
Access Control for Semantic Information Systems

Sam Moffatt

Department of Maths and Computing
Faculty of Science

University of Southern Queensland

∆

Thesis submitted for the Degree of Master of Computing at the
University of Southern Queensland

· 2010 ·

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11040891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Access control has evolved in file systems. Early access control was limited and
didn’t handle identities. Access control then shifted to develop concepts such as
identities. The next progression was the ability to take these identities and use lists
to control what those identities can do. At this point we start to see more areas
implementing access control such as web information systems. Web information
systems has themselves started to raise the profile of semantic information. As
semantic information systems start to expand new opportunities in access control
become available to be explored.

This dissertation introduces an experimental file system. The file system ex-
plores the concept of utilising metadata in a file system. The metadata is supported
through the use of a database system. The introduction of the database enables
the use of features such as views within the file system. Databases also provide a
rich query language to utilise when finding information. The database aides the
development of semantic meaning for the metadata stored. This provides greater
meaning to the metadata and enables a platform for rethinking access control

Keywords: access control, semantic information systems, web infor-
mation systems, XACML, file systems

Tip 1: Care about your craft.

The Pragmatic Programmer

Contents

I Introduction 1

1 Introduction 2

1.1 Overview . 2

1.2 Background . 2

1.2.1 Single User Systems . 2

1.2.2 Mainframes and time sharing 3

1.2.3 Networking . 3

1.2.4 The Orange Book . 3

1.2.5 Web Information Systems . 4

1.3 Concepts . 5

1.3.1 Semantic Information Systems 5

1.3.2 Identity Management . 5

1.3.3 Access Control . 6

1.3.4 Permissions . 6

1.3.5 Capabilities . 7

1.3.6 Roles . 7

1.4 Summary of the Dissertation . 7

II Review 9

2 Literature Survey 10

2.1 Access Control Basics . 10

2.2 Access Control Lists . 10

2.3 Role-Based Access Control Models 11

i

2.4 Rule Set Based Access Control . 11

2.5 Relation Based Access Control . 13

3 Historical Review 14

3.1 Introduction . 14

3.2 Identity Management . 15

3.2.1 Local Identification . 15

3.2.2 Pluggable Authentication Modules 15

3.2.3 Distributed Identification . 16

3.2.4 Decentralised Identification 16

3.3 Database Systems . 16

3.3.1 Basic Permissions . 17

3.4 File system Permissions . 17

3.4.1 UNIX Permissions . 17

3.4.2 POSIX ACL on Linux . 19

3.4.3 FAT Permissions . 19

3.4.4 ext2+ Permissions . 19

3.4.5 NTFS Permissions . 20

3.4.6 Novell File system Permissions 24

3.4.7 HFS+ . 27

3.4.8 ZFS . 30

3.5 Distributed File systems . 30

3.5.1 CIFS . 31

3.5.2 NFSv4 ACLs . 31

3.6 Web Based Applications . 31

3.6.1 RelBAC . 31

3.6.2 phpGACL . 31

3.6.3 Joomla! 1.6 . 32

3.6.4 Moodle . 32

3.6.5 Sharepoint . 33

3.6.6 XACML . 33

3.7 Conclusions . 34

ii

4 Scenarios 36

4.1 Basic Concepts . 36

4.1.1 Entities . 36

4.1.2 Actions . 36

4.1.3 Objects . 36

4.1.4 Relationships . 37

4.2 Current Scenarios . 37

4.2.1 UNIX File system Permissions 37

4.2.2 LDAP Permissions . 38

4.2.3 Facebook . 39

5 Examination of Present Systems 42

5.1 Investigation into the behaviour of file systems 42

5.1.1 ext2/3 behaviour . 42

5.1.2 HFS+ . 45

5.1.3 NTFS . 45

5.2 Implementation of NTFS by means of XACML 49

5.2.1 Sample of NTFS Access Rules 49

5.2.2 Sample of NTFS Access Rules in XACML 50

5.3 Examination of Privileges and Capabilities 57

5.4 Comparisons . 57

III Experimentation 61

6 MDFS Purpose 62

6.1 The importance of metadata in access control 62

6.2 Metadata Filesystem Background . 63

6.2.1 MDFS Purpose . 65

7 MDFS Specification 66

7.1 Requirements . 66

7.2 Use Cases . 66

7.3 Domain and Range . 67

7.4 Metadata System API . 68

iii

7.4.1 View specification . 68

7.4.2 Class Specification . 68

7.5 Input and Output Formats . 69

7.6 View and Class Interface Format . 69

8 MDFS Design 70

8.1 MDFS Architecture . 70

8.2 Functions and Algorithms . 70

8.2.1 FUSE API Documentation 70

8.2.2 Database Classes . 73

8.3 Scenarios . 74

8.3.1 Existing System . 74

8.3.2 MDFS System . 75

9 MDFS Implementation 77

9.1 Base Infrastructure . 77

9.1.1 FUSE . 77

9.1.2 Base Design . 77

9.2 MDFS Implementation . 78

9.3 Prototype . 80

9.4 Environment . 80

9.5 Operating Instructions . 81

9.6 Experimental Scenarios . 81

9.6.1 The Classes Directory . 81

9.6.2 The Views Directory . 82

9.6.3 Handling Metadata . 83

9.6.4 File system Throughput . 84

9.7 Access Control Model . 85

9.8 Further opportunities . 85

IV Conclusion 87

10 Concluding Remarks 88

10.1 Access Control Architecture Scenarios 88

iv

10.1.1 Information Overload . 88

10.1.2 XACML . 89

10.2 Future Work . 89

10.2.1 Universal access control . 89

10.2.2 Social access control . 90

10.3 Future access control . 90

Glossary 93

Bibliography 96

v

List of Figures

2.1 Overview of the Generalized Framework for Access Control [71] . . . 12

2.2 The ER Diagram of the RelBAC Model [67] 13

3.1 Actions under a NTFS file system 20

3.2 A screenshot of the advanced permissions dialog from Windows XP . 26

4.1 Relationship between objects . 37

4.2 An action relationship between an entity and an object 37

4.3 Common OpenLDAP ACL . 39

4.4 Screenshot of Facebook’s default security 40

4.5 Screenshot of Facebook’s post security customisation screen 40

5.1 Warning about deny privilege from Microsoft Windows XP 48

5.2 Family tree of file systems and access control standards 60

7.1 MDFS Use Case . 67

7.2 View or Class Definition Format . 69

7.3 View or Class Definition Format . 69

8.1 Routing Example . 70

8.2 MDFS Core Classes . 73

8.3 MDFS Relationship Table . 74

8.4 MDFS Classes Table . 74

8.5 Current layout of courses . 74

8.6 Path structure . 75

9.1 FUSE Structure [5] . 78

vi

9.2 MDFS Interaction Diagram . 79

9.3 MDFS Class Hierarchy . 80

9.4 MDFS Demonstration Class Hierarchy 82

9.5 MDFS Context Switches . 85

9.6 Sample H.264 576p Video Playing in VLC from MDFS volume . . . 86

vii

List of Tables

3.1 MySQL permissions [34] . 18

3.2 ext2 Extended Attributes . 20

3.3 NTFS Generic Rights (analogous to UNIX “rwx”) 21

3.4 NTFS Standard Rights (applies to all objects): 21

3.5 NTFS File Specific rights . 21

3.6 NTFS Directory Specific rights . 22

3.7 NTFS Inheritance Flags [37] . 24

3.8 Access Inheritange Flags [15]; Legend for flags in Table 3.9 25

3.9 Inheritance Modes . 25

3.10 Audit Flags [43] . 25

3.11 Novell Trustee Rights [11] . 27

3.13 Selected Novell File and Directory Attributes [10] 28

3.14 Translation of XACML terms to GFAC terms 34

5.1 Comparison of functionality between various file systems 58

viii

Acknowledgments

To my supervisors Ron Addie and Richard Watson for working with me throughout

this process.

ix

Part I

Introduction

1

Chapter 1

Introduction

1.1 Overview

Access control today presents two significant problems. The first is the overwhelm-
ing complexity which daunts the average user. The second problem is the issue of
scaling. Some systems provide sophistication at the expense of rarely used com-
plexity. Other systems provide limited flexibility which is further hampered by user
interaction issues. A method needs to be developed that presents a middle ground.
The ability to define access control rules without compromising flexibility but while
also being able to apply to a large amount of information easily.

This dissertation aims to cover existing systems and their behaviours looking at
how they operate and issues with the systems as they currently stand. This is done
through a combination of literature survey, historic review and practical experi-
mentation of modern file systems. The dissertations also introduces an experiment
in metadata file systems, MDFS, and covers its purpose, specification, design and
final implementation. The conclusion of the dissertation takes time to examine cur-
rent problems not otherwise identified, future problems and potential solutions in
addition to areas requiring further research.

1.2 Background

1.2.1 Single User Systems

File systems are one of the most important parts of an operating system’s design.
File systems provide the ability to persistently store information across reboots and
are now an important part of operating system security. Early operating systems
only had the concept of a single user that would operate the device. This lead to file
systems that did not need to record file “ownership” as it was not a feature of the
operating system. The ability to define per user access controls was also absent un-
der this model. Environments such as Microsoft Disk Operating System (MSDOS),
which was a single user environment, featured a file system called “File Allocation
Table (FAT)” which didn’t record file ownership or user specific permissions. FAT
did have some limited permissive attributes to control if a file was read-only or hid-
den. Files marked read-only couldn’t be edited and files marked as hidden didn’t
appear in directory listings. Other file systems, such as Apple’s Hierarchical File
System (HFS) and Mac OS Extended (HFS+) have a similar option which the user
can “lock” files to prevent any modifications being applied to it. Early versions of
Apple’s file systems (Macintosh File System (MFS) and HFS) also didn’t record the
owner of the file.

2

3 1.2 Background

1.2.2 Mainframes and time sharing

Mainframe systems developed and deployed at this time introduced the concept of
multiple users and time sharing. This introduced the concept of a user as a discrete
entity and that multiple users could be using the system at the same time. Multiple
users could also be a part of different access control levels. An implementation of
this can be found in Multiplexed Information and Computer Service (MULTICS)
whose security architecture was heavily influenced by the Department of Defence.
MULTICS introduced many revolutionary concepts in general however in the secu-
rity realm two significant features were introduced. The first is that of hardware
supported access control. The “ring” system that is found on modern computers
was developed with MULTICS. Rings were a method of ensuring that a lower appli-
cation couldn’t access the memory of a more privileged application. This could be
considered as one of the first protected memory implementations. The second was
the ability to “label” binaries, users and data. The classification system used for
this was derived from the US Department of Defence’s existing security classifica-
tion model (e.g. top secret, secret, classified, unclassified, etc). A hierarchy existed
where users of a lower level couldn’t read data from a higher level but could create
data at a higher level than their security label. The concept of read down (a more
privileged user can read items at their own level and lower levels) and write up (a
user can create items at their level or a higher level but not a lower level) is the
enforcement of this access control model.

1.2.3 Networking

UNIX emerged as a simpler implementation of MULTICS however many of the
concepts explored in MULTICS can be seen in UNIX. UNIX took parts of the
existing MULTICS access model and modified it to user owners and groups for
files instead of labelling files. This meant that a user could own their own files,
control their own access, assign the file a group and then control its access as well
as controlling access for anyone in the system. UNIX was the natural evolution
from multiple users with limited access controls to multiple users with a primitive
discretionary access control system (limited to three categories: self, group and
everyone). Multiuser environments such as UNIX required multiuser access controls
and caused the creation of the POSIX standard. POSIX.1 supports the concepts of
having a user who owns a file, a group who owns a file and the ability to apply generic
access control rules for everyone who is a valid user in the system. These access
control models are still available in many file systems with Linux supporting POSIX
standards and Windows supporting POSIX compliance modes [24] in addition to
Apple’s Mac OS X 10.5 being certified as POSIX compliant [27]. POSIX compliant
operating systems all permit the same level of functionality with access controls.
Prior to the advent of networking, multiuser time shared systems existed which
provided their own access control models.

1.2.4 The Orange Book

The United States Department of Defence in 1983 issued a document called the
“Trusted Computer System Evaluation Criteria”, otherwise known as “The Orange
Book”. The Orange Book describes various levels of security from D (the system
evaluated didn’t meet the requirements of a higher division) to A (inclusive of the
requirements of all other levels, called “Verified Protection” where the system has
been formally verified to meet the requirements). With the development of the
current Windows security model, Microsoft appears to have aimed to achieve the
C2 compliance as defined by the criteria.

Chapter 1: Introduction 4

Microsoft notes that the Access Control List (ACL) model was a part of their
design decisions for the Windows security system including the default Windows
NT file system, NTFS [84]. The C2 security certification requires “discretionary
access control” to permit the creator of the file to assign who might access the files
contents and how they do this so ACLs became an important feature in NTFS. C2
defines other security behaviours as well that aren’t distinctly a part of file system
design such as logging requirements [85]. The UNIX world also had its own version
of ACL with the draft and now abandoned POSIX.1e standard.

The POSIX.1e standard provided similar functionality to support much of the
requirements of C2 level and even support for the B level which requires mandatory
protection systems. Unfortunately POSIX.1e was abandoned in 1998 while still
in draft form, however Mac OS X supports a modified form of POSIX.1e ACL
security [16]. The New Technology File System (NTFS) security model seems to
have been replicated in the development of Network File System (NFS) version
4 [93]. This model is also used with ZFS [21] as well in place of supporting POSIX.1e
ACL permissions (though POSIX.1 is supported).

It appears that the model developed by Microsoft is quite robust and is subject
to emulation. Microsoft has continued their work in file system research with the
development of Windows Future Storage (WinFS). WinFS itself exists within the
standard Windows security model. This has meant that Microsoft hasn’t innovated
with the file system’s access control model [83]. WinFS as a project has been
terminated for the time being thus it is unlikely that Microsoft will release or update
anything relating to it in the near future.

1.2.5 Web Information Systems

While operating systems and file systems have a long history of the development of
file systems, another area provides interesting developments in the space of access
control: web information systems. As the web has shifted from something that
is mostly static into something that is incredibly dynamic, the need for access
controls has changed. Web information systems have permitted a myriad of different
situations that need controlling of actions that a person can complete. The web
progressed from being a mostly read only medium into a medium that could be
used to update itself, the read-write web.

The first wave of online editable web pages appeared in the form of e-commerce
solutions. Paul Graham’s “ViaWeb” application permitted customers to create an
online store through a completely web interface and is regarded as one of the earliest
e-commerce applications on the web. The system had two basic levels of access
control: an administrator account that can edit items in the store and accounts for
shoppers of the system [76].

Other systems have different requirements. Consider phpbb2, a PHP based
bulletin board system. phpbb2 had two major modes of functionality: a site mode
and an administrator mode. Within the site, access can be granted to subforums of
the main board. Access control rules can control if a user can see a forum, if they
can add posts, if they can edit posts, whose posts they can edit (e.g. they may not
be able to edit others posts but they can edit their own posts; or they might not
be able to do this), if they can delete posts and what limitations are imposed there
and if they can or can’t comment on existing posts. Administrator access permitted
control over the entire system including user and access management. This system
demonstrates access control lists with a list of domain specific actions.

Web sites have also evolved from static websites using unchanging HTML into
dynamically generated pages created from databases. These systems are known as
web content management systems [54, 45, 53] and provide tools to manage editing
and compositing content together to form web pages. Web content management

5 1.3 Concepts

systems like Joomla! [48], Wordpress [55] and Drupal [46] have become popular
tools for maintaining web sites.

Web content management systems have their own access control model. Initial
design includes an administrator who can author content then having registered
users who can submit items to the system. The final stage results having more
levels of access with differing abilities in a generic sense. It includes having more
control with discretionary access control to delineate fine grained control of access
that are available for the particular system. A great example of this is the evolution
of access control in Joomla!. Initial Joomla! releases had very little access control
which slowly developed into a tiered primitive access control model in Joomla! 1.0
and now in the upcoming Joomla! 1.6 features a full discretionary ACL system.

The web has also evolved a new form of application: the social networking tool.
Today large amounts of information about relationships between people are stored
in web services such as Facebook. Facebook allows people to become ‘friends’ with
people and define the sort of relationships that they have. For example you can
specify someone as a friend, a co-worker or similar. This has lead to the proposal
of “relation based access control” or “RelBAC” [67]. Relation based access control
uses these relationships between users as a basis of defining rules for access to items.

1.3 Concepts

Within this dissertation I wish to examine some concepts about how we treat ac-
cess control, permissions and identity management in various systems. However in
doing so, I need to review what I mean by access control, permissions and identity
management.

Many of these phrases are used in reference to a multitude of different systems
each with a different meaning assigned to them.

1.3.1 Semantic Information Systems

Semantic information systems are systems in which extra metadata is associated
with an object. The most prevalent example of a semantic information system is
the effort to build a semantic web such as Dublin Core [70,47]. This effort to make
the web pages more descriptive in their metadata in a uniform and non-proprietary
manner involves a number of different techniques of associating extra metadata with
a page. Within the file system context, the push to develop metadata file systems
such as WinFS [83] could be also nominated as a semantic information system. In
a metadata file system, the metadata that could potentially be locked up in the
contents of the file are exposed to an external interface analogous to a semantic
web style system. A metadata file system could also model the capabilities that the
semantic web presents within the file system context.

1.3.2 Identity Management

Identity management is the technique where a distinct entity is verifiably identified
by a particular system. Entities could be intelligent agents or services that run in a
system however it is more likely that the entity is a human operator. Bishop states
that “identity is simply a computer’s representation of an entity” [62]. Bishop
defines a principal as a unique entity and that an identity specifies a principal.
Identity management aims to authenticate that a particular entity is who they
claim to be and is a basic requirement of any access control system. Without such
a system to uniquely and verifiably authenticate and thus identify that a given
entity is who they claim to be then there is no point in further access control

Chapter 1: Introduction 6

restrictions. An access control system which cannot verify the identity of its users
can’t ensure that the rules applied are appropriate. Identity management can use
multiple techniques for authenticating an individual, the most popular of which
is a username with a password. Other methods include certificates, smart cards,
token generators and biometrics. One or more of these methods might be used
to verify a persons identity however typically only a username and password is
deemed sufficient. This dissertation makes the assumption that an entity is uniquely
identified by some form of an identity management system.

1.3.3 Access Control

Access control is defined as a method for granting or restricting entities to complete
actions on objects. Access control systems exist to provide a mechanism for ensur-
ing access is controlled to given objects. Access control systems typically work by
examining a set of rules known as “permissions” to evaluate if a entity should be
permitted to complete a nominated action upon a given object. Access control sys-
tems define behaviours that should occur in particular circumstances. An example
of such behaviours could be the precedence of a grant or the default grant.

1.3.4 Permissions

Permissions are the rules that make up the constraints of the access control system.
Permissions in the strictest sense are a form of metadata. A permission could be
described as a tuple of five fields:

entity — action — object — grant — [inheritance]

An entity may complete a particular action upon a given object if they are
granted to do so which may optionally be inherited to child objects.

The entity represents something requesting to complete an action upon an ob-
ject. An entity might be a user, a group, a role, a service or an autonomous agent.

An action is a particular task that can be completed. This could be as simple
as reading, writing or deleting an object. Actions vary between system and there
could be an action to complete a login.

An object represents the resource being protected. This could be a file, a folder
or some other abstract resource that needs to be represented, such as a computer
or a socket.

The grant describes if the rule is permissive or restrictive. A grant may either be
an allow, a deny or an inherit. In some systems the inheritance of a given rule might
be implicit, it might not feature inheritance or inheritance is controlled through a
distinct field. In many systems if an explicit rule is not matched the system will
have a implicit deny to match the request.

The inheritance describes whether this particular rule should be inherited and
how this should occur. This permits control over whether a rule applies to child
items stored within the entity or only to the target entity. Inheritance rules only
apply to container items — e.g. items that can contain other items. Non-container
items do not have any inheritance ability. Inheritance rules may apply to both
the entity itself and its child items in addition to not inheriting (only applying
to the entity) or inheriting to just its children. In some systems inheritance of
a permission rule is explicitly stated however in other system inheritance may be
implicitly followed through a hierarchy unless explicitly overridden.

7 1.4 Summary of the Dissertation

1.3.5 Capabilities

Capabilities or Privileges are system level access controls. They don’t necessarily
provide fine grained access control to items but provide access control to generic
items. Examples of capabilities for Linux is the ability to permit an application to
bind to a privileged port without requiring the full root credentials (e.g. a port under
1024). Microsoft calls the equivalent of capabilities in Windows “privileges” and
defines various privileges such as the ability to take ownership of a file, impersonate
a user or load drivers.

It should be noted that the Linux implementation of capabilities is best described
as stalled and is implemented differently to the way Windows handles its privilege
system. Windows privileges are granted to a user or a group of users and can be
exercised at any point by these users.

A more detailed comparative discussion on privileges and capabilities is covered
in 5.3.

It should be noted that Windows privileges are distinct from the privileges used
in Structured Query Language (SQL). SQL privileges are analogous to actions as
described in 1.3.4.

1.3.6 Roles

Roles are collections of permissions that can then be assigned to users or groups of
users. Role based access control, covered in 2.3, can be emulated through different
means. Roles may or may not have users. Roles are distinguished from groups
as a group’s primary purpose is to contain users while the primary purpose of a
role is for permissions to be assigned to it. In a role based system the entity is a
role not a user or a group. In true role based systems, users and groups cannot
be assigned permissions directly. Roles are only highly effective in situations where
access control scenarios can be effectively classified. Lack of easy classification can
lead to excessive proliferation of roles that can make them less than effective for
management. So while roles can be useful in a number of situations, those situations
aren’t considered in great detail in this dissertation. Coverage of roles is limited
within this dissertation with more detail in 2.3 and 3.6.5.

1.4 Summary of the Dissertation

In this chapter I have introduced a background of various systems and a quick
overview of where access controls in various systems have come from and where this
work fits in. It provided a short introduction to access controls in file systems, in
web systems and databases as well as access controls in general.

The second part includes an in depth literature survey and also some personal
research into the behaviour of various systems. The first chapter of part two handles
a review of literature in the area of access control whilst covering in itself a portion
of access control history. The second chapter handles a more historic review of
existing implementation and the choices that have been made within them. It
studies varies methods of implementing access control in file systems, database
systems and web information systems. The third chapter covers scenarios of access
control focusing on existing access control systems. The last chapter handles a
detailed examination of present file system access control models including exposing
interesting behaviours in file systems.

The third part introduces MDFS — a metadata file system developed for re-
search. The file system is scoped out in the first chapter with an examination of the
purpose of the system. The second chapter of the part lays out the specification of
the file system. The third chapter handles the various design aspects of the system

Chapter 1: Introduction 8

before the final chapter details the implementation of the system and examples of
the system at work.

The final part concludes the dissertation and introduces some access control
scenarios with possible solutions. Areas of future work and future access control are
introduced. This part also includes a glossary of terms followed by the bibliography.

Part II

Review

9

Chapter 2

Literature Survey

In this chapter we examine literature relating to access control, in particular some
basic theories pertaining to access control. These theories, such as access control
lists and role based access control, are implemented in the access control systems
examined later in this chapter.

2.1 Access Control Basics

Access controls at a basic level define actions that might be permitted or restricted.
Access control can refer to any type of action that a user might or might not be able
to complete over an object. Commonly file systems have two basic access controls:
the ability to read an object and the ability to write an object. UNIX operating
systems implement a third permission called “execute” which covers which files the
kernel will load code to execute with [60]. At the most basic level a set of permissions
is granted to the owner of the object and to all other identities within the system.

Access control systems take several different forms. The typical UNIX style [60]
is boolean: it works by granting permissions explicitly and anything not granted is
a denied. Other systems, such as NTFS, have the tristate permissions: they per-
mit explicitly granting permissions, explicitly denying permissions and inheriting
permissions (default state). NTFS introduces the concept of inheritance for per-
missions as well so if a permission isn’t specified at a lower level of the directory
tree, the directory tree is traversed from the leaf directory through the ancestors to
the root directory until an explicit permission is found. If no permission is found
then a deny is used in this case. Moodle not only has permit, deny and inherit but
it also introduces the concept of prohibit. Prohibit prevents the user from executing
that action from that level down the tree in the context system. Prohibit will also
prevent a permission from being granted at a lower level when this would otherwise
be possible.

2.2 Access Control Lists

Access Control Lists provide a list of defined controls (such as read, write, execute)
and providing the ability the apply rules for these permissions to a list of users.
This is distinct from the UNIX model where access rights in relation to a file are
defined for a single user (the owner) and a single group (the identity of which may
vary). ACL based systems permit much more fine grained control of permissions
by permitting owners of objects to grant multiple groups or users varied level of
access to the files. In its simplest form, an Access Control List could be considered

10

11 2.3 Role-Based Access Control Models

similar to the list that a bouncer of a club has: users on the access list are granted
the permission to enact the action of entering the club.

2.3 Role-Based Access Control Models

Role Based Access Control Models introduced by Sandhu et. al. [91] provide a model
for provision permissions to a ’role’ within a given system. Roles permit a user to
assign a set of predefined permissions to an entity which can then be associated
with a set of users. A key difference between groups and roles is that with RBAC
the permissions applied to roles are known in a central location or database. By
contrast, a typical file system where the permissions granted to individual groups
can be spread across the file system. The decentralisation of access control rights
in a file system can make auditing hard to determine exactly which permissions a
particular user or group may have. Thus a strong advantage of role based access
control is that the permissions of a user can be added or removed easily from a
single location which controls the access.

RBAC also solves the problem of organisational permissions change. If a person
starts in a new position they can be assigned the role of their position and have
the appropriate permissions applied to them. This also works when permissions are
added or revoked to a role as it then applies to all users who are associated with
that role. Roles are also presented in a manner in which they can form a tree to
provide inheritance for permissions.

A good way to think of a true RBAC is that permissions are always applied
to groups of users, even if its group with one or even zero users in it, and never
directly to the users. This means the exact permissions of a user is easily auditable
by examining their groups and thus the permissions granted to the groups.

Some of the concepts introduced in RBAC are interesting and perhaps could be
modelled in part by MDFS, however, the objectives of Role Based Access Control
appear to be largely unrelated to the use of metadata in connection with access
control. Due to the design of the file system as a database, MDFS could implement
roles if permissions can be assigned to abstract entities and then these permissions
are applied to related entities (e.g. a ’role’ entity could be created with permissions
assigned to it and a ’member’ relationship to other objects which could then use
these permissions.

Role Base Access Control has developed into a few filesystems and can be seen
as the basis of others. At the low end of the scale, if we consider that RBAC
is effectively groups of users with permissions attached to the groups, one could
considered that RBAC style permissions are available in NTFS if the permissions
of users were removed. Bohra et. al. [63] have applied RBAC to a standard NFS
mount using a file system proxy that they have developed. This system in this
situation maps users back to active roles within the system.

2.4 Rule Set Based Access Control

Rule Set Based Access Control [14] (RSBAC), is an access control methodology
for the Linux kernel. RSBAC provides for mandatory access control (MAC), access
control lists (ACL) and role compatibility (RC) security models. RSBAC appears to
also work with the Linux capabilities system as well. This is considered an extension
of Generalized Framework for Access Control [71] which proposes rule set modelling.
Most of this work is focused around the UNIX security model requirements however
it is obvious that it is applicable elsewhere.

The GFAC model exposed in Figure 2.1 depicts the flow of access between

Chapter 2: Literature Survey 12

Figure 2.1: Overview of the Generalized Framework for Access Control [71]

different aspcts. The access enforcement facility (AEF) which controls access to an
object by a subject and can update attributes of a subject. The access decision
facility (ADF) which determines if a particular subject can have access to a given
object. The access control information (ACI) stores attributes that the ADF uses
to determine if access should be granted, these are about either the subject or
the object. The access control rules (ACR) are the rules that the ADF makes its
decision with the input of the ACI information.

Olson and Abrams describe the main aspects of this system in an abstract
manner [79]. Information and attributes about the subjects and objects (stored in
the ACI) are combined with the rules (ACR) and which determines and enforces
access (AEF). These terms are define in their work as:

• Information: attributes (characteristics or properties) of subjects
and objects, and context (additional information used in the access
control decision making, such as time of day).

• Rules: regulating principles that implement the access control pol-
icy by adjudicating access requests by subjects to objects.

• Authority: the set of agents who determine the rules and specify
and assign values to attributes and context; multiple authorities
may exist and have different spans of control.

It is apparent that rule based access control and the Olson and Abrams “Generic
Framework for Access Control” has played a part in later work. Other concepts
introduced in their paper include:

• A discussion on policy choices around “Confidentiality vs. Integrity vs. Avail-
ability” and “Maximized Sharing vs. Least Privilege”, “Granularity of Con-
trols” relating to Mandatory Access Control (MAC) and Discretionary Access
Control (DAC).

13 2.5 Relation Based Access Control

• There is discussion over controls relating to attributes of a user which is based
on in part their role but also other attributes of the person. This includes their
employment state (e.g. no contractors) or perhaps their nationality (e.g. no
foreign nationals).

• There is discussion around using different attributes not relating to either
the subject or the object to make a decision, entitled “external conditions”.
Examples provided include the time, location and even some external state
(e.g. military readiness).

2.5 Relation Based Access Control

Relation Based Access Control (RelBAC) is an access control methodology which
utilises the relationships between entities to form access control rules [67]. An ER
diagram of the model, shown in Figure 2.2, shows a subject—permission—object
relationship. RelBAC makes use of description logic to express the concepts in a
formal manner. RelBAC is heavily guided by work in the area of web information
systems.

Figure 2.2: The ER Diagram of the RelBAC Model [67]

Chapter 3

Historical Review

3.1 Introduction

In this chapter we examine an implementation history of access control across var-
ious systems. As access control has evolved, various stages are examinable through
looking at the systems that were implemented. While the literature review focused
on current literature in file systems and concepts that are still evolving in addition
to more historic references, this chapter will cover reports primarily from software
vendors about what they have implemented or defined standards.

A historical review is important because it allows the charting of the historical
development of access control. As new access control systems are devised they
are developed from the understandings of previous systems. This is grouped into
a selection of major areas of study from database systems to web based systems
with each section containing material from the relevant area of study. A metadata
file system may be thought of as a file system in which attributes associated with
files are also stored, and may be accessed, via a database. Web applications also
require complex access control mechanisms which could readily be implemented as
a meta-data file system.

Access control is implemented differently depending on perspective. Take for
instance databases where access control is applied to the server or schema level but
typically not at the row level. Normally with a database if you can select from
a table then you can select from all rows of the table: there aren’t any row level
restrictions. File system’s work on a much lower level with permissions on the actual
instance of the file not on the actual file system itself or even the directory. As such
file system’s are concerned more about permissions of the instance as opposed to
the database which is concerned more with schema level permissions in general.

Metadata file systems have some characteristics of traditional file systems and
some of database systems. Further to this, a metadata file system mimics function-
ality that is available in modern web based permission systems. Web based systems
exist within the bounds of a database system but also have their own model of
permissions that are implemented by the web application themselves.

Web based systems can implement very simple permissions — there might only
be two levels: a user who is registered can do everything and a user who isn’t
registered, an anonymous user, can do nothing. Web based systems can also scale up
to be similar to full role based systems. Oracle’s PeopleSoft product is an example
of this where the web interface is controlled by an extensive set of definable roles to
which a user can be assigned. These roles can also be granted based on the users
status. For example a manager who supervises staff might be granted the role to
be able to view their staff’s leave requests and current leave balances. This in part

14

15 3.2 Identity Management

involves relational awareness: a manager should only be able to view the leave of
their own staff and no others. So in this case the action is to view a subordinates
details.

Individual systems have unique features which make them behave in distinct
ways around their access control systems, of which the execute permission is a
good example. In file systems it is used to restrict which files might be executed
by the kernel, either binary or script (although script applications can usually be
executed individually by their interpreter presuming it is executable). Any user
might set an executable bit on a Linux operating system which makes it limited for
use access control in general. When we look at the similar execute permission in
database systems, the access control system is capable of more detailed control: a
particular user might be able to create an executable routine but may not have the
permissions to execute them. Additionally a user might be able to execute a given
set of routines, they are just unable to execute a new routine they have written.
So while in the Linux operating system, the owner of the object can control which
actions are accessible, in a database system the user has to be given the ability to
grant a particular action before the user can permit a given action (e.g. owning an
object doesn’t necessarily permit control of its permissions).

3.2 Identity Management

As operating systems these days almost entirely support the concept of multiple
users, this support needs to be reflected in the implementation of file systems.
Further complicating this task is the advent of remote file systems which means
that a users identity might not even be stored locally to the file system. As most
operating systems define users, we need to identify a user to a given object within the
file system. While metadata file systems might change the way users are identified
and stored within the system, we will not examine this in detail and accept that
the user can be identified and verified external to the problems presented.

3.2.1 Local Identification

The first step from a single user system is to a locally identified multiple user
system. In UNIX based systems, users are stored in the “/etc/passwd” file with
their username, user identifier, their group. User authentication is handled by a
privileged process accepting a username and password, examining the password file
(or a shadow password file for Linux systems [22]), validating the credentials and
then creating the user’s shell process in a new environment with their user ID set.

At this point the file system is responsible for storing the owner user ID of files
and validate them against the user making the request (the user and group ID of the
user requesting the operation is available to the file system operation). For example
the FUSE high level API provides the “fuse get context” function which returns a
struct containing the requesting user’s ID and group ID. Because of this the basic
UNIX based inode structure uses user ID and group ID to handle the owner and
stores this on disk [60].

3.2.2 Pluggable Authentication Modules

Pluggable Authentication Modules [90], PAM, is a Linux technology which abstracts
various identity related tasks such as session set up, password updating and valida-
tion, authorisation and account management. PAM provides four major modules
to handle authentication management, account management, session management
and password management. PAM abstracts this away from applications that use its

Chapter 3: Historical Review 16

interfaces so that they don’t have to worry about how the particular task is handled
but that an appropriate result is obtained.

Authentication management handles identifying that a user is who they claim
to be by validating their credentials. Examples of this could be the standard UNIX
passwd files, Kerberos or any other method that can validate the users credentials.
Account management handles account related restrictions such as if the user is
blocked from logging in, if the account is perhaps expired or if there are limitations
upon when the account can log in. Session management provides the ability to set
up items in the session or do session related accounting, for example the duration
for which the user was logged in. Password management provides a framework to
update the users password.

Each of these interfaces are supported by service providers that handle the
specifics for each individual system, for example the UNIX passwd password man-
agement module would handle updating the /etc/passwd or shadow password files
while a Kerberos password management module would update the password on the
Kerberos servers.

3.2.3 Distributed Identification

When dealing with distributed systems, local identification becomes impossible to
use with out some form of distributed identification. There is nothing enforcing
that user 501 on system A is the same as user 501 on system B - so some form of
alternate centrally managed identification scheme.

As Gagne et. al. introduce in Operating System Concepts [94], there have
been solutions to that with examples like Yellow Pages (later network information
service, NIS) from Sun Microsystems and various LDAP [95] compatible directory
services such as Microsoft’s Active Directory system, Apple’s OpenDirectory and
the open source OpenLDAP system. These provide basic features such as mapping
a username to a uniquely identifiable user identity, either a simple integer like UNIX
or a more complex security identifier which Microsoft uses to identify users [87].

Prior to Windows 2000, Windows domain distributed identification was pro-
vided by “Windows NT Directory Services” which relied upon the primary domain
controller/backup domain controller design. Active Directory, introduced in Win-
dows 2000, was the first Microsoft directory services product to feature LDAP
support [77].

3.2.4 Decentralised Identification

Decentralised identification is a newer scheme introduced primarily by OpenID [80].
OpenID is a method of identifying a person as owning a particular URI, typically
their blog, home page or some other uniquely identifying URI. OpenID is supported
by various systems such as Atlassian Crowd [49] and Joomla!.

3.3 Database Systems

Database systems have implemented various levels of permissions for controlling
user’s access to their data. This section will cover permissions implemented in
database systems themselves while later sections will examine permissions stored in
database systems however implemented in a third party application, such as a web
application.

17 3.4 File system Permissions

3.3.1 Basic Permissions

At its core SQL grants, to users, a list of privileges and also, optionally, the privilege
to grant these privileges to other users. The privileges might be granted at various
levels such as for the account level or at the relation level [65]. Relation level
permissions grant the ability to select, modify and remove data from the system’s
existing data structures within a schema and account level permissions grant the
ability to create new schemas within a database or new tables in addition to all
of the privileges that a relation level permission grants. Some systems, such as
MySQL, have the option to grant permissions on schemas as well as on the account
level or relation level.

Actions in SQL systems are more complete when compared to the actions nor-
mally offered by most file systems. Actions in SQL also cater for the domain specific
issues that are involved with databases such as items like stored procedures. Stored
procedures are executable applications that can be created within the database and
run like a normal application. The ability to create something that is executable is
something that can be configured as opposed to the Windows or UNIX world where
an application can be set as executable by the owner of the object. The difference
with the database is that the permission is something that can be limited by the
administrator. Databases also support delegation of access control so a action can
be granted to a user with the grant option and they can then grant the same action
to another user of the system.

MySQL, as detailed in Table 3.1, actually has three actions available with regards
to stored procedures: ALTER ROUTINE, CREATE ROUTINE and EXECUTE.
So a user may be able to create a routine but may not be able to execute it or alter it
after it has been created. Depending on the database server there is the possibility
to grant the particular action only on a given routine — so a user might be able to
execute all stored procedures in a schema or only be able to execute or alter specific
stored procedures within the system. They can also utilise the GRANT action to
extend or limit the control of the system from there. This differs from the UNIX
access control model (see 3.4.1) where if a person can create a file they can typically
change it to become executable.

3.4 File system Permissions

File system permissions come in a variety of flavours, from basic systems that have
absolutely no restrictions on access rights to the UNIX style file systems. UNIX
style file systems have permissions based on the owner of the file (or group member)
but limited ability to do fine grained permissions (either in their targets or their
permissions). This is then in contrast to full blown ACL file systems which permit
extensive lists of controllable actions, users/groups and the ability to apply complex
inheritance structures for the resultant rules.

3.4.1 UNIX Permissions

UNIX file access permissions limits access to files based on three classes of users:
those who own the file, those whom are members of the group which owns the file
and every other user. Each of these three collections of users has permissions for
reading, writing or executing. As noted in Bach [60], directories have the execute
permission replaced with the right to search or traverse a directory for a filename.
This is represented in its octal bit mask form (e.g. 777) or utilising characters (e.g.
rwxrwxrwx) where each set of 8 bits represents user, group and world permissions
respectively. The owners of the file (user and group) are stored in their unique ID
form not as their name.

Chapter 3: Historical Review 18

Table 3.1: MySQL permissions [34]

• CREATE

• DROP

• GRANT OPTION

• REFERENCES

• ALTER

• DELETE

• INDEX

• INSERT

• SELECT

• UPDATE

• CREATE TEMPORARY TABLES

• LOCK TABLES

• CREATE VIEW

• SHOW VIEW

• ALTER ROUTINE

• CREATE ROUTINE

• EXECUTE

• FILE

• CREATE USER

• PROCESS

• RELOAD

• REPLICATION CLIENT

• REPLICATION SLAVE

• SHOW DATABASES

• SHUTDOWN

• SUPER

• ALL [PRIVILEGES]

• USAGE

19 3.4 File system Permissions

UNIX also has a fourth octal field for permissions. This field is composed of the
setuid bit, setgid bit and sticky bit. When set to files, the setuid and setgid bits
cause the executable to run as the owner of the file and as the group respectively.
This is typically used to run tools that require root privileges without having to
grant the user root privilege. A simple example of this is “ping”, which requires root
privileges to send and listen for control packets on the network interface directly [51].
The setuid bit when set to a directory does nothing under Linux [82] however when
the setgid bit is set to a directory any new files created in this directory will have
it’s group set to the same as the parent directory. On Mac OS X, if the setuid bit
is set on a directory, then the files created within that directory are owned by the
user who owns the directory (if supported by the underlying file system) [19].

The sticky bit is the final part of the mask. This when applied to files is ignored
under Linux, however when the sticky bit is set on a directory, files in that directory
may be unlinked or renamed only by root or their owner. Without the sticky bit,
anyone able to write to the directory can delete or rename files. The sticky bit is
commonly found on directories, such as /tmp, that are world-writable. [72] This
behaviour is consistent with Mac OS X [57].

The sticky bit has different behaviours on different platforms, the Wikipedia
article has a comparison citing man pages of various operating systems [52]. Linux,
FreeBSD, OpenBSD and Mac OS X appear to ignore the bit. Operating systems
such as AIX 5.2, Solaris 10, HP-UX, IRIX and SCO UnixWare appear to use the bit
on executable files to retain the program text in swap or memory as a performance
boost.

3.4.2 POSIX ACL on Linux

In POSIX Access Control Lists on Linux [78], Gruenbacher methodically studies the
implementation of various ACL implementations focusing on Linux. Gruenbacher
covers detailing how ACL’s work according to the POSIX standard, how they have
actually been implemented and also examples of compatibility across networks with
NFS and Samba. Performance is also examined with in one case a 500 times incre-
ment in access times recorded for a file system with ACL as opposed to the same
system without ACL’s. The paper documents various other performance compar-
isons with nested directories and copying files.

3.4.3 FAT Permissions

While the FAT file system [29] is a single user file system (e.g. there is no provision
to store owner identifiers for files), the FAT file system through the ”read only”
attribute does introduce a primitive form of permissions. As the system doesn’t
have any concept of owners, any users could remove the read only attribute making
it ineffective at prevent malicious activity but useful for preventing inadvertent mis-
takes. Other attributes that FAT supports are “archive”, “system” and “hidden”.

3.4.4 ext2+ Permissions

ext2, or the second extended file system, not only provides the permissions that are
common to UNIX based file systems (read, write and execute for user owner, group
owner and world), but ext2 also introduces the concept of extended attributes [92]
as listed in Table 3.4.4.

As these are file system specific attributes, “chattr” tool from the e2fsprogs
package is required to set these attributes and the normal Linux “ls” command will
not list them (the “lsattr” tool from the same package however will).

Chapter 3: Historical Review 20

• a - Append Only: The system should only allow opening of this file for ap-
pending and should not allow any process to overwrite or truncate it. In the
case of a directory, processes may create or modify files in the directory but
not delete them.

• i - Immutable: The system should disallow all changes to this file. In the case
of a directory, processes may modify files that already exist in the directory
but may neither create nor delete files.

Table 3.2: ext2 Extended Attributes

3.4.5 NTFS Permissions

The “New Technology File System”, commonly referred to as “NTFS”, provides
a richer permissions model than UNIX does by default, somewhat similar to the
power that the POSIX ACL system offers. Unfortunately as Russon et. al. notes
[87], there is very little official documentation on NTFS from Microsoft so much of
their research is collations from working through the limited documentation that
Microsoft does provide. The MSDN fortunately documents “Security Features for
File Systems” [42] which has a section on the Access Mask used by the system to
determine permissions.

Actions

The access mask in Figure 3.1 appears to be split into sections: generic rights,
standard rights and specific rights. Generic rights mimic the UNIX read, write, and
execute permissions and also feature an “all” which encompass all of the previous
three permissions. Standard rights are applicable to all objects within the file system
and control if the object can be deleted, if there is the right to read the security
permissions, write the security permissions or alter the owner of the object. The
last section, specific permissions, are permission delineated by whether the object
is a file or a directory.

Figure 3.1: Actions under a NTFS file system

Microsoft lists the actions show in Figure 3.1 as [36]: generic rights (Table 3.3),
standard rights (Table 3.4) and specific rights. Specific rights are classified as file
specific (Table 3.5) and directory specific (Table 3.6).

NTFS utilises three potential modes for a permissions: permit, deny or inherit. If
no permission is inherited along the tree then this defaults to a deny. The calculation

21 3.4 File system Permissions

Table 3.3: NTFS Generic Rights (analogous to UNIX “rwx”)

• GENERIC READ — the right to read the information maintained by the
object.

• GENERIC WRITE — the right to write the information maintained by the
object.

• GENERIC EXECUTE — the right to execute or alternatively look into the
object.

• GENERIC ALL — the right to read, write, and execute the object.

Table 3.4: NTFS Standard Rights (applies to all objects):

• DELETE — the right to delete the particular object.

• READ CONTROL — the right to read the control (security) information for
the object.

• WRITE DAC — the right to modify the control (security) information for
the object.

• WRITE OWNER — the right to modify the owner SID of the object. Recall
that owners always have the right to modify the object.

• SYNCHRONIZE — the right to wait on the given object (assuming that this
is a valid concept for the object).

Table 3.5: NTFS File Specific rights

• FILE READ DATA — the right to read data from the given file.

• FILE WRITE DATA — the right to write data to the given file (within the
existing range of the file).

• FILE APPEND DATA — the right to extend the given file.

• FILE READ EA — the right to read the extended attributes of the file.

• FILE WRITE EA — the right to modify the extended attributes of the file.

• FILE EXECUTE — the right to locally execute the given file. Executing a
file stored on a remote share requires read permission, since the file is read
from the server, but executed on the client.

• FILE READ ATTRIBUTES — the right to read the file’s attribute informa-
tion.

• FILE WRITE ATTRIBUTES — the right to modify the file’s attribute in-
formation.

Chapter 3: Historical Review 22

Table 3.6: NTFS Directory Specific rights

• FILE LIST DIRECTORY — the right to list the contents of the directory.

• FILE ADD FILE — the right to create a new file within the directory.

• FILE ADD SUBDIRECTORY — the right to create a new directory (subdi-
rectory) within the directory.

• FILE READ EA — the right to read the extended attributes of the given
directory.

• FILE WRITE EA — the right to write the extended attributes of the given
directory.

• FILE TRAVERSE — the right to access objects within the directory. The
FILE TRAVERSE access right is different than the FILE LIST DIRECTORY
access right. Holding the FILE LIST DIRECTORY access right allows an en-
tity to obtain a list of the contents of a directory, while the FILE TRAVERSE
access right gives an entity the right to access the object. A caller without the
FILE LIST DIRECTORY access right could open a file that it knew already
existed, but would not be able to obtain a list of the contents of the directory.

• FILE DELETE CHILD — the right to delete a file or directory within the
current directory.

• FILE READ ATTRIBUTES — the right to read a directory’s attribute in-
formation.

• FILE WRITE ATTRIBUTES — the right to modify a directory’s attribute
information.

23 3.4 File system Permissions

of these permissions appears to be through backwards traversal from the object in
question up the tree until an explicit permit or explicit deny is reached. This means
that an explicit permission further up the tree will be ignored in place of an explicit
permission further down the tree. At the same level a deny will override a permit,
so if the user is in a group with an explicit deny for the object but is granted
permission under their user account they still won’t have permission as the deny
will overrule the permit.

NTFS also features all of the attributes available in the FAT file system, in-
cluding read-only, system, hidden and archive. Additional features appear to be
the ability to control if something is indexed for search operations, if a file is com-
pressed or a file is to be encrypted.

Privileges

Windows as an operating system also provides the following “privileges” that a
user might obtain, analogous to Linux “capabilities”. File system related privileges
include [41]:

• SeBackupPrivilege — allows file content retrieval, even if the security descrip-
tor on the file might not grant such access. A caller with SeBackupPrivilege
enabled obviates the need for any ACL-based security check.

• SeRestorePrivilege — allows file content modification, even if the security
descriptor on the file might not grant such access. This function can also be
used to change the owner and protection.

• SeChangeNotifyPrivilege — allows traverse right. This privilege is an impor-
tant optimization in Windows, since the cost of performing a security check
on every single directory in a path is obviated by holding this privilege. This
privilege also causes the system to skip all traversal access checks. It is enabled
by default for all users. This privileges also provides the ability to register
for change notifications on an object (e.g. a directory to update the file list-
ing when a new file is added). It is peculiarly a privilege that controls “two
unrelated powers” [86].

• SeManageVolumePrivilege — allows specific volume-level management opera-
tions, such as lock volume, defragmenting, volume dismount, and setting valid
data length on Windows XP and later. Note that this particular privilege is
explicitly enforced by a file system driver primarily based upon FSCTL op-
erations. In this case, the file system makes a policy decision to enforce this
privilege. The determination of whether or not this privilege is held by the
caller is made by the security reference monitor as part of the normal privilege
check.

• SeTakeOwnershipPrivilege — Take ownership of files or other objects. Re-
quired to take ownership of an object without being granted discretionary
access. This privilege allows the owner value to be set only to those values
that the holder may legitimately assign as the owner of an object.

• SeImpersonatePrivilege — Impersonate a client after authentication.

• SeCreateSymbolicLinkPrivilege — Create symbolic links.

Some of these privileges permit the process utilising the privilege to ignore any
file system level security [3]. In all cases a privilege will take precedence over any
other form of control on a file system object. A full list of privileges available within
Windows is detailed on MSDN [50].

Chapter 3: Historical Review 24

Parent ACE flag Effect on child ACL
OBJECT INHERIT ACE only Noncontainer child objects: Inherited as an

effective ACE.
Container child objects: Containers in-
herit an inherit-only ACE unless the
NO PROPAGATE INHERIT ACE bit flag is
also set.

CONTAINER INHERIT ACE
only

Noncontainer child objects: No effect on the child
object.
Container child objects: The child object inherits
an effective ACE. The inherited ACE is inheritable
unless the NO PROPAGATE INHERIT ACE bit
flag is also set.

CONTAINER INHERIT ACE
and OBJECT INHERIT ACE

Noncontainer child objects: Inherited as an effec-
tive ACE.
Container child objects: The child object inherits
an effective ACE. The inherited ACE is inherita-
ble unless the NO PROPAGATE INHERIT ACE
bit flag is also set.

No inheritance flags set No effect on child container or noncontainer ob-
jects.

Table 3.7: NTFS Inheritance Flags [37]

Inheritance

NTFS also features a curious model for handling permissions. Called “discretionary
access control list” (DACL), these are “access control list[s] that are controlled by
the owner of an object and that specifies the access particular users or groups can
have to the object” [38]. Any explicit access control entries (ACE) are placed in
the DACL first with denies placed before allows and then inherited ACEs are added
backwards up the tree to the root (e.g. the parent entries, then the grandparent
entries) with the deny entries first followed by the allow entries [40] [39]. When
evaluation time comes, the list is traversed until a match for the entry is found: if
it is a deny then the request is rejected and if it is an allow then the permission is
granted [35]. Prior to Windows 2000 or Windows NT 4.0 SP4 (e.g. Windows NT
4.0 SP3 and lower) there was no deny, only allow [9].

Permissions inheritance is also complicated. For container objects, there are
four possible settings for permission (ACE) inheritance 3.7.

This is rather obscure looking, however the Table 3.8 provides a translation of
the strings used in the Windows XP security dialogs. A copy of these strings in
actions is depicted in Figure 3.2.

This means that permissions in NTFS can be a very complex matter to deter-
mine, far more complicated than any other file system examined.

A final aspect of access control entries in Windows/NTFS is that of auditing.
Auditing flags are stored with the inheritance flags [44] and flag if an operation
should be logged. There are two flags for successful access and unsuccessful access
as noted in Table 3.10.

3.4.6 Novell File system Permissions

Novell have produced two major file systems, the first is Netware File system
(NWFS) and the second called Novell Storage Services (NSS). Novell’s file sys-

25 3.4 File system Permissions

“Apply Onto” name Flags ACE Flags
“This folder only” no value No inheritance applies to

ACE.
“This folder, subfolders, and
files”

(OI), (CI) All subordinate objects in-
herit this ACE, unless they
are configured to block ACL
inheritance altogether.

“This folder and subfolders” (CI) ACE propagates to subfolders
of this container, but not to
files within this container.

“This folder and files” (OI) ACE propagates to files
within this container, but not
to subfolders.

“Subfolders and files only” (IO), (CI), (OI) ACE does not apply to this
container, but does propagate
to both subfolders and files
contained within.

“Subfolders only” (IO), (CI) ACE does not apply to this
container, but propagates to
subfolders. It does not propa-
gate to contained files.

“Files only” (IO), (OI) ACE does not apply to this
container, but propagates to
the files it contains. Subfold-
ers do not receive this ACE.

“Apply these permissions to
objects and/or containers
within this container only”

adds (NP) This flag limits inheritance
only to those sub-objects that
are immediately subordinate
to the current object.

Table 3.8: Access Inheritange Flags [15]; Legend for flags in Table 3.9

OI Object Inherit
CI Container Inherit
IO Inherit Only
NP No propagate

Table 3.9: Inheritance Modes

Audit flag Meaning
FAILED ACCESS ACE FLAG Meaningful only in system-audit and

system-audit object ACEs. The access
mask specifies operations that should
be logged when they fail.

SUCCESSFUL ACCESS ACE FLAG Meaningful only in system-audit and
system-audit object ACEs. The access
mask specifies operations that should
be logged when they succeed.

Table 3.10: Audit Flags [43]

Chapter 3: Historical Review 26

Figure 3.2: A screenshot of the advanced permissions dialog from Windows XP

tems feature extensive attributes that control the behaviour and access to a file or
folder as well as extensive “trustee rights” which control user permissions. Some of
those trustee rights are similar to actions that exist in other systems, such as read,
write, access control, create and erase (aka delete). Some trustee rights are unique
to NWFS such as supervisor and file scan. Table 3.11 is a list of “trustee rights”
available to Novell administrators.

Interestingly Novell has a few distinct permissions introduced at this point. The
“Supervisor” right is perhaps analogous to a “super user” style permission in UNIX
based operating systems however the permission can be delegated on distinct items.
“File scan” permits the user to see an item which can be distinct from being able
to read or write the item (e.g. you may not be able to see the item but if you
know its there you can operate on it) and the “access control” appears to grant the
ability to manage an item and change the ACL for the file. The “file scan” right has
been in part emulated by Microsoft with Access Based Enumeration (ABE) where
items that the user doesn’t have access to are not displayed, however it is still not
identical [31].

Attributes behave like other file systems and apply equally to all users once they
are set. Attributes can also impact of the behaviour of the file system. Table 3.13
is a list of NWFS and NSS file and directory attributes that are available that are

27 3.4 File system Permissions

Trustee Right Description Default
Supervisor Grants the trustee all rights to the directory or file and

any subordinate items. The Supervisor right cannot be
blocked with an IRF (Inherited Rights Filter) and can-
not be revoked. Users who have this right can also grant
other users any rights to the directory or file and can
change its Inherited Rights Filter.

Off

Create Grants the trustee the ability to create directories and
files and salvage deleted files.

Off

Erase Grants the trustee the ability to delete directories and
files.

Off

File Scan Grants the trustee the ability to view directory and file
names in the file system structure, including the direc-
tory structure from that file to the root directory.

On

Modify Grants the trustee the ability to rename directories and
files, and change file attributes. Does not allow the user
to modify the contents of the file.

Off

Read Grants the trustee the ability to open and read files, and
open, read, and execute applications.

On

Write Grants the trustee the ability to open and modify (write
to) an existing file.

Off

Access Control Grants the trustee the ability to add and remove trustees
for directories and files and modify their trustee assign-
ments and inherited rights filters.

Off

Table 3.11: Novell Trustee Rights [11]

related to file access control.
Some attributes are very similar to attributes (and permissions) that exist in

other systems such as hidden, read only, executable and archive. Some extra at-
tributes control privileges available such as rename inhibit (prevents rename), delete
inhibit (similar to the ext2 immutable bit) and copy inhibit (prevents copying a file).

3.4.7 HFS+

HFS+ is the extended version of Apple’s Hierarchical File System, primarily used
for its Mac OS X operating system but also used on Apple hardware devices such
as the iPod [32]. As of Mac OS X Tiger [20], HFS+ supports ACLs that are mostly
compatible with POSIX [26] [16]. HFS+ supports the following permissions [19].

Permissions applicable to all file system objects:

• delete — Delete the item.

• readattr — Read an objects basic attributes.

• writeattr — Write an object’s basic attributes.

• readextattr — Read extended attributes.

• writeextattr — Write extended attributes.

• readsecurity — Read an object’s extended security information (ACL).

• writesecurity — Write an object’s security information (ownership, mode,
ACL).

Chapter 3: Historical Review 28

Attribute Description Applies to
Ci Copy Inhibit prevents users from copying a file. This at-

tribute overrides the trustee Read right and File Scan right.
Files only

Di Delete Inhibit prevents users from deleting a directory or
file. This attribute overrides the trustee Erase right. When
it is enabled, no one, including the owner and network
administrator, can delete the directory or file. A trustee
with the Modify right must disable this right to allow the
directory or file to be deleted.

Directories
and files

Dm Do Not Migrate prevents directories and files from being
migrated from the server’s server disk to another storage
medium.

Directories
and files

H The Hidden attribute hides directories and files so they do
not appear in a file manager or directory listing.

Directories
and files

N Normal indicates the Read/Write attribute is assigned and
the Shareable attribute is not. This is the default attribute
assignment for all new files.

Directories
and files

P Purge flags a directory or file to be erased from the system
as soon as it is deleted. Purged directories and files cannot
be recovered.

Directories
and files

Ri Rename Inhibit prevents the directory or file name from
being modified.

Directories
and files

Ro Read Only prevents a file from being modified. This at-
tribute automatically sets Delete Inhibit and Rename In-
hibit.

Files only

Rw Read/Write allows you to write to a file. All files are cre-
ated with this attribute.

Files only

Sh Shareable allows more than one user to access the file at
the same time. This attribute is usually used with Read
Only.

Files only

Sy The System attribute hides the directory or file so it does
not appear in a file manager or directory listing. System
is normally used with operating system files, such as DOS
system files.

Directories
and files

X The Execute attribute indicates program files such as .exe
or .com.

Files only

Table 3.13: Selected Novell File and Directory Attributes [10]

29 3.4 File system Permissions

• chown — Change an object’s ownership

Permissions applicable only to directories:

• list — List entries.

• search — Look up files by name.

• add file – Add a file.

• add subdirectory — Add a subdirectory

• delete child — Delete a contained object.

Permissions applicable only to non-directory file system objects:

• read — Open for read.

• write — Open for writing.

• append — Open for writing but only at the end of the file.

• execute — Execute the file as a script or program.

Within HFS+, a file might be deleted if the user has the permission to ’delete’
on the file or the ‘delete child’ permission on the containing folder.

HFS+ also features the following inheritance capabilities:

• file inherit — Inherit to files.

• directory inherit — Inherit to directories.

• limit inherit — Entries inherited from the parent will have the direc-
tory inherit flag removed on the permission so that it doesn’t inherit to grand-
children.

• only inherit — The entry is inherited by created items but not considered
when processing the ACL.

HFS+’s canonical form for the ACL is the following:

• local deny

• local allow

• inherited deny

• inherited allow

Normally the chmod ”+a” operation adds ACL’s to the list in a canonical
form, however the ”+a#” mode allows for setting the exact location allowing non-
canonical entries (e.g. potentially an overriding local allow ahead of the local deny
instead of the canonical location for a local allow which is after a local deny).

HFS+’s behaviour is very similar to that of NTFS.

Chapter 3: Historical Review 30

3.4.8 ZFS

The Zettabyte file system, more commonly referred to as ”ZFS”, is a new file system
developed by Sun for its Solaris operating system.

ZFS supports the NFSv4 ACL model which is itself heavily based on the Win-
dows ACL model implemented in NTFS. ZFS defines two ACL specification formats
as introduced in [69]:

Syntax A

ACL_entry_type:Access_permissions/.../[:Inheritance_flags]:deny or allow

ACL entry type includes “owner”, “group”, or “everyone”. For exam-
ple:

group@:write_data/append_data/execute:deny

Syntax B

ACL_entry_type:ACL_entry_ID:Access_permissions/.../[:Inheritance_flags]:deny or allow

ACL entry type includes “user”, or “group”. ACL entry ID includes
“user name”, or “group name”. For example:

user:samy:list_directory/read_data/execute:allow

Inheritance flags

• f : FILE INHERIT
• d : DIRECTORY INHERIT
• i : INHERIT ONLY
• n : NO PROPAGATE INHERIT
• S : SUCCESSFUL ACCESS ACE FLAG
• F : FAILED ACCESS ACE FLAG

It should be noted that the last two flags, successful access and failed access
are actually audit flags and distinctly resemble the NTFS flags of the same name
introduced in Table 3.10.

3.5 Distributed File systems

Distributed file systems are file systems that work between distributed machines.
While with this dissertation the majority of issues will be examined in the context
of running a file system on a single local machine, some of aspects of distributed
file systems are interesting and have been examined for reference.

A paper by Hitz et al [59] covers the work done by Network Appliance’s with
their file servers and examining how they handle interaction from Windows clients
onto UNIX backed permission stores and vice versa. Merging permissions provides
an interesting problem set: UNIX’s permissions are far more restrictive than the
expressive model offered by NTFS which allocates up to 64KB to store ACL’s com-
pared to the 32 bits used for UNIX permission storage. Berger [61] introduces the
differences between the two operating system approaches: NFS comes from the
UNIX perspective and handles mounting a common share point and the protocol
handles file permissions from this point. CIFS from the Windows world handles
mounting share points from the perspective of an individual user (the user is au-
thenticated when the mount point is created).

31 3.6 Web Based Applications

3.5.1 CIFS

The Common Internet File System is derived from Microsoft’s Server Messaging
Block (SMB) protocol and provides the same level of security that is afforded by
the standard Windows NTFS security model.

3.5.2 NFSv4 ACLs

NFS, Sun’s Network File System, gained support in version 4 for ACL’s to restrict
access to various systems. According to IBM, NFSv4 ACLs are supported on ZFS,
JFS2 and GPFS [69]. NFSv4’s ACL model is strongly based on that provided by
Microsoft with their permissions matching almost perfectly with that offered by
NTFS.

3.6 Web Based Applications

Increasingly the internet is driven from a “read-only” situation into a more “read-
/write” situation. As this has occurred the need to apply permissions to users who
create content has increased with non-technical users now maintaining websites with
the aid of content management systems such as Joomla! [48] and increasingly third
party users generating content for web systems such as Mediawiki [28]. Social net-
works also play a part in this sphere as depending on the ’network’ of a user can
define what permissions that user has to view content (e.g. a third level friend may
only be able to see your name and your link while a first level friend can see all of
your details).

3.6.1 RelBAC

RelBAC or Relation Based Access Control is a paper by Giunchiglia et. al. (2008)
which covers building relationships not based on predefined groupings, such as
RBAC, but by inferring permissions based on the relationships between particu-
lar objects. While Giunchiglia places this in the context of Web 2.0 applications
and the relationships defined in those systems, the ideas presented could equally
and easily be applied within the context of MDFS and its relationship model.

3.6.2 phpGACL

phpGACL [23], or PHP Generic Access Control Lists, is an open source ACL library
written in PHP using MySQL as a data store. phpGACL has a flexible permissions
model with three main concepts: ACOs (“Access Control Objects”; controls), AROs
(“Access Role Objects”; requestors) and AXOs (“Access eXtension Objects”; in-
stances). So in this model an ACO represents tasks the user can do, such as view a
file, delete a file or similar, the ARO defines objects requesting to do ACO actions,
such as a user, and the AXO permits the ability for finer grain control of ACO’s
(e.g. access for an individual item as opposed to all items).

Without an AXO, phpGACL could be considered schema based permissions
(similar to the way database permissions are applied) where as with the addition
of AXO it becomes possible to limit requestors to particular controls of instances
instead of just at the schema level.

phpGACL appears to follow a ‘role’ based model where roles are defined, per-
missions are granted to those roles and users are then associated with those roles
and have the permissions granted to them.

Chapter 3: Historical Review 32

3.6.3 Joomla! 1.6

Joomla! 1.6 introduces a new fine grained ACL library that was previously unavail-
able. Earlier versions of Joomla! (1.5, 1.0) used a modified and limited version
of the phpGACL library to achieve its work. Joomla! 1.6 introduces a new ACL
infrastructure with a lot of the common themes as phpGACL though different ter-
minology.

Joomla! 1.6 introduces two access control methods to control actions within the
system. These are:

• Discretionary Rules — These are discretionary ACL’s that apply to specific
items. They permit users or groups to be permitted or denied the ability to
complete a given action. They can apply to individual items or containers
(e.g. an article, a category, a component or the entire site).

• View Rules — These rules are a mix of roles but only apply to a single ‘view’
action. View rules are access levels which can be assigned to items and groups
can be assigned to an access level. So the ability to view an item is calculated
by retrieving a list of groups that is in the access level and checking if the user
is in the group.

In effect Joomla! has two distinct access control models for controlling access:
rules to control most actions and a set of rules to control view permissions. The
view rules provide the ability to easily cache a large amount of data (e.g. the users
access levels can be cached on login) that enable the checks to be very cheap. As
Joomla! is a database driven applications a query can easily be constructed to easily
exclude items that the user doesn’t have the ability to view which moves the access
control into the database which can optimise results based on its indexing.

3.6.4 Moodle

Moodle has a complex ”roles and capabilities” [13] system that permits flexible
management of access to privileges in a system. Moodle is a RBAC implementation
that defines capabilities that can be assigned to roles within a ’context’ that define
individual permissions. Permissions for Moodle are:

• not set or inherit - has no impact on calculation

• allow — Allow the role to enact the capability within this context or any child
contexts

• prevent — Prevent the role from enacting the capability within this context
or any child contexts.

• prohibit — The prohibit is a special permission that prevents the capability
in any context.

Contexts in Moodle are equivalent to both container and objects - a context can
have permissions to applied to them and they may also contain other contexts that
inherit permissions or define their own permissions.

Moodle has a curious method for determining permissions [7]: it looks for a pro-
hibit permission in any role in any of the contexts and if there is it stops and deny’s
access. If there are no prohibits, Moodle then examines all roles and calculates how
many allow’s and prevent’s there are: if there are more allow’s than prevent’s then
the permission is granted and if there are more prevent’s than allow’s the permission
is denied. In the case of a tie the system defaults to denying access.

33 3.6 Web Based Applications

3.6.5 Sharepoint

Sharepoint is Microsoft’s collaboration platform and forms a part of the Microsoft
Office suite in the enterprise. Sharepoint offers shared calendars, lists, groups and
wiki’s. It provides the ability to store Office documents and work with InfoPath
files [6].

Sharepoint Services 3.0 has five default “permission levels” that are available
by default. These are Full Control, Design, Contribute, Read and Limited Ac-
cess [12]. The Full Control and Limited Access permission levels cannot be modified
or deleted. Limited Access is special permission level that cannot be assigned but it
is automatically assigned when a permission level is granted to a child item higher
than their current level. The Microsoft documentation cites the following example:

For example, if you grant users access to an item in a list and they
do not have access to the list itself, Windows SharePoint Services 3.0
automatically grants them Limited Access on the list, and also the site,
if needed.

These permission levels serve as “roles” which can be assigned to users and
groups. In granting permissions, a user can be allocated to a group or they can
have a role manually assigned to them. By default each Sharepoint Site has three
groups created: owners, members and visitors [2]. In the default configuration the
owners group is granted the full control role, the members group is granted the
contribute role and the visitors group is granted read.

Permission levels are by default inherited from a parent item to a child item
however a child item may define “unique permissions” [1]. These unique permissions
are initially a copy of the permissions that would ordinarily be inherited and are
then customised. At this point changes to the original parent permissions are not
applied to the unique permissions on that item. Also children of this item then
inherit the unique permissions of the parent (as opposed to the grandparent) and
so do their children until another item has unique permission levels set. It is my
understanding that by “unique permissions”, Microsoft means that the permission
levels are customised.

3.6.6 XACML

XACML, or eXtensible Access Control Markup Language, is an XML based method
for expressing access control rules. XACML has primitives for determining subjects,
resources and actions which can be combined to form target matching for rules,
policies and policy sets. XACML on its own doesn’t enforce any restrictions but is
only a format for describing permissions. XACML requires various infrastructure
to evaluate its rules and apply them. The XACML model with policy enforcement
points (PEP), policy decision points (PDP), policy information points (PIP), policy
administration point (PAP) match the model that RSBAC and GFAC introduce
in Section 2.4. Table 3.14 lists the equivalent terminology which seem to change
“access” to “policy” and “facility” to “point”.

The primary issue with XACML is the excessive verbosity in which rulesets are
expressed via XML. XACML attempts to be in some respects too prescriptive and
encompass many aspects of access control while making it hard to express existing
access control systems (see Section 5.2 for a comparison of XACML and NTFS).

XACML appears to be included as a part of SAML however there are few case
studies available that demonstrate the practical implementation of XACML.

Chapter 3: Historical Review 34

XACML Term GFAC Term
PAP ACR
PEP AEF
PIP AIF
PDP ADF

Table 3.14: Translation of XACML terms to GFAC terms

3.7 Conclusions

Looking over everything there seems to be some common categories for systems:

• Role based systems

• Discretionary ACL systems

• Permission inheritance

• Permissions with a boolean state (set or not set)

• Permissions with a triadic state (grant, deny, unset)

Role based systems, such as Moodle, work well when dealing with a limited set
of roles and a large number of users. Some systems support explicitly the concept of
roles and enforce that permissions can only be applied to a role not to an individual
user however other systems may permit emulation of this functionality. For example
Windows permits permissions being granted to either users or groups so if groups
are only ever used to be assigned permissions and then users added to those groups
the system is effectively a role based system.

Discretionary Access Control List (DACL) systems permit individual users or
groups to be granted or denied actions to individual items which can optionally
be inherited. DACL systems appear to be common and permit a level of control.
DACL appears to be the dominant form of ACL for a lot of items as it permits
the user to control who can access which files. UNIX and Linux by default offer
primitive DACL with their default options (user, group and everyone) while POSIX
ACL expands this to be a lot more flexible. Windows and NTFS appears to have
the most extensive ACL system for file systems offering a wide range of permissions
and inheritance capabilities that is emulated by other systems like HFS+, NFSv4
ACLs and ZFS.

Inheritance of permissions appears to be primarily lead by the NTFS imple-
mentation which provides various controls for inheritance and application of ACLs.
Various other systems have their own forms of inheritance though this is usually sim-
ple. Inheritance evaluation rules vary widely between the various systems and the
use of Mandatory Access Control (MAC) style rules (e.g. Window’s SeChangeNo-
tifyPrivilege) further complicate the situation.

MAC systems are not particularly strong with the exception of privileges and
capabilities exhibited by Windows and Linux respectively. MAC isn’t particularly
visible in the systems identified throughout the literature survey however this is
perhaps due to MAC being more relevant to defence organisations which have much
more rigorous controls on information transmission and access control.

Permissions come with either boolean state (set or unset, like UNIX, POSIX,
POSIX ACL and early Windows implementations) or the triadic variety (grant,
deny, unset; like Windows and derivatives). The boolean state permits the ability
to grant users access but not necessarily to easily remove or deny access to them.
The triadic permissions have the advantage that they can deny access but this then

35 3.7 Conclusions

causes complications in rule evaluation algorithms which results in divergence of
algorithms and choices. The Windows model would appear to not permit directory
traversal if the parents don’t allow it however the SeChangeNotifyPrivilege allows
this check to be circumvented for performance reasons. It appears that the combi-
nation of flexible access control and triadic permission states increases the amount
of processing required to make an access control decision.

Chapter 4

Scenarios

This chapter describes some scenarios around permissions in file systems. It will
cover some current scenarios available as well as introduce some more advanced
concepts.

4.1 Basic Concepts

Before moving into the scenarios there are some basic concepts that are used within
the system.

4.1.1 Entities

Entities are parts of the system that are capable of completing various actions. An
entity is most familiar as a user who completes actions. Entities can also be groups
of users or roles. In which case those users who identify as being a member of that
particular group or having that particular role are thus capable. Entities may also
form the part of services or agents which may also wish to act autonomously or
even on the behalf of other entities (e.g. a user). Entities usually play the role of
subject in the sentences in which they appear.

4.1.2 Actions

Actions are tasks that might be completed on an object by an entity. Actions are
completed by entities upon objects and are verbs. Examples of actions include read-
ing, writing, deleting, appending and creating. Actions might also describe more
complicated processes such as the ability to authenticate to a particular system.
Actions usually play the role of verbs, or predicates, in the sentences in which they
appear.

4.1.3 Objects

An object is a resource of that is being protected. Objects are typically thought to be
files and folders however objects may also be users, groups, role or any other resource
that can be controlled or secured. Within UNIX and its derivatives (Linux/Mac
OS X) an additional amount of items are represented as files such as pipes, sockets
or devices (block special file or character special file). This permits access control
of these particular items. Windows has a slightly more comprehensive model for
securable objects which also includes processes and threads, printers and directory
service objects (e.g. users, computers, groups, etc). Objects usually play the role
of objects, in the grammatical sense, in the sentences in which they appear.

36

37 4.2 Current Scenarios

4.1.4 Relationships

Objects within the system can be connected to each other through relationships.
Relationships are set up to be directional and should be read from left to right as
depicted in Figure 4.1. In a fully relational file system, entities can also be objects
themselves. In such a system it could codify relations as objects which makes
applying and manipulating them subject to the standard rules of the file system.
This is an extension of the UNIX concept that everything in the system can be
represented as a file.

Object A Object BRelationship

Figure 4.1: Relationship between objects

Some relationships are transitive while others aren’t. Permission relationships
for security reasons should only be read from left to right and only when the creator
of the relationship is the owner of the file or is delegated to be able to do so.

Relationships might not be apparent in many systems. A UNIX file or directory
is related to it’s owner, it’s group and also to everybody. While users and groups in
these systems have no semantic meaning (they are simple integers, it is the operating
system which assigns meaning to the user ID’s). Ordinarily we perhaps don’t think
about these as relationships but we think about them instead as attributes of the
file (which is itself a true statement). Extending the UNIX concept, an ACL list
in NTFS is also itself a named relationship. An entity is related to an object by
what actions the entity may (or cannot) complete on the object. In this case the
relationship is entity—action—object as depicted in Figure 4.2.

Object EntityAction

Figure 4.2: An action relationship between an entity and an object

4.2 Current Scenarios

This section lists a set of scenarios modelled off current examples of systems.

4.2.1 UNIX File system Permissions

Permissions in UNIX file systems are familiar to many as it has existed for a sig-
nificant amount of time. Permissions can be applied to either files or directories.
UNIX also extends the concept of ’files’ to special files such as character or block
devices, pipes and sockets which in terms of access control behave like files. Both
‘files’ and ‘directories’ are objects as per 4.1.3.

UNIX object permissions are composed of the following items:

• An owner user and their permissions

Chapter 4: Scenarios 38

• An owner group and their permissions

• Everyone and their permissions

Permissions in UNIX are themselves bits to control read, write and execute.
Each individual file stores a copy of the owner’s unique user identifier and the unique
group identifier which is effectively just a number. This number itself doesn’t mean
anything to the file system and could identify different users on different systems.
The initial implementation of the MDFS system, introduced in Part III, used this
technique of storing a simple numeric identifier to identify the owner and group
owner of the file.

Building permissions in a metadata system permits us to incorporate users into
the file system as a new class type. Users can then have their metadata stored
within the file system and the file system can then create relationships between
objects in the file system and this new user object. The same concept also applies
to groups as well.

So in modelling the UNIX file permissions the following relationships become
apparent:

• User owns File

• Group group owns File

The “everyone” permission can be perhaps defined as an object that is not
related to the file by either owns or group owns, including no relationship at all.
Using this we can then apply permissions based on the relationships “owns” and
“group owns”. This could be done by using a format which describes the Entity,
Action and Object. For example, to emulate the common mode string “rw-r-r–”

• Owner read File

• Owner write File

• Group Owner read File

• Everyone read File

This has been trivialised however “Owner” in a relational system could be a
query to look up the user instead of utilising an attribute as UNIX does. A more
detailed examination of the behaviour of ext2, a POSIX compatible file system, is
available in 5.1.1.

4.2.2 LDAP Permissions

Lightweight Directory Access Protocol (LDAP) is a protocol that is commonly used
to communicate between user directories. LDAP in itself doesn’t implement any
inherent ACL but the various implementations (e.g. Active Directory ()) handle
their own access control. LDAP defines a Distinguished Name (DN) for every object
which can be used to reference items in the system. For users the DN also doubles
as their username. This is counter intuitive and different systems have different
behaviour. Active Directory for example permits a user to login with their full DN,
their User Principal Name (UPN) or their Down-level Name () via their LDAP
interface.

Many OpenLDAP instances share the common privilege statement listed in Fig-
ure 4.2.2 where a user can write or update their own password (“by self write”) and
everyone can compare the attribute but not necessarily read it (“by * compare”).
The example also demonstrates a rule where the user can edit themselves. The

39 4.2 Current Scenarios

access to attr="userpassword"
by self write
by * compare

access to * by self write

Figure 4.3: Common OpenLDAP ACL

OpenLDAP example demonstrates wildcard matching, the ability to control indi-
vidual attributes and also the concept of a ‘self’ identity. As users are stored in the
directory as objects it makes sense that the concept of self would exist for the logged
in user. In the example provided a wildcard value or “self” is used to identify the
entity, the action is either “write” or “compare” and object is either itself or the
item attribute “userpassword”.

Novell eDirectory is another system that implements LDAP. eDirectory’s permis-
sions included the permission “security equivalent to me” and its transitive “security
equivalent to X” which flagged that a particular users permissions are equivalent
to the target object. These are presented via attributes of the respective users and
meant that if the permissions when updated on a user, any user whose security was
equivalent to them was also updated. The relevant DN of the user is stored in the
attributes. For this the users are both the entity and the object while “security
equivalence” is in part the action.

The last aspect is that of group membership. Group membership is typically
stored in two ways. In Active Directory, first a user is a “memberOf” a given
group and second the group lists each individual “member”. Other systems use
other attributes (e.g. groupMember and groupMembership attributes in Novell
eDirectory stored in the group and user respectively) reinforcing the point that the
interpretation of this is not entirely standard. As with the security equivalence,
users form both the entity and object.

LDAP is closer to a relational system than perhaps UNIX where all entities in
the system (users and groups) are also objects. Relationships are still stored within
LDAP as attributes however they are values that are resolvable within the system
without relying on an external resource.

4.2.3 Facebook

Facebook has become one of the most prominent social networking sites available
today. Facebook itself is a platform for sharing data in new and interesting ways
with built in methods of sharing pictures, status updates and events. Facebook
provides a third party API that allows people to write applications that interact
with Facebook that can store their own data and access the data stored within
Facebook.

The ability for third party applications to access information about a user and
other issues relating to Facebook’s privacy controls have been problematic. Face-
book’s limited privacy controls are the main point of contention as there is no way to
limit exposure of certain items down to certain users. The EFF [81] has noted issues
about the diminishing privacy on Facebook and Australian open source developer
Paul Fenwick [66] has also documented changes in how Facebook views privacy and
the changes it has made.

Facebook has the “self write” privilege granted to permit users to edit stuff
about them. Other default permissions appear to be:

• The ability to comment on any item that you can see

• The ability to tag pictures or videos and link these to people you know

Chapter 4: Scenarios 40

Figure 4.4: Screenshot of Facebook’s default security

Figure 4.5: Screenshot of Facebook’s post security customisation screen

• The ability to untag yourself from pictures or videos

While Facebook has various places to enter information and has various privacy
controls, the most obvious controls are when new content is added. This is where
Facebook’s most powerful access control lists are possible.

Facebook defines the following default groups of posting content:

• Everyone — This is a group which permits full public viewing to all users
around the world and on Facebook.

• Only Friends — Only direct friends can see the item being posted.

• Friends of friends — These are your second level contacts. This permits
reasonable distribution but limits the level.

The final option, as displayed in Figure 4.4, is to customize the security options.
This permits the user to select from the previously available options of Friends of
friends and Only Friends with the new option of “Only me” (self) and “Specific
People” options. The “specific people” option permits the user to nominate users
or lists (lists are analogous to groups, they’re a set of users assigned an identifier
however lists are per user not global). The screen depicted in Figure 4.5 also provides
the ability to specific block users and lists from seeing an item being posted.

Facebook’s primary goal for per item access control appears to be providing
simple tools that achieve most situations. The Facebook data access control model
isn’t applied uniformly to all data which in itself presents other issues. The permis-
sions that are there appear increasingly to default to full access to everyone however
as demonstrated some parts of the system can be locked down though most of the
“static” information is increasingly becoming harder and harder to protect [81].

41 4.2 Current Scenarios

Facebook has a much more generic access control policy however this appears
to be more flexible. As noted, Facebook’s security model only limits wall posts and
photos [73].

Chapter 5

Examination of Present
Systems

5.1 Investigation into the behaviour of file systems

In this section we examine and document the behaviour of two major file systems.
The first is the standard ext2/3 file system that ships with Linux operating systems
and could be considered an equivalent to the UNIX permissions model. The second
is an examination of the NTFS file system. The aim of this is to examine how each
file system behaved when evaluating permissions as UNIX doesn’t have the concept
of inheritable permissions (all permissions are explicitly granted) as opposed to
NTFS which does feature full inheritable permissions. UNIX does however support
the ability for owner and group inheritance for a file in a particular folder but this
does not apply to any subfolder unless explicitly set.

5.1.1 ext2/3 behaviour

To begin our experimental we will create a directory structure which mimics a
collection of pie recipes:

817621 drwxr-xr-x 4 pasamio pasamio pies/
817796 drwxr-xr-x 2 pasamio pasamio pies/savoury/
817798 -rw-r--r-- 1 pasamio pasamio pies/savoury/beef
817799 -rw-r--r-- 1 pasamio pasamio pies/savoury/chicken
817800 -rw-r--r-- 1 pasamio pasamio pies/savoury/floater
817801 -rw-r--r-- 1 pasamio pasamio pies/savoury/fish
817802 -rw-r--r-- 1 pasamio pasamio pies/savoury/pork
817803 drwxr-xr-x 2 pasamio pasamio pies/sweet/
817804 -rw-r--r-- 1 pasamio pasamio pies/sweet/apple
817805 -rw-r--r-- 1 pasamio pasamio pies/sweet/blackberry
817806 -rw-r--r-- 1 pasamio pasamio pies/sweet/custard
817807 -rw-r--r-- 1 pasamio pasamio pies/sweet/pumpkin
817809 -rw-r--r-- 1 pasamio pasamio pies/sweet/cream

* Note: This is the output of ls -idlF with the size, date and time fields removed.
As we can see the files have been created with the default permissions for my

user account and is owned by my account and my group (pasamio for both). By
default all users can read the files or directories and can also traverse the directories.
At this point we can list any directory, traverse it and edit any of the files listed.

42

43 5.1 Investigation into the behaviour of file systems

If we remove the “read” permission from “sweet” directory and attempt to list
the contents of sweet we are met with a “Permission denied” error:

pasamio@fallenwall:/tmp/pies$ chmod -r sweet
pasamio@fallenwall:/tmp/pies$ ls sweet
ls: sweet: Permission denied

However, if we know the name of a file then we can open it, write to it and read
it:

pasamio@fallenwall:/tmp/pies$ echo Apple Pie > sweet/apple
pasamio@fallenwall:/tmp/pies$ cat sweet/apple
Apple Pie

If we remove the directory traversal (execute) bit for that directory however, we
can’t do anything:

pasamio@fallenwall:/tmp/pies$ chmod -x sweet/
pasamio@fallenwall:/tmp/pies$ ls sweet
ls: sweet: Permission denied
pasamio@fallenwall:/tmp/pies$ cat sweet/apple
cat: sweet/apple: Permission denied

If at this point we store read access to the directory, we regain the ability to list
the files in it but can’t do anything with that information as we don’t get inodes:

pasamio@fallenwall:/tmp/pies$ chmod +r sweet
pasamio@fallenwall:/tmp/pies$ ls sweet
apple blackberry cream custard pumpkin
pasamio@fallenwall:/tmp/pies$ ls -i sweet
0 sweet/apple
0 sweet/blackberry
0 sweet/cream
0 sweet/custard
0 sweet/pumpkin
pasamio@fallenwall:/tmp/pies$ cat sweet/apple
cat: sweet/apple: Permission denied

At this point I would like to note that while read and traversal have been re-
moved, write has not. However I cannot create a new entry unless traversal has
been restored:

pasamio@fallenwall:/tmp/pies$ echo Pecan > sweet/pecan
-bash: sweet/pecan: Permission denied
pasamio@fallenwall:/tmp/pies$ chmod +X sweet/
pasamio@fallenwall:/tmp/pies$ echo Pecan > sweet/pecan
pasamio@fallenwall:/tmp/pies$ cat sweet/pecan
Pecan

If at this point write access is removed, the ability to create new entries is also
removed:

pasamio@fallenwall:/tmp/pies$ chmod -w sweet
pasamio@fallenwall:/tmp/pies$ echo Buttermilk > sweet/buttermilk
-bash: sweet/buttermilk: Permission denied

If we restore permissions to their original values we can also examine the way
links behave with regards to traversal. Ordinarily we can traverse each directory
with ease and this is controlled by the execute bit or the directory traversal bit. To
prove this we can remove the read permission to a directory but still change to it:

Chapter 5: Examination of Present Systems 44

pasamio@fallenwall:/tmp/pies$ chmod -r sweet
pasamio@fallenwall:/tmp/pies$ cd sweet
pasamio@fallenwall:/tmp/pies/sweet$ cd ..
pasamio@fallenwall:/tmp/pies$

However if we restore the read bit and remove the traversal bit I cannot change
to it:

pasamio@fallenwall:/tmp/pies$ chmod +r sweet
pasamio@fallenwall:/tmp/pies$ chmod -x sweet
pasamio@fallenwall:/tmp/pies$ cd sweet
-bash: cd: sweet: Permission denied

This applies to any child of that directory also. So if we restore traversal to
“sweet” and remove it from “pies”, we cannot switch to the sweet directory any
more:

pasamio@fallenwall:/tmp$ chmod -x pies
pasamio@fallenwall:/tmp$ cd pies/sweet
-bash: cd: pies/sweet: Permission denied

Now to prove that permissions work through tree traversal, we will create a new
folder at the same level as “pies” called “recipes” and create symbolic links to the
files:

pasamio@fallenwall:/tmp$ mkdir recipes
pasamio@fallenwall:/tmp$ cd recipes/
pasamio@fallenwall:/tmp/recipes$ ls
pasamio@fallenwall:/tmp/recipes$ ln -s ../pies/sweet/ sweet\ pies
pasamio@fallenwall:/tmp/recipes$ ln -s ../pies/savoury/chicken chicken\ pie
pasamio@fallenwall:/tmp/recipes$ ls
chicken pie sweet pies

Now if the traversal bit is removed from the “pies” directory, we can examine
the impact:

pasamio@fallenwall:/tmp/recipes$ cd ../
pasamio@fallenwall:/tmp$ chmod -x pies
pasamio@fallenwall:/tmp$ ls recipes/sweet\ pies
ls: recipes/sweet pies: Permission denied
pasamio@fallenwall:/tmp$ ls recipes/chicken\ pie
ls: recipes/chicken pie: Permission denied

Since symbolic links were used, the path is traversed down the link to obtain
the file. As “pies” does not permit traversal this results in an error. Restoring the
permissions we can this time create a hard link to the recipe file again and then
remove (also note that hard links for directories aren’t permitted using Linux [25]
but are permitted as an optional implementation feature in POSIX [33]; Mac OS X
supports directory hard links as of Mac OS X 10.5, see 5.1.2):

pasamio@fallenwall:/tmp$ chmod +x pies
pasamio@fallenwall:/tmp$ rm -rf recipes/chicken\ pie
pasamio@fallenwall:/tmp$ rm -rf recipes/sweet\ pies
pasamio@fallenwall:/tmp$ ln pies/sweet/chicken recipes/chicken\ pie
pasamio@fallenwall:/tmp$ ln pies/sweet/ recipes/sweet\ pies
ln: ‘pies/sweet/’: hard link not allowed for directory

45 5.1 Investigation into the behaviour of file systems

So if we remove directory traversal (execute bit for directories) on “pies” again,
we can examine the result:

pasamio@fallenwall:/tmp$ chmod -x pies
pasamio@fallenwall:/tmp$ cat recipes/chicken\ pie
Chicken

So when we hard link to the file, we use the directory path to get to that given
hard link to evaluate its permissions. This doesn’t appear to be a major issue
because the Linux system call “link” only supports file names.

5.1.2 HFS+

HFS+ is the file system used by Apple for their Mac OS X operating system. HFS+
has very similar features to that offered by ext2 with HFS+ supporting hard linked
directories [68]. With this in mind, consider the example “pies” directory and
“recipes” with a hard link created to the “sweet” subdirectory of “pies” (hlink is a
third party application [74]):

silversaviour:tmp pasamio$ hlink pies/sweet/ recipes/sweet\ pies
silversaviour:tmp pasamio$ chmod -x pies
silversaviour:tmp pasamio$ cd recipes/sweet\ pies/
silversaviour:sweet pies pasamio$ ls
apple blackberry cream custard pumpkin

As with the files under Linux, the user is able to get to a location based on
having a hard link to the location while another pathway is blocked. Removing
traversal from the “sweet” directory denies access from any location as the directory
maintains its permissions data itself:

silversaviour:tmp pasamio$ chmod +x pies
silversaviour:tmp pasamio$ chmod -x pies/sweet
silversaviour:tmp pasamio$ cd recipes/sweet\ pies/
-bash: cd: recipes/sweet pies/: Permission denied

As we can see from this, access control is determined by the traversal path and
if an alternative traversal path is used then access will be granted.

It should be noted that the Apple documentation for the link system call [58]
states that “As mandated by POSIX.1, path1 may not be a directory.” As of Mac
OS X 10.5, if this is executed on a HFS+ file system then a directory name may be
used as is demonstrated above. If this is executed on a non-HFS+ file system, the
system call errors with the result being “Operation not permitted” instead of the
link being created.

5.1.3 NTFS

For NTFS, a Windows XP Professional installation was used with a similar set of
tests as per UNIX. Since NTFS supports inheritance, the key investigative point is to
examine how this works with explicitly set permissions at different levels of the tree.
As with UNIX, the “pies” sample directory layout is used again. Since Windows
XP Professional doesn’t appear to ship with a tool to examine ACL permissions
by default, the “FILEACL” tool has been used, accessible from Microsoft’s web
site [18]. The machine is named “WINXP” and the account used is “FAIL
Administrator” or just “Administrator”.

In experimenting with Windows, the tests that were taken out under UNIX
will not be undertaken. With the sample directory that has been created, we can
examine its permissions:

Chapter 5: Examination of Present Systems 46

C:\research\pies>fileacl sweet
C:\research\pies\sweet;BUILTIN\Users:WwA/U[I]
C:\research\pies\sweet;BUILTIN\Administrators:F[I]
C:\research\pies\sweet;NT AUTHORITY\SYSTEM:F[I]
C:\research\pies\sweet;WINXP\Administrator:F/U/U[I]
C:\research\pies\sweet;CREATOR OWNER:U/F/F[I]
C:\research\pies\sweet;BUILTIN\Users:RX[I]

So using fileacl’s help output references [4], this can be deciphered into something
more readable.

• Users have a unset permission on files (U), can add files to the directory (Ww)
add a subdirectory (A) for this folder and subfolders. Users also have another
permission which grants them the normal ability to read the directory or files,
read attributes, read extended attributes and read permissions (R) as well as
traverse the directory or execute the file (X) for this folder, subfolders and
child files.

• Administrators (group), Administrator (user), the SYSTEM account, CRE-
ATOR OWNER have full control (F). However only Administrators and SYS-
TEM has it for “this folder, subfolders and files”. Administrator only has this
right for this folder and CREATOR OWNER has this right for “subfolders
and files only”.

• All permissions are “autopropagated” or inherited ([I]) from a parent entry.

Setting the deny bit for “full control” to the “pies” directory results in the
following ouptut:

C:\research>fileacl pies
C:\research\pies;DENY!WINXP\Administrator:RWwAWaWePXDDcO
C:\research\pies;BUILTIN\Administrators:F[I]
C:\research\pies;NT AUTHORITY\SYSTEM:F[I]
C:\research\pies;WINXP\Administrator:F/U/U[I]
C:\research\pies;CREATOR OWNER:U/F/F[I]
C:\research\pies;BUILTIN\Users:RWwAX/RX[I]

Most other groups appear unaffected, for some reason the Users group appears
to have modified its permissions slightly at this level however it is apparent that
the Administrator now is denied from almost every permission that is available to
the entry and any child entries. The lack of a [I] denotes that this is an explicit
permission set at this level and isn’t inherited. Attempts to access children or
change to the directory aren’t permitted:

C:\research>cd pies
Access is denied.

C:\research>more pies\sweet\apple
Cannot access file C:\research\pies\sweet\apple

Reverting those assigned permissions back, apply now an explicit grant of full
control to the “sweet” directory and then an explicit deny to the “pies” directory:

C:\research>fileacl pies
C:\research\pies;DENY!WINXP\Administrator:RWwAWaWePXDDcO
C:\research\pies;BUILTIN\Administrators:F[I]
C:\research\pies;NT AUTHORITY\SYSTEM:F[I]

47 5.1 Investigation into the behaviour of file systems

C:\research\pies;WINXP\Administrator:F/U/U[I]
C:\research\pies;CREATOR OWNER:U/F/F[I]
C:\research\pies;BUILTIN\Users:RWwAX/RX[I]

C:\research>fileacl pies\sweet
C:\research\pies\sweet;DENY!WINXP\Administrator:RWwAWaWePXDDcO[I]
C:\research\pies\sweet;WINXP\Administrator:F
C:\research\pies\sweet;BUILTIN\Administrators:F[I]
C:\research\pies\sweet;NT AUTHORITY\SYSTEM:F[I]
C:\research\pies\sweet;WINXP\Administrator:F/U/U[I]
C:\research\pies\sweet;CREATOR OWNER:U/F/F[I]
C:\research\pies\sweet;BUILTIN\Users:RWwAX/RX[I]

C:\research>more pies\sweet\apple
Apple

C:\research>cd pies
Access is denied.

C:\research>fileacl pies\savoury
GetFileAtt error! (rc=5)
Access is denied.
can’t get dir attribute, try /FORCE
C:\research\pies\savoury;DENY!WINXP\Administrator:RWwAWaWePXDDcO[I]
C:\research\pies\savoury;BUILTIN\Administrators:F[I]
C:\research\pies\savoury;NT AUTHORITY\SYSTEM:F[I]
C:\research\pies\savoury;WINXP\Administrator:F/U/U[I]
C:\research\pies\savoury;CREATOR OWNER:U/F/F[I]
C:\research\pies\savoury;BUILTIN\Users:RWwAX/RX[I]

C:\research>more pies\savoury\beef
Cannot access file C:\research\pies\savoury\beef

Examining this there are a few things happening:

• The “pies” directory again has the same permissions that prevent access to
the sweet directory - so much so that the contents of the “pies” directory
cannot be listed nor can it be traversed.

• The “sweet” directory notes that Administrator has a DENY ACL entry
against it that is inherited however it has an explicit full control assigned
to that level.

• The “savoury” directory initially returns a Access is denied error before fileacl
uses an force override to retrieve the permissions via a backup privilege.

• Members of the “sweet” directory are accessible however members of the
“savoury” directory are not.

Thus it can be noted that NTFS appears to actually traverse the tree backwards
from the object since the “pies” directory would have denied this from occurring
under Linux without the existence of a hard link. This behaviour is because of the
method that NTFS uses to evaluate file permissions using the DACL system where
each layer is inspected before progressing up the chain.

Curiously Microsoft presents a warning when assigning deny permissions which
might mislead an administrator that doesn’t realise that the deny permission they
are setting could potentially be overruled by an allow entry at a lower level.

Chapter 5: Examination of Present Systems 48

Figure 5.1: Warning about deny privilege from Microsoft Windows XP

NTFS supports hard linking [8] for POSIX compliance [17]. Just like Linux
however, hard links for directories don’t appear to be possible however hard links
for files are possible:

C:\research\recipes>fsutil hardlink create "c:\research\recipes\sweet pies"
c:\research\pies\sweet

Error: Access is denied.

C:\research\recipes>fsutil hardlink create "c:\research\recipes\blackberry pie"
c:\research\pies\sweet\blackberry

Hardlink created for
c:\research\recipes\blackberry pie <<===>> c:\research\pies\sweet\blackberry

C:\research\recipes>more "blackberry pie"
Blackberry

NOTE: Output artificially altered to fit page width
So with the files are linked to each other, the permission to access the “pies”

directory is revoked:

C:\research>fileacl pies
C:\research\pies;DENY!WINXP\Administrator:RWwAWaWePXDDcO
C:\research\pies;BUILTIN\Administrators:F[I]
C:\research\pies;NT AUTHORITY\SYSTEM:F[I]
C:\research\pies;WINXP\Administrator:F/U/U[I]
C:\research\pies;CREATOR OWNER:U/F/F[I]
C:\research\pies;BUILTIN\Users:RWwAX/RX[I]

C:\research>cd pies
Access is denied.

C:\research>more "recipes\blackberry pie"
Cannot access file C:\research\recipes\blackberry pie

In this case, unlike with Linux, permission to access the file has been disabled
just as if it had been accessed via the normal means. Since the DACL is constructed
in the object appears to only support a single line of inheritance.

A final curious feature is the way that inherited permissions are handled. To
open a file in a directory you need rights over that file to read it but you also
need the “List Files/Read Data” permission from the containing folder. However
to open a folder, this permission isn’t required. So if you have list files on the target
folder you can read it regardless of permissions from parents and without requiring
directory traversal rights. Consider the following configuration:

49 5.2 Implementation of NTFS by means of XACML

C:\research>fileacl pies
C:\research\pies;DENY!FAIL\Administrator:RWwAWaWePXDDcO
C:\research\pies;BUILTIN\Administrators:F[I]
C:\research\pies;NT AUTHORITY\SYSTEM:F[I]
C:\research\pies;FAIL\Administrator:F/U/U[I]
C:\research\pies;CREATOR OWNER:U/F/F[I]
C:\research\pies;BUILTIN\Users:RWwAX/RX[I]

C:\research>fileacl pies\sweet /FORCE
C:\research\pies\sweet;DENY!FAIL\Administrator:RaRepWwAWaWePXDDcO
C:\research\pies\sweet;FAIL\Administrator:Rr

C:\research>fileacl pies\sweet\apple
C:\research\pies\sweet\apple;FAIL\Administrator:F
C:\research\pies\sweet\apple;BUILTIN\Administrators:F
C:\research\pies\sweet\apple;NT AUTHORITY\SYSTEM:F
C:\research\pies\sweet\apple;BUILTIN\Users:RX

So the “pies” directory has a deny set for the Administrator account. The
“pies\sweet” directory has a deny for almost everything except the “list files/read
data” permission (Rr). Finally the file “pies\sweet\apple” has full control granted.
With these rights we are able to read the file:

C:\research>more pies\sweet\apple
Apple

However if the Rr permission is removed from “pies
sweet”, we cannot access the file any more:

C:\research>fileacl pies\sweet /FORCE
C:\research\pies\sweet;DENY!FAIL\Administrator:RaRepWwAWaWePXDDcO

C:\research>more pies\sweet\apple
Cannot access file C:\research\pies\sweet\apple

This appears to be the result of the SeChangeNotifyPrivilege privilege in action.
The SeChangeNotifyPrivilege, detailed in 3.4.5, provides the ability to skip directory
traversal checks. So even though the parent would ordinarily deny access as this isn’t
being checked as a matter of performance, access is permitted to the directory. It is
curious to note that this privilege is granted to all users in Windows. Without this
privilege the behaviour seen within Unix, Linux and Mac OS X (e.g. of being denied
access to a child if traversal is removed from a parent at any point in the chain)
would be implemented. It would appear that removing this privilege can potentially
cause many issues with a Windows server, particularly with file sharing [86].

5.2 Implementation of NTFS by means of XACML

5.2.1 Sample of NTFS Access Rules

Consider the following set of rules:

• User john is explicitly unable to read the file “/Reports/Annual Report.txt”

• Group “Report Authors” is able to read and write to “/Reports/” which is
inherited to all children

Chapter 5: Examination of Present Systems 50

• User fred has an explicit deny to write to “/Reports/” which isn’t inherited.

• User fred can read the file “/Reports/Annual Report.txt”

• Group “Report Authors” has the users john and harry

For simplicity we will only deal with the generic rights. A rules for NTFS are
expressed as highly restrictive data structures, I’m going to use the description
syntax used by fileacl [4] .

/Reports/Annual Report.txt;DENY!john:R
/Reports:Report Authors:RW/RW/RW
/Reports;fred:DENY!W/U/U
/Reports/Annual Report.txt;fred:R

Note: As XACML only designates the use of URI or UNIX fie system paths, this
style has been used instead of the traditional MS-DOX drive letter style syntax.

5.2.2 Sample of NTFS Access Rules in XACML

Two policy sets need to be defined for “/Reports” - one that is inherited and
another which isn’t. From here there needs to be a policy for “/Reports/Annual
Report.txt” which defines the rules for this file and then also calls the inherited
values from “/Reports”. As the only way to reference other sets of rules is via
a PolicySetIdReference or a PolicyIdReference, either of which having to be in a
PolicySet themselves. So in this case the approach of using a PolicySetIdReference
was used to reference an entire PolicySet which could in turn reference other policies.
This way NTFS style reverse traversal of the tree from the child to the root can be
achieved.

Policy Set 1: Inheritable /Reports permissions

<?xml version="1.0" encoding="UTF-8" ?>
<PolicySet
xmlns="urn:oasis:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicySetId="urn:au:edu:usq:example:ntfs:policysetid:1"
PolicyCombiningAlgId=
"urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable" />
<Description>
Policy Set for NTFS Example (/Reports)

</Description>
<Target>
<Subjects>
<Subject>
<AnySubject />

</Subject>
</Subjects>
<Resources>
<AnyResource />

</Resources>
<Actions>
<AnyAction />

</Actions>
</Target>
<PolicySetIdReference>
urn:au:edu:usq:example:ntfs:policysetid:owner

51 5.2 Implementation of NTFS by means of XACML

</PolicySetIdReference>
<Policy

PolicyId="urn:au:edu:usq:example:ntfs:policyid:1"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:first-applicable">
<Description>
Inheritable Policy for /Reports

</Description>
<Target>
<Subjects>
<Subject>
<AnySubject />

</Subject>
</Subjects>
<Resources>
<AnyResource />

</Resources>
<Actions>
<AnyAction />

</Actions>
</Target>
<Rule
RuleId="urn:au:edu:usq:example:ntfs:Rule1"
Effect="Permit">
<Description>
Inheritable Policy for /Reports

</Description>
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<SubjectAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
Report Authors

</AttributeValue>
</SubjectAttributeDesignator>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>
<Resource>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:ufs-path"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">
<AttributeValue>
/Reports

</AttributeValue>
</Attribute>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:scope"
DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>
Descendants

</AttributeValue>

Chapter 5: Examination of Present Systems 52

</Attribute>
</Resource>

</Resources>
<Actions>
<Action>
<ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
read

</AttributeValue>
<ActionAttributeDesignator AttributeId=
"urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</ActionMatch>
<ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
write

</AttributeValue>
<ActionAttributeDesignator AttributeId=
"urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
</Policy>

</PolicySet>

Policy Set 2: /Reports/Annual Report.txt

<?xml version="1.0" encoding="UTF-8" ?>
<PolicySet
xmlns="urn:oasis:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicySetId="urn:au:edu:usq:example:ntfs:policysetid:2"
PolicyCombiningAlgId=
"urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable" />
<Description>
Policy Set for NTFS Example (/Reports/Annual Report.txt)

</Description>
<Target>
<Subjects>
<Subject>
<AnySubject />

</Subject>
</Subjects>
<Resources>
<AnyResource />

</Resources>
<Actions>
<AnyAction />

53 5.2 Implementation of NTFS by means of XACML

</Actions>
</Target>
<PolicySetIdReference>
urn:au:edu:usq:example:ntfs:policysetid:owner

</PolicySetIdReference>
<Policy
PolicyId="urn:au:edu:usq:example:ntfs:policyid:2"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:first-applicable">
<Description>
Policy for /Reports/Annual Report.txt

</Description>
<Target>
<Subjects>
<Subject>
<AnySubject />

</Subject>
</Subjects>
<Resources>
<AnyResource />

</Resources>
<Actions>
<AnyAction />

</Actions>
</Target>
<Rule
RuleId="urn:au:edu:usq:example:ntfs:Rule2"
Effect="Deny">
<Description>
User john is explicitly unable to read the file /Reports/Annual Report.txt

</Description>
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<SubjectAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
john

</AttributeValue>
</SubjectAttributeDesignator>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>
<Resource>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:ufs-path"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">
<AttributeValue>
/Reports/Annual Report.txt

</AttributeValue>
</Attribute>

</Resource>

Chapter 5: Examination of Present Systems 54

</Resources>
<Actions>
<Action>
<ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
read

</AttributeValue>
<ActionAttributeDesignator AttributeId=
"urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
<Rule
RuleId="urn:au:edu:usq:example:ntfs:Rule3"
Effect="Permit">
<Description>
User fred can read the file /Reports/Annual Report.txt

</Description>
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<SubjectAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
fred

</AttributeValue>
</SubjectAttributeDesignator>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>
<Resource>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:ufs-path"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">
<AttributeValue>
/Reports/Annual Report.txt

</AttributeValue>
</Attribute>

</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">

55 5.2 Implementation of NTFS by means of XACML

read
</AttributeValue>

<ActionAttributeDesignator AttributeId=
"urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
</Policy>
<!-- Reference to /Reports -->
<PolicySetIdReference>
urn:au:edu:usq:example:ntfs:policysetid:1

</PolicySetIdReference>
</PolicySet>

Policy Set 3: /Reports non-inherited permissions

<?xml version="1.0" encoding="UTF-8" ?>
<PolicySet
xmlns="urn:oasis:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicySetId="urn:au:edu:usq:example:ntfs:policysetid:3"
PolicyCombiningAlgId=
"urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable" />
<Description>
Policy Set for NTFS Example (/Reports/Annual Report.txt)

</Description>
<Target>
<Subjects>
<Subject>
<AnySubject />

</Subject>
</Subjects>
<Resources>
<AnyResource />

</Resources>
<Actions>
<AnyAction />

</Actions>
</Target>
<PolicySetIdReference>
urn:au:edu:usq:example:ntfs:policysetid:owner

</PolicySetIdReference>
<Policy
PolicyId="urn:au:edu:usq:example:ntfs:policyid:3"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:first-applicable">
<Description>
Policy for /Reports/Annual Report.txt

</Description>
<Target>
<Subjects>
<Subject>
<AnySubject />

Chapter 5: Examination of Present Systems 56

</Subject>
</Subjects>
<Resources>
<AnyResource />

</Resources>
<Actions>
<AnyAction />

</Actions>
</Target>
<Rule
RuleId="urn:au:edu:usq:example:ntfs:Rule4"
Effect="Deny">
<Description>
User fred can’t write to /Reports but this isn’t inherited

</Description>
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<SubjectAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
fred

</AttributeValue>
</SubjectAttributeDesignator>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>
<Resource>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:ufs-path"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">
<AttributeValue>
/Reports/Annual Report.txt

</AttributeValue>
</Attribute>
<!-- Immediate scope is implied by not setting a scope

but this makes it explicit -->
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:scope"
DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>
Immediate

</AttributeValue>
</Attribute>

</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">

57 5.3 Examination of Privileges and Capabilities

write
</AttributeValue>

<ActionAttributeDesignator AttributeId=
"urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
</Policy>

</PolicySet>

5.3 Examination of Privileges and Capabilities

Privileges and capabilities are features offered by the Windows Security Model and
the Linux Security Model. They provide for the ability to control access to parts of
the system. A key difference is that the Windows privilege model grants users the
ability to complete tasks from no ability while the Linux capability system does the
same but is aimed at going from full capability to limited capability.

Privileges form a mandatory access control model. Privileges and capabilities
will override any discretionary permissions that could exist. A good example of
this is the capability within Unix systems that root can bypass most discretionary
access controls to read and write files on the local file system. Privileges and capa-
bilities also provide access to items that aren’t normally controlled through other
discretionary measures. An example of this is in Windows the ability to manage
volumes (disks) or in Unix/Linux the ability to bind to privileged ports.

The Windows privilege model has various abilities that can be assigned to users
of groups. An example of two such privileges is the ability to backup a file or to
restore it. These abilities map directly onto a privilege that can be granted within
Windows. No user within Windows inalienably has these privileges and they can
be configured to be granted, or not granted, to individual users. Various privileges
relating to file systems are noted in the NTFS subsection on privileges (see 3.4.5).
Privileges provide abilities to normal users.

The Linux capability model appears to have been partially implemented and
not completed fully. The Linux capability isn’t as rich as the Windows privilege
model. The Linux capability system appears to work by starting with a root user
that has all capabilities and then progressively removing capabilities. This means
that processes can remove capabilities that they don’t require (e.g. remove the
capability to ignore file permissions) and retain those capabilities that they do need
(e.g. to send raw packets or to bind to a privileged port). However to do this
the application either needs itself to utilise the capability system to drop surplus
capabilities or it needs to be run through a wrapper which removes the capabilities
for the process. Capabilities haven’t been used much since their introduction in
1998 and while there have been attempts to complete the work on capabilities it
appears to be a contentious area [64].

5.4 Comparisons

Each of the file systems present various features. Some present general options and
others don’t. This section is split into two categories: generic permission based
features of systems and a specific section which covers file system permissions.

C
h

a
p

ter
5:

E
x
am

in
a
tio

n
of

P
resen

t
S

y
stem

s
58

FAT* NTFS ext2/3 POSIX ACL HFS+ NFSv4 ACL ZFS NWFS
Basic File Permissions
Write No Yes Yes Yes Yes Yes Yes Yes
Read No Yes Yes Yes Yes Yes Yes Yes
Execute No Yes Yes Yes Yes Yes Yes Attr Only
Read-only Attr Only Yes Attr Only No Yes (Locked) No No Yes
Hidden Attr Only Both* No No No Yes Yes Both
Basic Directory Permissions
List No Yes* Yes Yes Yes Yes Yes Both
Search No Yes Yes Yes Yes Yes Yes Yes
Add/Delete child No Yes Yes Yes Yes Yes Yes Yes
Attribute Permissions
Attribute Read No Yes No No Yes Yes Yes No
Attribute Write No Yes No No Yes Yes Yes No
Extended Attribute Write No Yes No No Yes Yes Yes No
Extended Attribute Read No Yes No No Yes Yes Yes No
Read Permissions No Yes No No Yes Yes Yes No
Write Permissions No Yes No No Yes Yes Yes Yes
Change Ownership No Yes No Yes Yes Yes Yes No
Extended File Permissions
Delete No No Attr Only* No No No No Attr Only
Append No No Yes No No No No No
Extended Directory Permission
Add file No Yes No No Yes Yes Yes Yes
Add directory No Yes No No Yes Yes Yes Yes
Add subdirectory No Yes No No Yes Yes Yes Yes
Delete child No Yes No No Yes Yes Yes Yes
Specialised Permissions
Supervisor No O/S O/S O/S O/S No O/S Yes
Rename Inhibit No No No No No No No Attr Only
Copy Inhibit No No No No No No No Attr Only
System Attr Only Attr Only No No No No No Attr Only
Access Control No O/S No No No No No Yes
Stationary No No No No Attr Only No No No

Table 5.1: Comparison of functionality between various file systems

59 5.4 Comparisons

Legend:

• Yes — The permission is controllable on a per item basis for this flle system
via a particular permission.

• Both — The permission is controllable on a per item basis for this file system
using either permissions or attributes.

• Attr Only — The permission is controllable on a per item basis for this oper-
ating system via a particular attribute. Attributes apply to all users equally.

• No — The permission cannot be controlled in any way. The permission may
also be masked by other permissions however (e.g. extra read permissions
like read permissions or read attributes may be a part of a more general read
permission) but cannot be controlled individually and are marked as no.

• O/S — The particular permission is not controllable within the file system
however the operating system offers the ability to permit equivalent controls
either via capabilities or privileges.

Notes:

• FAT is a single user file system, all “permissions” listed are implemented
through attributes which thus apply to all users.

• NTFS implements the hidden attribute which hides a particular file from view
depending on the users settings and also offers ABE. NetWare File System
(NWFS) supports both a hidden attribute and a “file scan” permission that
prohibits users seeing a file or folder.

• ext2 has an immutable bit that specifies that a file cannot be altered by
anyone, including any privileged superuser which is equivalent to read-only
and delete inhibit.

• HFS+ here refers to the version shipped with Mac OS X 10.4 (Tiger) or
greater which includes support for POSIX ACLs. Versions previous to this
implemented the standard POSIX security model.

Interestingly, the disparate security and permission features implemented by
each file system can be structured into a graph of where their primary features are
derived from. In some aspects of the graph, a line is drawn when a system logically
extends the system, such is the case of NWFS which was derived from FAT. More
commonly arrows are drawn when features are similarly developed. This can be by
implementing a common standard (e.g. POSIX.1 compliance) or implementing a
very similar security model (such is the case of NFSv4 which has a similar model
to that found in NTFS) or aspects of the security model (e.g. HPFS’s extended
attributes were implemented in NTFS for support).

The graph in Figure 5.2 has root nodes as either the operating system that
implemented the particular file system (e.g. Netware, OS/2, Windows/DOS) or a
particular standard (e.g. POSIX, used by UNIX and its clone operating systems
such as Linux).

Chapter 5: Examination of Present Systems 60

MULTICS

UNIX

POSIX

NTFSext2

ZFSHFS

POSIX ACL

Windows/DOS

FAT

NWFS

NFSv4

Netware

OS/2

HPFS

Figure 5.2: Family tree of file systems and access control standards

Part III

Experimentation

61

Chapter 6

MDFS Purpose

This chapter puts in perspective the purpose of MDFS and examining the utilisa-
tion of rich metadata in access control. It covers why metadata is an important
part of access control and how building systems with access to rich metadata can
provide more scalable access control systems. The chapter continues to provide a
background in metadata file systems and how metadata has been treated in existing
and historic systems. It concludes by introducing the goals for the development of
an MDFS undertaken in this project.

6.1 The importance of metadata in access control

As discussed in Chapter 2, many of the access control systems that exist today can
be viewed as metadata that is layered on top of the objects that they are protecting.
In some cases this is a very small amount of data (32 bits of mask for UNIX plus the
owner and group of an object) and in other cases it a comparatively large amount
of data (up to 64KB for NTFS). However all of these systems are constrained by
the limitations on the range of information which is accessible.

Many access control systems examined are designed to operate in a way where
they don’t know semantically what they are protecting. When you set an ACL on
a file that says that your relation can see a file, the access control system doesn’t
understand why you’re doing this and nor does it attempt to work out why. This
leads to the situation where you are continually granting access to items that people
need access to because there is no semantic meaning behind the access control rights
you are assigning.

To a point this is mostly alleviated in corporate environments by creating folders
on network file shares that have the permissions assigned to them. They may even
have groups that have names that make reasonable sense to the creators of the folder.
This is a workaround where the containing object is assigned the permissions and
this is used to control access to the file. In small way this is utilising the only bit
of metadata that is available, the path, to provide access control flexibility.

While not the only solution to more advanced access control, metadata file
systems provide a unique solution to access control. In a metadata file system there
is more than just the basic details of a file that most file systems record. A metadata
file system doesn’t just contain the name of the file, how big the file is, who owns
it, what group is assigned to it and anywhere between 32 bits and 64 kilobytes
worth of access control data - plus what ever other small attributes that exist which
usually take up one bit each. Instead it can contain more details about a file in
the file system layer. It can also start to build relationships between files. Instead
of a file just existing on it’s own, it can be linked to different objects. Metadata

62

63 6.2 Metadata Filesystem Background

file systems can easily store objects of pure metadata which may not actually have
a file portion of them — or even generate a data stream to match the metadata
stored transparently. In a metadata file system, a contact is a file in it’s own right
represented within the file system. Concepts such as tagging can be embedded
directly into the file system without the need for it to exist outside.

Having this amount of data available within the file system also means that
access control at the file system level can be rethought. Instead of creating access
control rules for each file or even for folders at specific levels, more generic access
control rules can be generated based upon the metadata. To provide this function-
ality a language is required to adequately encode the rules. XACML provides a
standard language for defining the rules and constraints. XACML (see 3.6.6 and
5.2) provides the ability to define access control rules

File management in a university provides good examples of how this information
could be used. Lecturers of a course should be able to edit material associated with
a course they are teaching. A lecturer’s user object is linked to the the course
which is in turned linked to the course materials for the course. An access control
rule could be constructed that permits lecturers to edit course materials that they
are teaching. This concept can be expanded beyond course materials into student
management (you can only see details of students who are enrolled in the courses
you are teaching this semester) or assignment management (a student is linked to a
course; a course is linked to an assignment; students can submit to those assignments
which are linked into the system as submissions; lecturers related to a course can
view submissions). In each of these examples metadata and relationships are used
to provide the basis of access control.

Through use of attributes stored within the system in a uniform manner, a
more fluid method of access control can be constructed. This also permits the use
of an access control language over an increasing amount of data that is being stored
within modern information systems. Data that already exists is being reused for
example who is teaching which course, what assignments does the course have and
course enrolments. This shifts the burden of access control away from discretionary
rules and onto a point where access can be controlled through proper maintenance
of existing metadata and general purpose rules.

In this way metadata becomes an important tool in providing flexible and pow-
erful access control. With the advent of various search systems, the quality of data
is increasingly being exposed. Data that is incorrectly catalogued or tagged with
metadata appears visibly wrong and data with appropriate metadata is made easier
to find.

A key issue in all of this is ensuring that items have sufficient metadata associated
with them to make this form of access control work. In structured environments,
such as a University, metadata association can be included as part of a position and
training provided to ensure quality and accuracy of data. How this would work in
a less structured environment would require further research and user testing.

6.2 Metadata Filesystem Background

MDFS comes at an interesting point in file system development. For the better
part of two decades Microsoft has been promising an object relational filesystem
but fails to deliver. The latest incarnation of this is “WinFS”, a project slated
to be Longhorn’s file system (now released as Vista), was cancelled at an early
public beta stage. It is in this context that we build MDFS. The lack of metadata
capable filesystems, and in the case of MDFS and WinFS, strongly typed metadata
filesystems, has created a development in ’indexing’ data.

So parallel to file system developments, the area of ’indexing’ and ’search’ has be-

Chapter 6: MDFS Purpose 64

come far more apparent to now be an advertised feature of operating systems. This
is true for both Apple’s Mac OS X, utilising an indexing engine called “Spotlight”,
and Microsoft’s Windows Vista with the creatively named “Windows Indexing Ser-
vice” and “Windows Search”. Both of these hold a prominent place on the desktop
(top right corner click button and bottom left corner click button respectively)
showing that information retrieval on the desktop is an important issue for both of
these organisations. Linux also provides its own indexing and search system called
“Beagle”. Beagle is on par with the existing services such as Spotlight and Windows
Search. In SUSE systems, Beagle is located in the “computer” menu. This way of
accessing Beagle similar to the way Windows Vista operates.

While all of this has been going on, there has been the increasing use and
awareness of the availability of metadata in existing file systems. While all major
operating systems (e.g. Windows, Mac and Linux) have file system level support
for metadata, very few applications actually make use of this facility. Within Linux,
extended attributes are typically disabled by default for file systems, even if they
support it. NTFS supports extended attributes although no part of the Windows
operating system appears to use them, nor does any application on the platform.
It appears the support for extended attributes in NTFS was designed with OS/2
compatibility in mind. With the release of Mac OS X 10.5, Apple have started to
use the extended attribute support that was added in version 10.4 of their operating
system. Apple is starting to use extended attributes to provide information about
files such as where it was downloaded from. Additionally they provide a tool, xattr,
that allows for easy access via the shell prompt to metadata stored on the filesystem.

Historically both OS/2, BeOS and Mac OS have provided extended attributes or
features similar to it. Both OS/2 and BeOS supported strong metadata file systems
(HPFS or High Performance File System and BeFS respectively) whereas Mac OS
has utilised the “forks” approach to provide extra metadata information (e.g. a fork
could contain much metadata about an application such as its dialogs). Forks are
also supported under NTFS as “streams”. A fork is basically a separate bit stream
for a file entry, so a file might have multiple streams. Mac OS only supports two
forks, a resource fork which can contain typed metadata and a data fork which is
the traditional bit stream. NTFS can support multiple named streams, accessible
by suffixing a “:” in the command line to access each stream.

With the beginnings of heavy use of metadata within modern day operating
systems the next development is to provide logical storage capabilities of extended
metadata information. The move to utilise a more structured manner replaces
the current heavily unstructured methods. The extended attribute systems for all
platforms only store plain strings without any type information. The aim of MDFS
is to build a filesystem that handles attributes in a type aware manner while still
being compatible with existing systems that might not be metadata aware.

The main aim of this is to promote the file system as capable of storing the
information that has previously been made a part of the files that were stored on
the filesystem. Good examples of this are MP3 (with its ID3 tags) or JPEG (with
its EXIF image data). In both of these cases metadata about the file are stored in
the file, instead of metadata about the file being stored in the file system. This has
lead to other issues such as the need to index data to provide search solutions or
database powered systems (Windows Future Storage, WinFS).

Using a database to manage file system metadata enables us to readily make use
of database concepts to provide corresponding features in the filesystem. With in
a database, the base construct is a table that stores rows and columns of informa-
tion (tuples). Furthermore within databases ’views’ are a common way of pulling
information together from potentially multiple sources and filtering it but making
it appear like it is a real “table.” A view may also have certain criteria applied to it
that means that it may not display all available data, for example it may limit the

65 6.2 Metadata Filesystem Background

number of rows returned or require that a certain field have a set value or a range
of values. Additionally a database is typically very fast at compiling and executing
complex queries on tables and can maintain indexes to ensure searches for data is
fast.

What makes this useful is that when a filesystem stores its metadata and ex-
tended attributes within a database, it becomes very easy to search for those files
that match criteria. When data like file genre is moved into a database then it be-
comes very fast for the filesystem to provide search results that are useful. Present
operating systems provide similar functionality however instead of storing the meta-
data with the filesystem, it is being stored into another database on the filesystem,
disparate from the files that it describes. Examples of this include Windows’ search
system or Mac OS X’s Spotlight system. This makes it hard to present different
’views’ of the filesystem to the user as it requires the development of specialised
programs to view the data and extract it. Within a database powered filesystem,
virtual folders can be created from database views to present the user with informa-
tion. Within MDFS normal file and folder operations work on these virtual folders
transparently. This means that the user or a third party developer doesn’t have
to do anything to utilise this support from within MDFS, it is exposed through
traditional interfaces.

6.2.1 MDFS Purpose

The purpose of MDFS is to develop an implementation of a metadata file system
to examine concepts and issues relating to metadata file system. Issues relating to
metadata file systems involve how it is accessed, how it behaves and if there are
any complications in implementation. The concepts covered involve inheritance of
files within an object orientated hierarchy, permissions in metadata file systems and
creating relationships between objects in a metadata file system. Examination and
development of the properties found in metadata file systems and not other systems
such as unique identifier and relationships between the items.

It is important that the system where possible is backwards compatible with
traditional filesystems. This is to enable compatibility with existing applications so
that custom support for the file system isn’t required. A failing of earlier metadata
file systems is the requirement to implement a specific API to even use the file
system which hinders adoption of the file system. MDFS aims to demonstrate
how metadata file system concepts can be examined whilst using existing tools to
manipulate data. This also extends to implementing standard extended attribute
support so that the extra fields are accessible via these methods as well.

Chapter 7

MDFS Specification

7.1 Requirements

MDFS is required to complete the following high level goals:

• be compatible with regular applications (e.g. vim, OpenOffice, etc)

• have extensible metadata schema with custom classes

• the ability to create smart folders that are equivalent to a traditional database
view of the data stored in the database

The first requirement is the effective implementation of POSIX standard calls
within the file system so that the host operating system can operate on the files
in a standardised manner. The second is the development of the metadata aspect
of the file system and the ability to create a flexible metadata schema for storing
objects. The final requirement is a demonstration of the flexibility in the system to
be able to utilise metadata and expose useful information to the user.

7.2 Use Cases

Within MDFS the key use case is depicted in Figure 7.1. MDFS is firstly a file
system. So standard file system operations apply: create file, edit file and delete
file. MDFS has a different view on folders than a traditional system however their
structure can be emulated within a particular class structure.

In addition to support of the default file system management tasks that a file
system should complete, MDFS needs to be able to handle extensible metadata
classes (create classes) and utilise views upon the information stored (create views).
Both of these operations are completely new to the file system uses as neither
concept particularly exists within present day file systems. The use of “views” can
be considered similar to “smart folders” found within Mac OS X which are basically
searches. The last use of the file system is the assignment of metadata. As the file
system is constructed on the basis of relying on files having extra metadata, the
task of assigning metadata to files becomes an important use for the system and
almost critical to it’s operation.

The creation of views and classes is the domain of both the user and the de-
veloper. The end user of the file system should be able to create both of these
elements and the original developer of the system will wish to create some classes
for the maintenance of the system. Intelligent agents might wish to add files and
also maintain metadata. One such agent could be a transducer which examines files
and automatically extracts metadata and populates relevant fields.

66

67 7.3 Domain and Range

MDFS Use Case Diagram

User

Create Class

Create View

Add file

Assign metadata

Developer

Agent

Figure 7.1: MDFS Use Case

7.3 Domain and Range

MDFS is expected to operate within the bounds of a standard filesystem, and as
such should be capable of storing files. Additionally MDFS is designed to allow for
the creation of custom metadata classes and provide the functionality to add, edit,
retrieve or destroy metadata associated with individual objects stored within the
system.

It is envisaged that the system would allow the creation of pure metadata ob-
jects, objects that do not have any file data associated with them. For example
a JPEG image might be considered to be composed of two parts: the raw image
data and the metadata about the image (such as EXIF data that describes the
particular camera that took the picture). Other objects are more pure structured
data or semi structured data, such as that of a contact. A contact deviates from
the fine definition of structured data due to its inherent flexible nature. MDFS is
not capable of providing a method of manipulating semi structured data however it
does provide the capability to build structured metadata storage for files and pure
metadata objects.

MDFS exposes three root folders by default:

• admin

• classes

• views

Each of these folders shows different perspectives of the system. The admin
directory for example shows information about the system and allows the creation,
modification and deletion of both classes and views. For anyone who is familiar
with the proc file system under Linux this will appear familiar.

The classes and views directory both show perspectives about files stored within
the system. Classes shows a listing of all available classes as directories and then
within those directories shows the member objects of those classes.

Chapter 7: MDFS Specification 68

Views is analogous to a saved search in Apple’s Finder file manager and Spotlight
indexing system. A saved search, or “Smart folder”, is run automatically when ever
the folder is viewed by the system. The MDFS views behave in a similar way to
these virtual folders except they appear as a real part of the file system, unlike the
Smart folders. An example of the key difference is when a Smart Folder is accessed
via a third party application (e.g. NeoOffice, a OpenOffice.org port) it does not
behave consistently as a folder, however when using other applications is does. The
aim of MDFS is to build into the file system core so as to provide a seamless user
experience for all applications.

7.4 Metadata System API

The metadata system is what distinguishes MDFS from many other file systems.
This API provides the ability to manipulate the metadata storage system for ob-
jects.

7.4.1 View specification

A view within MDFS is similar to a view within a database however the system
handles extra information associated with the view to allow a smoother operation.

• createView(char * viewName, char * viewSpecification,
char * fileKey)
This creates a new view with a given view name and SQL specification. The
fileKey is the key specification for the filename. This returns true or false
depending on the success of the operation.

• deleteView(char * viewName)
Deletes a given named view.

• alterView(char * viewName, char * viewSpecification,
char * fileKey)
Alters a given named view and changes it to be the specification. The fileKey
is the key specification for the filename.

7.4.2 Class Specification

A class is the container for all objects with in the system. MDFS as a system
classifies objects within the class hierarchy. Classes form the basis of all stored
objects and relationships within the system. Unlike views, classes cannot be altered
via this interface due to the impact it might have upon other subclasses or stored
metadata.

• defineClass(char * className, char * classSpecification,
char * fileKey)
This defines a new class with the name and SQL class specification. The
specification should inherit from the default Fileable or Non-Fileable classes
or their children however the system will not directly enforce this restriction.

• removeClass(char * className)
This removes a leaf class from the system. All members of the class are
automatically moved into its parent class. The three special classes Base,
Fileable and Non-Fileable cannot be removed. This operation may take some
period of time to complete depending on the number of members in the class.
Only classes without any children can be removed.

69 7.5 Input and Output Formats

Figure 7.2: View or Class Definition Format

Filename
Key Value
SQL Query definition of view or class (create table or create view)

Figure 7.3: View or Class Definition Format

7.5 Input and Output Formats

MDFS behaves like a file system and as such its input and output is handled in a
manner that a filesystem should behave as per POSIX specifications and through the
FUSE API. This includes both the normal operations and the use of the extended
attributes in the system. However there are some aspects of the file system that are
purely virtual and determined by the file system itself. The primary user interface
into the system is through the file system layer of their operating system and the
configuration of the bootstrap program.

7.6 View and Class Interface Format

The views of the file system are presented in the “views” virtual directory as di-
rectories that the user can navigate to with the results of the view available as
files. The classes available in the file system are presented in the “classes” virtual
directory as directories that the user can navigate to with the members of the class
available as files. The final directory is the admin one which consists of “views” and
“classes” each containing the definitions for both the “views” and “classes”. The
views are updateable via this interface, however the classes are not. Irrespective of
this classes may be removed as per normal (see documentation on the removeClass
operation for valid removal conditions) and both views and classes may be created
by defining a new file with the relevant data in it.

The format for this file is described in Figure 7.3.

Chapter 8

MDFS Design

8.1 MDFS Architecture

What makes MDFS different from previous efforts is that it doesn’t provide simple
generic metadata access of the sort that is available presently within file systems
NTFS and ext3. MDFS instead provides typed and controlled metadata, like a
database system. This is the key difference between this system and existing file
system solutions.

8.2 Functions and Algorithms

This section documents the functions and algorithms required for the correct oper-
ation of the proposed metadata filesystem.

8.2.1 FUSE API Documentation

MDFS implements features exposed from the FUSE API in conformance with the
POSIX API. As such the following functions from FUSE are implemented. This
means all of the regular file operations (such as open, close, read, write, stat) are
implemented but additionally the extended attributes are also implemented as the
interface into the metadata file system (getxattr, setxattr, listxattr).

Within each function call also exists a set of routing functions that handle the
direction of different virtual folders to handle operations in a logical manner. As
such a generic switcher would look similar to this:

FUNCTION genericFunction(path, otherparams)
IF path STARTS WITH ’views’ THEN

useViewHandler(path, otherparms)
ELSE IF path START WITH ’classes’ THEN

useClassHandler(path, otherparams)
ELSE IF path STARTS WITH ’admin’ THEN

useAdminHandler(path, otherparams)
ELSE IF path IS ’/’ THEN

useRootHandler(path, otherparams)
RETURN FILE_NOT_FOUND

END FUNCTION

Figure 8.1: Routing Example

70

71 8.2 Functions and Algorithms

This is the generalised first level for all filesystem functions. From here the
specifics of each operation are handled.

There are multiple classes of functions for the implementation that designate
the behaviour when compared to a traditional file systems counterparts. This may
be related to database issues or otherwise.

All functions use the signature defined by the FUSE API, as such it is not noted
here. For more information on the signatures of these functions please consult the
FUSE API or the fuse.h file and examine the “fuse operations” structure.

Directory Permission and Operations Notes

Different directories may or may not be writable depending on how they are gen-
erated within the system. For example the directories that are built from the solid
classes are writable because their generation is actually through a simple select. The
same is also true for any view that contains a concrete specification and does not
use ranges (less than or greater than for example) or include elements that would
otherwise be immutable or is defined by the file system. For example attempting to
create a file in a view which is defined by a constraint based on file size will return
an operation not permitted error. This applies to any operation that attempts to
create a new object within the system (linking, moving or object creation). As the
keys are unique within the system, it is possible to open and update an object in a
view at any point, there are only limitations applied to attempting to add objects
to the view.

Standard Functions

These are functions that behave and return normally without any changes from
the perspective of the user. Any typically valid operation should be permitted and
operated without issue. All functions should behave without any side effects (as per
most file systems intended implementation). Some operations may return errors as
specified by section 4.1.1 Directory Permission and Operations Notes. For more
information about specific functions, please see Appendix 2.

• getattr and fgetattr (similar to stat)

• read, open, write and release (similar to a close)

• lock
A lock is created on a particular file. This is also stored within the metadata
system to allow for contiguous links.

• truncate and ftruncate
These operations are passed through to the underlying file system. Their
return value is condition on the result of that operation. These operations
are not valid on objects that do not store raw data (e.g. objects that do
not descend from the Fileable class). If ftruncate is not implemented then
truncate will be used instead.

• utimes and utimens

• fsync

• access

• create or mknod

• chmod and chown

Chapter 8: MDFS Design 72

• opendir, readdir, releasedir, fsyncdir
These commands all return normally except for fsyncdir in the case of where a
directory has been created (somehow). The fsyncdir will then return an error.

• destroy
The destroy operation disconnects from the database and attempts to commit
any changes that need to be made.

Unimplemented Functions

• readlink
All links within the system are presented as ’real’ members of the filesystem
(see below comments on link and symlink for more information). As such
there are no links for the system to read.

Prohibited Functions

• mkdir
MDFS does not use directories in the conventional sense so it is impossible
to create a new directories as all directory structures are maintained through
the implementation of classes or views.

Functions with Altered Behaviour

• link and symlink
A link and symlink behave in identically, as such under MDFS it is impossible
to distinguish between a hard link or a symbolic link. Within MDFS when
these are called on locations that are write-able the system will attempt to al-
ter the metadata for the object so that it matches that of the new destination.
Where this is possible these functions will return a success message, however
in cases where the metadata cannot be updated appropriately an operation
not permitted error will be returned. An example of an illegal link would be
linking from one class to another as MDFS enforces single inheritance and
membership for object classes. Links between views are possible if the target
view allows updates to be made to the view. In the underlying database, views
might be made up using equality operators or through the use of inequality
operators (e.g. greater than). If a view is made up from equality operators
then the contents of the view can be altered as the result of the operation
will always be defined by the constraints of the view. If a view includes an
inequality operator then a range of possible solutions could match so this form
of view is not able to be altered.

• unlink
Unlink is similar to link in that instead of changing pointers, the metadata
that makes an object a member of a particular view where this is a valid
operation or alternatively an operation not permitted error.

• statfs
The statfs call returns file system statistics. This includes both the database
usage and the physical disk used to store files.

• setxattr and getxattr
These functions only work for the fixed attributes of a given files class. They
will return an operation not permitted error when trying to set or get at-
tributes that are not valid for the class of the object being queried. This call
is bounded by the database constraints which may also cause the call to fail.

73 8.2 Functions and Algorithms

Base Table
objectid bigint (PRIMARY KEY)
createddate timestamp
modifieddate timestamp
owner integer
group integer
permissions integer DEFAULT 755
symbolicname character varying(255)
symbolicextension character varying(255)
locked boolean DEFAULT false

Fileable Table extends Base Table
inode text
hash varchar(128)
size integer

Nonfileable Table extends Base Table

Figure 8.2: MDFS Core Classes

• removexattr
This function does not remove the attribute however it does set the value of
the attribute to be that of the valid null value where possible or an error if it
is not possible to have a null value in that field. This call is bounded by the
database constraints which may also cause the call to fail.

• rename
This operation may not be permitted on objects where the file name is a
composite value or is immutable by the database (sequential database key).
In cases where the filename is designated by a single field, a rename operation
will update this field value to be a new value within the constraints of the
database.

8.2.2 Database Classes

MDFS is primarily composed of the classes and views in the PostgreSQL database.
There are also some special support classes. In this section tables may be used in
place of classes,.

Core Classes

There are three Core classes, the Base class and its children the Fileable and Non-
fileable classes. The class system uses inheritance so that children inherit any
attributes of its parents. Classes are implemented as stand alone tables in the
PostgreSQL database. See Figure 8.2.2 for their implementation details.

The Nonfileable table has no members of its own it is for the system’s purposes
when determining what action to complete and to keep the top level structure clean.

System Support Tables

The system utilises support tables to enable additional system data to be stored on
top of the existing metadata.

The relationship table is used to enable simple object ID relationship tagging. Its
attributes are two object identifiers and the value of the tag. Deeper SQL relations

Chapter 8: MDFS Design 74

MDFS_Relationships Table extends Base Table
oid1 bigint
oid2 bigint
value varchar(255)

Figure 8.3: MDFS Relationship Table

MDFS_Classes Table extends Base Table
classname varchar(255)
filename varchar(255)

Figure 8.4: MDFS Classes Table

are specified within the database provided features. This is to provide object to
object instance relationships as relationship types are not defined within this system.
The relationships implemented in this system are analogous to a tagging system.

The classes table is used to provide extra information about building views and
classes. The classname is the name of the class that the entry describes and the
filename is a list of attributes (prefixed by a dollar sign ($)). By default the filename
is the object ID of the instance (as this is available for all objects).

8.3 Scenarios

In this section a scenario around a student completing assignments is developed.
The situation examines the use of features of file system to demarcate works for
different courses. This includes assignments that were submitted, course materials
and other notes. In developing this use case, I will derive this from an existing
system where the file system path is used to encode this metadata.

8.3.1 Existing System

The current system has a folder with each year studied listed within it. Each
year lists each semester studied and within each semester the courses are listed by
their course code. Beyond this layer the path has no further semantic meaning
however for the purposes of the scenario all of the materials included are a part of
an assignment. A graphical depiction of this is demonstrated in Figure 8.5.

Figure 8.5: Current layout of courses

The system as it currently exists works well during the active semester because

75 8.3 Scenarios

/2009/S1/msc8001
^ ^ ^
| | Course Code
| Semester
Year

Figure 8.6: Path structure

the structure of the system is clearly delineated by time. If I know when I studied
a particular course it is very easy to find the relevant submissions for the course.
However there are two use cases which this structure makes hard:

• Finding a particular course quickly regardless of when I studied it (e.g. I know
the course code but not the year or semester).

• Finding the contents of a particular course quickly regardless of when I studied
it or if I studied it multiple times.

• Finding a course by a name not a code.

The first problem is solved by a brute force traversal to find the relevant folder
name or through the use of an external indexing service that has already completed
the traversal. The second problem is a bit trickier. The last problem is much harder
to complete without complicating the structure. The folder structure could be
altered to include the course name however this then complicates directory traversal
in command line environments.

However the path structure is being used to encode three disparate fields as
depicted in Figure 8.6. Each of these are actually structured information stored
within the path. The requirement to encode this information into the path is a
limitation of the existing file systems: file names and their paths are the only
metadata for a particular file.

8.3.2 MDFS System

In the MDFS system, a class called “Assignment” would be developed. This class
will derive from the base “Fileable” class and will store files as well as the meta-
data associated with them. Instead of encoding the information into the path, the
information would be encoded in the table. The advantage of doing this is that any
form of structure could conceivably created. The present structure (year, semester,
coursecode) could be created in addition to potentially alternative structures (e.g.
coursecode, year, semester or even coursecode, year-semester). The problems iden-
tified with the previous structure could easily be solved.

The first problem of finding a particular course is easily solved either by creating
a view based on alternate structures. One such structure could have the root based
on course code with year and semester studied underneath. Views could be con-
structed to match those courses as well. This would also resolve the second point
of finding the contents of a course regardless of when it was studied.

The last problem is an interesting situation. In this case a secondary Non-
Fileable class called “Courses” could be related. The coursecode, year and semester
information could be shifted from the “Assignment” class and references made be-
tween the file and the course instance. This would result in a more normalised
design and allow for extra fields that could be used to search for items using a more
extensive view.

In this particular scenario, the use of a structured backend makes effective re-
trieval of information much easier to complete over existing scenarios. The extra

Chapter 8: MDFS Design 76

data and the ability to extend the captured information provides for more flexibility
and information retrieval scenarios.

Chapter 9

MDFS Implementation

As a part of this study of file systems a metadata file system has been created.
Metadata file systems might be thought to represent the next generation of file
system development just as hierarchical file systems replaced record based systems
from early mainframes. This chapter presents a view of metadata in a file system
context, methods of enhancing already rich objects in the system.

9.1 Base Infrastructure

9.1.1 FUSE

File system in User space (FUSE) is a is a simple API that enables the simple
development of file systems. FUSE is useful because it allows the entire application
development to occur in user space without having to require the development of
potentially dangerous kernel modules to complete the project. This means that a
more rapid development approach can be taken as well as the ability to take full
advantage of everything that is offered in a user space system (such as database
drivers).

The FUSE API is available natively from Linux and an equivalent called “Mac-
FUSE” is available on Mac OS X. As the VFS semantics between the two differ
slightly, they are not entirely compatible but are reasonably compatible for most
functions. The pathway of a FUSE call is depicted in Figure 9.1.

9.1.2 Base Design

The base part of the system is the implementation of a plugin for the FUSE system.
As FUSE is aimed at presenting information through the virtual filesystem layer of
the kernel, the output of MDFS will mimic that of a filesystem and will be mounted
in a way similar to a network mount.

From FUSE, MDFS will connect with both PostgreSQL and the host file system.
For file operations the system will proxy most operations on fileable classes onto the
host file system where the data is stored. For metadata manipulation MDFS will
utilise the POSIX xattr functions (getxattr, setxattr, listxattr, remotexattr) which
avoids having to write a new API for filesystem interaction with the metadata
system.

On the metadata side the system is made up of objects and views of those
objects. An object is something that stores metadata (a pointer to a bit stream is
just another part of the metadata) that is handled by the system. The metadata
is stored within the PostgreSQL database and for those objects in the fileable class
they will be stored within the file store on the host’s filesystem. The file system

77

Chapter 9: MDFS Implementation 78

Figure 9.1: FUSE Structure [5]

should provide the ability to interact with existing utilities without requiring their
alteration. While applications can feature the ability to utilise rich metadata the file
system should behave normally when unaware applications are utilising the system.

9.2 MDFS Implementation

MDFS is a MacFUSE/FUSE API compatible user space file system that has been
developed primarily in C. MDFS uses PostgreSQL to store the metadata aspects of
the filesystem. PostgreSQL was chosen because of the full implementation of object-
orientation, including inheritance. These features offered by PostgreSQL are not
available in comparable open source or free database systems. For blob storage of
actual file data, MDFS defers to the parent file system and passes most traditional
file operations onto the host operating system and it’s preferred file storage system.

MDFS emulates the UNIX permission model through using owner and group
fields in addition to a permissions field that provides storage for the traditional
four digital octal mask for file permissions. This permits full compatibility with
ownership operations and the fields are also exposed via the standard extended
attribute API for setting and retrieving these attributes.

Through PostgreSQL, MDFS creates object classes through distinct table types.
Tables derive from a base table and views contain at least as many fields as is defined
in the base table (e.g. symbolicname, symbolicextension). PostgreSQL’s unique
support for object orientated style hierarchies makes it ideally suited to replicating
an object tree within a database context. This feature also implicitly includes child
items of the tree into the parent tables however the extended attributes (columns)
are unavailable in the parent views. Figure 9.3 demonstrates a class model that is
then replicated in PostgreSQL as a set of tables.

79 9.2 MDFS Implementation

Kernel Space

Operating System Virtual File System

FUSE

User Space

MDFS Interaction Diagram

FUSE API

MDFS

PostgreSQL
(Metadata store)

Host Filesystem
(File store)

Figure 9.2: MDFS Interaction Diagram

As demonstrated in Figure 9.3, there are classes which define distinct relation-
ships (e.g. user defines “studies” and “submits” relationships to course and assign-
ment respectively). Some classes are mostly empty and exist as named holders to
be included in subclasses. When fields are inherited from their parents they don’t
need to be recreated at the child level. The ability to use relationships as a native
part of the file system comes naturally from the relational aspect of the underlying
PostgreSQL database.

Another feature that is useful with the database setup with PostgreSQL is the
use of sequences to generate unique object identifiers within the file system. This
means that any object at any level of the file system is uniquely identifiable regard-
less of where it is located within the system. This enables any object to be linked
easily to any other object.

MDFS also provides basic support for views within the file system and they are
presented simply as folders. All views within MDFS need to support the minimum
fields defined in Base but can feature extra fields relevant to the view. Views cannot
be nested within other views under the present implementation.

Chapter 9: MDFS Implementation 80

Page 1 of 1

Untitled 12/05/10 9:24 PM

Base
Attributes

createddate
group
locked
modifieddate
objectid
owner
permissions
symbolicextension
symbolicname
symbolicpath
Relationships

Fileable
Attributes

hash
inode
size
Relationships

Nonfileable
Attributes
Relationships

Courses
Attributes

coursecode
coursename
semester
year
Relationships

User
Attributes

displayname
username
Relationships

studies
submits

Assignment
Attributes
Relationships

course
files

Figure 9.3: MDFS Class Hierarchy

9.3 Prototype

The MDFS prototype system is designed to show how a metadata filesystem might
be implemented within the contexts and bounds of a traditional filesystem. As
such MDFS has been implemented using the interfaces already exposed by POSIX
to ease integration of the product into an existing environment without the need
for extensive rewriting and complication of functionality by using a special purpose
API to access metadata, which was the approach of WinFS. MDFS further deviates
from the WinFS model by allowing database classes to be created without the need
for the creation of any specific programming unit. The definition of this class is
simply that of a standard SQL creation statement.

9.4 Environment

MDFS is written in C and utilises the FUSE API to provide integration with the
filesystem and PostgreSQL to provide metadata storage. MDFS has been tested on
the following platforms:

• Mac OS X 10.4.10+:

– PostgreSQL 8.2.3 supplied by Marc Liyanage

– FUSE API supplied by the MacFUSE project (release 0.4.0)

• Debian Etch

– Standard Debian packages for both FUSE and PostgreSQL

The base requirements for any untested platform should be:

• PostgreSQL 8.2 or greater

• FUSE API 2.6

81 9.5 Operating Instructions

• A parent file system

At the present moment there is no FUSE implementation for Windows operating
systems which means that there is no way to support MDFS under Windows.

MDFS does not require any explicit hardware requirements to operate, however
due to its nature it is suggested that where possible the host machine have as much
RAM as possible to ease multiple operations and caching.

9.5 Operating Instructions

MDFS operates as a filesystem however due to its nature as a FUSE powered file
system it does not behave in quite the same way as a kernel-level filesystem.

You can start MDFS by using the following command: /path/to/mdfs executable
/path/to/mountpoint This will connect to the default PostgreSQL database and
default MDFS data store.

Configuration is drawn from either “/etc/mdfs/config” or “ /.mdfs/config”. The
configuration file is an INI formatted file with the section headings match the desired
mount path.

9.6 Experimental Scenarios

Mounting the file system is trivially completed through running the MDFS com-
mand with the target mount point:

silversaviour:Debug pasamio$./mdfs test
silversaviour:Debug pasamio$

Navigating into the directory, the MDFS root folder structure as defined in 7.3:

silversaviour:Debug pasamio$ cd test
silversaviour:test pasamio$ ls
admin classes views
silversaviour:test pasamio$

At the present moment the “admin” function isn’t fully implemented and listing
the directory results in a blank operation.

9.6.1 The Classes Directory

The “classes” directory lists available classes in the system:

silversaviour:test pasamio$ ls classes
Assignments Fileable Nonfileable
Base MDFS_Relationships Users
Courses Media Video
silversaviour:test pasamio$

In the list we can see the “Base”, “Fileable” and “Nonfileable” classes. The
“MDFS Relationships” class is also listed from 8.2.2. Other classes that are avail-
able in this instance are “Assignments”, “Courses”, “Media”, “Users” and “Video”.

While not readily apparent within the file system view, the classes for the system
are structured in the hierarchy listed in Figure 9.4.

Chapter 9: MDFS Implementation 82

Base

Fileable Nonfileable

Assignments Media Courses Users MDFS_Relationships

Video

Figure 9.4: MDFS Demonstration Class Hierarchy

9.6.2 The Views Directory

Having a look at the “views”, we can see only two views:

silversaviour:test pasamio$ ls views
CSC3414 Portfolio
silversaviour:test pasamio$

The views being available are “CSC3414” and “Portfolio”. CSC3414 only has
one file within it:

silversaviour:test pasamio$ ls views/CSC3414/
index2.php
silversaviour:test pasamio$ head views/CSC3414/index2.php
<?php
/**
* @version $Id: index2.php 9764 2007-12-30 07:48:11Z ircmaxell $
* @package Joomla
* @copyright Copyright (C) 2005 - 2008 Open Source Matters. All rights reserved.
* @license GNU/GPL, see LICENSE.php
* Joomla! is free software. This version may have been modified pursuant
* to the GNU General Public License, and as distributed it includes or
* is derivative of works licensed under the GNU General Public License or
* other free or open source software licenses.
silversaviour:test pasamio$

The CSC3414 view is defined as the following:

CREATE OR REPLACE VIEW "CSC3414" AS
SELECT "Assignments".objectid,

"Assignments".createddate,
"Assignments".modifieddate,
"Assignments".inode,
"Assignments".hash,
"Assignments".size,

83 9.6 Experimental Scenarios

"Assignments"."owner",
"Assignments"."group",
"Assignments".permissions,
"Assignments".symbolicname,
"Assignments".symbolicextension,
"Assignments".locked,
"Assignments".coursecode,
"Assignments".semester,
"Assignments"."year"

FROM "Assignments"
WHERE lower("Assignments".coursecode::text) = ’csc3414’::text;

The Portfolio view has a few more files listed within it:

silversaviour:test pasamio$ ls views/Portfolio
CSC34152.txt index.php
CSC3415_Assignment_Demo.txt index2.php
CSC3415_Evaluation.txt
silversaviour:test pasamio$

Portfolio is defined as the following:

CREATE OR REPLACE VIEW "Portfolio" AS
SELECT "Assignments".objectid,

"Assignments".createddate,
"Assignments".modifieddate,
"Assignments".inode,
"Assignments".hash,
"Assignments".size,
"Assignments"."owner",
"Assignments"."group",
"Assignments".permissions,
"Assignments".symbolicname,
"Assignments".symbolicextension,
"Assignments".locked,
"Assignments".coursecode,
"Assignments".semester,
"Assignments"."year"

FROM "Assignments"
WHERE lower("Assignments".coursecode::text) ~~ ’csc3415%’::text

OR lower("Assignments".coursecode::text) ~~ ’csc3414%’::text;

9.6.3 Handling Metadata

An important aspect of the file system was the ability for the metadata in the
system to be exposed via standard API’s available on the host operating system.
MDFS exposes all of the attributes of a particular class in order. Building on the
Portfolio view listed in 9.6.2, this is the output of a sample file included within the
view:

silversaviour:Portfolio pasamio$ xattr -l CSC3415_Assignment_Demo.txt
CSC3415_Assignment_Demo.txt

objectid 305
createddate 2008-03-03 21:44:37.614859+10
modifieddate 2008-03-03 21:44:37.614859+10

inode /mdfs/store001/305.dat

Chapter 9: MDFS Implementation 84

hash <0000>
size 0
owner 501
group 501

permissions 777
symbolicname CSC3415_Assignment_Demo

symbolicextension txt
locked f

coursecode CSC3415
semester 3

year 2007

The command used is a standard extended attributes manipulation tool and
displays the relevant information about the file. This includes the unique identifier
(objectid), relevant modification dates, where the file is actually stored on disk (in-
ode), the basic UNIX permissions support (owner, group and permissions) and the
symbolic name and extension (symbolicname and symbolicextension respectively).
The additional metadata fields are also included such as coursecode, semester and
year.

The metadata can be manipulated using the standard commands. Altering the
coursecode to be a different value will remove the entry from the view:

silversaviour:Portfolio pasamio$ ls
CSC34152.txt index.php
CSC3415_Assignment_Demo.txt index2.php

As this is a weak view (the view is defined with an OR statement), the item
needs to have its metadata updated in the relevant class for the file:

silversaviour:Assignments pasamio$ xattr -s coursecode MSC8001
CSC3415_Assignment_Demo.txt

Then when the Portfolio directory is reviewed, the file is not included in the
listing:

silversaviour:Portfolio pasamio$ ls
CSC34152.txt CSC3415_Evaluation.txt
index.php index2.php

9.6.4 File system Throughput

Due to the design of the file system, it appears that file system throughput is rea-
sonably efficient. The system’s file read and write infrastructure are direct proxies
for their native file system counterparts and result in proxying the information.
This means that there is a latency overhead as six context switches are required to
complete a read operation. The requesting application does a read syscall on the
file system, the kernel then takes over and routes the request back to FUSE, FUSE
then switches back to user space to handle the request within MDFS, MDFS then
translates using its internal file open table which then triggers a read again back
into kernel space where at that point the underlying file system (usually a kernel
module) will handle it and everything switches back. This is depicted in Figure 9.5.

The call structure adds another layer of context switches (6 switches instead of
2) however this doesn’t appear to hamper performance. Figure 9.6 depicts a H.264
encoded video being streamed off an MDFS volume.

85 9.7 Access Control Model

Original Application

Kernel - FUSE

1 6

MDFS

2 5

Kernel VFS (Underlying FS)

3 4

Figure 9.5: MDFS Context Switches

9.7 Access Control Model

The access control model for MDFS follows the standard POSIX model. The MDFS
base class implements fields for an owner, a group and a octal permissions mask.
This reflects the model used by Mac OS X and Linux. This was done to ensure
maximum compatibility with existing file system technologies without requiring
more advanced access control mechanisms to be enabled. At the present moment
these fields are passed through the FUSE layer onto the host VFS layer which then
uses the information to make access control choices. Much of the access control
code in the file system at the moment is a reflection of this interface.

In developing my file system it became apparent that a language for specifying
rules was required to take full advantage of the features offered by the file system.
MDFS provided the basis of a system to store metadata about files and relationships
between files but this on its own didn’t provide access control. It becomes necessary
to built a more expansive engine to evaluate rules as opposed to relying upon the
built-in access control regime provided by the POSIX model. Such a system presents
itself with the XACML model. XACML provides not only a language for expressing
rules but also provides a model for handling access control. XACML provides
the ability to define various rules and could be adapted to fit within the MDFS
infrastructure. The verbosity and complexity of XACML does present an issue
both in implementation and potentially in general use. However XACML has not
been implemented in the file system at this point due to those complexity issues in
implementation.

9.8 Further opportunities

The file system as designed works in combination of the FUSE API layer and the
metadata storage layer in the PostgreSQL server. This design feature means that
the MDFS system can easily be extended into a web accessible system relatively
easy with similar features exposed through a web powered interface. This could be
written using more web friendly languages than C such as PHP or Python. As the
majority of the information is stored within a conventional PostgreSQL database,

Chapter 9: MDFS Implementation 86

Figure 9.6: Sample H.264 576p Video Playing in VLC from MDFS volume

many of the features could be provided via a web console. This would improve the
accessibility of the system and provides for interesting research prospects.

Part IV

Conclusion

87

Chapter 10

Concluding Remarks

10.1 Access Control Architecture Scenarios

Throughout the dissertation it has become apparent that access control systems
are fragmented. This is perhaps most ideally depicted by the the disparate nature
of access control in file systems. While the Windows model is slowly being refined
into the dominant access control paradigm for file systems and related work, it also
misses out on some of the features and properties introduced in other file systems.

What each of these systems also lacks is a uniform method of describing access
control and transferring it between systems. When a file is taken from a NTFS
volume and transferred onto any other volume that is not NTFS formatted, the
ACL’s and permissions aren’t retained properly. The general lack of metadata
portability is in itself another problem that needs to be solved, though I feel that
there is a general purpose solution for the transmission security metadata is resolved
through tools such as XACML.

10.1.1 Information Overload

While not explicitly identified in the main body of the work, information overload
is quickly becoming a problem as increasing amounts of data is being generated.
As data is generated, access control rules need to be associated to ensure that
appropriate access to information is permitted. inappropriate access control can be
bad at both extremes. Access control that is too lax and permits too much access is
certainly not a good thing and will generally result in over disclosure of information
to those parties who shouldn’t have access to the data. At the opposite extreme,
excessive security can result in those who need access to the information not being
able to readily access the information presented. A potential solution is provided
by increasing the semantic nature and associated metadata being applied which
can enable access control rules to be written based upon the metadata and permit
general rules to be written that apply to a wide variety of situations.

In a future system the prevalence of metadata and a flexible access control system
will permit advanced access control that can easily scale out to extensive amounts
of data. A demonstration system using a metadata file system which stores extra
information about files can be used as a basis towards demonstrating how generic
information systems with semantic information associated with them can be used
to provide advanced access control.

88

89 10.2 Future Work

10.1.2 XACML

XACML was covered in 3.6.6 and 5.2 as a XML based language to define access
control. XACML has many properties where it is possible the emulate the way that
file system permissions behave. On simpler permission models, such as the UNIX
permission masks, the system is relatively easy to implement. The NTFS model
demonstrated showed that XACML could reasonably emulate NTFS permissions
even though the resulting code was rather verbose.

The use of XACML then provides the ability to have a uniform language for
expressing access control in addition to defining a model for how an access con-
trol system can work. XACML also provides the ability when used with other
XML formats to create access control rules using the contents of the documents.
This provides the ability to create access control rules using the metadata available
within the document to protect it in ways described elsewhere in this dissertation.
If an image contained an XML portion which defined within itself those people
tagged within it, perhaps utilising well known URI’s for them in addition to other
identifying features, then this information could be used by an access control im-
plementation to provide advanced rules for access control to those documents.

10.2 Future Work

More work in this area could be seen in the form of ensuring that tools like XACML
are integrated in such a way that this form of semantic access control is possible.
XACML provides the strongest case for a uniform method of describing access
control. While not a key component of the dissertation, there exists a distinct lack
of portability for describing access control between systems. File systems mostly
retain rules by transferring ACL’s directly but this only works on compatible file
systems. One cannot for example take an ACL from a Mac OS X HFS+ disk and
then transfer it directly onto a NTFS formatted partition. Nor can one take a
file from NTFS and shift it onto any other file system and expect that the ACL’s
defined for those items are retained.

10.2.1 Universal access control

So in future a uniform method of transferring access control rules could be seen as
an advantage for ensuring that security is retained even through shifts with different
media. Within the file system space this is perhaps less of an issue. Most of the
time full local access is granted however increasingly information is being stored in
what is referred to as the “cloud”.

The cloud presents interesting challenges for various reasons however one concern
is that of data availability and portability. Access control while not as deeply
considered should be thought of as an important piece of this puzzle. Services like
Facebook aren’t typically considered in the cloud model but also form a part of
cloud based systems. Other items like Google Docs provide a method of sharing
documents from the cloud with access control as well. Documents exported from
this system again have their access control stripped just as when the files were
shifted between disparate file systems.

The only way to ideally solve this problem would be the introduction of universal
and uniform access control, perhaps based on XACML, that could ensure that a
document retained it’s security throughout its lifetime. It needs to be recognised
however that security is always only as secure as the weakest link. A user with
physical access will usually be able to bypass most security systems for a computer.
Enforcing true security then requires that documents are also encrypted to prevent
unauthorised access without appropriate keys.

Chapter 10: Concluding Remarks 90

Parts of this exist within the trusted computing platforms from various systems.
MULTICS enforced hardware protections via a ringed system. This system still
exists today on modern CPU architectures however the number of rings is greatly
diminished. The ring concept assumed that only certain points could be used to
switch from an outer ring to an inner ring. All other accesses resulted in an access
violation and the termination of the requesting process. Increasingly hardware level
protections are being used for formats like HDMI to ensure that the signal being
sent through different devices isn’t intercepted and redirected to a storage device.

This level of hardware control provides an interesting perspective when con-
sidering access control for semantic information systems. The question of trust
for the data and the source of the data becomes increasingly important in a world
where previously metadata has been ignored for anything of importance. Increasing
the reliance upon metadata in semantic systems for access control will also require
greater care and extra information to be stored for the creator of the metadata
— something not tracked at the moment. A requirement for metametadata (e..g
metadata about the metadata) to track who assigned the metadata and when it
was created. This needs to be explored as to how this metadata can be secured
against malicious editing.

10.2.2 Social access control

Social access control is rethinking the how the subject of access control is ap-
proached. Most access control systems have ultimately been derived from mili-
tary based standards or military funded work [75]. Examples of this are Windows
which was certified to work with the Orange Book (covered in 1.2.4) and UNIX’s
access control model which derived from early work in MULTICS funded by the De-
partment of Defence. The future of access control is mixed: in some situations the
current approach to access control is still required and desired by large organisations
and the defence establishment. However with the development of social networking
and social network based systems this defence originated model is perhaps not the
most applicable model.

Access control in social networking systems is much more fluid. Paul Adams, a
user experience researcher at Google, recently made a presentation that observed
that people in social environments have multiple groups that are distinct from each
other [56]. Paul used the example of Facebook linking together distinct social
groups, a group of LA friends and kids from a swimming club, with information
that might not be appropriate for one of the groups. This form of access control is
commonly referred to as “privacy control” but the function undertaken is controlling
access to information.

It is my belief that more research into the development of social networking
access control systems that automatically segregate different groups and utilises
an intelligent agent approach to rule generation would enhance the overall privacy
control and access within the social networking space. Unfortunately the present
state of access control appears either excessively primitive (Google Buzz’s recent
launch [88, 89]) or a shallow reflection of existing access control methodology (as
depicted by Facebook in 4.2.3). These models need review and for more intelligence
to be included to enhance their usability in a social context.

10.3 Future access control

The state of access control is in flux as the demands and needs of users continues to
change and evolve. The demands upon access control are evolving in ways that take
it away from the traditional corporate or military approaches. Social access control

91 10.3 Future access control

is one aspect of this as is a move towards more universal access control. However
neither of these on their own appear to be the final solution to access control.

Information is increasingly being generated and classified which leads me to feel
that there needs to be a way of generalising access control rules. This thesis provides
some solutions to creating generic access control rules that utilise the metadata or
semantic information that is increasingly being attached to information. However
this is itself not going to be scalable eventually either.

I feel that eventually some for of intelligent agent might end up being the next
evolution in access control management. Pattern recognition can form the basis of
automatic ruleset generation and may lend itself to either providing rules that are
“suggested” to the user or automatically enforcing rules on the fly as access to an
item is required. Many of the issues on the web involve the fact that information
isn’t discoverable because there is no way to obtain access to those resources. With
the use of an intelligent agent to mediate the access control, access to information
might improve instead of access being denied. Techniques to make access control
even smoother remain the future of access control in a way that I feel cannot be
imagined today.

Chapter 10: Concluding Remarks 92

Glossary

Access Based Enumeration (ABE) ABE is a feature of Windows Server 2003R2
or higher operating systems that limit the visibility of items that a given user
doesn’t have the permission to access ordinarily. This is similar to Novell’s
“file scan” permission however file scan can be removed for an item without
changing a users ability to get to that item if they know it exists.. i, 26, 59

Access Control Entry ACE’s are entries in a DACL. They usually take the form
described in 1.3.4. i, 93

Access Control List See DACL. i, 4, 34, 38, 93

Active Directory Active Directory is Microsoft’s LDAP compatible directory ser-
vices system. Active Directory was introduced with Windows 2000 as the
default way of handling distributed identification for users. Active Directory
also permits the storage of groups, computers and other objects.. i, 38

Attributes Attributes are flags or name value pairs set on an object typically
within a file system. There can be confusion between the user of this and
permissions where the attribute flag controls a particular permission. For
example the ext2 extended attribute ’append only’ could be considered per-
missive in that with the flag being set it prevents overwriting or truncating
the file however the ’sync’ attribute controls the kernel behaviour not the per-
mission active for the file. Typically if a file system object has an attribute
attached it applies to all users of the file equally regardless of individual per-
missions or operating system behaviours (e.g. an ext2 immutable file cannot
be altered by the root user however the root user may remove the immutable
bit and then edit the file). i

Capability Capabilities are a feature of Linux equivalent to Windows privileges.
See also: Privilege. i

Container A container is a special object that can contain other objects. Con-
tainers can have permissions assigned to them individually and these may or
may not be inherited by the child objects of the container. In file systems,
containers are typically known as directories or folders.. i

Discretionary Access Control (DAC) DAC is a form of access control that is
typically applied to specific objects or subjects. i, 12, 93

Discretionary Access Control Lists (DACL) Discretionary Access Control Lists
are used in a DAC environment to enumerate the subjects that can complete
actions on an object. DACL’s are typically comprised of Access Control En-
trys (ACEs). Also known as ACL. i, 34, 93

93

Glossary 94

DN A distinguished name is a string which uniquely defines an entry in an LDAP
system. DN’s are constructed in a hierarchical manner similar to DNS. i, 38

Down-level Name The down-level name is the username format best known as
“DOMAIN
username” which was used in Windows Directory Services prior to Active
Directory in Windows 2000. [30]. i, 38

Extended Attributes Extended Attributes have a dual meaning: primarily ex-
tended attributes are name value pairs that are stored by the file system how-
ever extended attributes can refer to attributes added that aren’t standard for
those file systems types although built into the file system (for example ext2’s
extended attributes). Generic extended attributes should be accessible via
a common API (get xattr and set xattr) while file system specific extended
attributes (such as ext2’s immutable attribute) require special commands and
API’s to alter their value.. i

FAT File Allocation Table is a simple file system developed by Microsoft and used
initially in MSDOS. i, 2, 59

FUSE File system in User Space is a system to permit file system development
outside of the kernel and to expand the availability of languages and libraries
that can be used to build a file system.. i, 77

HFS HFS was the successor to MFS for Macintosh computers. HFS introduced a
hierarchical approach. HFS is also known as “Mac OS Standard”. i, 2

HFS+ HFS+ is an improved version of Apple’s Hierarchical File System. HFS+
is referred to as “Mac OS Extended” in comparison to HFS which is referred
to as “Mac OS Standard”. i, 2, 59

LDAP Lightweight Directory Access Protocol is a standard for accessing directo-
ries of information. LDAP is a protocol used to interface with popular user
and group directories like Microsoft’s Active Directory, Apple’s OpenDirec-
tory, Novell’s eDirectory and is implemented by the open source “OpenLDAP”
project.. i, 38

Mandatory Access Control (MAC) MAC is a form of access control that usu-
ally encompass rules that apply to all objects or subjects in the system. MAC
rules usually override DAC rules.. i, 12, 34

MDFS MDFS is the underlying system developed at USQ as a research meta-
data filesystem. Metadata filesystems distinguish themselves from traditional
filesystems by providing more advanced metadata interactions and behaviours
akin to object orientated system or conventional relational databases. i

MFS MFS was one of the first file systems developed by Apple for the Macintosh
computers. MFS was a limited file system with no inherent permissions. i, 2

MSDOS Microsoft Disk Operating System was a single user operating system
developed by Microsoft and delivered on IBM PCs. DOS for a period was the
dominant operating system for microcomputers. i, 2, 94

MSSQL Microsoft SQL Server is Microsoft’s proprietary relational database
server. i

95 Glossary

MULTICS Multiplexed Information and Computer Service was an early time
sharing operating system. MULTICS pioneered many advanced concepts par-
ticularly around security.. i, 3

MySQL MySQL is an open source relational database system popular for running
web applications. MySQL is used by organisations such as Google to provide
their data backends.. i

NFS Network File System developed by Sun Microsystems (now owned by Oracle)
is an early UNIX based systems (particularly Solaris). NFS has had many
iterations the latest being version 4 which introduced NTFS style ACLs. i, 4

NTFS New Technology File System. Microsoft’s preferred file system for Windows
NT or later (now Windows Server) and Windows XP or later. NTFS had a
significant security focus with the ability to store multiple discretionary ACL
rules for files and folders. i, 4, 59

NWFS Netware File System. i, 59

Objects An object is an item that can have permissions applied to it. In file
systems an object is typically represented by a file.. i

Oracle Oracle is a software company most known for its proprietary relational
database server. Typically when referring to Oracle in a database context, the
reference is not to its company but to the relational database management
system that the company sells.. i

Permission A permission is the ability to enact, or the inability to enact, an action
associated with a capability.. i

Permissive Attribute A permissive attribute is an attribute of a file system that
also defines a permission. See attributes for example of permissive and non-
permissive attributes. i

POSIX Portable Operating System Interface is a family of standards defined by
the IEEE that lay out software standards for operating systems. POSIX is
a popular standard in the UNIX and UNIX derivative world with Mac OS
X being fully POSIX compliant and Linux regarded as mostly compliant.
POSIX is referred to here as short hand for “POSIX.1”. i

POSIX ACL POSIX ACL is a draft standard (POSIX.1e) for implementing ACL
in POSIX based file systems and operating systems.. i

PostgreSQL PostgreSQL is an open source relational database system that is
similar to MySQL but typically touted as having more features. PostgreSQL
is noted for being more compatible with Oracle and providing features such
as views and stored procedures long before they were available in MySQL.. i

Privilege A privilege is an ability to achieve a particular action which may or may
not violate the individual permissions of a file. Privileges may permit control
of abilities that aren’t ordinarily controlled by the particular file system.. i,
93

Role Based Access Control RBAC is covered in 2.3 as an example of a possi-
ble permissions model. Role based access control is the concept of assigning
actions to a role and then users are assigned roles. Then users are assigned to
various roles which determines their positions. Role based access control can
be considered similar to using positions in an organisation. i

Glossary 96

Relation Based Access Control RelBAC provides a model of access control by
utilising relationships between subjects and objects. RelBAC is covered in 2.5
and 3.6.1. i, 13

SQL Structured Query Language is a programming language based on relational
algebra for querying databases. i, 7

Super User A super user is a user who typically inherently has the ability to
complete all actions within the system regardless of the actual permissions on
the objects though typically a super user cannot overrule attributes (though
they can usually alter the attributes to avoid the security enforced by them).
i

UPN A user principal name is the preferred login name for Active Directory. The
UPN utilises a similar format to an email and is used in the form “user-
name@usq.edu.au” where the username is located at the site name or domain
of the particular instance. It is common for the organisation’s DNS name (or
a subdomain) to be used as the Active Directory site name. The UPN is an
instance of a Kerberos principal. The Kerberos protocol is implemented and
supported by Active Directory. i, 38

WinFS Windows Future Storage was the planned storage back end for Windows
Longhorn (later released as Windows Vista). WinFS was a metadata based
file system using a relational data store backend. WinFS as a project was
cancelled in 2006.. i, 4

Bibliography

[1] About controlling access to sites and site content [online]. Avail-
able from: http://office.microsoft.com/en-us/sharepointtechnology/
HA101001441033.aspx [cited 2010-04-12].

[2] About managing sharepoint groups and users [online]. Available from: http://
office.microsoft.com/en-us/help/HA100215791033.aspx [cited 2010-04-
12].

[3] Conflicts between privileges and permissions [online]. Available from: http://
technet.microsoft.com/en-us/library/cc962012.aspx [cited 2010-03-27].

[4] Fileacl [online]. Available from: http://www.gbordier.com/gbtools/
fileacl.asp [cited 2010-03-27].

[5] Filesystem in userspace [online]. Available from: http://fuse.sourceforge.
net/ [cited 2010-04-18].

[6] Guide to sharepoint server features [online]. Available from: http://msdn.
microsoft.com/en-us/library/ms561082.aspx [cited 2010-04-12].

[7] How permissions are calculated [online]. Available from: http://docs.
moodle.org/en/How_permissions_are_calculated [cited 2009-06-07].

[8] Microsoft windows xp - fsutil: hardlink [online]. Available from:
http://www.microsoft.com/resources/documentation/windows/xp/
all/proddocs/en-us/fsutil_hardlink.mspx?mfr=true [cited 2009-06-27].

[9] Ms security configuration manager for windows nt 4 [online]. Avail-
able from: http://technet.microsoft.com/en-us/library/cc723490.
aspx [cited 2010-03-27].

[10] Novell doc: Oes 1 - directory and file attributes for nss vol-
umes or netware traditional volumes [online]. Available from:
http://www.novell.com/documentation/oes/stor_filesys/?page=
/documentation/oes/stor_filesys/data/bs3fkbm.html [cited 2009-06-28].

[11] Novell doc: Oes 1 - file-system trustee rights [online]. Available
from: http://www.novell.com/documentation/oes/stor_filesys/?page=
/documentation/oes/stor_filesys/data/bt4ampu.html [cited 2009-06-28].

[12] Permission levels and permissions [online]. Available from: http://office.
microsoft.com/en-us/sharepointtechnology/HA101001491033.aspx
[cited 2010-04-12].

[13] Roles and capabilities [online]. Available from: http://docs.moodle.org/en/
Roles_and_capabilities [cited 2009-06-07].

97

http://office.microsoft.com/en-us/sharepointtechnology/HA101001441033.aspx
http://office.microsoft.com/en-us/sharepointtechnology/HA101001441033.aspx
http://office.microsoft.com/en-us/help/HA100215791033.aspx
http://office.microsoft.com/en-us/help/HA100215791033.aspx
http://technet.microsoft.com/en-us/library/cc962012.aspx
http://technet.microsoft.com/en-us/library/cc962012.aspx
http://www.gbordier.com/gbtools/fileacl.asp
http://www.gbordier.com/gbtools/fileacl.asp
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://msdn.microsoft.com/en-us/library/ms561082.aspx
http://msdn.microsoft.com/en-us/library/ms561082.aspx
http://docs.moodle.org/en/How_permissions_are_calculated
http://docs.moodle.org/en/How_permissions_are_calculated
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/fsutil_hardlink.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/fsutil_hardlink.mspx?mfr=true
http://technet.microsoft.com/en-us/library/cc723490.aspx
http://technet.microsoft.com/en-us/library/cc723490.aspx
http://www.novell.com/documentation/oes/stor_filesys/?page=/documentation/oes/stor_filesys/data/bs3fkbm.html
http://www.novell.com/documentation/oes/stor_filesys/?page=/documentation/oes/stor_filesys/data/bs3fkbm.html
http://www.novell.com/documentation/oes/stor_filesys/?page=/documentation/oes/stor_filesys/data/bt4ampu.html
http://www.novell.com/documentation/oes/stor_filesys/?page=/documentation/oes/stor_filesys/data/bt4ampu.html
http://office.microsoft.com/en-us/sharepointtechnology/HA101001491033.aspx
http://office.microsoft.com/en-us/sharepointtechnology/HA101001491033.aspx
http://docs.moodle.org/en/Roles_and_capabilities
http://docs.moodle.org/en/Roles_and_capabilities

BIBLIOGRAPHY 98

[14] Rule set based access control [online]. Available from: http://www.rsbac.
org/ [cited 2010-04-02].

[15] Understanding container access inheritance flags in windows 2000 [online].
Available from: http://support.microsoft.com/kb/220167 [cited 2009-06-
28].

[16] Mac os x manual page for acl(3) [online]. December 2002. Available
from: http://developer.apple.com/documentation/Darwin/Reference/
Manpages/man3/acl.3.html [cited 2009-07-02].

[17] How ntfs works: Local file systems [online]. March 2003. Available
from: http://technet.microsoft.com/en-us/library/cc781134(WS.10)
.aspx [cited 2009-06-27].

[18] Download details: Fileacl [online]. March 2004. Available from:
http://www.microsoft.com/downloads/details.aspx?displaylang=
en&FamilyID=723f64ea-34f0-4e6d-9a72-004d35de4e64 [cited 2009-06-27].

[19] Mac os x manual page for chmod(1) [online]. July 2004. Avail-
able from: http://developer.apple.com/mac/library/DOCUMENTATION/
Darwin/Reference/ManPages/man1/chmod.1.html [cited 2009-07-02].

[20] Exploring tiger server [online]. April 2005. Available from: http://
developer.apple.com/server/tigerserver.html [cited 2009-07-02].

[21] Zfs acls [online]. November 2005. Available from: http://blogs.sun.com/
marks/entry/zfs_acls [cited 2009-07-02].

[22] Linux shadow password howto [online]. April 2006. Available from: http:
//tldp.org/HOWTO/Shadow-Password-HOWTO.html [cited 2009-06-07].

[23] Php generic access control lists [online]. September 2006. Available from:
http://phpgacl.sourceforge.net/ [cited 21-May-2009].

[24] Welcome to subsystem for unix-based applications [online]. March 2006. Avail-
able from: http://technet2.microsoft.com/WindowsServer/en/Library/
695ac415-d314-45df-b464-4c80ddc2b3bc1033.mspx [cited 2009-08-07].

[25] hard links to directories [lwn.net] [online]. September 2007. Available from:
http://lwn.net/Articles/249607/ [cited 2009-06-27].

[26] Issue 5 - xar - archiving acls on mac os x 10.4 doesn’t work - google code
[online]. February 2007. Available from: http://code.google.com/p/xar/
issues/detail?id=5 [cited 2009-07-02].

[27] Leopard technology series for developers: Os foundations [online]. October
2007. Available from: http://developer.apple.com/leopard/overview/
osfoundations.html [cited 2009-08-07].

[28] Mediawiki [online]. January 2007. Available from: http://www.mediawiki.
org/wiki/MediaWiki [cited 2010-08-09].

[29] Overview of fat, hpfs and ntfs file systems [online]. May 2007. Available from:
http://support.microsoft.com/kb/q100108/ [cited 2009-06-07].

[30] Users can log on using user name or user principal name [online]. March 2007.
Available from: http://support.microsoft.com/kb/243280 [cited 2010-05-
05].

http://www.rsbac.org/
http://www.rsbac.org/
http://support.microsoft.com/kb/220167
http://developer.apple.com/documentation/Darwin/Reference/Manpages/man3/acl.3.html
http://developer.apple.com/documentation/Darwin/Reference/Manpages/man3/acl.3.html
http://technet.microsoft.com/en-us/library/cc781134(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc781134(WS.10).aspx
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=723f64ea-34f0-4e6d-9a72-004d35de4e64
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=723f64ea-34f0-4e6d-9a72-004d35de4e64
http://developer.apple.com/mac/library/DOCUMENTATION/Darwin/Reference/ManPages/man1/chmod.1.html
http://developer.apple.com/mac/library/DOCUMENTATION/Darwin/Reference/ManPages/man1/chmod.1.html
http://developer.apple.com/server/tigerserver.html
http://developer.apple.com/server/tigerserver.html
http://blogs.sun.com/marks/entry/zfs_acls
http://blogs.sun.com/marks/entry/zfs_acls
http://tldp.org/HOWTO/Shadow-Password-HOWTO.html
http://tldp.org/HOWTO/Shadow-Password-HOWTO.html
http://phpgacl.sourceforge.net/
http://technet2.microsoft.com/WindowsServer/en/Library/695ac415-d314-45df-b464-4c80ddc2b3bc1033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/695ac415-d314-45df-b464-4c80ddc2b3bc1033.mspx
http://lwn.net/Articles/249607/
http://code.google.com/p/xar/issues/detail?id=5
http://code.google.com/p/xar/issues/detail?id=5
http://developer.apple.com/leopard/overview/osfoundations.html
http://developer.apple.com/leopard/overview/osfoundations.html
http://www.mediawiki.org/wiki/MediaWiki
http://www.mediawiki.org/wiki/MediaWiki
http://support.microsoft.com/kb/q100108/
http://support.microsoft.com/kb/243280

99 BIBLIOGRAPHY

[31] You cannot configure ntfs permissions to hide files or folders from unauthorized
users [online]. March 2007. Available from: http://support.microsoft.com/
kb/303758 [cited 2009-06-28].

[32] ipod: How to determine your ipod’s disk format [online]. June 2008. Available
from: http://support.apple.com/kb/HT1335 [cited 2009-07-02].

[33] link (the open group base specifications issue 7) [online]. 2008. Available
from: http://www.opengroup.org/onlinepubs/9699919799/functions/
link.html [cited 2009-06-27].

[34] 5.4.1: Privileges provided by mysql [online]. May 2009. Available
from: http://dev.mysql.com/doc/refman/5.4/en/privileges-provided.
html [cited 10-May-2009].

[35] Access-checking [online]. 2009. Available from: http://technet.microsoft.
com/en-us/library/cc962006.aspx [cited 2009-06-28].

[36] Access masks [online]. May 2009. Available from: http://msdn.microsoft.
com/en-us/library/ms790780.aspx [cited 1-June-2009].

[37] Ace inheritance rules (windows) [online]. June 2009. Available from: http://
msdn.microsoft.com/en-us/library/aa374924(VS.85).aspx [cited 2009-
06-28].

[38] D (windows) - security glossary [online]. June 2009. Avail-
able from: http://msdn.microsoft.com/en-us/library/ms721573(VS.85)
.aspx#_security_discretionary_access_control_list_gly [cited 2009-
06-28].

[39] Order of aces in a dacl [online]. 2009. Available from: http://technet.
microsoft.com/en-us/library/cc961994.aspx [cited 2009-06-28].

[40] Order of aces in a dacl (windows) [online]. June 2009. Available from: http://
msdn.microsoft.com/en-us/library/aa379298(VS.85).aspx [cited 2009-
06-28].

[41] Privileges [online]. November 2009. Available from: http://msdn.microsoft.
com/en-us/library/ff551855(VS.85).aspx [cited 2010-04-04].

[42] Security features for file systems [online]. May 2009. Available from: http://
msdn.microsoft.com/en-us/library/ms791051.aspx [cited 01-June-2009].

[43] Access control entries [online]. 2010. Available from: http://technet.
microsoft.com/en-us/library/cc961995.aspx [cited 2010-04-05].

[44] ACE HEADER Structure [online]. February 2010. Available from: http://
msdn.microsoft.com/en-us/library/aa374919(VS.85).aspx [cited 2010-
04-05].

[45] Content management system - docforge programming wiki [online]. June 2010.
Available from: http://docforge.com/wiki/Content_management_system
[cited 2010-08-08].

[46] drupal.org — community plumbing [online]. August 2010. Available from:
http://drupal.org [cited 2010-08-08].

[47] Dublin core metadata initiative [online]. August 2010. Available from: http:
//dublincore.org [cited 2010-08-08].

http://support.microsoft.com/kb/303758
http://support.microsoft.com/kb/303758
http://support.apple.com/kb/HT1335
http://www.opengroup.org/onlinepubs/9699919799/functions/link.html
http://www.opengroup.org/onlinepubs/9699919799/functions/link.html
http://dev.mysql.com/doc/refman/5.4/en/privileges-provided.html
http://dev.mysql.com/doc/refman/5.4/en/privileges-provided.html
http://technet.microsoft.com/en-us/library/cc962006.aspx
http://technet.microsoft.com/en-us/library/cc962006.aspx
http://msdn.microsoft.com/en-us/library/ms790780.aspx
http://msdn.microsoft.com/en-us/library/ms790780.aspx
http://msdn.microsoft.com/en-us/library/aa374924(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa374924(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms721573(VS.85).aspx#_security_discretionary_access_control_list_gly
http://msdn.microsoft.com/en-us/library/ms721573(VS.85).aspx#_security_discretionary_access_control_list_gly
http://technet.microsoft.com/en-us/library/cc961994.aspx
http://technet.microsoft.com/en-us/library/cc961994.aspx
http://msdn.microsoft.com/en-us/library/aa379298(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa379298(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff551855(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff551855(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms791051.aspx
http://msdn.microsoft.com/en-us/library/ms791051.aspx
http://technet.microsoft.com/en-us/library/cc961995.aspx
http://technet.microsoft.com/en-us/library/cc961995.aspx
http://msdn.microsoft.com/en-us/library/aa374919(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa374919(VS.85).aspx
http://docforge.com/wiki/Content_management_system
http://drupal.org
http://dublincore.org
http://dublincore.org

BIBLIOGRAPHY 100

[48] Joomla! [online]. August 2010. Available from: http://www.joomla.org
[cited 2010-08-08].

[49] Openid - features - crowd [online]. August 2010. Available from: http://www.
atlassian.com/software/crowd/features/openid.jsp [cited 2010-08-13].

[50] Privilege constants [online]. 02 2010. Available from: http://msdn.
microsoft.com/en-us/library/bb530716(VS.85).aspx [cited 2010-03-28].

[51] setuid [online]. March 2010. Available from: http://en.wikipedia.org/
wiki/Setuid [cited 2010-04-05].

[52] Sticky bit [online]. March 2010. Available from: http://en.wikipedia.org/
wiki/Sticky_bit [cited 2010-04-05].

[53] Web content management system [online]. August 2010. Available from: http:
//en.wikipedia.org/wiki/Web_content_management_system [cited 2010-
08-08].

[54] What is a cms? [online]. July 2010. Available from: http://www.cmscritic.
com/what-is-a-cms/ [cited 2010-08-08].

[55] Wordpress ¿ blog tool and publishing platform [online]. August 2010. Available
from: http://wordpress.org [cited 2010-08-08].

[56] Paul Adams. The real life social network [online]. July 2010. Available from:
http://www.slideshare.net/padday/the-real-life-social-network-v2
[cited 2010-07-18].

[57] Apple. sticky, 4th berkeley distribution edition, June 1993. Avail-
able from: http://developer.apple.com/mac/library/DOCUMENTATION/
Darwin/Reference/ManPages/man8/sticky.8.html [cited 2010-04-05].

[58] Apple. link(2), October 2008. Available from: http://developer.apple.
com/mac/library/documentation/Darwin/Reference/ManPages/man2/
link.2.html [cited 2010-04-05].

[59] N Appliance. Merging nt and unix filesystem permissions. usenix.org. Avail-
able from: http://www.usenix.org/publications/library/proceedings/
lisa97/failsafe/usenix-nt98/full_papers/hitz/hitz_html/.

[60] Maurice J. Bach. The Design of the UNIX Operating System. Prentice Hall,
1986.

[61] M Berger. Silenus-a federated service-oriented approach to distributed file
systems. etd.lib.ttu.edu, Jan 2006. Available from: http://etd.lib.ttu.
edu/theses/available/etd-11062006-142552/.

[62] Matt Bishop. Computer Security: Art and Science. Addison-Wesley, Boston,
MA, USA, December 2002.

[63] A Bohra, S Smaldone, and L Iftode. Frac: Implementing role-based access con-
trol for network file systems. Sixth IEEE International Symposium on Network
Computing and . . . , Jan 2007. Available from: http://www.cs.rutgers.edu/
~iftode/FRAC07.pdf.

[64] Jonathan Corbet. A bid to resurrect linux capabilities [online]. 2006. Available
from: http://lwn.net/Articles/199004/ [cited 2010-03-28].

http://www.joomla.org
http://www.atlassian.com/software/crowd/features/openid.jsp
http://www.atlassian.com/software/crowd/features/openid.jsp
http://msdn.microsoft.com/en-us/library/bb530716(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb530716(VS.85).aspx
http://en.wikipedia.org/wiki/Setuid
http://en.wikipedia.org/wiki/Setuid
http://en.wikipedia.org/wiki/Sticky_bit
http://en.wikipedia.org/wiki/Sticky_bit
http://en.wikipedia.org/wiki/Web_content_management_system
http://en.wikipedia.org/wiki/Web_content_management_system
http://www.cmscritic.com/what-is-a-cms/
http://www.cmscritic.com/what-is-a-cms/
http://wordpress.org
http://www.slideshare.net/padday/the-real-life-social-network-v2
http://developer.apple.com/mac/library/DOCUMENTATION/Darwin/Reference/ManPages/man8/sticky.8.html
http://developer.apple.com/mac/library/DOCUMENTATION/Darwin/Reference/ManPages/man8/sticky.8.html
http://developer.apple.com/mac/library/documentation/Darwin/Reference/ManPages/man2/link.2.html
http://developer.apple.com/mac/library/documentation/Darwin/Reference/ManPages/man2/link.2.html
http://developer.apple.com/mac/library/documentation/Darwin/Reference/ManPages/man2/link.2.html
http://www.usenix.org/publications/library/proceedings/lisa97/failsafe/usenix-nt98/full_papers/hitz/hitz_html/
http://www.usenix.org/publications/library/proceedings/lisa97/failsafe/usenix-nt98/full_papers/hitz/hitz_html/
http://etd.lib.ttu.edu/theses/available/etd-11062006-142552/
http://etd.lib.ttu.edu/theses/available/etd-11062006-142552/
http://www.cs.rutgers.edu/~iftode/FRAC07.pdf
http://www.cs.rutgers.edu/~iftode/FRAC07.pdf
http://lwn.net/Articles/199004/

101 BIBLIOGRAPHY

[65] Ramez Elmasri and Sham Navathe. Fundamentals of database systems.
page 1030, Jan 2004. Available from: http://books.google.com/books?id=
zlfiPwAACAAJ&printsec=frontcover.

[66] Paul Fenwick. Pjf’s pages - journal - table of contents - facebook [online].
2010. Available from: http://pjf.id.au/blog/toc.html?tag=facebook
[cited 2010-05-05].

[67] F Giunchiglia, Rui Zhang, and B Crispo. Relbac: Relation based access
control. Semantics, Knowledge and Grid, 2008. SKG ’08. Fourth Inter-
national Conference on, pages 3 – 11, Nov 2008. Very interesting paper.
Available from: http://ieeexplore.ieee.org/search/srchabstract.
jsp?arnumber=4725889&isnumber=4725879&punumber=4725878&k2dockey=
4725889@ieeecnfs, doi:10.1109/SKG.2008.76.

[68] Apple Insider. Road to mac os x leopard: Time machine [page 3] [online]. Octo-
ber 2007. Available from: http://www.appleinsider.com/articles/07/10/
12/road_to_mac_os_x_leopard_time_machine.html&page=3 [cited 2009-06-
27].

[69] Samyak Jain. Working with filesystems using nfsv4 acls [online]. June
2009. Available from: http://www.ibm.com/developerworks/aix/library/
au-filesys_NFSv4ACL/index.html [cited 2009-07-02].

[70] J. Kunze and T. Baker. The Dublin Core Metadata Element Set. RFC 5013
(Informational), August 2007. Available from: http://www.ietf.org/rfc/
rfc5013.txt.

[71] L LaPadula. Rule-set modeling of trusted computer system. Jan 1995. Avail-
able from: http://madchat.awired.net/reseau/defense/l693ibfb.pdf.

[72] David MacKenzie and Jim Meyering. chmod(1). Free Software Foundation,
2006. Available from: http://linux.die.net/man/1/chmod [cited 2010-04-
05].

[73] Matt McKeon. The Evolution of Privacy on Facebook [online]. April 2010.
Available from: http://mattmckeon.com/facebook-privacy/ [cited 2010-05-
09].

[74] Greg Miller. Exploring leopard with dtrace. MacTech, 23(11), 2007.
Available from: http://www.mactech.com/articles/mactech/Vol.23/23.
11/ExploringLeopardwithDTrace/index.html [cited 2009-06-27].

[75] Sam Moffatt. There and back again: a history of access control systems. In
MSC Malaysia Open Source Conference. MSC Malaysia, MSC Malaysia, July
2010. Available from: http://eprints.usq.edu.au/8331/.

[76] Sam Moffatt and Paul Graham. Permissions in viaweb. email, 2009 August.

[77] Tony Northrup. Introducing Microsoft Windows 2000 Server. Microsoft Press,
1999. Available from: http://technet.microsoft.com/en-au/library/
bb742424.aspx.

[78] G Nuremberg. Posix access control lists on linux. usenix.org. Available
from: https://www.usenix.org/publications/library/proceedings/
usenix03/tech/freenix03/full_papers/gruenbacher/gruenbacher.pdf.

http://books.google.com/books?id=zlfiPwAACAAJ&printsec=frontcover
http://books.google.com/books?id=zlfiPwAACAAJ&printsec=frontcover
http://pjf.id.au/blog/toc.html?tag=facebook
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4725889&isnumber=4725879&punumber=4725878&k2dockey=4725889@ieeecnfs
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4725889&isnumber=4725879&punumber=4725878&k2dockey=4725889@ieeecnfs
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4725889&isnumber=4725879&punumber=4725878&k2dockey=4725889@ieeecnfs
http://dx.doi.org/10.1109/SKG.2008.76
http://www.appleinsider.com/articles/07/10/12/road_to_mac_os_x_leopard_time_machine.html&page=3
http://www.appleinsider.com/articles/07/10/12/road_to_mac_os_x_leopard_time_machine.html&page=3
http://www.ibm.com/developerworks/aix/library/au-filesys_NFSv4ACL/index.html
http://www.ibm.com/developerworks/aix/library/au-filesys_NFSv4ACL/index.html
http://www.ietf.org/rfc/rfc5013.txt
http://www.ietf.org/rfc/rfc5013.txt
http://madchat.awired.net/reseau/defense/l693ibfb.pdf
http://linux.die.net/man/1/chmod
http://mattmckeon.com/facebook-privacy/
http://www.mactech.com/articles/mactech/Vol.23/23.11/ExploringLeopardwithDTrace/index.html
http://www.mactech.com/articles/mactech/Vol.23/23.11/ExploringLeopardwithDTrace/index.html
http://eprints.usq.edu.au/8331/
http://technet.microsoft.com/en-au/library/bb742424.aspx
http://technet.microsoft.com/en-au/library/bb742424.aspx
https://www.usenix.org/publications/library/proceedings/usenix03/tech/freenix03/full_papers/gruenbacher/gruenbacher.pdf
https://www.usenix.org/publications/library/proceedings/usenix03/tech/freenix03/full_papers/gruenbacher/gruenbacher.pdf

BIBLIOGRAPHY 102

[79] I Olson and M Abrams. Computer access control policy choices.
Computers & Security, 9(8):699–714, Dec 1990. Available from:
http://linkinghub.elsevier.com/retrieve/pii/0167404890901138,
doi:10.1016/0167-4048(90)90113-8.

[80] OpenID Foundation. Openid foundation website [online]. July 2010. Available
from: http://openid.net/ [cited 2010-07-30].

[81] Kurt Opsahl. Facebook’s eroding privacy policy: A timeline [online].
April 2010. Available from: http://www.eff.org/deeplinks/2010/04/
facebook-timeline [cited 2010-05-05].

[82] Wayne Pollock. Unix file and directory permissions and modes [on-
line]. 2009. Available from: http://content.hccfl.edu/pollock/AUnix1/
FilePermissions.htm [cited 2010-04-05].

[83] Brent Rector. Introducing Longhorn for Developers. Microsoft Press, Oc-
tober 2003. Available from: http://msdn.microsoft.com/en-us/library/
aa479870.aspx [cited 2009-08-11].

[84] R Reichel. Inside windows nt security. Windows/DOS Developer’s Journal, Jan
1993. Available from: http://portal.acm.org/citation.cfm?id=159896.
159898.

[85] Mark Russinovich. Windows nt security, part 1 [online]. October 2002.
Available from: http://www.windowsecurity.com/whitepapers/Windows_
NT_Security_Part_1.html [cited 2009-08-07].

[86] Mark Russinovich. The bypass traverse checking (or is it the
change notify?) privilege [online]. October 2005. Available from:
http://blogs.technet.com/markrussinovich/archive/2005/10/19/
the-bypass-traverse-checking-or-is-it-the-change-notify-privilege.
aspx [cited 2010-04-02].

[87] R Russon and Y Fledel. Ntfs documentation. Linux-NTFS.[Online],
Jan 2005. Available from: http://ronis.liis.lv/~rihardr/stud/hd/fs/
ntfsdoc.pdf.

[88] Nick Saint. Google responds to blogger’s outrage with product tweaks. Business
Insider, February 2010. Available from: http://www.businessinsider.com/
google-adding-two-privacy-features-in-response-to-bloggers-outrage-2010-2.

[89] Nick Saint. Outraged blogger is automatically being fol-
lowed by her abusive ex-husband on google buzz read more:
http://www.businessinsider.com/outraged-blogger-is-automatically-being-
followed-by-her-abusive-ex-husband-on-google-buzz-2010-2. Business In-
sider, February 2010. Available from: http://www.businessinsider.com/
outraged-blogger-is-automatically-being-followed-by-her-abusive-ex-husband-on-google-buzz-2010-2.

[90] V Samar and R Schemers. Unified login with pluggable authentication modules
(pam). OSF RFC86, October 1995. Available from: http://www.opengroup.
org/rfc/mirror-rfc/rfc86.0.txt [cited 2010-03-28].

[91] R Sandhu, E Coyne, H Feinstein, and C Youman. Role-based access control
models. Computer, Jan 1996. Available from: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=485845.

http://linkinghub.elsevier.com/retrieve/pii/0167404890901138
http://dx.doi.org/10.1016/0167-4048(90)90113-8
http://openid.net/
http://www.eff.org/deeplinks/2010/04/facebook-timeline
http://www.eff.org/deeplinks/2010/04/facebook-timeline
http://content.hccfl.edu/pollock/AUnix1/FilePermissions.htm
http://content.hccfl.edu/pollock/AUnix1/FilePermissions.htm
http://msdn.microsoft.com/en-us/library/aa479870.aspx
http://msdn.microsoft.com/en-us/library/aa479870.aspx
http://portal.acm.org/citation.cfm?id=159896.159898
http://portal.acm.org/citation.cfm?id=159896.159898
http://www.windowsecurity.com/whitepapers/Windows_NT_Security_Part_1.html
http://www.windowsecurity.com/whitepapers/Windows_NT_Security_Part_1.html
http://blogs.technet.com/markrussinovich/archive/2005/10/19/the-bypass-traverse-checking-or-is-it-the-change-notify-privilege.aspx
http://blogs.technet.com/markrussinovich/archive/2005/10/19/the-bypass-traverse-checking-or-is-it-the-change-notify-privilege.aspx
http://blogs.technet.com/markrussinovich/archive/2005/10/19/the-bypass-traverse-checking-or-is-it-the-change-notify-privilege.aspx
http://ronis.liis.lv/~rihardr/stud/hd/fs/ntfsdoc.pdf
http://ronis.liis.lv/~rihardr/stud/hd/fs/ntfsdoc.pdf
http://www.businessinsider.com/google-adding-two-privacy-features-in-response-to-bloggers-outrage-2010-2
http://www.businessinsider.com/google-adding-two-privacy-features-in-response-to-bloggers-outrage-2010-2
http://www.businessinsider.com/outraged-blogger-is-automatically-being-followed-by-her-abusive-ex-husband-on-google-buzz-2010-2
http://www.businessinsider.com/outraged-blogger-is-automatically-being-followed-by-her-abusive-ex-husband-on-google-buzz-2010-2
http://www.opengroup.org/rfc/mirror-rfc/rfc86.0.txt
http://www.opengroup.org/rfc/mirror-rfc/rfc86.0.txt
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=485845
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=485845

103 BIBLIOGRAPHY

[92] Michael Shaffer. Filesystem security - ext2 extended attributes [online]. Novem-
ber 2000. Available from: http://www.securityfocus.com/infocus/1407
[cited 2009-06-07].

[93] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. Network File System (NFS) version 4 Protocol. RFC 3530
(Proposed Standard), April 2003. Available from: http://www.ietf.org/
rfc/rfc3530.txt.

[94] Avi Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Con-
cepts. Wiley, seventh edition edition, 2005.

[95] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3).
RFC 2251 (Proposed Standard), December 1997. Obsoleted by RFCs 4510,
4511, 4513, 4512, updated by RFCs 3377, 3771. Available from: http://www.
ietf.org/rfc/rfc2251.txt.

http://www.securityfocus.com/infocus/1407
http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2251.txt

	I Introduction
	Introduction
	Overview
	Background
	Single User Systems
	Mainframes and time sharing
	Networking
	The Orange Book
	Web Information Systems

	Concepts
	Semantic Information Systems
	Identity Management
	Access Control
	Permissions
	Capabilities
	Roles

	Summary of the Dissertation

	II Review
	Literature Survey
	Access Control Basics
	Access Control Lists
	Role-Based Access Control Models
	Rule Set Based Access Control
	Relation Based Access Control

	Historical Review
	Introduction
	Identity Management
	Local Identification
	Pluggable Authentication Modules
	Distributed Identification
	Decentralised Identification

	Database Systems
	Basic Permissions

	File system Permissions
	UNIX Permissions
	POSIX ACL on Linux
	FAT Permissions
	ext2+ Permissions
	NTFS Permissions
	Novell File system Permissions
	HFS+
	ZFS

	Distributed File systems
	CIFS
	NFSv4 ACLs

	Web Based Applications
	RelBAC
	phpGACL
	Joomla! 1.6
	Moodle
	Sharepoint
	XACML

	Conclusions

	Scenarios
	Basic Concepts
	Entities
	Actions
	Objects
	Relationships

	Current Scenarios
	UNIX File system Permissions
	LDAP Permissions
	Facebook

	Examination of Present Systems
	Investigation into the behaviour of file systems
	ext2/3 behaviour
	HFS+
	NTFS

	Implementation of NTFS by means of XACML
	Sample of NTFS Access Rules
	Sample of NTFS Access Rules in XACML

	Examination of Privileges and Capabilities
	Comparisons

	III Experimentation
	MDFS Purpose
	The importance of metadata in access control
	Metadata Filesystem Background
	MDFS Purpose

	MDFS Specification
	Requirements
	Use Cases
	Domain and Range
	Metadata System API
	View specification
	Class Specification

	Input and Output Formats
	View and Class Interface Format

	MDFS Design
	MDFS Architecture
	Functions and Algorithms
	FUSE API Documentation
	Database Classes

	Scenarios
	Existing System
	MDFS System

	MDFS Implementation
	Base Infrastructure
	FUSE
	Base Design

	MDFS Implementation
	Prototype
	Environment
	Operating Instructions
	Experimental Scenarios
	The Classes Directory
	The Views Directory
	Handling Metadata
	File system Throughput

	Access Control Model
	Further opportunities

	IV Conclusion
	Concluding Remarks
	Access Control Architecture Scenarios
	Information Overload
	XACML

	Future Work
	Universal access control
	Social access control

	Future access control

	Glossary
	

