving away from the loss cone angle compared to a particle without scattering.

any effect on the particle orbit and pitch angle evolution for the two cases discussed above. We

found (not shown) the same results as seen in Fig. 6.2 for ρ = 1015 m−3. However ρ = 1016

m−3 which increases the pitch angle scattering effects on the particle, produces the results seen

in Fig. 6.3. For this pitch angle scattering case it seems the mirror points are located higher than

the case without scattering. Also in the final plot for pitch angle evolution it can be seen that the
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two plots do not coincide and the scattering case (green graph) is further away from the loss cone

angle than the case without scattering shown by the black graph. Generally it is very difficult to

say exactly how only including pitch angle scattering in the model will effect the general trapping

and escape results in relation to a case without any scattering. One would have to do a system-

atic study with different seeds to gain a better understanding and could compare it for example

with findings from Minoshima et al. (2011) as a future point of study. However from the results

obtained for θinit = 160.4◦ and density ρ = 1016 m−3 it would seem that more particles would

be trapped since the particle pitch angle seems to move away from the loss cone angle (blue line)

compared to the case without any scattering.

Going back to the case where ρ = 1014 m−3 for θinit = 160.4◦ in Fig. 6.2, the plot for the

particle orbits (top row middle graph) shows no changes in the particle orbit between the scatter-

ing (green) and non-scattering (black) case. How would changing the seed and keeping the density

the same affect the particle orbits and would there be clear differences between the orbits? We

choose three different test particles given by three different seeds and kept the density in each case

1014 m−3. We checked the particle orbit plots for each test particle against the non-scattering case

and found no differences in the orbits. This result can be explained by the fact that the particle

remains on the same field line due to the E×B drift being the dominant term. However, looking at

the different particles energy, µ (second row), minimum x displacement (third row) and minimum

y displacement (fourth row) evolutions, clear changes in all four plots in Fig 6.4 can be seen. Here

the minimum x displacement is the change in position of x from the first mirror point to the final

mirror point for a finite time. The minimum y displacement is the change in position of y from

the first mirror point to the final mirror point for a finite time.

The left column in Fig. 6.4 shows the energy, µ, minimum x displacement and minimum y dis-

placement evolutions for the different particles with ρ = 1014 m−3 respectively. The right column

represents the evolution of the same quantities but for ρ = 1015 m−3. The black line seen more

clearly for ρ = 1015 m−3 shows the case for a particle without any pitch angle scattering. The

three different particle orbits (3 different seeds) are represented by three different colours which

are distributed around this black curve. These changes in energy, µ, x and y can be explained by

the fact that along a field line, different particles given by different seeds will acquire different

velocities and magnetic moments, since the parallel velocity v‖ and the magnetic moment µ both

contain stochastic terms. Therefore different particles with different velocities and µ will give

different energies (first row in Fig. 6.4) and different x and y positions (third and forth row in Fig.

6.4) at a given point in time. A further investigation confirmed that the choice of the seed which

affects the values of the random numbers has a direct affect on the values of the final energy of

the particle and this is seen from the figure where some seeds give higher energies and some give

lower energies.
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Figure 6.4: Left column: shows the energy, magnetic moment, x and y displacement evolution

graphs for three different particles with ρ = 1014m−3, respectively. Right column: shows the

same quantities but for ρ = 1015m−3m.
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Figure 6.5: Top left: Energy evolution for a particle with ρ = 1015m−3 (blue), 1016m−3 (green)

and 1018m−3 (red). Top Right: Magnetic moment evolution and Middle: particle orbit evolution

with increasing mirror height as the particle density increases. bottom left: show the x displace-

ment and Bottom right: the y displacement which increase in stochacticity as the density increases.

As a final point on the effects of pitch angle scattering on particle trapping we looked at energy,

magnetic moment, particle orbit, minimum x and y displacement evolutions for a test particle with

(x, y) = (0, 4.2L), θinit = 160.4◦, Einit = 5.5keV, for ρ = 1015, 1016 and 1018 m−3. Fig. 6.5

shows the evolution of these quantities mentioned respectively. The blue line represents the case
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with ρ = 1015 m−3, green for ρ = 1016 m−3 and red the case for ρ = 1018 m−3. The top left

plot in Fig. 6.5 shows the evolution of the energy. Initially it seems with increasing ρ the particle

gains more energy (as seen for in the green plot for ρ = 1016m−3). However, for ρ = 1018 m−3

the final energy of the particle is less than for all the other cases. This could suggest there may be

some energy losses also present when only pitch angle scattering is included, but this could also

be a numerical effect. The top right in Fig. 6.5 shows the evolution of µ. It is no surprise that with

increasing density the stochasticity in evolution of µ (red line) also increases due to the scattering

term being proportional to the
√
ρ. For the middle plot we see that as density increases so do the

particle’s mirror points, suggesting the particle (red plot) has less chance of escaping the trap as it

does not travel all the way down to the foot points. For the bottom left and right plots again the

stochasticity in x and y respectively is clearly seen in the red plots with increasing ρ.

To investigate the full effects of Coulomb collisions, we introduce the advection term (dvdt term)

which introduces energy losses in the model alongside the diffusion term. In the section to follow

we look at the importance of these terms on the behaviour of our CMT model.
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6.4 Collisions With a Low ρ

As a starting point to study the effect of collisions in the CMT model, we choose a constant back-

ground density of ρ = 109 m−3. This choice of the density relative to a typical coronal density

value of the order of 1016m−3 is far too low, but we choose this as a starting initial density for

numerical reasons which we will discuss in section 6.5. We will compare the particle orbits, the

pitch angle evolution and the energies with the results where collisional effects are neglected. We

have the following initial conditions: (x, y, z) = (0, 4.2L, 1.25 × 10−6L), Ekin = 5.5keV and

θinit = 160.4◦. Table 6.1 shows the minimum Emin and maximum Emax energy for the particle

Table 6.1: For density ρ = 109m−3 for θ = 160.4◦.
Collisions No-Collisions Energy Difference (eV )

Emin(eV ) 5500 5500 0
Emax(eV ) 15018.096 15017.167 0.93

with and without collisions. The third column (energy difference) also shows difference in en-

ergies between Emin and Emax. The percentage change in the value of the maximum energy is

6.18× 10−3%. In the non-collisional case the magnetic moment µ remains constant. However in

the collisional case the value of µ changes. The difference between the maximum and minimum

value of magnetic moment, ∆µ = 56.30 J/T , giving a percentage change of ≈ 0.013% which is

negligible. Also, there are no significant changes in the energy, pitch angle evolution and particle

orbit trajectories when compared to the non-collisional case. This can also be seen clearer in the

plots in Fig. 6.6. The first plot (top left) shows the evolution of µ in the collisional model for

ρ = 109 m−3. The stochastic behaviour in the evolution of µ is seen clearly from the plot. This

can be explained by looking at the advection (dvdt ) and diffusion term (dϕdt ) in Eqns. 6.15 and 6.16.

The energy loss term (advection) for the current choice of ϕ is smaller than the diffusion term.

Hence the random process is much more dominating and this is seen in the plot. For the same

reason since energy losses are small, there are no noticeable changes in the energy plots between

the collisional case (green colour) which is overplotted on to the non-collisional case (see Fig.

6.6). Even though dϕ
dt is bigger than dv

dt it is not large enough to have an effect on the pitch angle

evolution as seen in the green plot (bottom left). Again the non-collisional case cannot be distin-

guished due to the two plots matching. For the final plot (bottom right) the particle orbits for the

two non-collisional (black) and collisional (green) are plotted.

The second test particle orbit has exactly the same initial conditions as the first test particle orbit,

however this time θ = 87.3◦. In Table 6.2 the energy difference in Emin is ∆Emin = 0.07eV

which gives a percentage change of≈ 1.7×10−3%. For Emax the difference ∆Emax = 0.745eV

which gives a percentage change of ≈ 3.23 × 10−3%. Finally the difference between the maxi-

mum and minimum value of the magnetic moment ∆µ = 129.5 J/T , giving a percentage change
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Figure 6.6: Top left: shows the evolution of the magnetic moment µ, Top right: the evolution of
particle energy, bottom left: shows the evolution of the pitch angle θ and Bottom right: the particle
orbits starting with (x, y) = (0, 4.2L) and θinit = 160.4◦. Green represents the particle which
experiences collisional effects at a density of ρ = 109 m−3. There are no significant changes in
the magnetic moment, energy, pitch angle and particle orbit graphs as particle barely feels any
collisional effects due to the very low density.

of ≈ 0.035%. In the first plot (top left) in Fig. 6.7 the stochastic nature of µ is not as pronounced

Table 6.2: For density ρ = 109m−3

Collisions No-Collisions Energy Difference (eV )
Emin(eV ) 4099.14 4099.21 0.07
Emax(eV ) 23008.21 23008.955 0.745

as Fig. 6.6. However the effect is still present if looked at carefully. The energy graphs (top right)

again for the collisional and non-collisional coincide due to small energy losses. The initial dip

seen in the graph is due to the particle going through the weak magnetic field region at the top of

the trap and the particle losing energy due to the invariance of µ. The bottom two figures show no

visible changes. Generally since the choice of ρ = 109 m−3 is a very small background density,

the size of the changes is expected because the collisional effects are small. Hence the overall

changes in the velocity of the particle in the current set up is insignificant. In the next section we

look at the effects of increasing the background density on the quantities discussed in this section.
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Figure 6.7: Top left: shows the evolution of the magnetic moment µ, Top right: the evolution of
particle energy, bottom left: shows the evolution of the pitch angle θ and bottom right: the particle
orbits starting at (x, y) = (0, 4.2L) and θinit = 87.3◦. Green represents the particle which
experience collisional effects at a density of ρ = 109 m−3. There are no significant changes in
the magnetic moment, energy, pitch angle and particle orbit graphs as particle barely feels any
collisional effects due to the very low density.

6.5 Collisions with Increasing Density ρ

Following on from the previous section, we will investigate the effect of increasing a constant

density on the evolution of µ, energy, pitch angle and particle orbit. As before we will be using

the non-collisional test particle orbit as a benchmark for the collisional case. For this test particle

orbit we use the same initial conditions as before and ρinit = 1010, 1011, 1013, 1014m−3. The

results obtained from the model using the different densities are shown in the Tables 6.3, 6.4,

6.5 and 6.6 respectively. In Table 6.3 the energy difference ∆E ≈ 0.015eV giving a very small

percentage change. The change in the magnetic moment for a constant density of ρ = 1010 m−3

is ∆µ ≈ 196 J/T , giving a very small percentage change. In Table 6.4 for ρ = 1011 m−3 the

percentage change in energy is ≈ 0.08% and for the magnetic moment is ≈ 0.25%. For a density

of ρ = 1013 m−3 as seen in Table 6.5 the percentage change in energy increase to ≈ 14.77%
compared to the previous two cases. The percentage change in the magnetic moment is now

≈ 14.22%. This is a significant change and one that shows the long-term invariance of µ is no

longer valid in the case where collisions are significant. For the case where ρ = 1014 m−3 as seen
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in Table 6.6, the final energy for the collisional case is ≈ 0.19eV. Preliminary quantitative results

suggest that with the initial conditions Einit = 5.5keV, (x, y) = (0, 4.2L) and θinit = 160.4◦ the

particle does not have sufficient energy to overcome the collisional effects and stops. Since the

background atmosphere is not evolving, the particle trapped on the field lines experiences large

dragging effects and only moves for ≈ 14 seconds in the simulation as seen in bottom left hand

plots of Figs. 6.8 - 6.11.

Table 6.3: For density ρ = 1010m−3

Collisions No-Collisions
Emin(eV ) 5500 5500
Emax(eV ) 15017.182 15017.167

Table 6.4: For density ρ = 1011m−3

Collisions No-Collisions
Emin(eV ) 5500 5500
Emax(eV ) 15004 15017.167

Table 6.5: For density ρ = 1012m−3

Collisions No-Collisions
Emin(eV ) 5450.72 5500
Emax(eV ) 12798.41 15017.167

Table 6.6: For density ρ = 1014m−3

Collisions No-Collisions
Emin(eV ) 0.19 5500
Emax(eV ) 5638.68 15017.167

In Fig. 6.8 the evolution of µ (top left and going across) in the CMT for different constant den-

sity values of ρ = 1010, 1011, 1013, 1014 m−3 and a stratified density of ρ = ρ0e
− y
H where

ρ0 = 1014 m−3 are shown respectively. The first plot in Fig. 6.8 shows the evolution of µ for a

constant density of ρ = 1010 m−3. The graph clearly shows the random nature in the evolution of

µ for a low atmospheric density. The diffusion term here is still the dominating term in relation

to the advection term dv
dt . The next plot (top right) where ρ = 1011 m−3 still shows the random

nature present in the evolution of µ but not as prominent as the first plot. For both these cases

the percentage difference between µ with and without collisions as discussed above is still very

small so µ can still be considered as an approximate invariant. In the middle plot for ρ = 1013
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Figure 6.8: Starting from the top left hand corner and moving across, the variation of µ for den-
sities ρ = 109, 1011, 1013 and 1014m−3 respectively are shown. From the middle graph onwards
the invariance of µ is no longer valid over long time scales.

m−3 we begin to see a change in the behaviour of µ. The magnetic moment begins to loose its

random nature and moves towards a more predictable behaviour; gradually increasing with time

and levelling off at the end of the simulations. The percentage change is now at a noticeable level

(14.22%) and µ no longer can be thought of as an invariant over long times. For the bottom left

hand graph where ρ = 1014 m−3, the effects of the drag terms are so strong that the simulation

stops at approximately 14 seconds. With the current assumption of a constant ρ = 1014 m−3

the collisional effects are too strong. This causes the particle orbit to experience a large dragging
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effect and stop after a few seconds. Since the evolution is cut short the particle orbit does not gain

sufficient energy to overcome the collisional effect and loses energy very fast. Finally we checked

to see if stratifying the density, i.e. ρ = ρ0e
− y
H where the pressure scale height H = 61Mm and

ρ0 = 1014 m−3 makes any difference to the evolution of µ. we see in Fig. 6.8 the simulation car-

ries on for approximately another extra 8− 10 seconds longer than the case for constant ρ = 1014

m−3. The stratification of the background atmosphere helps the particle evolve a bit longer with

the stopping time being now approximately 22 seconds. Again this is not enough to overcome

drag effects on the particle orbit.

Figure 6.9: Starting from the top left hand corner and moving across, the evolution of the pitch
angle with collisions (green) and non collisions in (black) for densities ρ = 1010, 1011, 1013,
1014m−3 and a stratified density ρ = ρ0e

− y
H respectively are shown.
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Figure 6.10: Starting from the top left hand corner and moving across, the particle orbits colli-
sional (green) and non collisional case for densities ρ = 1010, 1011, 1013, 1014m−3 and a stratified
density ρ = ρ0e

− y
H respectively are shown. Higher mirror points are seen with increasing density.

Figures 6.9 - 6.11 represent the energy evolution, particle orbit and pitch angle evolution for each

of the plots discussed in Fig. 6.8. The green colour represents the particle orbit where collisional

effects are included and the black colour represents the particle orbit where collisions are not.

Since the changes in energy and µ discussed previously for the top two plots were very small,

there is no evident change in the two particle orbits (top left and right) plots in Fig. 6.10. The mid-

dle graph as mentioned previously marks the point where changes in both the evolution of energy

and magnetic moment become noticeable. Hence there is a clear change between the collisional
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Figure 6.11: Starting from the top left hand corner and moving across, the evolution of the pitch
angle with collisions (green) and non collisions in (black) for densities ρ = 1010, 1011, 1013,
1014cm−3 and a stratified density ρ = ρ0e

− y
H respectively are shown.

(green) and the non-collisional (black) orbits particularly at the foot points. The collisional case

seems to have higher mirror points than the non-collisional case. This suggests that a particle orbit

is more likely to be trapped. Looking at the evolution of the pitch angles seen in Fig. 6.11, the

blue line shows the evolution of the loss cone angle, as discussed in Chapter 4. As before, the

first two plots at the top are the same. In the middle plot the difference between the two orbits is

much clearer. The orbits are no longer matching and differ particularly at the latter stages of the

evolution. The general behaviour of both orbits as they evolve through the region of decreasing
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magnetic field in the model seems to be similar. It is when they move into a region of increasing

magnetic field (≈ 30 seconds) that the green pitch angle plot seems to move away from the non-

collisional plot in black. We know from our investigation in Chapter 4 that a particle orbit starting

with an initial pitch angle of θinit = 160.4◦ will eventually escape from the trap where the pitch

angle gets closer and closer to the loss cone angle (blue line). However in the case of a particle

with θinit = 160.4◦ where collisions are introduced, the green line representing the pitch angle

evolution seem to move away from the blue line. This would seem to suggest that collisional effect

(seem to) cause a particle with a pitch angle starting at θinit = 160.4◦ or (19.6◦) to be trapped for

all time, since it seems θ is tending towards 90◦ rather than towards the loss cone angle.

6.6 The Critical Initial Energy

In this section we investigate the relationship between density and initial energy in the CMT

model for a particular test particle orbit. We use the following initial conditions: (x, y, z) =
(0, 4.2L, 1.25 × 10−6L), θinit = 160.4◦, ρinit = 1014m−3 and use three different values for the

initial energy: Einit = 7.0, 8.5, 10.6keV. In the previous section we saw that an initial energy

Einit = 5.5keV was too small to overcome the losses from the drag terms. Therefore, we look for

the critical Einit a particle orbit with the above initial conditions requires to overcome collisional

effects and gain energy over a finite time of 95 seconds.

Table 6.7: For initial energy Einit = 7.0keV
Collisions No-Collisions

Emin(eV ) 0.945 7000
Emax(eV ) 7160.65 19119.176

Table 6.8: For initial energy Einit = 8.5keV
Collisions No-Collisions

Emin(eV ) 0.35 8500
Emax(eV ) 8679.96 23203.9

Table 6.9: For initial energy Einit = 10.6keV
Collisions No-Collisions

Emin(eV ) 1193.83 10600
Emax(eV ) 11524.36 28950.64
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Table 6.7 shows the maximum and minimum energies for a particle starting with a starting en-

ergy of Einit = 7keV. Also one can see the losses from the drag term are still dominating and

the particle stops after some time. We increase Einit to 8.5keV and find the particle moves longer

than for the cases where Einit is smaller. However this initial energy is still not sufficient enough

for the particle to counteract the collisions. It is found that forEinit ≈ 10.6keV the particle is able

to overcome the collisional losses. The particle orbits and pitch angle evolutions for the cases dis-

cussed here are seen in Figures 6.12 and 6.13. In Fig. 6.12 the particle orbit for the non-collisional

(black) and collisional (green) case for a constant ρ = 1014 m−3 and Einit = 7, 8 and 10.6keV

are shown respectively. It can be seen that the first two orbits for the collisional case stop before

the finite time for the calculation, the first one earlier than the second one. The final graph shows

the particle completing an orbit for Einit ≈ 10.6keV for the finite time. From the plot it can be

seen that the mirror points are much higher than in the non-collisional case. Looking at the particle

Figure 6.12: Starting from the left and moving across, the particle orbits collisional (green) and
non collisional case for different initial energies Einit = 7.0, 8.5 and 10.6keV respectively are
shown. Particles with collisional effects seem to mirror higher than particles with no collisional
effects.

evolution plots (Fig. 6.13) for each case, a clear trend is seen in the evolution of the pitch angle for

a collisional case (green) where θ is tending towards 90◦. This seems to suggest, a particle starting

at θ = 160.4◦, Einit = 10.6keV, ρ = 1014 m−3 at a position (x, y) = (0, 4.2L) will be trapped,

compared to the non-collisional case which eventually escapes from the trap. We also check to

Figure 6.13: Starting from the left and moving across, the evolution of the pitch angle with col-
lisions (green) and non collisions (black) for for different initial energies Einit = 7.0, 8.5 and
10.6keV respectively are shown. The final graph show the particle pitch angle tending towards
90◦, implying the particle will be trapped for all time.
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see what the minimum starting energy would be for a particle starting at (x, y) = (0, 4.2L),

θinit = 87.3◦ with a background density of ρ = 1014 m−3. Fig. 6.14 shows the particle orbit for a

particle starting atEinit = 9, 12.5 and 16.2 keV. The particle orbit in black is for a particle with an

initial pitch angle θinit = 160.4◦ for a case with no collisions, to make clear the evolution of the

particle with θinit = 87.3◦ with collisional effects. It can be seen that the green orbit (with colli-

sions) stops before the finite time as seen in the first (left) and second (middle) plot in Fig. 6.14

for starting energies, Einit = 9 and 12.5 keV respectively. Systematically the energy is increased

until for a starting energy of approximately 16.2keV the particle completes an orbit for the finite

time of t = 95 seconds. These preliminary results seem to suggest that particles with pitch angles

closer to 90◦ require a higher initial energy to keep evolving than particles with smaller starting

pitch angles in the collisional case.

In most of the literature the background density is chosen to be ρ = 1010 cm−3 or 1016 m−3

for a typical active region. Karlicky and Barta (2006) choose a density ρ = 1010 cm−3 which

decreases in the vertical direction of their CMT model. Fletcher (1995) chooses a constant den-

sity of 3 × 1010 − 1011 electrons cm−3 and Minoshima et al. (2011) choose an initial density of

ρ = 1010 cm−3 when considering pitch angle diffusion in their model. Hence, in the next section

we check to see how increasing the density by a factor 10 (ρ = 1015 m−3) and by a factor of 100

(ρ = 1016 m−3) affects the starting energy needed for the particle to complete an orbit in the finite

time.

Figure 6.14: Starting from the left and moving across, the particle orbits collisional (green) and
non-collisional (black) case for different initial energies Einit = 9, 12.5 and 16.2keV respectively
are shown. The orbit in black represents the particle with θinit = 160.4◦ with no collisions to
illustrate how the particle with θinit = 87.3◦ evolves for different energies for ρ = 1014m−3.
Particles with pitch angles closer to 90◦ require a higher initial energy than particles with smaller
starting pitch angles.
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6.7 Effects of Increasing Density on Energy

In this section we look at the how increasing the density ρ = 1015 m−3 and 1016 m−3 affects

the critical starting energy for the test particle starting at (x, y, z) = (0, 4.2L, 1.25 × 10−6L),

θinit = 160.4◦, ρinit = 1015m−3 and Einit = 20.5, 40.5, 49.1 keV. The results obtained from

the model using the different densities are shown in Tables (6.10), (6.11), (6.12) respectively.

In the previous section the minimum starting energy for a constant density ρ = 1014 m−3 and

θinit = 160.4◦ was found to be 10.6 keV. For a ρ = 1015m−3 this energy is not sufficient to

overcome the drag term which increase in size due to increasing density. The particle orbit stops

within the finite time of the calculation. We increase the initial starting energy for the first two

simulations to be Einit = 20.5 and 40.5keV. For both cases the particle orbits still fall short of

reaching the set finite time and stop. The plots for the particle orbits and pitch angle evolutions for

these two test cases can be seen in the left and middle plots in Figs. 6.15 and 6.16 respectively.

Table 6.10: For initial energy Einit = 20.5keV
Collisions No-Collisions

Emin(eV ) 0.3 20500
Emax(eV ) 20760 55990

Table 6.11: For initial energy Einit = 40.5keV
Collisions No-Collisions

Emin(eV ) 0.11 40500
Emax(eV ) 40893 113212

Table 6.12: For initial energy Einit = 49.1keV
Collisions No-Collisions

Emin(eV ) 3804 49100
Emax(eV ) 53099 134063

By systematically increasing the energy, we find the required critical initial energy for the particles

to complete an orbit in the finite time to be approximately 49.1keV. As with the findings in the pre-

vious section, the plot on the right in Fig. 6.15 shows the mirror points for the particle to be higher

than mirror points for the non-collisional case. Also the same behaviour for the pitch angle evolu-

tion seen in the previous section is seen in Fig. 6.16, where θ is tending towards 90◦. Increasing

the density to ρ = 1016 m−3 which is seen as a typical active region density, we find the critical

initial energy to beEinit ≈ 228keV. This is a substantial increase from the case for ρ = 1015 m−3.
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Figure 6.15: Starting from the left and moving across, the particle orbits collisional (green) and
non collisional case for different initial energies Einit = 20.5, 40.5 and 49.1keV respectively are
shown. As seen previously the mirror points with collisions are higher than without.

Before going on to our last section where we look at the critical angle for trapping in a colli-

Figure 6.16: Starting from the left and moving across, the evolution of the pitch angle with colli-
sions (green) and non-collisions in (black) for for different initial energies Einit = 20.5, 40.5 and
49.1keV respectively are shown. Again the pitch angle in green is tending towards 90◦.

sional case, we further analysed the effect of increasing the background density to ρ = 1015 m−3

for a particle starting with an initial pitch angle of θinit = 87.3◦. We find (plots not shown),

the minimum energy required for the particle to overcome collisional effect was approximately

75.2keV. For an even higher density of ρ = 1016 m−3 the initial energy needs to be approxi-

mately 349keV which is already in the relativistic regime and clearly highlights the limitation of

the model with the current assumptions.

Obviously, the assumption of a uniform, static background atmosphere for a typical coronal tem-

perature and density may be unrealistic for a flare. While beyond the remit of this thesis, one

possible improvement for future work would be to include a time-dependent background density

along the lines of Chapter 5. Furthermore, the possibility of a higher background temperature

close to the range of a flaring plasma could be explored. This would require to change the colli-

sion terms as the high energy approximation for all rest particle energies may no longer be valid.

This would decrease the effect of energy losses as well.
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6.8 θcritical for Particle Trapping

In Chapter 4 we found that for a particle starting with a position (x, y, z) = (0, 4.2L, 1.25 ×
10−6L), pitch angle θinit = 160.4◦ and energy Einit = 5.5keV with no collisions, the critical

angle, θcritical, where all particles with pitch angles greater than this threshold angle are trapped

for all time is ≈ 21◦. In this section we want to investigate what is θcritical when collisions are

Figure 6.17: Top left: Pitch angle evolution for a particle starting with θinit = 10.6◦ and Top right:
particle starting with θinit = 10.8◦. Both particles are lost from the trap. Middle: Evolution of the
critical angle for an initial pitch angle of θinit = 10.83◦. Bottom left: shows how the collisional
pitch angle tends towards 90◦. Bottom right: Mirror points of the collisional particle orbit (red)
are higher than the non-collisional case in black.

introduced. With the introduction of collisions into the model a stochasticity is introduced into the
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particle orbits. Hence a definitive statement about what will be the critical angle for trapping when

collisions are introduced into the model will be difficult to make. However, to initiate an inves-

tigation we begin with a similar approach to the non-collisional case where the particle position

is the same as before. A constant background density of ρ = 1014 m−3 with an initial energy of

Einit = 10.6 keV is chosen. We naturally choose θinit = 21◦ as a starting pitch angle to see if we

need to choose angles smaller or greater than this point to find θcritical for the collisional case. It

turns out for this starting angle the particle will be trapped for all time since the pitch angle tends

towards 90◦. Hence particles starting with θ ≥ 21◦ will be trapped for all time. We then check for

smaller starting pitch angles to find the approximate value of θcritical in the collisional case.

We start with θinit = 10.6◦ and find the particle is lost from the trap immediately. This can

be seen in the top left hand plot in Fig. 6.17 where the green line represents the evolution of θ

and the blue line the evolution of the loss cone angle. Next we check for θinit = 10.8◦ and the

same behaviour as before is observed (top right Fig. 6.17). We systematically increase the pitch

angle in small increments and find for θinit ≈ 10.83◦ the particle is trapped for all time as seen

from the middle plot. The bottom two plots in Fig. 6.17 show the evolution of the pitch angle and

particle orbit respectively for two particle starting with θinit = θcritical. The red graphs represent

the collisional case where θinit = 10.83◦ and the plots in black are for a particle starting with

θinit = 21◦. From the bottom left hand graph, clearly the particle in the collisional case is tending

towards 90◦. The orbits are compared in the final plot and again the mirror points in the collisional

case are positioned higher than the non-collisional case. Preliminary results from this study also

seem to suggest that generally the critical trapping angle in the collisional case is smaller than in

the case without collisions. Also the particle orbits with collisions should be seen as stochastic

orbits, therefore making it difficult to make a definitive statement whether the critical trapping

angle decreases when collisions are introduced. As we have stated throughout this chapter these

studies need to be seen as initial numerical tests and benchmarks for future investigations where

more realistic assumptions should be used.
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6.9 Discussions and Conclusions

In this chapter we took the first steps to introduce Coulomb collisions into the Giuliani et al. (2005)

model. We looked at the effects of a low constant density, increasing density, and found the critical

initial energy necessary to overcome the collisional effects and the critical pitch angle required for

trapping in the model.

We began our study with looking at how pitch angle scattering alone would have an effect on

the particle evolution in the Giuliani et al. (2005) model as was done by Minoshima et al. (2011).

In their results they find more particles enter the loss cone and are lost from the trap. However, we

seem to find the opposite, whereby in general it seems more particles are trapped in our model.

Particularly, when we looked at the pitch angle evolution (see Fig. 6.3) the pitch angle in the

collisional case seems to be tending towards 90◦, away from the loss cone angle, as opposed to the

non-collisional case. This would also seem to suggest that betatron acceleration is the dominat-

ing mechanism responsible for particle energisation. If we wanted to do a detailed investigation

into how pitch angle scattering alone could affect particle evolution in our trap and compare it to

Minoshima et al. (2011)’s model, a systematic study with many different particle (i.e, different

seeds) would have to be carried out. We took the preliminary steps in doing so from the results

presented in Figs. 6.4 and 6.5. With the current set up in the model where a constant background

density of ρ = 1014m−3 is assumed, the initial starting energy of the order 100 − 200 keV is

still not sufficient to overcome the collisional effects if we wanted to perform a systematic study

with different particles as done in Chapter 3. A collisional-relativistic model with an evolving

background could be a future improvement to the model.

With the addition of the advection term, energy losses start to dominate as the density in the

model was increased to values typical for the corona. With increasing density, (i) the magnetic

moment µ no longer could be considered a long-term invariant, (ii) collisional particle orbits seem

to have higher mirror points compared to non-collisional cases as seen in Fig. 6.10 and (iii) a crit-

ical initial energy is required for a particle to complete an orbit in a finite time. The critical initial

energy increases to near relativistic values for ρ = 1016m−3, where for θinit = 160.4◦ the mini-

mum starting energy is about 228keV and 349keV for θinit = 87.3◦. Also, particles with initial

pitch angles close to 90◦ require a higher initial energy than particles with smaller pitch angles.

For particle trapping conditions, when comparing our findings in Chapter 4 with the findings for

the collisional case the critical trapping angle, θcritical for the collisional case is smaller (10.8◦)

compared to the non-collisional case (21◦). Again due to the stochastic nature of the particle orbits

for the collisional case this would have to be further investigated through a systematic study with

many different particles. For instance, using the same initial conditions for different particles (dif-

ferent seeds) and taking the average to find a general behaviour (similar to a Monte Carlo method).
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As stated throughout this chapter, all of the results with the current set up of constant background

density and temperature should be seen as a set of numerical test cases and benchmarks for future

studies using this model. Currently, the collisional effects with a constant background are overes-

timated in the model. Ideally, the background plasma should also evolve as the trap evolves. This

may reduce the collisional effects on the particles which reach non-thermal energies in the model.

To gain insight into the X-ray emissions at a given point in space on the Sun, one needs to know

information about the local non-thermal electron distribution as well as the background density

Fletcher (1995). In this thesis we do not look at particle distribution functions, however the work

done in this chapter through introducing Coulomb collisions could be an initial step into construct-

ing distribution functions for this model for the first time.



Chapter 7

Summary and Discussions

Our studies in this thesis have tried to address and answer some of the questions regarding particle

energisation based on the CMT model by Giuliani et al. (2005) and the previous results of Grady

(2012) and Grady et al. (2012). During the course of this investigation we have also come to un-

derstand some new concepts generally necessary for particle energisation in CMTs.

Since the energies obtained by Grady (2012) and Grady et al. (2012) in the non-relativistic model

are already mildly relativistic, the incorporation of the relativistic guiding centre theory (see,

Northrop, 1963) into the model is a key extension which we have presented in Chapter 3. We

find two main differences between the relativistic and non-relativistic results: a) the final particle

energy calculated using the relativistic approximation is always smaller than the non-relativistic

case. This is due to the Lorentz factor affecting the terms in the equation of motion by reduc-

ing the size of the contributing terms, b) the mirror points for the particles using the relativistic

approximation are generally higher than the non-relativistic case. Hence more particle trapping

in the relativistic case could be explained by particles not travelling all the way down to the foot

points. Higher mirror points could be due to terms in the parallel guiding centre equation becom-

ing smaller as γ increases with increasing particle velocity.

In Chapter 4 we investigated the conditions which affect the trapping and escape of particle orbits

in some of the CMT models in the literature (Aschwanden, 2004a; Somov, 2004; Karlicky and

Barta, 2006; Minoshima et al., 2010; Grady et al., 2012). Due to a main assumption made in

the simple models by Aschwanden (2004a) and Somov (2004), i.e. α∞ = 90◦, all the particles

escape from the trap. Our non-relativistic CMT model can be seen as a more sophisticated model.

The findings of Grady et al. (2012) formed a basis for our study in this Chapter. They found, the

particle orbits that gain most energy during the trap collapse have initial pitch angles θ close to

90◦ and initial positions in a weak magnetic field region in the middle of the trap. Those particle

orbits having the largest energy gain remained trapped during the collapse and due to their pitch

angle staying close to 90◦ have mirror points very close to the centre of the trap. Grady et al.

(2012) argue that these particle orbits are energised mainly by the betatron mechanism. Other

particle orbits with initial pitch angles closer to 0◦ (or 180◦) seem to be energised by the Fermi

mechanism at the beginning, but as already pointed out by Giuliani et al. (2005) and corroborated
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by Grady et al. (2012), these particle orbits gain energy when passing through the centre of the

trap. At later stages these particle orbits also seem to be undergoing mainly betatron acceleration.

Working under the assumptions of (i) α∞ < 90◦, (ii) invariance of magnetic moment and evo-

lution of θ(t) in relation to α(t) and (iii) curvature of the magnetic field lines, our findings are

as follows: (a) for each magnetic field line in a collapsing magnetic trap there is a critical initial

pitch angle, which divides particle orbits into trapped orbits and escaping orbits.This critical initial

pitch angle is greater than the initial loss cone angle for the field line, but smaller than the value of

the asymptotic loss cone angle for the field line as t → ∞ (see Fig. 4.14). Furthermore, we find

this angle is independent of the initial energy, (b) for orbits with initial pitch angle close to the

critical value, Fermi acceleration seems to dominate in the initial phases, but betatron acceleration

will take over and become the dominating acceleration mechanism. In the periods where Fermi

acceleration dominates over betatron acceleration, the pitch angle will decrease and when betatron

acceleration dominates the pitch angle will increase, and (c) due to the nature of more complete

CMT models, both mechanisms will always operate simultaneously (e.g. see also Karlický and

Bárta, 2006), but the efficiency of Fermi acceleration has to decrease on a particular field line

during the time evolution of a CMT because the motion of the field line must slow down. On the

other hand, the magnetic field strength can still continue to increase due to the pile-up of magnetic

flux from above.

In Chapter 5 we investigated how an anisotropic plasma pressure (P‖,P⊥) and the plasma density

(ρ) evolve under the assumptions that the time evolution of these quantities is determined by the

Giuliani et al. (2005) CMT model. Under the simplified assumptions that i) the double-adiabatic

theory is valid (i.e. no heat flux), ii) an isotropic initial pressure P‖ = P⊥ and a uniform initial

density ρ, we find that: a) the parallel pressure P‖ seems to be the dominant term compared to

the perpendicular pressure P⊥, and b) that checking for instabilities, namely, fire-hose and mirror

instabilities, the CMT model does become fire-hose unstable. Using the fluid theory the plasma

does not become mirror unstable, however, using kinetic theory it seems to go mirror unstable.

Finally, in Chapter 6 we took preliminary steps to introduce Coulomb collisions into the non-

relativistic guiding centre equations. From our numerical experiments under the assumptions of

i) a static atmospheric background, ii) an isothermal coronal temperature, and iii) test particle

velocities are much larger than the thermal velocity of the scattering background plasma (i.e.

v � vthermal), we find that, a) pitch angle scattering alone seems to have the effect of trapping

more particles, a result different from Minoshima et al. (2011) where they find more particles are

lost by entering the loss cone angle, b) in the fully collisional case, including both pitch angle

scattering and energy losses, the pitch angle generally seems to tend towards 90◦, moving away

from the loss cone. This seems to suggest that betatron acceleration is the main acceleration mech-

anism responsible for particle energisation, c) with increasing density, (i) the magnetic moment

µ no longer could be considered a long-term invariant, (ii) a collisional particle orbits seems to
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have higher mirror points compared to non-collisional cases and (iii) a critical initial energy is

required for a particle to complete an orbit in a finite time. This energy for particles starting with

pitch angles, θinit, close to 90◦ requires higher initial energies than for particles starting with pitch

angle close to 0◦ (or 180◦). The critical initial energy increases to near relativistic values. For ex-

ample for ρ = 1016m−3, where for θinit = 160.4◦ the minimum starting energy is about 228keV

and 349keV for θinit = 87.3◦, and d) the critical trapping angle θcritical for a collisional case is

smaller (of the order 10.8◦) compared the non-relativistic case seen in Chapter 4 which is of the

order 21◦.

While having made a lot of progress in our understanding of particle acceleration in CMTs in

particular the Giuliani et al. (2005) CMT mode, our work in the study of particle energisation in

CMTs, is far from complete.

The results from the relativistic particle orbit code seen in Chapter 3 are in line with the find-

ings from other models (e.g. Karlický and Bárta, 2006; Minoshima et al., 2010; Grady et al.,

2012), where particle trapping at the loop top is seen and this could give an explanation into X-ray

emissions observed at coronal/loop-top sources. However, these results are based on the exclu-

sion of Coulomb collisions, wave particle interaction or turbulence from the CMT model. The

inclusion of these mechanisms may change the results for particle energisation and trapping for a

collisional-relativistic model, and this could be one possible aim of future studies.

The trapping and escape conditions in Chapter 4 were investigated using the non-relativistic guid-

ing centre equations. However, in the relativistic regime, splitting the particle velocity into its

parallel v‖ and perpendicular v⊥ components to find the particle pitch angle θ needs some element

of thought. The evolution of the relativistic pitch angle θrel, in relation to the loss cone angle

α in a relativistic CMT could give a different relativistic critical pitch angle θrel−crit, as already

indicated by the systematically higher mirror points.

For the study done in Chapter 5 based on the validity of the double-adiabatic theory where heat

flux is neglected, the ratio
P‖
P⊥

increases with time in the middle of the trap as seen in Fig. 5.7.

Assuming P‖ = ρRT‖ and P⊥ = ρRT⊥, the ratio
T‖
T⊥

would also increase. However, the inclu-

sion of heat flux could affect the temperature in the model due to the operation of two competing

mechanisms; the compression from the collapsing trap could cause the temperature in the trap to

increase and at the same time heat conduction would try to decrease the temperature.

With the current assumptions in Chapter 6, i.e, constant background density, isothermal tem-

perature and v � vthermal, for a case where ρ = 1014 m−3 is assumed, the initial starting energy

of the order 100− 200keV is still not sufficient to overcome the collisional effects introduced by

the advectiveAv, Aφ and diffusiveBφ terms. This result stopped us from performing a systematic
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study with different particles as done in Chapter 3. This would change if the temperature were

to go up which is what is seen in flares in general. Also as mentioned in Chapter 5 the compres-

sion from the field lines as the trap collapses could also increase the temperature, resulting in the

ratio v
vthermal

going down. This would require much more complicated stochastic terms, which

could have the effect of reducing the advective and diffusive terms. Therefore, a future point of

investigation could be to look at test particle energy loss, travel distance, pitch angle evolution and

trapping conditions using a 2.5D collisional-relativistic model with an evolving background.

Finally, other, more general, avenues for future work should be mentioned. This and previous

work has been carried out using one specific CMT model as proposed by Giuliani et al. (2005).

However, the general theory of kinematic CMT models developed by these authors and extended

by Grady et al. (2012) is far from exhausted. Extensions could include different flow fields and

different magnetic field models in 2D, 2.5D or 3D. Another possibility would be to abandon the

assumptions of a kinematic CMT model and move to a full MHD model (see e.g. Karlický and

Bárta, 2006). This would make the case of numerical MHD simulations necessary, but would

allow the inclusion of the back reaction of e.g. the pressure force onto the CMT evolution, as

discussed briefly in Chapter 5.



Appendix A

Relativistic Particle Orbit Regime

A.1 Fortran Relativistic Particle Orbit Code Files

The following three files incorporate the relativistic effects in the Particle orbit code. These files

replace the same files in the non-relativistic code. For the fully non-relativistic code see appendices

in Grady (2012).

A.1.1 lognew.f90

The main programme which reads in the initial conditions, loops over each particle and records
the data in RV files.

PROGRAM SINGLE

USE GLOBAL

USE M_DRIVER

IMPLICIT NONE

INTEGER :: NOK, NBAD

REAL(num), DIMENSION(3) :: RSTART, RSTARTKEEP,R1,R2

REAL(num) :: T1,T2, H1,EPS, VPARSTART,mu, Erest, gamma

INTEGER :: pos_no_x,pos_no_y,pos_no_z,pos_no_alpha,pos_no_ekin

INTEGER :: EKinSteps,AlphaSteps !, FullAngle

INTEGER,DIMENSION(3) :: RSteps, pos_no_r

REAL(num), DIMENSION(NKEEPMAX) :: TT

REAL(num), DIMENSION(NKEEPMAX,3) :: S, TOTAL

INTEGER :: I,NKEEP,time_no,maxtime, counts

REAL(num) :: EKin, Alpha, AlphaMin, AlphaMax,

REAL(num) :: dalpha,EKinlow, Ekinhigh, T1Keep, T2Keep

REAL, PARAMETER :: pi = 3.14159265352

!maximum time to go to

maxtime=200

159
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!Loop for each multipar file we want to make

DO time_no = 200,maxtime,1

OPEN (UNIT =19, FILE = ’multipar.dat’)

!work out values of position to start on.

!read the max/min of values for

!initial position, energy and pitch angle

CALL read_param2

!Adjust T2 to use loop value. (i.e. ignore value in newinput.dat)

T2 = time_no*1.0

T1Keep = T1

T2Keep = T2

!give each particle an integer to identify it. Useful for deciding

!which RV*.dat files to output and also for splitting up programs.

!to run several at once e.g. use

!’IF uniqueparticleid .le. 100 and uniqueparticleid .gt. 100 to 200

!inside the following loops to only run particles 100 to 200

uniqueparticleid=0

!The increment for the pitch angle is worked out.

dalpha = (AlphaMax-Alphamin)/(Alphasteps - 1.0d0)

!*********************************************************
!x, y and z start at 1 but can also be set to 0 depending on

!which position and energy equation is chosen. Alpha needs

!to be always set to 2 so the definition above

!does not become undefined.

!*********************************************************
do pos_no_x = 1, RSTEPS(1),1

do pos_no_y = 1, RSTEPS(2),1

do pos_no_z = 1, RSTEPS(3),1 !goes from 1 -> 1

do pos_no_alpha = 2, AlphaSteps,1

do pos_no_ekin = 1, EkinSteps,1

uniqueparticleid= uniqueparticleid + 1

!****************************************************************
!decide if we want to record the full orbit for this particle.
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!At the moment records every particle. If we wanted only

!the 1009th particle then replace with

’IF (time_no .eq. maxtime .and.

mod(uniqueparticleid,1009) .eq. 0) then’

!only if the time loop is on it’s final go,

!i.e, running for the full time.

!***************************************************************
if (time_no .eq. maxtime) then

writervs=1

else

writervs=0

endif

!Want to keep starting values so we can record them at

!the end.

T1=T1Keep

T2=T2Keep

!*****************************************************
!redefine rstart so that it uses the value from before

!not the position of last particle

!******************************************************
pos_no_r=(/ pos_no_x,pos_no_y,pos_no_z /)

!***************************************************************
!pos_no_R starts from 0, if started from 1 then (stepR-1)

!added 25/5/2013

!***************************************************************
!RSTART=R1+(R2-R1)*((pos_no_r)/RSteps)

RSTART=R1+(R2-R1)*((pos_no_r - 1.0d0)/RSteps)

alpha = Alphamin+dalpha*(pos_no_alpha -1)

!Degrees into radians

alpha = alpha*(Pi/180.0d0)

!***************************************************************
!pos_no_ekin starts from 0, if started from 1 then (stepekin-1)

!added 25/5/2013

!***************************************************************
!Ekin=EKinLow+(EKinHigh-EKinLow)*pos_no_ekin/(EkinSteps*1.0d0)

Ekin=EKinLow+(EKinHigh-EKinLow)*(pos_no_ekin-1.0d0)/(EkinSteps*1.0d0)

!normalise the values

RSTARTKEEP=RSTART
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RSTART=RSTART/L

RSTARTKEEP=RSTARTKEEP/L

T1=T1/Tscl

T2=T2/Tscl

! This is not needed in the relativistic code

!convert energy from eV to joules

!Ekin = Ekin *abs(Q)

!Normalising Ekin

!Ekin = Ekin/M/Vscl**2

!call sub to calculate mu (as used in the code)

!from the values of EKin, alpha and B (via RSTART)

CALL CALC2_MU(MU,vparstart,Ekin,Alpha,RSTART,T1)

!Call the rk sophisticated driver, which then works out the arrays for the

!time steps and positions.

CALL RKDRIVE(RSTART,VPARSTART,MU,T1,T2,EPS,H1,NOK,NBAD,TT,S,TOTAL)

!number of data points

NKEEP = (NOK +NBAD)/NSTORE

!call the subroutine that writes out to the multipar file

CALL WRITE_ENDTIME(RSTART,T2,MU,VPARSTART)

end do

end do

end do

end do

end do

!close the multipar file

CLOSE(19)

!Because the multipar file outputs at different points

!with unspecified formatting we record the data in a file,

!where one particle’s data is recorded per line and the

!file is given a unique name

CALL MAKEFILE(time_no)
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END DO

!**************************************************************
Contains

!**************************************************************

Subroutine read_param

Namelist/inputdata/T1,T2,H1,EPS,MU,VPARSTART,RSTART

open(20,file=’input.dat’,status=’unknown’)

read(20,nml=inputdata)

close(20)

End Subroutine read_param

!***************************************************************

! read in the newinput.dat file.

Subroutine read_param2

Namelist/inputdata/T1,T2,H1,EPS,AlphaSteps,AlphaMin,AlphaMax,R1,R2,

RSteps,EkinLow,EKinHigh,EkinSteps

open(20,file=’newinput.dat’,status=’unknown’)

read(20,nml=inputdata)

close(20)

!check min and max angles match

IF (Alphamin .LT. 160.4 .OR. AlphaMax .GT. 160.4) THEN

PRINT*,’Check newinput.dat’

STOP

ENDIF

End Subroutine read_param2

!*******************************************************************
SUBROUTINE CALC2_MU(mu,vparstart,Ekin,alpha,RSTART,T1)

!calculate the mu and vparstart given the

!total initial energy and pitch angle.

REAL(num), DIMENSION(3),INTENT(IN) :: RSTART

REAL(num), INTENT(IN) :: T1, Ekin, Alpha

REAL(num), INTENT(OUT) :: mu,vparstart

REAL(num), DIMENSION(3) :: B,El,a2,a3,a4,a5,a6,a7,a8,a9,a10,ue

REAL(num) :: magB,vtot,vperp,Erest,gamma

!need B to calulate mu
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!calculate B at this point/time:

!don’t care about the derivatives so they’re called a2 .. a10

CALL FIELDS(RSTART,T1,El,B,a2,a3,a4,a5,a6,a7,a8,a9,a10)

!CALL FIELDS(RSTART,T1,El,B,DBDX,DBDY,DBDZ,DBDT,DEDX,DEDY,DEDZ,DEDT,Vf)

!calculate magnitude of B

magB=B(1)**2+B(2)**2+B(3)**2

magB=sqrt(magB)

!rest mass of an electron (KeV)

Erest = (M*c**2)*1.d0/abs(Q)

!calculate Lorenz Factor

gamma = (Ekin/Erest + 1.0)

! energy due to E X B drift

ue=cross(El,B)/dot(B,B)

!******************************************
!added 11/7/2013

!total par velocity

!note the drift velocity must be

!subtracted to give only the particle velocity.

vtot = sqrt(((c**2)/(Vscl**2))*
(1.0d0-1.0d0/gamma**2)-dot(ue,ue))

!****************************************************
!Split into parallel and perpendicular parts

vparstart=vtot*cos(alpha)

vperp=vtot*sin(alpha)

!calculate mu

mu=(gamma*vperp)**2/magB/2.0_num

!Output starting data to the multipar.dat file

WRITE (19,*) RStart,T1,Ekin,Alpha, mu*magB, 0.5*vparstart**2

WRITE (19,*) vtot,vperp,vparstart,El,B,magB,mu

END SUBROUTINE

!*****************************************************
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SUBROUTINE WRITE_ENDTIME(RSTART,T2,MU,VPARSTART)

!write data to the multipar file at the end of the particle’s run.

REAL(num), DIMENSION(3),INTENT(IN) :: RSTART

REAL(num), INTENT(IN) :: T2, MU, VPARSTART

REAL(num), DIMENSION(3) :: B,El,a2,a3,a4,a5,a6,a7,a8,a9,a10,ue

REAL(num) :: magB,vtot,vperp, Erest, gamma!, vpar

!write position and time

WRITE(19,*) RSTART, T2

!calculate magnetic and electric fields

CALL FIELDS(RSTART,T2,El,B,a2,a3,a4,a5,a6,a7,a8,a9,a10)

magB=B(1)**2+B(2)**2+B(3)**2

magB=sqrt(magB)

ue=cross(El,B)/dot(B,B)

Erest = (M*c**2)*1.d0/abs(Q) !rest mass of an electron (KeV)

gamma = SQRT((1.0d0+((Vscl**2)/(c**2))*1.0d0*(2.0*MU*magB))/

(1.0d0-((Vscl**2)/(c**2))*1.0d0*(VPARSTART**2 + dot(UE,UE))))

!Total energy of the particle in the

!relatvistic case.

Ekin = Erest*(gamma -1.0)

!Pitch angle of the particle

alpha=acos(vparstart/(sqrt(((c**2)/(Vscl**2))*
(1.0d0-1.0d0/gamma**2)-dot(ue,ue))))

!no need for Eper,Epar,cant split the energies as

!easily as in the non-rel case.

!EPar=0.5*vparstart**2

!EPerp=mu*magB

vtot = sqrt(((c**2)/(Vscl**2))*
(1.0d0-1.0d0/gamma**2)-dot(ue,ue))

vperp=vtot*sin(alpha)

WRITE(19,*) Ekin,alpha,0.0d0,0.0d0,vtot,vperp,vparstart

WRITE(19,*) El, B, magB

!WRITE(19,*) "El, B, magB"

END SUBROUTINE
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SUBROUTINE MAKEFILE(time_no)

!*******************************************************
!reform the multipar.dat file into a multipar_fmt_t**.dat file

!this gives it a header so it’s easier to read

!and puts one particle’s data on each line.

!This code works for the version of gfortan

!************************************************
INTEGER :: stat,timefile

!REAL,DIMENSION(3) :: a,b,d,e,f,h,j,k,m,n

!REAL,DIMENSION(2) :: c,g

!REAL :: i,l,o

REAL, DIMENSION(8) :: a

REAL, DIMENSION(11) :: b

REAL, DIMENSION(4) :: c

REAL, DIMENSION(7) :: d,e

CHARACTER(LEN=65) :: h1

CHARACTER(LEN=79) :: h2

CHARACTER(LEN=87) :: h3

CHARACTER(LEN=47) :: h4

CHARACTER(LEN=278) :: header_str

!REAL, INTENT(IN) :: T2

CHARACTER(LEN=30) :: fnameout

INTEGER, INTENT(IN) :: time_no

!reopen the multipar.dat file so it can be read

OPEN (UNIT = 19, FILE = ’multipar.dat’, FORM="FORMATTED",

STATUS="OLD", ACTION="READ")

!choose a sensible filename, based on the final time being recorded.

timefile=time_no

WRITE(fnameout,"(’multipar_fmt_t’,I3.3,’.dat’)"),timefile

print*,"fnameout",fnameout

OPEN(UNIT=8,FILE=fnameout,FORM="FORMATTED",ACTION="WRITE")

!Write header for formatted file

h1=’xstart ystart zstart t1 EKinStart alphaStart EperpStart EparStart’

h2=’ vTotStart vPerpStart vParStart ExStart EyStart EzStart BxStart

ByStart BzStart’

h3=’ BStart mu xEnd yEnd zEnd t2 EKinEnd alphaEnd EperpEnd EparEnd

vTotEnd vPerpEnd vParEnd’

h4=’ ExEnd EyEnd EzEnd BxEnd ByEnd BzEnd BEnd’
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header_str=h1 // h2 // h3 // h4

WRITE(UNIT=8,FMT=’(A264)’) header_str

DO

READ(UNIT=19,FMT=*,IOSTAT=stat) a

!if the input file is finished then we are done in the loop

IF (stat .lt. 0) EXIT

READ(UNIT=19,FMT=*) b

READ(UNIT=19,FMT=*) c

READ(UNIT=19,FMT=*) d

READ(UNIT=19,FMT=*) e

!if OK, write the line out to the new file.

IF (stat .eq. 0) THEN

WRITE(UNIT=8,FMT=’(37D23.15)’) a,b,c,d,e

ELSE

PRINT*, "file status was",stat

EXIT

END IF

END DO

!clse both fiels

CLOSE(8)

CLOSE(19)]

END SUBROUTINE

END PROGRAM SINGLE

A.1.2 derivs mod.f90

This uses the time, particle position, magnetic moment and parallel velocity to calculate the time
derivative of vpar and the relativistic guiding centre equations from Northrop (1963).

Module M_derivs

Use Global
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Use M_fields

Implicit None

REAL, DIMENSION(8,3) :: drift

REAL, DIMENSION(3) :: temp

REAL, DIMENSION(4) :: temp2

REAL :: sum_temp2

Contains

SUBROUTINE DERIVS (T, R, DRDT, VPAR, DVPARDT,MU)

!This part of the program simply works out the right hand side of the 6

!coupled ODEs. The values of q, m, and the electromagnetic field are to

!be included in the code.

IMPLICIT NONE

REAL, INTENT(IN) :: T,MU

REAL, INTENT(IN) :: VPAR

REAL, INTENT(OUT) :: DVPARDT

REAL, DIMENSION(3), INTENT(IN) :: R

REAL, DIMENSION(3),INTENT(OUT) :: DRDT

REAL, DIMENSION(3) :: B,E,Vf

REAL, DIMENSION(3) :: DBDX,DBDY,DBDZ,DBDT,DEDX,DEDY,DEDZ,DEDT

REAL, DIMENSION(3) :: GRADB,DBETADT,DBETADX,DBETADY,DBETADZ

REAL, DIMENSION(3) :: EDRIFT, DUEDX,DUEDY,DUEDZ,DUEDT

REAL :: MODB, DMODBDS, DMODBDT,EPAR,GRADBT,gamma, Erest

REAL, DIMENSION(3) :: GRADDRIFT,DBETADS,UEGRADB,UEGRADUE,DUEDS

REAL, DIMENSION(3) :: ACCDRIFT, OTHERS,OTHERS1

REAL, DIMENSION(3) :: Vothers,ACCDRIFT1,VparEparUE

REAL, DIMENSION(3) :: SCRAE

CALL FIELDS(R,T,E,B,DBDX,DBDY,DBDZ,DBDT,DEDX,DEDY,DEDZ,DEDT,Vf)

MODB = SQRT(B(1)**2 + B(2)**2 + B(3)**2)

EPAR = (DOT(E,B))/MODB

GRADB(1) = (DOT(B,DBDX))/MODB

GRADB(2) = (DOT(B,DBDY))/MODB

GRADB(3) = (DOT(B,DBDZ))/MODB

GRADBT = (DOT(B,DBDT))/MODB

!We’ll call Bx/B BETAX. Got to call it something.
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!So these are arrays of three (BETAX,BETAY,BETAZ)

DBETADX = DBDX/MODB - B*GRADB(1)/MODB**2

DBETADY = DBDY/MODB - B*GRADB(2)/MODB**2

DBETADZ = DBDZ/MODB - B*GRADB(3)/MODB**2

DBETADT = DBDT/MODB - B*GRADBT/MODB**2

EDRIFT = (CROSS(E,B))/(MODB**2)

!Need to get the derivatives of components of the Edrift:

DUEDX = (CROSS(DEDX,B) + CROSS(E,DBDX) - 2.*EDRIFT*DOT(B,DBDX))/(MODB**2)

DUEDY = (CROSS(DEDY,B) + CROSS(E,DBDY) - 2.*EDRIFT*DOT(B,DBDY))/(MODB**2)

DUEDZ = (CROSS(DEDZ,B) + CROSS(E,DBDZ) - 2.*EDRIFT*DOT(B,DBDZ))/(MODB**2)

DUEDT = (CROSS(DEDT,B) + CROSS(E,DBDT) - 2.*EDRIFT*DOT(B,DBDT))/(MODB**2)

DMODBDS=dot(B,B(1)*DBDX+B(2)*DBDY+B(3)*DBDZ)/(MODB**2)

!******************************************
!Added DMODBDT needed in the relativistic

!equations (5oct 2011)!

!*******************************************

DMODBDT=dot(B,DBDT)/MODB

!print*,"DMODBDT", DMODBDT

GRADDRIFT = CROSS(B,GRADB)/(MODB**2)

DBETADS = (B(1)*DBETADX + B(2)*DBETADY + B(3)*DBETADZ)/(MODB)

! print*,’DBETADS=’,DBETADS

UEGRADB = (EDRIFT(1)*DBETADX + EDRIFT(2)*DBETADY + EDRIFT(3)*DBETADZ)

! print*,’UEGRADB=’,UEGRADB

DUEDS = (B(1)*DUEDX + B(2)*DUEDY + B(3)*DUEDZ)/(MODB)

UEGRADUE = (EDRIFT(1)*DUEDX + EDRIFT(2)*DUEDY + EDRIFT(3)*DUEDZ)

!All the acceleration drift terms, to be crossed with B
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!Lorentz Factor

gamma=SQRT((1.0d0+((Vscl**2)/(c**2))*1.0d0*(2.0*MU*MODB))/

(1.0d0-((Vscl**2)/(c**2))*1.0d0*(VPAR**2 + dot(EDRIFT,EDRIFT))))

ACCDRIFT1=gamma*VPAR*DBETADT+(VPAR**2)*DBETADS+ &

& gamma*VPAR*UEGRADB+gamma*DUEDT &

& +VPAR*DUEDS+gamma*UEGRADUE+ &

&((Vscl**2)/(c**2*gamma))*MU*EDRIFT*DMODBDT

VparEparUE = VPAR*EPAR*EDRIFT

!All the terms that make up the last bit of the parallel equation

!Relativistic term

OTHERS1 = DBETADT + (VPAR/gamma)*DBETADS + UEGRADB

!The Relativistic eqn of motion

DRDT=EDRIFT+((M*E0)/(Q*L*B0**2))*((MU*GRADDRIFT)/(gamma)&

& + CROSS(B,ACCDRIFT1)/(MODB**2)) &

& +((Vscl**2)/(c**2))*(CROSS(B,VparEparUE)/(MODB**2))+VPAR*(B/MODB)

Vothers = DRDT

!Relativistic eqn of motion

DVPARDT = ((Q*L*(B0**2))/(M*E0*gamma))*EPAR - &

& (MU/(gamma**2))*DMODBDS + DOT(EDRIFT,OTHERS1) &

& -((Q*L*(B0**2))*(Vscl**2))/(M*E0*gamma*(c**2))*VPAR*DOT(Vothers,E)- &

& ((Vscl**2)/(c**2))*(MU/(gamma**2))*DMODBDT*VPAR

temp(1)=MU*dot(B,DBDT)/MODB

temp(2)=MU*VPAR*DMODBDS

temp(3)=MU*dot(EDRIFT,GRADB)

temp(1)=dot(B,DBDT)/MODB

temp(2)=VPAR*DMODBDS

temp(3)=dot(EDRIFT,GRADB)

temp2(1)=-MU*DMODBDS
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temp2(2)=dot(EDRIFT,DBETADT)

temp2(3)=dot(EDRIFT,VPAR*DBETADS)

temp2(4)=dot(EDRIFT,UEGRADB)

sum_temp2=temp2(1)+temp2(2)+temp2(3)+temp2(4)

drift(1,:)=EDRIFT(:)

drift(2,:) = ((M*E0)/(Q*L*B0**2))* MU*GRADDRIFT(:)

SCRAE = ((M*E0)/(Q*L*B0**2))* CROSS(B,VPAR*DBETADT)/(MODB**2)

drift(3,:)= SCRAE(:)

SCRAE = ((M*E0)/(Q*L*B0**2))* CROSS(B,(VPAR**2)*DBETADS)/(MODB**2)

drift(4,:)=SCRAE(:)

SCRAE =((M*E0)/(Q*L*B0**2))* CROSS(B,VPAR*UEGRADB)/(MODB**2)

drift(5,:)=SCRAE(:)

SCRAE =((M*E0)/(Q*L*B0**2))* CROSS(B,DUEDT)/(MODB**2)

drift(6,:)=SCRAE(:)

SCRAE =((M*E0)/(Q*L*B0**2))* CROSS(B,VPAR*DUEDS)/(MODB**2)

drift(7,:)=SCRAE(:)

SCRAE =((M*E0)/(Q*L*B0**2))* CROSS(B,UEGRADUE)/(MODB**2)

drift(8,:)=SCRAE(:)

END SUBROUTINE DERIVS

End Module M_derivs

A.1.3 rkdrive mod.f90

Module M_driver

Use global

Use M_derivs

Use M_rkqs

Implicit None

Contains

Subroutine RKDRIVE(RSTART,VPARSTART,MU,T1,T2,EPS,H1,NOK,NBAD,TT,S,TOTAL)
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!#######################################################

!Description from P.Giuliani:

!Driver routine with adaptive stepsize control.

!It goes from T1 toT2 with accuracy eps.

!Hmin is the minimum allowed stepsize. nok and

!nbad are the number of good and bad (i.e. retried)

!steps. RSTART is replaced by the end values.

!#####################################################

IMPLICIT NONE

INTEGER :: NOK, NBAD

REAL, INTENT(IN) :: EPS, H1,MU

REAL, INTENT(INOUT) :: T1,T2

REAL, INTENT(INOUT), DIMENSION(3) :: RSTART

REAL :: TINY

PARAMETER ( TINY=1.0e-20)

INTEGER :: I, J,NSTP

REAL :: H, HDID, HNEXT, T

REAL, DIMENSION(3) :: DRDT, R

REAL :: VPAR, VPARSTART,DVPARDT,gamma,MODB,Erest,vtotrel

REAL, DIMENSION(3) :: E,B,DBDX,DBDY,DBDZ,DBDT

REAL, DIMENSION(3) :: DEDX,DEDY,DEDZ,DEDT,Vf

REAL, DIMENSION(3) :: bb

REAL :: efct,e1,e2,e3,e4,e41

REAL, DIMENSION(4) :: RSCAL

REAL, DIMENSION(NKEEPMAX) :: TT

REAL, DIMENSION(NKEEPMAX,3) :: S, TOTAL

REAL, DIMENSION(3) :: ENERGY

REAL, DIMENSION(3) :: UE

CHARACTER(LEN=14) :: rvfilename

T=T1

TT(1) = T1

H=SIGN(H1,T2-T1)

NOK = 0

NBAD = 0

DO I = 1,3

R(I) = RSTART(I)

S(1,I) = RSTART(I)

ENDDO

VPAR = VPARSTART

DO I=1,3
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TOTAL(1,I) = 0.

END DO

efct=1./abs(Q)

!Make the unique name for the file if it will be written

if (writervs .eq. 1) WRITE(rvfilename,"(’RV’,I8.8,’.dat’)"),uniqueparticleid

if (writervs .eq. 1) open(29,file=rvfilename,recl=1024,status=’unknown’)

CALL DERIVS (T, R, DRDT, VPAR, DVPARDT,MU)

CALL FIELDS(R,T,E,B,DBDX,DBDY,DBDZ,DBDT,DEDX,DEDY,DEDZ,DEDT,Vf)

bb=B/sqrt(dot(B,B))

UE=cross(E,B)/dot(B,B)

!Output the initial conditions to the RV**.dat file

MODB=sqrt(B(1)**2 + B(2)**2 + B(3)**2)

!Lorentz Foctor

gamma = SQRT((1.0d0+((Vscl**2)/(c**2))*(2.0*MU*MODB))/

(1.0d0-((Vscl**2)/(c**2))*1.0d0*(VPAR**2 + dot(UE,UE))))

!electron rest mass

Erest = (M*c**2)*1.d0/abs(Q)

!from non-relativistic case

e1=efct*0.5_num*M*(Vscl*Vpar)**2

e2=efct*M*(Vscl**2)*MU*sqrt(dot(B,B))

e3=efct*0.5_num*M*dot(UE,UE)

e4 = efct*0.5*M*(Vscl*Vpar)**2 + efct*M*(Vscl**2)*MU*sqrt(dot(B,B))

!total particle velocity (without EX B drift)

vtotrel = ((c**2)/(Vscl**2))*1.0d0*(1.0d0-1.0d0/gamma**2)-dot(ue,ue)

if (writervs .eq. 1) write(29,*)Tscl*(T-T1), & !1

R, & !2,3,4

VPAR, & !5

MU*sqrt(dot(B,B)), & !6

sum((DRDT-VPAR*bb)**2), & !7

Vscl*B0*E, & !8,9,10

B0*B, & !11,12,13

sqrt(vtotrel), & !14

e2, & !15

e4, & !16

Erest*(gamma -1.0), & !17
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efct*Q*E0*(L/Tscl)*dot(DRDT,E), & !18

efct*(M*Vscl*Vscl/Tscl)*MU*dot(B,DBDT)/sqrt(dot(B,B)), & !19

Vscl*Vf, & !20,21,22

H !23

!********************** Main Time-Loop Starts **************

DO NSTP = 1, NSTPMAX

CALL DERIVS (T, R, DRDT, VPAR, DVPARDT,MU)

DO I = 1,3 !Scaling used to monitor accuracy

RSCAL(I) = ABS(R(I))+ABS(H*DRDT(I)) + TINY

! PRINT *, ’scale’,I,’ = ’,RSCAL(I)

ENDDO

RSCAL(4)=ABS(VPAR)+ABS(H*DVPARDT) + TINY

RSCAL =1

IF((T+H-T2)*(T+H-T1) > 0.) THEN

H=T2-T !if stepsize can overshoot, decrease

END IF

CALL RKQS(R,DRDT,VPAR,DVPARDT,T,H,MU,EPS,RSCAL,HDID,HNEXT)

IF (HDID == H) THEN

NOK = NOK+1

ELSE

NBAD = NBAD+1

ENDIF

!This is for storing every NSTORE step

IF (MOD(NSTP,NSTORE)==0) THEN

TT((NSTP/NSTORE)+1) = T

CALL DERIVS (T, R, DRDT, VPAR, DVPARDT,MU)

CALL FIELDS(R,T,E,B,DBDX,DBDY,DBDZ,DBDT,DEDX,DEDY,DEDZ,DEDT,Vf)

bb=B/sqrt(dot(B,B))

UE=cross(E,B)/dot(B,B)
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ENERGY(1)=VPAR**2

ENERGY(2)=MU*sqrt(dot(B,B))

ENERGY(3)=sum((DRDT-VPAR*B/sqrt(dot(B,B)))**2)

DO I = 1,3

S((NSTP/NSTORE)+1,I) = R(I)

TOTAL((NSTP/NSTORE)+1,I) = ENERGY(I)

ENDDO

MODB=sqrt(B(1)**2 + B(2)**2 + B(3)**2)

gamma = SQRT((1.0d0+((Vscl**2)/(c**2))*(2.0*MU*MODB))/

(1.0d0-((Vscl**2)/(c**2))*1.0d0*(VPAR**2 + dot(UE,UE))))

Erest = (M*c**2)*1.d0/abs(Q)

e1=efct*0.5*M*(Vscl*Vpar)**2

e2=efct*M*(Vscl**2)*MU*sqrt(dot(B,B))

e3=efct*0.5*M*dot(UE,UE)

vtotrel = ((c**2)/(Vscl**2))*1.0d0*(1.0d0-1.0d0/gamma**2)-dot(ue,ue)

e4 = efct*0.5*M*(Vscl*Vpar)**2 + efct*M*(Vscl**2)*MU*sqrt(dot(B,B))

if (writervs .eq. 1) write(29,*)Tscl*(T-T1),& !1

R, & !2,3,4

VPAR, & !5

MU*sqrt(dot(B,B)), & !6

sum((DRDT-VPAR*bb)**2), & !7

Vscl*B0*E, & !8,9,10

B0*B, & !11,12,13

sqrt(vtotrel), & !14

e2, & !15

e4, & !16

Erest*(gamma -1.0), & !17

efct*Q*E0*(L/Tscl)*dot(DRDT,E), & !18

efct*(M*Vscl*Vscl/Tscl)*MU*dot(B,DBDT)/sqrt(dot(B,B)), & !19

Vscl*Vf, & !20,21,22

H !23

ENDIF
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IF((T-T2)*(T2-T1) >= 0.) THEN !Are we done?

DO I = 1,3

RSTART(I)=R(I)

ENDDO

VPARSTART = VPAR

RETURN !normal exit

ENDIF

!************************************************
!Exit condition for the code when y = 0

(particle leaves the trap). Code will stop

!if particle goes below y=0

!************************************************
IF(R(2) <0.0) THEN

!PRINT *, ’Particle has gone too far in x direction at t = ’, T

DO I = 1,3

RSTART(I)=R(I)

ENDDO

T2 = T

VPARSTART = VPAR

RETURN

ENDIF

H=HNEXT

ENDDO !if we get to nstpmax...

PRINT *, ’too many steps in odeint’

STOP

!Note: This point was never reached for any

!particle discussed in this thesis

!(nstpmax was always sufficient for the

!particle to escape the trap or the rap to collapse)

RETURN

End Subroutine RKDRIVE

End Module M_driver
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A.2 Normalisation of the Relativistic Equations of Motion

Here the normalisation of the relativistic guiding centre equation describing the perpendicular

motion of the particle is presented. We start with the equations for the guiding centre position:
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where E⊥ � cB, E⊥B � c and the term in the red, the E×B drift, gives the largest contribution

to the perpendicular velocity component. Hence we have the following equation
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Using the fact that V0 = L0
t0

= E0
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and the gyro-frequency Ω0 = qB0
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Hence,
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This is the calculation for normalised equation of motion in the parallel direction
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where E⊥ � cB. Therefore, we have,

m
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where
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Combining A.6 and A.7 gives
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Using the fact that V0 = L0
t0

= E0
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and the gyro-frequency Ω0 = qB
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which gives Eq.3.2
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In our case E‖ = 0, hence
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Coordinates Along Magnetic Field Lines

B.1 Equations for x0 and y0

The flux function A0 is solved for x0 and y0 by initially using the trigonometric identity

arctanα± arctanβ = arctan
(
α± β
1∓ αβ

)
. (B.1)

Setting α =
(
y0+d/L
x0+1/2

)
and β =

(
y0+d/L
x0−1/2

)
the right hand side of Eqn. 2.23 in terms of α and β

gives
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}
.

This gives
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. (B.2)

Taking tan of both sides Eq. B.2 becomes
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Rearranging Eqn. B.3 as a quadratic in x0 and y0 respectively, we have
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Extra Details for the Simplified Model

C.1 Simplified Model: Mathematical Description

The simplified model for a non-linear loop top velocity VLT as shown in the illustration can be

completely expressed in terms of the motion in the y-direction and all other quantities can be

derived from that. We start by imagining the state of the system just after the particle has bounced

off the field line apex for the nth time. Let the time of the bounce be tn and the position yn =
y(tn). The velocity of the particle orbit in the y-direction then has the value vy,n. The particle will

then move down the mirror point with this velocity, bounce off the mirror point without changing

the absolute value of its velocity (it is at this point that the assumption of the mirror points being

static simplifies matters considerably) and move back up to the field line apex for the next bounce

off the loop top at time tn+1. During the bounce off the field line apex the parallel component of

vy, notated as v‖y will change to

v‖y,n+1 = v‖y,n + 2VLT (tn+1) (C.1)

The particle will have travelled a total distance of yn+1 + yn − 2ymirror (distance down and

distance up) in the time tn+1 − tn leading to the following equation

v‖y,n [tn+1 − tn] = yn+1 + yn − 2ymirror

Rearranging for yn+1 gives

yn+1 = −yn + 2ymirror + v‖y,n(tn+1 − tn) (C.2)

On the other hand, since the field line apex is moving with velocity VLT (t), we also have

yn+1 = yn +

tn+1�

tn

VLT (t) dt = yn + Fy(tn+1)− Fy(tn) (C.3)

with Fy(t) =
�
VLT (t)dt. A point to note here is that tn+1 of the next bounce is unknown and

has to be calculated.
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This can be done by substituting Eqn. C.2 into to C.3 to eliminate the unknown yn+1 to get the

transcendental equation

Fy(tn+1)− v‖y,ntn+1 = Fy(tn)− v‖y,ntn − 2(yn − ymirror). (C.4)

Usually Eq. C.4 will have to be solved numerically for tn+1 using an iterative scheme such as e.g.

the Newton-Raphson method. However, for the case of a constant vLT (t) the equation becomes

linear and can be solved analytically (see next section). For the Newton Raphson method the

function that needs to be set to zero is

f = [Fy(tn+1)− Fy(tn)] + 2(yn − ymirror)− v‖y [tn+1 − tn] = 0 (C.5)

and the derivative of the function with respect to tn+1 is

df

dtn+1
= VLT (tn+1)− v‖y (C.6)

Once tn+1 is known, all other relevant quantities can be determined and the process can be

repeated until the end of the calculation.

C.2 Time Step in Model 1

We begin with a simplified assumption that our loop top VLT remains constant. This will give us

a linearly decreasing loop top height of

y(t) = VLT (t− t0) + yinit, (C.7)

where yinit and t0 are the initial height and time at the loop top respectively. From these two

assumptions we can find an analytical expression for the bounce times in the simplified trap. The

locations of each bounce time are shown in Fig. C.1, where the numbers (1) − (4) indicate the

time calculated for the particle at a specific location in the trap. Location (1) representing tn+1/4,

the time immediately after a bounce off the bottom foot point, (2) representing tn+1/2, the time

immediately after bouncing off the moving mirror at the loop top, (3) representing tn+3/4, the

time immediately after bouncing off the second foot point and (4) representing tn+1, the time

completed for one full particle orbit. So the following equations give the time at each point:

(1) tn+1/4 :
y(tn)− ymirror

v‖yn
= tn+1/4 − tn

(2) tn+1/2 :
y(tn+1/2)− ymirror

v‖yn
= tn+1/2 − tn+1/4 = tn+1/2 −

{
y(tn)− ymirror

v‖yn
+ tn

}



Appendix C. Extra Details for the Simplified Model 182

Figure C.1: The numbers in the circles mark the times for each bounce point in the simplified trap
seen in Fig. 4.15. For one full particle orbit the particle performs four bounces to reach tn+1.

(3) tn+3/4 :
y(tn+1/2)− ymirror

v‖yn+1/2
= tn+3/4 − tn+1/2

(4) tn+1 :
y(tn+1)− ymirror

v‖yn+1/2
= tn+1 − tn+3/4

vy the velocity component along the direction normal to the surface of the mirror ey. v‖y is

the parallel component of the particle velocity vy. y(tn) is the height of the trap at the starting

time tn. tn+1/4, tn+1/2 and tn+1 are the bounce times at (2), (3) and (4) respectively with their

corresponding trap heights y(tn+1/4), y(tn+1/2) and y(tn+1). vn+1/2
‖ is the new parallel velocity

of the particle after bouncing off the moving mirror point at the loop top. From (2) we have

y(tn+1/2)− ymirror = v‖y
ntn+1/2 − {y(tn)− ymirror + v‖y

ntn
}

y(tn+1/2) = v‖y
n(tn+1/2 − tn)− y(tn) + 2ymirror. (C.8)

Rearranging for tn+1/2 gives

tn+1/2 =
y(tn+1/2) + y(tn)− 2ymirror

v‖yn
+ tn. (C.9)

Substituting (3) into (4) gives

tn+1 =
y(tn+1)− ymirror

v‖yn+1/2
+

{
y(tn+1/2)− ymirror

v‖yn+1/2
+ tn+1/2

}
(C.10)
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substituting Eqn.(C.8) for y(tn+1/2) and rearranging for tn+1 gives,

tn+1 =
y(tn+1)− ymirror

v‖yn+1/2
+

{
v‖y

n(tn+1/2 − tn)− y(tn) + 2ymirror − ymirror
v‖yn+1/2

+ tn+1/2

}

=
y(tn+1)−����ymirror

v‖yn+1/2
+

{
v‖y

n(tn+1/2 − tn)− y(tn) +����ymirror

v‖yn+1/2
+ tn+1/2

}

tn+1 = tn+1/2

{
1 +

v‖y
n

v‖yn+1/2

}
− v‖y

ntn − y(tn+1) + y(tn)
v‖yn+1/2

(C.11)

As this point we need a further two steps before we find tn+1, namely:

• Solve Eqn. C.9 for tn+1/2.

• Solve Eqn. C.11 for tn+1.

For the first point the height of the loop top varies linearly as

y(tn+1/2) = VLT (tn+1/2 − tn) + y(tn).

Substituting y(tn+1/2) into Eqn. C.9 gives,

tn+1/2 =
1

(v‖yn − vLT )
{
v‖y

ntn + 2y(tn)− vLT tn − 2ymirrror
}
. (C.12)

For the second point substituting y(tn+1) = VLT (tn+1 − tn+1/2) + y(tn+1/2) into Eqn. C.11

gives,

tn+1 = tn+1/2

{
1 +

v‖y
n

v‖yn+1/2

}
+
{VLT (tn+1 − tn+1/2) + y(tn+1/2)} − y(tn)− v‖yntn

v‖yn+1/2

tn+1 =
1

(1− VLT
v‖y

n+1/2 )

{
tn+1/2{1 +

v‖y
n

v‖yn+1/2
}+

y(tn)− y(tn)− v‖yntn − VLT tn
v‖yn+1/2

.

}

Multiplying the top and bottom by v‖yn+1/2 gives,

tn+1 =
1

v‖yn+1/2 − VLT
{

(v‖y
n+1/2 + v‖y

n)tn+1/2 − v‖yntn − vLT tn
}
.

Substituting Eqn. C.12 into tn+1 gives,

tn+1 =
1

v‖yn+1/2 − VLT

{
(v‖yn+1/2 + v‖y

n)
(v‖yn − VLT )

(
v‖y

ntn + 2y(tn)− VLT tn − 2ymirror
)
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−v‖yntn − VLT tn
}
.

The loop top velocity is vLT is negative relative to the y-axis. Replacing all −vLT with |vLT | in

the above equation gives,

tn+1 =
1

v‖yn+1/2 + |VLT |

{
(v‖yn+1/2 + v‖y

n)
(v‖yn + |VLT |)

(
v‖y

ntn + 2y(tn) + |VLT |tn − 2ymirror
)

−v‖yntn + |VLT |tn
}
.

Since v‖yn+1/2 = v‖y
n + 2|VLT | this gives,

tn+1 =
1

v‖yn + 3|VLT |
{

2(((((
(((v‖yn + |vLT |)

(((
(((((v‖yn + |vLT |) [v‖y

ntn + 2y(tn) + |VLT |tn − 2ymirror]

− v‖y
ntn + |VLT |tn.

}
The above equation becomes,

tn+1 =
1

v‖yn + 3|VLT |
{
v‖y

ntn + 3|VLT |tn + 4y(tn)− 4ymirror
}
. (C.13)

C.3 Variation of ymirror with f(θ)

From initial studies using the simple CMT model it was found that with increasing pitch angle

θinit the mirror height ymirror keeps increasing. This posed the question whether the model is

still valid for the current choice of the starting pitch angle. A plot of the function f(θ) = cot(θ)
against θ in radians is given in the top left hand corner of Fig. C.2. For the case of model 1 the

initial conditions are φinit = 15◦ and αinit = 12.92◦. The top right hand corner plot in Fig.(C.2),

shows ymirror against pitch angle θ. It is clearly seen that ymirror has negative values which do

not fit the requirements of our model, since for negative values of ymirror the particle will escape

immediately. Hence, cutting out the negative range of ymirror, we only consider the positive range

(i.e; ymirror ≥ 0). A magnification of the same region is shown in the plot at the bottom left hand

corner. The horizontal blue line marks the point where ymirror = 0 and the vertical red line

indicates the point where θinit = αinit = 12.92◦. This is the point where lmirror = ltot. Since we

have the problem of ymirror increasing with increasing initial pitch angle, we wanted to investigate

how deceasing the slope of the function, f(θinit) = cot(θinit), would affect the behaviour of the

ymirror. Fig. C.2 show the function f = cotq(θ) for power indices of 0.1, 0.25, 0.5, 0.75 and 1.

The table of results below shows the values of y(t), ymirror and y(t) − ymirror for the different

powers of q, when the trap has completely stopped. Firstly in all tables the dependence of ymirror
on θ can be seen. In table C.1 for a power index of 1, the lowest and highest values of ymirror
are 1.40 and 2.13 respectively. Considering the fact that yinit = 4.2 these values for ymirror are
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Figure C.2: Top left:plot of the function f(θinit) = cot(θinit). Top Right: gives the total ymirror
range plotted against θinit. Bottom left: gives the total ymirror range plotted against θinit in the
positive range. For this graph the vertical red line indicates the point where θi = 12.92◦. The
horizontal blue line marks the point where ymirror = 0. The point where these to lines meet is
where θi = αi and lmirror = ltot which is one of the assumptions we make in our model. bottom
right: Graph of ymirror against θ for different power indices of q.

Table C.1: Table with values of initial pitch angle θinit, y(t), ymirror and y(t) − ymirror. This
results are based on f = cot(θinit), α = 12.92◦, yinit = 4.2, φinit = 15◦ and ystop = 2.73 which
are all fixed quantities.

θ◦init y(t) ymirror y(t)− ymirror
19 2.38 1.40 0.98
20 2.46 1.55 0.91
21 2.55 1.69 0.86
22 2.62 1.81 0.80
25 2.48 2.13 0.34

already at a noticeable height. For a power index of 0.75 in table C.2 sees these values drop to

1.10 and 1.73 for the minimum and maximum values for ymirror respectively. It is the same story

in table C.3 and C.4 where the values of ymirror are decreasing with decreasing power indices.
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Table C.2: Same quantities as discussed in Table C.1. Results based on f = cot0.75(θinit).

θ◦init y(t) ymirror y(t)− ymirror
19 2.612132 1.102667 1.509465
20 2.668173 1.228899 1.439274
21 2.719261 1.345147 1.374114
22 2.382331 1.452678 0.9296534
25 2.533715 1.732754 0.8009605

Table C.3: Same quantities as discussed in Table C.1. Results based on f = cot0.5(θinit).

θ◦init y(t) ymirror y(t)− ymirror
19 2.442475 0.7717299 1.670745
20 2.480824 0.8655205 1.615303
21 2.515904 0.9530752 1.562829
22 2.548073 1.035128 1.512945
25 2.629913 1.254055 1.375859

Table C.4: Same quantities as discussed in Table C.1. Results are based on f = cot0.25(θinit).

θ◦init y(t) ymirror y(t)− ymirror
19 2.721513 0.4054337 2.316078
20 2.270561 0.4576995 1.812862
21 2.284618 0.5071578 1.777460
22 2.297007 0.5541170 1.742890
25 2.325282 0.6824768 1.642805

Table C.5: Same quantities as discussed in Table C.1. Results based on f = cot0.1(θinit).

θ◦init y(t) ymirror y(t)− ymirror
19 2.628659 0.1671281 2.461531
20 2.628334 0.1894398 2.438894
21 2.627151 0.2107258 2.416425
22 2.625141 0.2310953 2.394046
25 2.614351 0.2875900 2.326761

In table C.5 the results for f = cot0.1(θinit) are shown. All values of ymirror are substantially

smaller than their corresponding y(t) value. We naturally choose f = cot0.1(θ) as our function

and use it all through the cases discussed in the next section.
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Normalisation for the Energy Loss Term

D.1 Normalisation of the Coefficient dv
dt

Th normalisation of the collisional coefficient for dvdt = −K24πρ q4

m2v2
ln Λ is given in the follow-

ing way:

v0

t0

dṽ

dt̃
= −K24πρ

q4

m2v0ṽ2
ln Λ

= −K24πρ
q4

m2

1
ṽ2

(
T0

4

L0
3

)
ln Λ. (D.1)

Using the gyro-frequency of an electron ωe = ρq2

mε0
gives

dṽ

dt̃
= − ln Λ

4π
ωe

4

ρ

(
T0

4

L0
3

)
1
ṽ2
, (D.2)

where coefficient ln Λ
4π

ωe4

ρ

(
T0

4

L0
3

)
is dimensionless. Since ρ q4 ln Λ

4πε02m2

(
T0

4

L0
3

)
gives us a dimension-

less quantity we scale the density, time and length in the code in the following way:

ρ = ρ0ρ̃,

T = T0T̃ ,

L = L0T̃ ,

where we choose L0 = 107m and T0 = 100s as the normalisation for length and time in the code.

If for example, we choose to normalise the density by ρ0 = 1015 m−3 then we would get,

ρ0ρ̃
q4 ln Λ

4πε0
2m2

(
T0

4

L0
3

)
=

ln Λ
4π

[
1.013× 109

]
ρ̃, (D.3)

where the charge of an electron q = 1.0622 × 10−19C, permittivity of free space ε0 = 8.8542 ×
10−12Fm−1, mass of an electron m = 9.1094 × 10−31kg and we choose a coulomb logarithm

ln Λ ≈ 20 for a coronal temperature of 106K (Priest, 1982). For a typical velocity normalisation

187
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in our code

v ≈ 400
L0

T0
= 4× 107m

s
.

Therefore ṽ2 = 1.6× 105 and the order of dṽ
dt̃
≈ ρ̃109

104 ≈ 104.
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M. Karlický and M. Bárta. X-Ray Loop-Top Source Generated by Processes in a Flare Collapsing

Trap. ApJ, 647:1472–1479, August 2006. doi: 10.1086/505460.

https://library.st-andrews.ac.uk/search/Y?search=keith+grady
https://library.st-andrews.ac.uk/search/Y?search=keith+grady


Bibliography 191
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