
University of Southern Queensland

Faculty of Engineering & Surveying

Simulation and Analysis of MIMO-OFDM

for a 4G Cellular Network

A dissertation submitted by

Sarah Hugo

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems) & Bachelor of

Information Technology (Applied Computer Science)

Submitted: October, 2009

Abstract

In the disciplines that study communications, there have been increasing interest in

ways and means to improve the technology behind the mobile phone. This interest

extends from the antennas used to broadcast the signals to the modulation techniques

used on the signals themselves.

The theory is that the antennas can be improved by applying a technique known as

MIMO, or multiple-input multiple-output, and the signals can be improved by the

modulation technique of OFDM, or orthogonal frequency divisional multiplexing. This

concept, as a whole, is known as MIMO-OFDM, and will hopefully be used as the basis

of the 4G cellular network in coming years. In developing these, however, it also means

covering a wide of topics such as signal interference, channel capacity, fading, et cetera.

The aim of this thesis is to analyze this MIMO-OFDM concept, and all it entails, to

determine if it is indeed possible to be used as the basis of a cellular network. This will

be by means of a computer simulation in C/C++.

ii

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 &
ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the
Council of the University of Southern Queensland, its Faculty of Engineering and Surveying
or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course "Project and Dissertation" is to contribute to the
overall education within the student’s chosen degree programme. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the
risk of the user.

Professor Frank Bullen
Dean
Faculty of Engineering and Surveying

iii

Acknowledgments

This thesis was typeset using LATEX 2ε .

I would like thank my family for their support during the long process of researching,

programming, and writing this document, both verbal and non-verbal. I would also

like to thank my supervisor, for his guidance, support, and wisdom. My thanks also to

all the researchers whose words I quote and reference.

On their shoulders I aspire to stand.

Sarah Hugo

University of Southern Queensland

October 2009

Contents

Abstract i

Acknowledgments iv

List of Figures x

List of Tables xii

Nomenclature xiii

Chapter 1 Introduction 1

1.1 Aims and Objectives . 3

1.2 Overview of the Dissertation . 3

Chapter 2 Background 5

2.1 Mobile Communications . 6

2.1.1 Terminology . 6

2.2 Frequency, EM, and the Cellular Concept 7

CONTENTS vi

2.2.1 The Mobile ’Radio’ . 8

2.2.2 Antennas . 9

2.2.3 The Cellular Concept . 9

2.3 Fading and Interference . 12

2.3.1 Multipath Propagation . 13

2.4 Signals, Channels and Channel Capacity 14

2.4.1 Signal vs Channels . 14

2.4.2 Capacity and Shannon’s Limit 15

2.5 Conclusions . 16

Chapter 3 OFDM 18

3.1 OFDM: What Is It? . 18

3.2 Sampling a Signal . 20

3.2.1 The Sampling Theorem . 20

3.3 OFDM: The Model . 21

3.4 Conclusions . 23

Chapter 4 MIMO 24

4.1 MIMO: What Is It? . 24

4.2 The SISO Problem . 25

4.2.1 The Antenna Array . 27

CONTENTS vii

4.2.2 MIMO: The Model . 29

4.3 Conclusions . 30

Chapter 5 MIMO-OFDM: The Concept 31

5.1 MIMO and OFDM Together . 31

5.2 Drawbacks . 32

5.3 Conclusion . 33

Chapter 6 Simulation 34

6.1 Programming in C++ . 35

6.1.1 The Light In The Tunnel . 36

6.2 The Final Implementation . 36

6.2.1 Binaries, Bits, and Streams . 38

6.2.2 Streaming Data . 40

6.2.3 Streams as Signals . 41

6.3 Further Thought . 42

6.3.1 Impressions and Recommendations 43

Chapter 7 Simulation Results 44

7.1 Ouptut . 44

7.2 Performance Analysis . 46

7.3 Conclusions . 46

CONTENTS viii

Chapter 8 Conclusions 48

8.1 Areas For Improvement . 48

8.2 Final Thoughts . 49

List of References 50

Appendix A Project Specification 54

Appendix B Additional Information 56

B.1 Types of Fading and Interference . 57

B.1.1 ISI: Inter-Symbol Interference . 57

B.1.2 Gaussian Fading . 57

B.1.3 Ricean Fading . 58

B.1.4 Rayleigh Fading . 59

Appendix C Compilation and Output 61

C.1 Compilation in VC 2008 Express . 62

C.2 Compilation With MinGW and G++ 63

C.2.1 Running The Program . 64

C.3 Actual Output . 69

C.4 Converting Data to Graphical . 70

Appendix D Source Code 72

CONTENTS ix

D.1 The makefile . 74

D.2 The allvals module . 75

D.3 The standard module . 78

D.4 The debug module . 80

D.5 The Sim4G module . 83

D.6 The Simulation module . 87

D.7 The Mimo module . 92

D.8 The Antenna module . 96

D.9 The Channel module . 98

D.10 The Signal module . 102

D.11 The Noise module . 105

D.12 The Ofdm module . 108

D.13 The Ber module . 111

D.14 The BitsStrm module . 114

D.15 The Binary module . 124

List of Figures

2.1 The ideal cellular concept, as conceptualised. (Agar 2003) 10

2.2 The reality of the cellular concept. Note the frequency overlap between

each cell. (Macario 1997) . 11

3.1 Figure depicting orthogonal sub-carriers. (Dörpinghaus & Speth 1999) . 19

3.2 A block diagram of the OFDM system model. (Gibson 1999) 22

4.1 Depiction of the combination unit antenna — a transmitter and receiver

operating on the one antenna. (Macario 1997) 26

4.2 Model of a GSM system.(Laroia, Li & Uppala 2004) 28

5.1 The standard model of the MIMO-OFDM system model, where Q and

L are the numbers of inputs and outputs. (Barry, McLaughlin, Ingram,

Ye, Stüber & Pratt 2004) . 31

5.2 The standard model of an antenna system. 32

6.1 Flowcharts depicting the flow of (6.1a) data and (6.1b) execution between

a signal and its associated data: a bit stream and a binary. 37

6.2 Flowchart the overall program flow and the connection between the classes. 37

LIST OF FIGURES xi

B.1 Rice distributed time series. (Hernando & Pérez-Fontán 1999) 58

B.2 Rayleigh distributed time series, relative to LOS. (Hernando & Pérez-

Fontán 1999) . 59

List of Tables

2.1 Part of the electromagnetic spectrum . 8

Nomenclature

fs The minimum sampling frequency (see Nyquist)

ACMA Australian Communications and Media Authority.

aliasing Errors in sampling that sampling that make the signal ‘appear’ faster than it

truly is.

Antenna A device radiating signals, with its transmission and receiving happening

effectively side by side.

antenna array A number of antennas grouped together, in a certain pattern

attenuation A reduction in the amplitude of the signal, due to fading.

base station The antenna at the centre of a cell.

beamforming A directional antenna array’s signal is concentrated in one area.

BER Bit Error Rate

bit error rate The rate at which errors are received during a transmission.

BS Base Station

cell handover The process where a mobile moves from one cell to another

cell radius The distance signals from the BS can be received by a mobile phone

channel The transmission medium — air, for a cellular system — the signal exists

within.

LIST OF TABLES xiv

combination unit antenna An antenna where the transmission and receiving effectively

take place on the one antenna.

container A C++ holder object that stores a collection of other objects, or data, and

provides with itself a number of additional functions.

delay The time interval between the signal’s propagation and its reception, caused by

fading.

deque Double-headed queue, a C++ container.

fading Signal loss due to attenuation, delay, and phase shift

Gaussian fading Interference that happens when there is a clear LOS to the transmit-

ter.

GoS Guarantee of Service

LOS line of sight

MACON Multple Antenna Channl [with] Ofdm and Noise’ system

MACS Multiple Antennas [with] Channels [and] Signals

MIMO Multiple Input Multiple Output

mobile station Another term for the mobile phone

MOCA ’MIMO-OFDM, Channel, Antenna’ system

MS Mobile Station

multipath propagation Fading, and interference, due to signal effects.

Nyquist interval The relationship between the sampling interval and

Nyquist rate The minimum sampling frequency at which a signal can be sampled with-

out introducing errors.

OFDM Orthogonal Frequency Division Multiplexing

permittivity How well a medium transmits an electric field.

phase shift A change in the signal’s relationship with time, due to fading

LIST OF TABLES xv

Rayleigh fading Interference with little or no LOS to the transmitter and heavy can-

celation of the signal.

Ricean fading Interference with partial LOS and partial cancelation of the signal.

sampling The process of measuring a signal at regular intervals in order to convert into

digital form.

sampling theorem The minimum sampling frequency must be at least twice that of the

highest frequency component present in the original signal.

signal An electromagnetic wave

signal model A mathematical model and the resulting equations.

SISO Single Input Single Output

STL Standard Template Library

Chapter 1

Introduction

Communication. It is ’the art or act of transmitting concepts, knowledge, and/or

information from one person to another by some means’. (Webster 2009)

It is something fundamental to human nature, and the lifeblood of our species. Ever

since the first scratching in the sand and the first cave paintings, mankind has been

seeking more efficient means to pass on concepts. In ever increasing ways, communica-

tion and the way it is carried out have become part of our way of life. In this modern

age, one of the more common means of passing information from one person to another

is via the mobile phone, also known as the cell phone.

Unfortunately, anecdotal evidence proves that there is still much frustration with cur-

rent mobile services, despite upgrades in services and technology. Subscribers experi-

ence ’drop-outs’ during calls, lack of service and signal in certain areas, and so forth.

For instance, in countries like Australia, it is often necessary to remind inexperienced

travelers into the ’Outback’ that cellular coverage often dies a few miles outside of most

major towns. (Agar 2003)

In the disciplines that study communications, there has been therefore increasing in-

terest in the ways and means to improve the technology behind the mobile phone.

Link reliability, spectral efficiency, interference, and channel capacity limits are just

a few of the problems that mobile communications systems face. All these areas will

2

be discussed further in this paper. For now, though, here is a brief overview of these

topics.

Link reliability is basically the stability of the ’link’ between the transmitter and the

receiver — which, for the purposes of this paper, are the mobile phone and the base-

station respectively.1 This leads to the terms uplink, relating mobile phone to base-

station signal (transmission), and downlink, relating base-station to mobile phone signal

(receiving). (Goldsmith, Jafar, Jindal & Vishwanath 2003)

Spectral efficiency is a relatively broad term, in some respects, but of great importance.

It is a measure of the efficiency of the antenna scheme, in particular the signals being

sent between the antennas. Without going into too many details, spectral efficiency

measures “channel capacity” of the antenna system — be it a single antenna system,

or as is increasingly common, a multiple antenna system.

Channel capacity describes the the amount of “information” that can be put into a

signal (which has been called a channel). Moreover, there are multiple theoretic def-

initions of the limit of the information these channels (known as channel capacity).

(Goldsmith et al. 2003). These terms will all be discussed in more detail in Chapter 2.

Interference (also described more fully in Chapter 2) is the technical term for what is

commonly known as “noise”.

However, it is one of the relatively new concepts in the world of signal processing and

communications that has, more and more, aroused intense interest and investigation:

the combined theory known as MIMO-OFDM. It is this concept that is the focus of

this thesis.

The difference between the current system (single-antenna, or “single-user”) and multiple-

antenna (or “multiple-user”) will be discussed more fully in Chapter 2 and Chapter 4

(see Section 1.2 for details).
1 Note the emphasis on the user side — signals are transmitted and received according to the user,

not the base-station.

1.1 Aims and Objectives 3

1.1 Aims and Objectives

The intense interest in the MIMO-OFDM concept stems from the way it combines the

antennas used to broadcast the signals to the modulation techniques used on the signals

themselves. The theory is that the antennas can be improved by applying a technique

known as MIMO, or multiple-input multiple-output, and the signals can be improved

by the modulation technique of OFDM, or orthogonal frequency divisional multiplex-

ing. Basically, the MIMO technique involves using multiple antennas at the receiver

and transmitter, the OFDM modulation technique involves modulating multiple sub-

carriers into one signal. It is this concept as a whole that is known as MIMO-OFDM.

The reason why these techniques are so interesting is the promise of increased data rates

from the OFDM component and increased antenna gain from the MIMO component.

If all goes to plan, it will remove — or at least alleviate — many of the problems facing

current cellular technology. As such, it is hoped in many circles that MIMO-OFDM

will be able to be the core technology for the 4G cellular network in coming years.

It is therefore the aim of this thesis to analyze this MIMO-OFDM concept and deter-

mine if it is indeed possible to be used as the basis of a cellular network.

1.2 Overview of the Dissertation

The thesis is organised with the following chapters.

Chapter 2 attempts to provide a brief cover of the background material and the need

for the thesis, which has included a wide range of topics. Antennas, multipath

propagation (also known as multipath interference), the various forms this inter-

ference can take, fading, channel capacity, are all considered (at least a little) in

this chapter.

Chapter 3 considers the OFDM system used for the thesis in detail. OFDM is, at

its heart, a system of signal modulation. Leading directly on from the previous

chapter’s topics, this chapter considers the OFDM system in depth, particularly

1.2 Overview of the Dissertation 4

as it relates to channels and signal transmission.

Chapter 4 considers the MIMO antenna-array system in depth. It gives some detail

on basic characteristics of antennas, and how this contributes to understanding

how the MIMO theory works.

Chapter 5 presents the full concept of MIMO-OFDM, and the inter-relation of the

previously mentioned concepts. This chapter lays the foundation for the simu-

lation, as it relates terms from various areas and demonstrates simply how they

can be used to develop a cohesive whole — the simulation itself.

Chapter 6 presents the implementation of the simulation in MATLAB, how it was

actually programmed, and the advantages and the pitfalls thereof. There were

many challenges to overcome, in developing a simulation that covered so many

topics, not the least of which was the drawbacks of the languages chosen. All such

challenges had to be overcome, and this chapter shows the development process.

It also presents the final implementation, and considers the highlights of how it

was accomplished, before making recommendations for further work in program

development.

Chapter 7 discusses a critical analysis of the simulation’s results, and analyzes the

success of the program of the program as a simulation of a cellular network. It

also presents a performance analysis of the simulation and how it performaned,

using standard trace programs. Taking into this into account, it then analyzes

how MIMO-OFDM can be applied in a cellular network.

Chapter 8 provides the conclusions and recommendations. Starting with the results

of the simulation, both advantages and limits of the MIMO-OFDM concept are

emphasized. This chapter also presents the areas for further research and devel-

opment.

Chapter 2

Background

As was noted briefly in Chapter 1, there are many problems facing the area of mobile

communications — which in itself covers many disciplines, but one of the more broader

ones is signal processing (SP) and information theory.

There has been much research to define exactly what marks a channel and defines its

limits. The landmark work in this area was the thesis proposed by Claude Shannon

(1948), which has been said to be the father of the area of information theory itself.1

Among other things, Shannon’s work described many things that had effect on the

channel (transmission medium) which were later built upon, from fading, to interfer-

ence, and channel capacity.

Before discussing these, though, it should be established exactly what constitutes a

mobile phone, in engineering terms.
1 Incidentally, he wrote an earlier masters’ thesis where he proposed the connection between boolean

logic and electrical circuitry. That thesis is said to have started digital circuit design. He also developed

work on cryptography.

2.1 Mobile Communications 6

2.1 Mobile Communications

There have been many books written on mobile phones, their history, usage, and their

basic concepts. It is not the purpose of this dissertation to go into the details of all

these ideas, for this would require the rewriting of said books — and of this there would

be no end.

Instead, a brief overview of the main ideas of some of said books and the conducted

research will suffice.

2.1.1 Terminology

There is often a gap between the lay person’s concepts and terms, and the engineer’s

terms and concepts. It is no different for mobile phones.2

The common idea of a carrier is of that the mobile service provider (MSP), or network

providers (NP). This is the name that is displayed on the screen when the mobile is

activated (on). Whether the phone has “signal” (coverage) is as simple as looking at

“bars” on the screen displaying signal strength. Where the phone “is” is also displayed

on the screen beneath the carrier’s name, although this is generally depended on signal

strength — if there is no signal available, then there is no location displayed.

For most people, that is all that they need to know about how their phone operates.

In truth, network providers (NP) obtain their coverage by purchasing antennas off the

manufactures to provide coverage. (See Section 2.2.3 for further details on the cellular

concept.) Moreover, in engineering terms, the carrier is actually a modulated radio

wave to carry a signal. (See also Section 2.2.1 for details on radio waves as relating to

mobile phones.)

What is this “signal”?

It should be noted that, depending on the discipline, the term “signal” can have many
2 Terms are covered here in brief. See later sections, as referenced, for further details.

2.2 Frequency, EM, and the Cellular Concept 7

connotations, or meanings. However, for the purposes of this dissertation, a signal is

a means of carrying information from point A to point B, and the means used is an

electromagnetic (EM) wave. The amount of energy in this EM wave is one way that

this ‘information’ is measured. However, for the purposes of this document, what types

of information are present is of limited value. Simply the fact that information of some

sort is there is enough.

In addition, just as with a signal, the term ’channel’ can have different connotations,

depending on the discipline — and not all of these definitions will agree. In writing this

dissertation, however, there can only be one definition for consistency, and sanity. In

this document, the channel is simply the transmission medium — in a mobile (cellular)

system, that medium is air. (See Section 2.4.1 for further details.) In this paper,

therefore, a channel is not a signal, nor is it used in this paper to refer to refer to a

band of frequencies. Channels, signals, and frequencies (and bands of said frequencies)

will be held as distinctly separate terms.

Signal strength, therefore, refers to the strength of the actual signal received by the

mobile, or that transmitted by to be received by said mobile.

Mennen (2005) notes that the phenomena of dropped calls occurs due to both poor

coverage (network related issued) and phone-related issues. Some phone-related issues,

such as batteries, being unable to reach the NP, et cetera are beyond the scope of the

dissertation. For such problems, one should really seek advice from their local retailer

or network provider.

Network-related problems, however, often come down to the basic issues that have

plagued the cellular networks since their inception, and indeed, were the very reason

for their creation: frequency re-use.

2.2 Frequency, EM, and the Cellular Concept

Use of frequency spectrum — that is, the electromagnetic spectrum — has long been

a much desired item. The spectrum is cluttered in most western worlds. Modern con-

2.2 Frequency, EM, and the Cellular Concept 8

Table 2.1: Part of the electromagnetic spectrum

Region Wavelength Wavelength Frequency Energy

(Angstroms) (centimeters) (Hz) (eV)

Radio > 109 > 10 < 3× 109 < 10−5

sumers and customers range from from military, to commercial, scientific to modern

appliances...not the least of which is the modern mobile phone, which itself came some-

what late into the picture. Finding space for the cellular phone was not an easy task,

but it was made easier by the ’frequency reuse’ nature of the device. (Agar 2003)

2.2.1 The Mobile ’Radio’

Mobile phones in Australia initially started at 900 MHz. However, due to spectral reuse

issues, they also started using the 1800 MHz — phones that use both bands are known

as ‘dual-band’ phones. At the time of writing, there are phones available that use

three frequency bands, these are ’tri-band’ phones and are generally the more modern

phones. The ‘3G’ phones are technically known as double-mode phones, as they take

advantage of both the GSM system (one mode) and the WCDMA system (the other

mode) for greater coverage.

However, this does not mean that Australia (and other GSM countries) have developed

phones that will work in every country. This is far from the case. America, for instance,

has phones that works on frequencies that are different from almost every country, due

to the way they adapted to the GSM standard. As a result, a ’quad-band’ phone is

generally needed to receive calls on a phone that will work internationally.3 (Mennen

2005)

In any case, the maximum frequency the mobile phone has been known to use is

1900 MHz. This places the phone in the radio part of the electromagnetic spectrum.

(See Table 2.1.)
3 Information regarding what type of handset is suited to each situation should be done on a personal

level, by approaching local retailers and service providers.

2.2 Frequency, EM, and the Cellular Concept 9

As a result, the mobile phone has often been termed a mobile radio — the cellular

system itself has also been called a ‘cellular radio’, but that term is receiving less use.

It transmits and receives in a wireless environment, and as such, is part of a wireless

local area network.

The mobile phone itself is also known as a mobile station (MS) in that is transmitting

and/or receiving from a base station (BS). This BS is part of a group of cells, each

with its own BS.

2.2.2 Antennas

Antennas, such as are discussed throughout the paper, are considered to be rigid

and non-directional, that is, the transmitted signals radiate outwards in all directions.

Effectively, the transmission and receiving happen on the one antenna. (See Chapter 4

for further details.)

These radiated signals, as shown in Section 2.2.1, are part of the electromagnetic spec-

trum. Therefore, these signals are also electromagnetic waves, as Section 2.4.1 further

explains.

Some of the parameters that affect an antenna’s performance include resonant fre-

quency, impedance, gain, aperture (radiation pattern), polarization, efficiency and

bandwidth.

2.2.3 The Cellular Concept

The cellular concept, that makes mobile phones possible, is as simple as it is brilliant.

Fig. 2.1 gives some idea of the basic concept.

A BS, or base-station (antenna) is at the center of the cell, and radiates it’s signal

outwards on certain frequencies. It has adjacent to it other base-stations, also radiating

out their signals on a certain frequency. This pattern of adjacent cells (base-stations

radiating signals on certain frequencies) repeats all over an area, eventually covering

2.2 Frequency, EM, and the Cellular Concept 10

Figure 2.1: The ideal cellular concept, as conceptualised. (Agar 2003)

an entire map. (Agar 2003)

Mennen (2005) notes that base stations usually provide coverage within the range of

10 miles4 — more than this can overstep the ACMA’s “guidelines of safety limits for

human exposure”.5 The usual range is often much smaller, however, as is explained in

Chapter 4’s section on antennas.

Fig. 2.1 shows the cellular concept as it was originally conceptualised, with a mobile

(the arrow) moving through a hexagonal arrangement of cells, with each cell being

neatly delimited. In reality, however, cell boundaries are not so clear, as can be seen in

Fig. 2.2.

In the real world, there is a marked difference in how far the frequencies travel from

the base station (BS). This is termed the cell radius. This is not a fault, but a

feature. Such overlap of cell frequencies allows for “cell handover”. This is the

process whereby the mobile phone stops receiving signal from the BS in one cell and
4 16 km, with an average number of subscribers of over 24,000
5 The ACMA is the Australian Communications and Media Authority.

2.2 Frequency, EM, and the Cellular Concept 11

Figure 2.2: The reality of the cellular concept. Note the frequency overlap between each

cell. (Macario 1997)

2.3 Fading and Interference 12

shifts to receiving signals from the BS in another cell. This would only be possible if

the cell radii’ were overlapping.

However, such overlapping of ranges does create problems. Although it makes the

cellular system possible, it also generates problems...namely the phenomena of fading.

2.3 Fading and Interference

When a transmitted signal is received, often it is not as strong as when it was sent.

This is due to the phenomena of fading .

Fading affects the signal in terms of amplitude, time, and phase, and it occurs while

the signal is traveling through the transmission medium (generally air, in terms of the

terrestrial mobile channel, but other mediums are possible, particularly when referring

to a satellite link).

Amplitude is affected by means of attenuation — which has also been termed, in

some circles, as ’clamping’. That is, the amplitude of the signal by the time it reaches

the receiver is much reduced — clamped. This is because of a gradual loss of intensity

(amplitude) in the signal as it travels through the medium.

Fading affects frequency by means of a delay . As the signal travels through the

medium, it may encounter obstacles. The signal ’bounces’ off these obstacles, and thus

arrives at a later time at the receiver than those signals that travelled by a different

route — such as by Line-of-Sight (LOS) or via a different obstacle.

Finally, fading also affects the phase through a phase shift . When the faded signal

reaches the receiver, it is in a different phase to the original signal. This often leads to

destructive/constructive interference, as per basic physics.

As fading has such an effect on the channel, there is a special section of equations and

theory devoted to its study. This is known as multipath propagation .

2.3 Fading and Interference 13

2.3.1 Multipath Propagation

It is not true that radio signals are easily described.

A terrestrial land-line system6 has the advantage over the cellular system, in that its

signals are solely digital, and are transmitted via cable — whose losses are known and

relatively easily calculated for each type of cable used. In contrast, the mobile system

is not ”pure” digital but tends more towards analog. Also, its signals are transmitted

over not via cable, but over air. As a result, its losses are harder to predict, and

vary depending on the situation the mobile phone is in. That is, the mobile phone

is also affected by its own movement, in addition to the fading mentioned earlier.

(Macario 1997)

The study of multipath propagation has to do with understanding these losses, and

their effect on the characterization of the signal. This characterization is not so easy

to predict, and thus to model.

Whenever the mobile moves relative to aerial — within the field of signal — that is,

it is in relative motion to the BS, there is a ”Doppler shift of a frequency components

within the received signal”7. (Macario 1997) Moreover, the signal undergoes amplitude,

frequency, and phase shifts as mentioned in Section 2.3.

As a result, it becomes easier to predict the signal through probability functions than

it is to calculate it exactly. There are three particular probability models that are used

to determine the effect of multipath propagation on the signal: Gaussian, Rice, and

Rayleigh. For the sake of brevity, these will be considered in full in Appendix B during

Section B.1.
6 The ”opposition” to the mobile phone system.
7 This will also be explained further in Section 2.4.1,

2.4 Signals, Channels and Channel Capacity 14

2.4 Signals, Channels and Channel Capacity

Work into channel capacity, and its limits, was first started by Shannon, as was men-

tioned in the beginning of Chapter 2, and in many other research papers besides.

(Ibnkahla 2005, Goldsmith et al. 2003)

Once again, though, some terminology definition.

2.4.1 Signal vs Channels

A channel is not a signal — a signal is not a signal. However, a signal can be within

a channel, and yet a channel can exist without a signal. Moreover, a signal needs a

channel to exist. What did all that mean?

A signal , put simply, is an electromagnetic (EM) wave — that is, is a part of the

electromagnetic spectrum, and thus has certain characteristics due it as EM wave. Some

basic characteristics include wavelength, frequency, amplitude, phase, phase-shift, and

so forth. Additional characteristics (and perhaps less well known) include harmonics,

Doppler shift, and the Doppler power spectrum.

The mathematical model of the signal equation and the resulting equation are called

the signal model . From this model, parameters can be found to describe particular

signals. For instance, a signal model for a sinusoidal signal would be:

x(t) = A sin (Ωt+ ϕ) (2.1)

and for summation of signals...

x(t) = A1 sin (Ω1t+ ϕ1) +A2 sin (Ω2t+ ϕ2) (2.2)

where the parameters A1 and A2 represent amplitudes of each signal, Ω1 and Ω2 rep-

resent frequencies, and ϕ1 and ϕ2 are the phase shift of each. (Leis 2002)

At this point, it should be noted that media and the common people tend to use “chan-

nel” to refer to a band of frequencies used for media (radio or TV) transmission, aka

2.4 Signals, Channels and Channel Capacity 15

‘radio channel’, ‘TV channel’, et cetera. This usage tends to distort the true capabil-

ity of a channel. The definition of channel that follows, therefore, is the engineering

definition, as applied in signal processing.

The channel is the medium the signal exists within — that is, the “transmission

medium”. In terms of a cellular network, that medium is the air (as has been previously

mentioned in various sections). Both the base-station and the mobile-user can be

considered (relatively) close to sea-level, in terms of how the channel itself operates8.

Modeling a channel requires, in general, knowing the permittivity , that is, how well

a medium transmits an electric field, and thus how well it will transmit an EM wave.

Because the medium with a mobile channel is air, permittivity of air is generally con-

sidered to be 1.

This is a very clear distinction. A channel is not a signal. A channel may have (or

transmit) a signal, but a signal may not have a channel.

2.4.2 Capacity and Shannon’s Limit

Channel capacity was defined, in part, in Chapter 1, as it was also mentioned briefly

in the introduction above.

Shannon’s work, in general, provided a link between the maximum information in a

‘communications channel ’, that is, a band of frequencies that have been used to transmit

to transmit information. His work, however, has been subject to much research and

development. Indeed, Goldsmith et al. (2003) notes that “there are multiple Shannon

theoretic capacity definitions and, for each definition, different correlation models and

channel information assumptions that we consider”. The study of Shannon’s work is the

area often termed ‘information theory’, which is not to be confused with ‘information

technology’.

As there are so many forms of the definition, not all of them can be covered here.
8 That is, “operates”, in terms of its properties and its effects on signals that pass (are transmitted

and/or received) through the medium.

2.5 Conclusions 16

However, the basic theorem can be stated as follows:

Theorem 1. Given the bandwidth and signal-to-noise ratio, the maximum capacity of

a communications channel9 to carry information with no more than an arbitrary error

rate can be defined.

or

C ∝ BSNR (2.3)

where B is the bandwidth of the channel C with a certain signal-to-noise ratio SNR.

This relationship is a logarithmic (base-10) relationship

The important thing to learn from this is the following: all antenna systems are based

on this theorem, in whatever their form, be they MIMO or SISO — these terms will

be explained in Chapter 4. All systems, therefore, will be limited in some way in the

amount of information (voice, video, et cetera) that can be used as throughput without

said information being corrupted by errors.

The amount (or rate) of errors present in the information after transmission is generally

known as the bit error rate or BER.

2.5 Conclusions

In summary, there is always a foundation that needs to be laid, before one can proceed

to build a house. This chapter is that foundation, and MIMO-OFDM is the house. As

Macario (1997) noted,

“Cellular radio is a complex technological system. It embraces several dis-

ciplines of engineering and has taken much enterprise and development to

assemble into global systems. For example, [it] requires the combining of

many large-scale technologies.”
9 That is, a system of signals being transmitted and/or received.

2.5 Conclusions 17

One of the main difficulties, in combining such diverse disciplines and technologies,

involves finding ways to reconcile terms whose definitions vary across applications and

disciplines. Finding definitions for such terms is not always easy, and that is only

the start of the process of reconciliation. For instance, as noted above, the meaning

of ‘channel’ is one such term that varies across disciplines, though it was not by any

means the only one. Having a more standardised terminology (nomenclature) across

all disciplines would go a long way towards increasing understanding and development

of future development of ideas.

However, having given a brief cover of some of these technologies, Chapter 3 and Chap-

ter 4 cover the theories of OFDM and MIMO respectively, with chapter Chapter 5

combining these techniques into one cohesive model, or MIMO-OFDM.

Chapter 3

OFDM

As a technique, OFDM , or Orthogonal Frequency Division Multiplexing has found

wide acceptance. It has been used for Digital Audio Broadcasting, for example, for the

Asymmetric Digital Subscriber Line (ADSL), and in Europe for as the basis for Digital

HD-TV broadcasting. It has even been used as the basis for the IEEE 802.11 standard

for wireless LAN (WiFi).

It should be noted that various incarnations of the technique have been discussed in

recent years, but what will be discussed here is the classic version, on which there is

the most research.

3.1 OFDM: What Is It?

The concept of dividing up a ”signal frequency band” was recognised early in signal

processing. Such a concept was an appealing way to increase ”system robustness against

amplitude and phase distortion introduced by the communication channels, impulse

noise, etc”. (Ibnkahla 2005) One of the methods that were used to achieve this was

Frequency Division Multiplexing (FDM).

FDM attempted to achieve the dividing up of frequency band, by sending multiple

signals over a channel simultaneously.

3.1 OFDM: What Is It? 19

Figure 3.1: Figure depicting orthogonal sub-carriers. (Dörpinghaus & Speth 1999)

OFDM expands on the FDM method by introducing orthogonality. Orthogonality is the

property of ’being at right angles’, that is, of being separated. In OFDM, then, a single

original signal is divided down into multiple sub-carriers that are separated from one

another. These sub-carriers, using the techniques of FDM, can be sent simultaneously

down the transmission path. (See Fig. 3.1.)

The perfect tool for this is the Fourier transform.

Without going into an involved discussion of the theorems’ of the Fourier transform,

these are the main things that it is important to note about the Fourier transform (not

in any particular order):

• It transforms from the time domain to the frequency domain.

– The inverse Fourier transform returns the function from the frequency do-

main to the time domain.

• Applying the transform introduces complex and real terms that are exponentials.

• It is based on Euler’s formula.

• It separates the ”harmonics” in the signal.

In terms of linguistics, the phrase ”Fourier transform” has come to apply equally to the

frequency domain representation of a function as it does to the process that transforms

that function from one domain to another.

Interestingly, the Fourier transform also has a close relationship to sampling a signal.

3.2 Sampling a Signal 20

3.2 Sampling a Signal

A knowledge of sampling — measuring a signal at regular intervals in order to convert

into digital form — and the process of signal reconstruction from a sampled signal (ob-

taining the original waveform) is important in OFDM. OFDM is a signal modification

technique, and as such, it has explicitly (and implicitly) to do with sampling and signal

construction.

When sampling a signal, one wants to sample it often enough times to avoid aliasing ,

or errors in sampling that have made the sampled signal appear than it truly is. This

is due to the resolution of the sample — how often it was sampled, or the sampling

frequency.

Applying the Fourier transform (and its inverse) to a transmitting signal, it is possible to

show that an incoming signal m(t), sampled at a uniform interval Ts, can be represented

by

m(t) =
∞∑

n=−∞
m(nTs)

sinωM (t− nTs)
ωM (t− nTs)

(3.1)

where ωM , the upper limit of the frequency domain of the signal M(ω), is ωM = n/Ts

and n is the nth sample. This Eqn. (3.2) is the Nyquist-Shannon interpolation formula,

and is also sometimes called the cardinal series. (Gibson 1999)

An extension of the above is that fs, the minimum sampling frequency, is such that

1/Ts = fs, which is also known as the Nyquist rate . The Nyquist rate — or, twice

the highest frequency present in the signal — is the the minimum rate at a signal can

be sampled without introducing errors into that sample. (Leis 2002)

As a result of this Fourier process however, the resultant signal will often require a

guard interval. This is due to the sampling theorem .

3.2.1 The Sampling Theorem

The sampling theorem can be stated as follows.

3.3 OFDM: The Model 21

Theorem 2 (Sampling Theorem from Leis (2002)). The minimum sampling frequency

must be at least twice that of the highest frequency component present in the original

signal.

This is one of the more fundamental statements of signal processing and, indeed, most

engineering fields related to communications.

Using the signal from Section 3.2, m(t) sampled at uniform interval Ts, this sampling

interval Ts is known to be related to the maximum sampling frequency fM by

Ts = 1/(2fM) (3.2)

This relationship is called the Nyquist interval . Therefore, the Nyquist rate extends

itself such that

fs = 1/Ts = 2fM (3.3)

When fs < 2fM , that is, it is less than the Nyquist rate, that is known as aliasing, or

foldover. This makes the signal distorted and it becomes ”impossible to recover m(t)

from the sampled signal”. (Gibson 1999)

When fs > 2fM , that is, it is greater than the Nyquist rate, there is a gap, known as

the guard band, or guard interval.

Hence, sampling a signal at a sample rate higher than the Nyquist rate makes it easier

to recover to the original signal from the sampled signal. This process is known as

signal reconstruction.

With knowledge of the above, it is possible to build a working model for the OFDM

technique.

3.3 OFDM: The Model

The mathematical model is...

3.3 OFDM: The Model 22

Figure 3.2: A block diagram of the OFDM system model. (Gibson 1999)

zl,k = al,kHl,k + n (3.4)

where...

z is the output of the channel

a is the tap weights

H is the transfer function at

l time-slot and

k sub-carrier,

n is noise (AWGN)

In particular, H is of most interest, as it represents the OFDM channel modulation

technique. In particular,

H[l, k] =

H1,1[l, k] H1,2[l, k] . . . H1,K [l, k]

H2,1[l, k] H2,2[l, k] . . . H2,K [l, k]
...

...
. . .

...

HL,1[l, k] HL,2[l, k] . . . HL,K [l, k]

 [] (3.5)

provides the L×K matrix corresponding to the lth sub-carrier and kth OFDM symbol.

Perhaps a simpler way of understanding it would be in Fig. 3.2

It breaks the signal down into sub-carriers, modulates them using the IFFT and sends

these through the channel. These are picked up at the receiver. It is then up to the

receiver to use the FFT to reconstruct the sub-carriers (demodulate) back into the

original signal.

3.4 Conclusions 23

3.4 Conclusions

This, therefore, is OFDM. It is a way of modulating and demodulating the signal, to

send it through the channel, by means of multiplexing — breaking it up into portions

— through use of the IFFT and FFT. In Chapter 5, it will be proved how MIMO and

OFDM can be combined to form the cohesive theory of MIMO-OFDM.

Chapter 4

MIMO

be everywhere. All such forms mentioned receive a signal — but only the first pair can

truly receive and transmit. Specifically, it is the mobile phone “towers”, or antennas,

that will be the subject of this dissertation.

In recent decades, the antenna has increasingly become a more common sight on modern

skylines in all its forms. However, the particular antenna considered suitable for a

cellular system is only one form — one sub-species, perhaps — of this type of device.

This chapter will consider an extension to the antenna: the antenna array, or as its

application is increasingly becoming known, MIMO.

4.1 MIMO: What Is It?

Multiple antenna systems have been a source of increasing research and discussion over

the last decade or so, as interest in the MIMO-OFDM technique has grown and papers

have been published. One cannot hope to reproduce all such data, or material, but

could, perhaps, give some sort of overview instead.

The MIMO technique itself, as might have been mentioned earlier, is an acronym that

stands for Multiple Input Multiple Output. It is a “step up”, then, from the stand

antenna system that has been commonly in use for decades (as at the time of writing),

4.2 The SISO Problem 25

which is commonly known as SISO.

SISO stands for Single Input Single Output. It is the single antenna for a single cell,

with a single user — one antenna, using a single frequency range — servicing a single

antenna on each mobile phone. This is by far the most common system in place (for

the cellular system) at the time of writing.

Both MIMO and SISO refer to antenna systems and their relationships to the user, the

mobile phone (and the mobile phone’s antenna).

4.2 The SISO Problem

The antenna itself, as described in Chapter 2, was assumed to be a rigid and non-

directional device in most cases. In that chapter, it was also mentioned that the trans-

mitter and receiver are assumed to operate on the one antenna. Fig. 4.1 shows how this

is possible. Indeed, this combination unit antenna is what makes possible the cellular

system.

This was stated simply for ease of conceptualisation. Indeed, the initial antennas that

are placed in a cell system as base-stations are omni-directional. due to the fact that

the goal is to achieve coverage quickly. But as Hernando & Pérez-Fontán (1999) notes,

this is not true for mature cell systems.

When the network has been in operation for a given period, directive anten-

nas are more suitable to improve the carrier-to-interference ratio and thus

reduce the cochannel reuse distance to increase network capacity. In these

mature cellular networks the antenna directivity defines 120-degree cells.

Sometimes six-sector cells (60 degrees) may be used.

As Hernando & Pérez-Fontán (1999) also goes on to point out, such a ‘immature’

system has the risk of being able to provide for its users.

Using the communications terminology for ‘channels’ to refer to a band of frequencies,

4.2 The SISO Problem 26

Figure 4.1: Depiction of the combination unit antenna — a transmitter and receiver oper-

ating on the one antenna. (Macario 1997)

4.2 The SISO Problem 27

Hernando & Pérez-Fontán (1999) gave the Erlang-B formula,

pt = B(A,N)

=

AN

N !∑N
k=0

Ak

k!

(4.1)

to describe the probability (pt) of unsuccessful call attempts, where A is the offered

traffic and N is the number of traffic ’channels’. This Eqn. (4.2) allows for a way

to predict to the number of ‘channels’ required by a base-station for a certain GoS

(Guarantee of Service).1

Using this Erlang-B formula, Hernando & Pérez-Fontán (1999) proved that an antenna

of radius 10 km, with an assumed probability that 2% of calls will not get through (pt

of 2%) will require 328 channels — an excessive, if not impossible amount. However,

if the radius is reduced 1.5 km, and assuming uniform traffic, with the same blocking

probabilities, the amount of channels required would only be 13. This is much more

within the realm of reality.

However, there are still problems with the cellular system. Frequencies can not be

reused too close together, and interchannel (or cochannel) interference is still a big

problem, as well as other problems facing the cellular system. It is hoped the MIMO

will be a solution.

4.2.1 The Antenna Array

The antenna array is a term that describes a number of antennas in a group, that

also radiate and receive signals (on frequency bands) as a group. The key factor is that

these antennas are no longer omni-direction (all directions) but directional.

At this point, it should be noted that it is not the purpose of the dissertation to criticise

current or suggested models of antenna arrays. Nor is this paper a design document.

In conducting research, it was found that many of the available printed texts focused

on the GSM model, as this has been the model most widely implemented, although
1 GoS in percentage units is given by: 100[1−(1−pt)·pc] where pc is the typical coverage probability.

4.2 The SISO Problem 28

Figure 4.2: Model of a GSM system.(Laroia et al. 2004)

4.2 The SISO Problem 29

in various forms and in varying degrees of success. In general, the GSM model is

implemented as shown in Fig. 4.2. In such a system, the interface between the BS and

the networks (telephone or internet) is the bottleneck, and could be considered to be

the cause of many problems.

This GSM model is made of up of interconnected disparate pieces. As noted by Laroia

et al. (2004),

A radio network controller (RNC) controls several Node Bs. An RNC directs

the voice traffic to the mobile switching center (MSC) and the data traffic to

the serving general packet radio services (GPRS) support node (SGSN). The

MSC is connected to public switched telephone network (PSTN) through

the gateway mobile switching center (GMSC). The SGSN is connected to

the Internet through the gateway GPRS support node (GGSN).

The MIMO array solves many of these problems, even though the model itself is still

under development, and is therefore subject to theoretic change with each new paper

that is published. At its heart, however, seem to be a few basic concepts and principles,

which will be presented in Section 4.2.2

4.2.2 MIMO: The Model

The mathematical model of MIMO is as follows:

Y = HX + E (4.2)

4.3 Conclusions 30

where

Y = outputsignal

H = channelmatrix

X = inputsignal

E = thermalnoise

Being a multiple array, all these terms. Had it been a single-antenna-to-single-antenna

(SISO) system, all these terms would have been scalar.

Please note, however, that finding an appropriate diagram of the MIMO system was

not as easy as it seemed. It changed with every paper that discussed, and there seemed

to be no real ‘standard’ design available. Even the equation in Eqn. (4.2.2) is a

conglomeration of equations from various research papers, and so cannot be cited.

4.3 Conclusions

This, therefore, is the definition of MIMO that is applied within this paper. When

“multiple input multiple output”, or MIMO, is mentioned. It refers to a base station

(BS) of multiple antennas, placed in an array, transmitting on a frequency range, to

service a mobile phone, also with multiple antennas placed in array. In Chapter 5, it

will be proved how MIMO and OFDM can be combined to form the cohesive theory of

MIMO-OFDM.

Chapter 5

MIMO-OFDM: The Concept

It might have been noticed that there is, to some extent, some repetition of topics

throughout chapters Chapter 3 and Chapter 4. This, unfortunately, had to be done

to explain the full breadth of each topic, although it was kept to a minimum to avoid

“re-inventing the wheel”. In this chapter, however, these topics will be combined, to

show how MIMO-OFDM actually works.

5.1 MIMO and OFDM Together

Fig. 5.1 shows a standard (concept) view of how MIMO and OFDM may be incorpo-

rated to make one complete system.

Figure 5.1: The standard model of the MIMO-OFDM system model, where Q and L are

the numbers of inputs and outputs. (Barry et al. 2004)

5.2 Drawbacks 32

Figure 5.2: The standard model of an antenna system.

Note that the MIMO array leads directly into the signal processing, the OFDM. Com-

pare this to the GSM model shown in Fig. 4.2, and the antenna model shown in Fig. 4.1

in Chapter 4, as well as the block diagram shown in Fig. 5.2.

Simply put, MIMO-OFDM stream-lines the antenna system. It removes the ‘bottle-

necks’ and allows the antenna almost direct access to the channel.

In addition, within OFDM, the technique itself offsets interference.

One of the main problems with a cellular system, as was discussed in Chapter 2, was

multipath propagration. (Full details in Appendix B). The methods that OFDM applies

to break-down (sample) and then reconstruct a channel using the IFFT and FFT are

actually based on how a multipath-affected signal works, not against it. There, there

is a reduction in the effect of noise at both the transmitter and the receiver.

Moreover, with careful placement of the MIMO antenna array, signal can be aimed in

certain directions. This will reduce, or exaggerate, the impact of the phenomena of

beamforming as desired. Beamforming is where a directional antenna array’s signal

is concentrated in one area. With careful planning and placement of the MIMO array,

this can either become a detriment, or a feature.

5.2 Drawbacks

It would not be fair, however, to present a glowing report without at least considering

the disadvantages.

For the most part, this is what the simulation was designed to discover, and for this,

5.3 Conclusion 33

one should consider reading Chapter 6 to Chapter 7, or Chapter 8 for the overall

conclusions.

Also, there were also limits, to how much one could discover through research alone,

mainly due to problems with notation varying between disciplines. As there has been

so much to cover in the proceeding chapters, this has researching in a wide range fields,

and not always in the one area of “signal processing”. This has had consequences,

particularly in notation, and in the number of different papers that had to be read. In

particular, notation and terminology has not been static. It has changed depending on

the field and the topic being looked at that particular moment.

Perhaps, just like there is a standardised system of units (the SI units), there could be a

standardised system of notation. It would be, if nothing else, interesting to implement.

(See Chapter 8 for details.)

5.3 Conclusion

MIMO-OFDM is something that truly needs to be implemented to discover its ad-

vantages and disadvantages. Although there were problems with researching, due to

notation and concept changes across various texts, there is enough confidence in the

basic concept to continue with the simulation. This will be discussed in Chapter 6 and

its results presented and analysed in Chapter 7.

Chapter 6

Simulation

The specification of the project was clear. The simulation had to be in C++/C, or

MATLAB. The decision was made early to avoid MATLAB as much as was possible

(being a vendor-locked programming language). The reasons for this lie in the capabil-

ities of each language — and will not be debated in full here.

However, one of the main reasons for the choice was the ability to fork. Research

indicated that whatever direction the final solution went, it had to have the capability

to maximise the use of the cores of an SMP (Symmetric MutliProcessing)1, which

what are the common processor model common today.

However, ability to fork not one of MATLAB’s outstanding features. However, C++

does fork, and does it well. Moreover, creating a program in C++ allows for platform

inter-operability, and a personal goal of the project was to create a simulation that

would work in both Windows and Linux. The differences between the two OS’s are

actually rather small, as long as one as holds true to the C++ STL, or Standard

Template Libary.

This language was therefore chosen as the main simulation programming language, as

well as for its memory handling features and advanced containers2.
1 An architecture where additional cores share memory, and are added as volume of processes

increases.
2 A container in C++ is a holder object that stores inside it a collection of other objects, or data,

6.1 Programming in C++ 35

As such, when terms are capitalised (such as Signal instead of signal), it generally

refers to that term as used in the simulation. Moreover, the same term capatised but

as Signal typeface, refers specifically to the way it was implemented in the simulation.

6.1 Programming in C++

There is one thing that should be absolutely clear, before we go much further.

Programming a complicated series of equations, particularly mathematical and scien-

tific equations, is not as easy as it sounds. Whatever the language.

C++, in particular, cannot represent equations directly from the printed page to the

language notation. The main reason for this is the ˆ (caret), which it uses as a bitwise

operator. The power operations have to be coded as separate functions — increasing

program complexity. MATLAB, as mentioned earlier, is not the best, as while it uses

the ˆ as a power operator, it is computationally intensive. It also does not guarantee

results — at least not without paying extra for “Toolboxes”.

That being said, test runs were carried out, in both MATLAB and C++, of some

generic signal-processing equations. The results were...not pretty. Not only were the

computations to obtain a single matrix of results relatively intensive, but the results

were far from what was being hoped to achieve.

MATLAB produced results, but they were far from expected. C++ did not even

manage to compile.

Research into MIMO and OFDM continued, however, in the hopes that a solution would

be found. It did some months of battling with the languages, but in the end there was a

break-though. Unfortunately, this was also late in to the project (approximately around

the beginning of September). The rushed timeframe meant that, unfortunately, limited

external documentation could be produced.

and provides with itself a number of additional functions.

6.2 The Final Implementation 36

6.1.1 The Light In The Tunnel

The solution, such as it was, was simple.

A computer itself is a binary machine. It represents numbers (the decimals we humans

are familiar with) and expresses them as binaries (on a base-2 system). As such, it uses

boolean (true or false) logic, much like DC electrical signals, which are often stated as

1 or 0, on or off. A binary number is actually just a collection of bits — singular values

(or a quantum) that make the whole (the binary word).

Moreover, in terms of how signals are transmitted through air, it is not the signal itself

that is being transmitted, but in truth, it is more like the molecules in the air that are

passing the signals’ energy along, much like they pass thermal (heat) energy along by

vibrating. It is these molecules (the ”quantum” of the air system) that make up the

whole (the air).

Combine the two thoughts, and there is the principle behind the simulation: the means

of transmitting the signal through the air (the molecules) can be ‘simulated’ by the

bits in a computer program. In other words, the construction of the simulation came

from a consideration of first principles: from basic chemical and physical properties of

how signals are transmitted.

This leads to the two so-called “backbones” to the simulation system: the bitstream

system, as implemented by the ‘signal’s, and the “MACS” layer. These were combined

into the final implementation, which will be discussed in detail in Section 6.2.

6.2 The Final Implementation

For future reference, Appendix D lists the code in full detail, with all modules at the

time of writing, and Appendix C gives sample runs with current (at time of writing)

attempts of producing output.3

3 At some point, producing the dissertation document had to take precendence over code fine-tuning

and output production, particularly due to the rapid developed and shortened code development cycle.

6.2 The Final Implementation 37

(a) (b)

Figure 6.1: Flowcharts depicting the flow of (6.1a) data and (6.1b) execution between a

signal and its associated data: a bit stream and a binary.

Figure 6.2: Flowchart the overall program flow and the connection between the classes.

6.2 The Final Implementation 38

Fig. 6.1 provides the flow-charts depicting the implementation of signals and the bit

“streams”, and how these interacted with the custom-made Binary. Data was shared

among them fairly equally, and execution flowed neatly from Signal to Binary.

In Fig. 6.2, each of the Ofdm, Noise and Ber are all objects of type Signal as shown

— they are all implicitly interacting with the ’BitsStrm’ and Binary’ model shown in

Fig. 6.1. Moreover, the dashed box around the Mimo, Antenna and Channel types show

how the MACS system was implemented. Each of these share standard values that can

be equally and easily accessed. This is through a separately defined system, though

not shown in Fig. 6.2 for brevity, its listing is in Section D.2 of Appendix D.

6.2.1 Binaries, Bits, and Streams

As mentioned in Section 6.1.1, the principle aim is to simulate signal transmission using

the inherent units of a computer: the bits.

This was both easier, and harder, than it seemed.

It was only when the program (current version) was nearing completion that the

<bitset> header was found, which is a C/C++ standard header that implements much

of what was trying to be achieved here. It probably would have saved much work, and

debugging, even though it did not quite fit the specifications. However, as it was found

so late in the programming cycle, it could not be included.

The decision was made not to rewrite but to continue with ‘non-standard’ custom files

and implementations, which will be described as follows.

A Binary System: In Brief

The one problem with using a “binary” system is that it varies. There is no one

standard, just as the decimal system also has scientific notation (which itself can be

represented as × 10x or 1Ex). Each architecture has different versions and implemen-

tations of the system.

6.2 The Final Implementation 39

There were two options:

1. catering for each architechture

2. implementing a custom binary system

The other challenge was binary word-size. With the increasing advent of 64-bit op-

erating systems (to take advantage of the SMP architecture), the values of previously

standard sizes in C/C++ (such as int, char, et cetera) have changed depending on

particular computer of compilation and execution, and cannot be guaranteed for 64-

bit suitability. Along similar lines, Windows has added the data type of wchar_t to

their programs for their “expanded unicode” character set, which is specifically for the

Windows operating system, and is only supported on that system — and by Microsoft

specific compilers. It was not used here, as it was known in advance that the program

would be tested on the Linux OS. Instead, the standard ASCII character set was used.

Allowing for 64-bit values and platform-interopability was important, as this simulation

involved a lot of number crunching. The decision was made to switch from ints and

char’s to the standard size-type fittingly known as size_t. This data type is defined

according to the maximum size that can be allocated into a data variable — which made

it suitable for both 32-bit and 64-bit architectures, and any platform that implements

the STL.

The solution, it seemed, was to not base on a particular computer’s architecture per

se, but on the binary system definition itself. This would avoid tying the program to

a particular system type (Intel vs AMD) or operating system (Linux vs Windows) —

apart from the use of the standard size_t type.

The best way is, more often in programming, the easiest way.

Given the shortened development cycle, this was the approach chosen. This is the

’Binary’ module (listed in Appendix D as Section D.15) that stores both a decimal

(base-10) number and its binary equivalent (base-2), and has all the standard operators

(+, -, ×, et cetera). It also has the extra capability of giving a C++ style string on

request.

6.2 The Final Implementation 40

6.2.2 Streaming Data

Proponents of C++ talk quite often about “streams”, “file streams”, “input/output

streams”, and even “overloading streams”. To the unwary, and newcomers, such terms

sound disturbing. Streams in C++ are simply a means passing data too, and from,

objects, or places — such as file, or wherever I/O is taking place. This is often achieved

using the operators << and >> a bit like + and - — such as ‘adding’ values to an output

’stream’ (location) and ’taking’ values from some input ’stream’ (location).

Such streams get their names from the often long lines of >> and << operators, i.e.

cout << " tmp = " << tmp << " \& count " << count << endl;

where cout was the output stream (in C++, it is assumed to be to the console or

terminal) and tmp and count were some variables whose variables are to be displayed.

If tmp and count had values of, say, 4 and 9, respectively, then such a line would

produce at the console:

tmp = 4 and count = 9

Although, in this program, there was oftem mention of a bit-stream (it was actually

termed a BitsStrm to avoid confusion with other C++ classes and basic types), it did

not, in actual fact, operate as the above mentioned “streams” in the sense of having

the ability to use the << and >> operators. These two operators are actually defined

originally in C (of which C++ is a derivative language) as bit operators. To ‘overload’

them and convert them into i/o operators would not be a wise course in this case as it

being a detractor from the nature from the nature of the container.

It was refered to as a “stream”, however, as it was a means of moving (passing) bits

easily from one place to another. In this sense, it fullfilled the definition of a stream.

See Section 6.2 or Appendix D for futher details of how this was accomplished.

6.2 The Final Implementation 41

6.2.3 Streams as Signals

As was mentioned in Section 6.1.1, the idea behind the simulation was to represent each

Signal in terms of their physical representation; on the computer, this meant using a

”stream” of bits.

There is, at this point in time, no C++ ability to handle such capability — even though

“streaming” data from one point to another is a basic part of its functionality. However,

it does come with basic and high-level ‘containers’. For instance, a ‘basic’ container

would be the vector, which is considered to be an improvement on the array (matrix),

as it has better memory management. It does, however, have linear access times, due

to its implementation methods.

The ‘higher-level container used instead was the ’deque ’, as it has the advantage of

constant access times to all memory, and handles its own memory.

However, one final refinement was necessary before the final implementation of Sec-

tion 6.2.

MACS a.k.a MOCA and MACON

MACS stands for Multiple Antennas with Channels and Signals. Other versions of

the acronym were MOCA (MIMO-OFDM with Channels in Antennas)

MOCA stands for MIMO-OFDM-Channel-Array system, as implemented in the pro-

gram. Interestingly enough, other research papers have referred to this line of thought

with similar acronyms — apparently with MAC (Multiple-Array [with] Channel) for

short. According to Goldsmith et al. (2003), it has been an area of increasing re-

search. In this text, however, due to certain methods of implementation, MAC has

been also referred to as MOCA, and MACON (Multple Antenna Channl [with] Ofdm

and Noise’ system). These terms (MOCA, MACON, and MAC) can be used rather

inter-changeably, as long as the following is kept in mind: they refer to the interaction

of antennas and channels with the MIMO-OFDM theory.

6.3 Further Thought 42

This is a critical leap in thought.

In terms of the programming language, this means that the Antennas’ (capitalization

deliberate) can share with the Channels (also with deliberate capitalization), and these,

in turn, have something to share with the Signals (capitalization mine). What is it they

share?

Their effect on molecules.

Moreover, continuing with the definition used throughout where a channel is what a

signal travels through, and is not another way of refering to a signal or a frequency band,

this drastically simplified the implementation. It meant that the Channel, instead of

being another signal, could itself be used to hold signals, that is, as a way of containing

the Signals implemented within the simulation.

6.3 Further Thought

Having said all that, there remains further work to be done.

Current estimates are that it would have only taken about one week to a month (de-

pending on constraints) to produce actual data in a graphical form. The program

remains, unfortunately, in a state of needing repair as it being debugged at the time of

writing. (For instance, one such bug is that the OFDM signal is strangely not being

fully allocated to it’s proper length while all other signals are, even though it uses the

same code.) Moreover, the choice of available compilers (for a 64bit XP system) will

increase next year, providing more choices (that will also adhere more closely to the

ISO and/or ANSI standard than the one that was used).

The obtaining of actual data and converting to graphical output (such as the coding

of a program to create a svg-image using the WW3 standard) could be the subject of

later research, or, optionally, private work on the part of the researcher.

Also, as mentioned in Section 6.2.1, C++ does come with the <bitset> header file,

with standard binary implementations. It would be an interesting personal challenge

6.3 Further Thought 43

to incorporate this into the program (perhaps in place of the binary module, listed in

Appendix D, Section D.15).

6.3.1 Impressions and Recommendations

For only having been in development since September, the program implementation

was able to reach a relatively advanced stage of completion. Various runs were able to

be completed, with antenna array sizes up to 1024 on both the receiver and the trans-

mitter end — although this did take a while to initialise, let alone run. To be honest,

it would have been nice to have more time available to developing and play around

with the environment, and taking the program further. Unfortunately, 2 months was

the time frame available when the change was made from direct equation-to-language

implementation to an implementation that highlighted the language features. Had the

realisation been made earlier, instead of focusing so heavily on research, more could

have been accomplished in the actual simulation.

Chapter 7

Simulation Results

As has been mentioned in Chapter 6, the simulation could not be implemented as

initially conceived, simply because the engineering equations did not translate directly

into the target language. This led to a complete change in thought, and a completely

different conceptualisation of how MIMO-OFDM can be implemented as a simulation.

Unfortunately, it also meant a highly shortened development (2 months) from concep-

tion to scheduled production of the actual simulation application.

7.1 Ouptut

Due to the abbreviated development schedule, not all of the target goals were reached.

First and foremost, the OFDM component was not implemented as one would like. The

signal is not broken down into sub-channels and sub-carriers and then reconstructed

from such. This would require more code, adding more modules to the code, and there

simply was not the time to do that and submit a dissertation as well. That said, the

OFDM component had a (sampled) signal inside it, waiting to be broken down and

reconstructed.

Therefore, all output of the simulation would necessarily have to be adjusted accord-

7.1 Ouptut 45

ingly at this point in time. An estimate of how long it would take to implement the

OFDM component can not be given, as the added code would have itself to be com-

pletely integrated and then debugged.

Moreover, at the time of submission, the collating of the BER component into actual

output had not been completely implemented.

However, in programming, what takes the most time is the initialisation phase and

debugging involved therein. One has to ensure that all the objects are initialised, that

all the data is there were it should be, before one can actually proceed to use the

data. Otherwise, using uninitialised data causes a Segmentation Fault (“SEGSEV”

in programming speak), which literally means the program is trying to access empty

memory, or memory it is not allowed to. This causes program’s to hang, or exit

inappropriately.

This is the stage the program has just completed. In two short months, it has moved

from initialisation, to being able to use/output the available data. In the programming

world, this is an important step.

The final debugging process ran the code through both VC++ (Windows compiler)

and G++ (standard Linux compiler) to ensure platform inter-operability. It compiled

and ran on both compilers, although with limited success on the VC compiler due to

lack of compliance issues with standards.1.

As such, although there is no actual technical output as such, proof of compilation

without errors can be found in Appendix C, with directions for running in Section C.2.1.

Plans for output are also included in Section C.4 of Appendix C. There is also a listing

of all source code in Appendix D with further explanations.
1 See Appendix C for full details.

7.2 Performance Analysis 46

7.2 Performance Analysis

A performance analysis, particularly in software terms, is where the program is ran

through a separate program that tests it for memory leakage, unusual function calls,

stack usage, et cetera. In other words, how efficient the program is, and how well it is

implemented. It is a way of testing how well the program has protected itself against

the “creative user” who is millions of ways to break code. If a program does not error

check and is not efficiently implemented, then such programs will “break” during the

performance analysis.

Specific programs to carry out this analysis can be up to and above $2,000US, far out

of range of a researcher’s budget constraints. As such, the decision was made to use a

Linux tool, as the program compiled on Linux as well as Windows. The program was

the strace facility, and is a standard package that can be downloaded for Linux via

aptitude or synaptic, depending on the distribution.

It confirmed what was expected. There were no problems. However, due to size of the

file (running unaltered, the program generated a 125kB file), it could not be included

in a standard student dissertation as an appendix.2

7.3 Conclusions

The results and analysis that have been completed have confirmed that MIMO-OFDM

certainly holds much promise.

Simulating it, when one held true to the demands of the languages involved, was actu-

ally a relatively easy matter. Although this simulation is not complete at the time of

submission, running available trace programs on the simulation shows the implementa-

tion is efficient. Moreover, the implementation is capable of handling high-end arrays,

that is, arrays of size 1024 × 1024. This might be greater than what current technology

can do, but the simulation shows that is yet possible.
2 It is, however, in the attached CD, if it is included, along with the actual program for the curious.

7.3 Conclusions 47

What is life, without hope?

Of course, this is a software implementation, not a hardware implementation. It remains

to be seen if such lofty software goals can be transferred to the real world.

Chapter 8

Conclusions

8.1 Areas For Improvement

In researching this dissertation, one of the more outstanding areas of frustration had to

be terminology, and the related definitions. As mobile (cellular) communications covers

such a wide field, with papers being published by authors in many lands, notation

changed with each paper and text along with terminology, and in some cases, within

books. Each time the notation changed, the text would have to be scoured to find the

latest definition of what the author was referring to, and this drastically slowed down

the process.

Apparent errors in such notation could not be confirmed, as the notation was constantly

changing.

There were two options:

• Try to research everything.

• Simulate from first principles.

There was, of course, not the time to try the former. Attempting that would take far

more time than the dissertation time-frame allowed. The only option possible, and

8.2 Final Thoughts 49

the one chosen, was the first. With every paper read, notation changed, the basic

idea changed, and consistency was soon lost. The only solution was to fall back on

general knowledge as an engineer, of standard chemical and physical principles as well

as knowledge of how a program works, in order to construct the simulation.

This would not have had to be done if the notation and terminology had be consistent,

and well explained, across the board. As this was the largest area of frustration, and

caused the most change within the simulation, it needs to be highlighted first and

foremost.

8.2 Final Thoughts

The final thought, and the second conclusion, is as follows.

Once terminology is actually understood, and the basic concepts are understood, MIMO

and OFDM are relatively ingenious concepts. Adding antennas to increase information

carrying capacity, and improving signal modulation, these are the ways of the future.

This, perhaps, is what these two terms should represent. Adding definitions to the

terms, and using them to the ’extra’s that come with their application, clouds the

issue, and should always be avoided.

That being said, simulating pure MIMO and OFDM was simple, and easy. The pro-

gram that resulted, although not complete at the time of writing, has already proved

itself to be efficient. Moreover, the simulation has proved that implementations of

MIMO-OFDM beyond what current technology is capable of is possible and, eventu-

ally, achievable.

In summary, MIMO-OFDM holds much promise. It is a concept to be followed with

interest by engineers, whatever their discipline.

List of References

ACMA (2009), Electromagnetic Radiation (EMR) Safety & You Fact Sheets, Australian

Communications and Media Authority, Commonwealth of Australia.

http://www.acma.gov.au/WEB/STANDARD/pc=PC_310377

current April 2009.

Agar, J. (2003), Constant Touch: A Global History of the Mobile Phone, Revolutions

In Science, Icon Books UK, Grange Road, Duxford, Cambridge CB3 4QF, United

Kingdom.

ARSPNA (2008), Radiation and Health Fact Sheets, Australian Radiation Protection

and Nuclear Safety Agency, Commonwealth of Australia.

http://www.arpansa.gov.au/eme/index.cfm

current April 2009.

Barry, J., McLaughlin, S., Ingram, M., Ye, L., Stüber, G. & Pratt, T. (2004), ‘Broad-

band mimo-ofdm wireless communications’, Proceedings Of The IEEE 92(2), 271–

293. Available from IEEEXplore.

B¨lcskei, H. & Zurich, E. (2006), ‘Mimo-ofdm wireless systems: Basics, perspectives,

and challenges’, IEEE Wireless Communications pp. 31–37. Available from IEE-

EXplore.

Cvetković, Z. (1999), ‘Modulating waveforms for ofdm’, 1999 International IEEE Con-

ference on Acoustics, Speech and Signal Processing 5, 2463–2466. Available from

IEEEXplore.

Denny, M. (2007), Blip, Ping, and Buzz: Making Sense of Sonar and Radar, The

http://www.acma.gov.au/WEB/STANDARD/pc=PC_310377
http://www.arpansa.gov.au/eme/index.cfm

LIST OF REFERENCES 51

John Hopkins University Press, 2715 North Charles Street, Baltimore, Maryland

21218-4363, United States.

Dörpinghaus, M. & Speth, M. (1999), OFDM Receivers for Broadband-Transmission

[Online], Phd, Lehrstuhl fssr Integrierte Systeme der Signalveraberitung, Walter-

Schottky-Haus, Sommerfeldstrasse 24, D-52074 Aachen, Germany.

http://www.iss.rwth-aachen.de/Projekte/Theo/OFDM/www_ofdm.html

current November 2008.

Forney, G. & Costello, D. (2007), ‘Channel Coding: The Road to Channel Capacity’,

Proceedings of the IEEE 95(6), 1150–1177. Available from IEEEXplore.

Gault, S., Hachem, W. & Ciblat, P. (2007), ‘Performance analysis of an ofdma transmis-

sion system in a multicell environment’, IEEE Transactions on Communications

55(4), 740–751. Available from IEEEXplore.

Gentile, K. (2003), Fundamentals of Digital Quadrature Modulation, Mobile Dev &

Design, Penton Media, Inc.

http://rfdesign.com/images/archive/302Gentile40.pdf

current September 2009.

Gibson, J. D. (1999), The Mobile Communications Handbook, Vol. 2 of The Electrical

Engineering Handbook Series, second edn, IEEE Press & CRC Press, Boca Raton,

Florida.

Glisic, S. (2004), Advanced Wireless Communications, John Wiley & Sons, Ltd, The

Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.

http://www3.interscience.wiley.com.ezproxy.usq.edu.au/cgi-bin/

bookhome/110499375

[Electronic Resource] current May 2009.

Goldsmith, A., Jafar, S. A., Jindal, N. & Vishwanath, S. (2003), ‘Capacity Lim-

its of MIMO Channels’, IEEE Journal On Selected Areas In Communications

21(5), 684–702. Available from IEEEXplore.

Griffiths, I. (n.d.), Implementation of MIMO Wireless Communications [Online], Phd,

The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia.

http://www.iss.rwth-aachen.de/Projekte/Theo/OFDM/www_ofdm.html
http://rfdesign.com/images/archive/302Gentile40.pdf
http://www3.interscience.wiley.com.ezproxy.usq.edu.au/cgi-bin/bookhome/110499375
http://www3.interscience.wiley.com.ezproxy.usq.edu.au/cgi-bin/bookhome/110499375

LIST OF REFERENCES 52

http://www.eng.newcastle.edu.au/~c2104305/mimo.html

current November 2008.

Hernando, J. M. & Pérez-Fontán, F. (1999), Introduction to Mobile Communciations

Engineering, number 14 in ‘Mobile Communications Series’, Artech House, Boston,

London.

Ibnkahla, M. (2005), Signal Processing for Mobile Communications Handbook, CRC

Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida, 33431, United

States.

IEE (1999), Modulating Waveforms for OFDM, Vol. 5 of 1999 IEEE International

Conference on Acoustics, Speech, and Signal Processing, Cvetkovic, Z., Phoenix,

Az. Available from IEEEXplore.

Jiang, M. & Hanzo, L. (2007), ‘Multiuser mimo-ofdm for next-generation wireless sys-

tems’, Proceedings of the IEEE 95(7), 1430–1469. Available from IEEEXplore.

Laroia, R., Li, J. & Uppala, S. (2004), ‘Designing a mobile broadband wireless ac-

cess network’, Signal Processing Magazine, IEEE 21(5), 20–28. Available from

IEEEXplore.

Leis, J. (2002), Digital Signal Processing — A MATLAB-Based Tutorial Approach,

Research Studies Press Ltd, 16 Coach House Cloisters, 10 Hitchin Street, Baldock,

Hertfordshire, SG7 6AE, England.

Li, Y. & Sollenberger, N. (1999), Clustered OFDM with channel estimation for high

rate wireless data, in ‘1999 IEEE International Workshop on Mobile Multime-

dia Communications, 1999. (MoMuC ’99)’, Dept. of Wireless Syst. Res., AT&T

Labs., Red Bank, NJ, USA, IEEE, San Diego, CA, pp. 43–50. Available from

IEEEXplore.

Macario, R. C. V. (1997), Cellular Radio: Principles and Design, second edn, Macmil-

lan Press Ltd, Houndmills, Basingstroke, Hampshire RG21 6XS, United Kingdom.

Matteo, T. (2005), Windowed/Shaped OFDM and OFDM-OQAM: Alternative Mul-

ticarrier Modulations for Wireless Applications, Phd, Università Degli Studi Di

Padova.

http://www.eng.newcastle.edu.au/~c2104305/mimo.html

LIST OF REFERENCES 53

http://www.dei.unipd.it/~trivella/thesis.pdf

current May 2009.

Mennen, A. (2005), It’s Your Call: The Complete Guide to Mobile Phones — Money

Saving Tips for Users, Relianz Communications Pty Ltd, P.O. Box 82, Zillmere,

Queensland 4034, Australia.

Rahmati, A. & Azmi, P. (2008), ‘Iterative reconstruction of oversampled ofdm signals

over deep fading channels’, 4th European Conference on Circuits and Systems for

Communications pp. 289–294. Available from IEEEXplore.

Ramjee, P. & Shinsuke, H. (2003), Multicarrier Techniques for 4G Mobile Communi-

cations, Artech House universal personal communications series, Artech House,

Incorporated.

http://site.ebrary.com.ezproxy.usq.edu.au/lib/unisouthernqld/

docDetail.action?docID=10082035

current May 2009.

Steele, R. (1992), Mobile Radio Communications, Pentech Press Publishers, Graham

Lodge, Graham Road, London, England.

Sullivan, N. P. (2007), You Can Hear Me Now: How Microloans and Cell Phones are

Connecting World’s Poor to the Global Economy, 1st edition edn, Jossey-Bass, 989

Market Street, San Francisco, CA 94103-1741, United States.

Zheng, K., Huang, L., Li, G., Cao, H. & Dohler, M. (2008), ‘Beyond 3g evolution’,

IEEE Vehicular Technology Magazine pp. 30–36. Available from IEEEXplore.

http://www.dei.unipd.it/~trivella/thesis.pdf
http://site.ebrary.com.ezproxy.usq.edu.au/lib/unisouthernqld/docDetail.action?docID=10082035
http://site.ebrary.com.ezproxy.usq.edu.au/lib/unisouthernqld/docDetail.action?docID=10082035

Appendix A

Project Specification

55

ENG4111/2 Research Project
PROJECT SPECIFICATION

TOPIC: SIMULATION AND PERFORMANCE EVALUATION OF MIMO-OFDM FOR
THE FOURTH GENERATION (4G) CELLULAR NETWORKS

3) Simulate that system using C/C++ and/or MATLAB to develop that simulation
software.

7) Research associated areas (such as antennas, cellular networks, signal processing,
etc.) to confirm the equations used and provide background information.

8) Perform a critical analysis of results to determine the suitability of the MIMO-
OFDM technique to meet the demands of the 4G cellular network.

/~ (student)

Date: ~4-/03/ 2009

Appendix B

Additional Information

B.1 Types of Fading and Interference 57

B.1 Types of Fading and Interference

B.1.1 ISI: Inter-Symbol Interference

When being transmitted and received, signals do not stay whole. They are broken up

into parts, and these parts are known as symbols. It is these symbols that are being

sent and transmitted back and forth, and that are then recombined into the final signal

at the mobile. It is also these symbols that play a part in multipath interference and

propagation (of Section 2.3.1).

ISI occurs when these symbols interfere, and cause interference with each other that

has effects much like noise. It takes adaptive coding techniques, such as OFDM, to

attempt to deal with such interference and try to reduce ISI.

B.1.2 Gaussian Fading

Gaussian fading occurs when the receiver/transmitter of the mobile — the mobile

station (MS) — has a clear LOS , or line of sight, to the transmitter aerial. In this

case, there are no echoes — multipath — or effectively none. The technical term for

such a channel is “Additive Gaussian White Noise” — low-level noise that is added

onto the channel, of the Gaussian type, to simulate the noise of the system. Although

it has been a matter of much discussion, it has been investigated heavily, nor used for

the simulation of a 4G system.

The reasoning for this decision is simple. A mobile system is, at its heart, a terrestrial

system. Yet gaussian fading has long been used to simulate satellite channels (see

Section 2.4.1 onwards for the explanations of what a channel is). Their simulation

of “clear LOS” applies most distinctly to situations were transmission and receiving

occurs above distortions caused by the atmosphere — a location that only specialised

cellular systems reach.

The decision was made early to simulate a “conventional” terrestrial cellular system,

where the transmission medium is solely air. This removed the Gaussian model from

B.1 Types of Fading and Interference 58

Figure B.1: Rice distributed time series. (Hernando & Pérez-Fontán 1999)

the equations, and kept the way open for Ricean and Rayleigh — a truly cellular model.

B.1.3 Ricean Fading

Ricean fading occurs when there is partial cancelation of the signal itself. That is,

the signal arrives at the receiver by, say, two different paths, and at least one of the

paths is stronger than the other. This stronger path is typically the LOS path.

In this case, the situation can be modeled by, appropriately, the Rice distribution. This

is a continuous probability distribution, and describes (simulates) the expected value

of the signal reaching the receiver due to the current parameters, It is given by:

p(r) =
r

σ2
exp

(
−r

2 + a2

2σ2

)
I0

(ra
σ2

)
for r ≥ 0 (B.1)

where p(r) is the probability density function, σ2 is variance of the signal, r is the

transmitted signal and a is that received.

This Ricean case is specified such a is not large, and a is not zero. As a gets closer to

B.1 Types of Fading and Interference 59

Figure B.2: Rayleigh distributed time series, relative to LOS. (Hernando & Pérez-Fontán

1999)

zero, the more Gaussian the fading is. As a gets large, the more Rayleigh fading would

suit the situation.

B.1.4 Rayleigh Fading

Rayleigh fading occurs in heavily built-up urban environment — or a densely wooden

rural area — where there is no LOS path to the aerial. Thus, there is no dominant

signal (propagation) between the aerial and the receiver of the MS.1

The signal is attenuated, reflected, refracted, and diffracted by surrounding objects.

This leads to a high amount of scatter, or variation.
1 If there had been a more dominant signal from the antenna, Ricean fading would have been more

applicable.

B.1 Types of Fading and Interference 60

It is given by

p(r) =
r

σ2
exp

(
−r

2 + a2

2σ2

)
I0

(ra
σ2

)
for r ≥ 0 (B.2)

where p(r) is the probability density function, σ2 is variance of the signal, r is the

transmitted signal and a is that received.

Note, again, that it is the same formula as for the Ricean model. In this case, it models

Rayleigh if and only if when a is large. In that case, the signal is not dominant, and

there are large echoes.

Appendix C

Compilation and Output

C.1 Compilation in VC 2008 Express 62

As follows are some suggestions on various compilers to use with the program — or

not to use, in some cases — if one wishes to compile the program themselves. Also

offered in is proof of compilation, and Section C.3 gives some debug runs, to give a

brief overview of how the program runs, although observers desiring more detail should

look to Appendix D. There are also some thoughts in Section C.4 of how to convert

the output of the data to graphical form without using a vendor-locked program.

C.1 Compilation in VC 2008 Express

This takes a little more work than plugging the code directly into a MinGW compil-

er/make setup.1

First, set the project with full optimisation. This may require turning off default run-

time library (in the writer’s version, that was the flag /RTCx, where x was su — the

flag had to be changed to ’Default’, or the equivalent). This also requires un-setting

the flag for debug information being sent to a file/database. This is the flag /Za, /Zi

or various flavours thereof, hopefully found under ’General’ — it has to be set to ’no’

or ’inherit from parent or project’.

Attempt to turn off all options relating to “Unicode”, and resolve further conflicts as

needed.

As an option before compiling, add command line arguments: 4 4 — or, really any

relatively small number below 1024. Then compile and run.

The end result: time-wasting. Be prepared to wait. Even a relatively simple run, with

a 4× 4 array will take some time. Running at full capabilities — a 1024× 1024 array

— will take at least 2 minutes, on average, just to initialise data. Other compilers can

make the program do it a lot faster. Some rudimentary calculations from comparing

the VC2008 compiler to others show it adds complexity of roughly O(10nn) — if it

took 2 s in another compiler, it took 40 s in VC2008.
1 Note that the following instructions are general, and somewhat tailored to the VC2008 release.

They should be adapted to previous and later releases of the VC compiler.

C.2 Compilation With MinGW and G++ 63

In short, no matter how much the compiler is optimised, it will never be as fast as the

G++ compilation. It has been tried with various compiler options, and this seemed to

be a fact of life. This cannot be properly emphasised enough. Although the program

will compile under VC++, the VC++ compiler is not a true C++ compiler as it did not

properly implement the Standard C++ Library. Truer results are obtained by running

the code through a compiler that holds more truly to the Standard C++ Library (also

known as the C++ STL).

That is why the code was also compiled under MinGW in Windows and with the G++

compiler in Linux. When compilation is mentioned hereafter, consider it being done

with the g++ compiler.

C.2 Compilation With MinGW and G++

The version that compiled under “DOS” via the Windows ‘cmd’ shell, was made

through MinGW, and then again in Linux. Both attempts compiled. As follows is

the MinGW output from a standard compilation run (with ‘>’ standing in for the lo-

cation in the hard-drive), using a custom-built make (see Section D.1 in Appendix D).

> mingw32-make

g++ -c -o sim4G.o sim4G.cpp

g++ -c -o simulation.o simulation.cpp

g++ -c -o mimo.o mimo.cpp

g++ -c -o channel.o channel.cpp

g++ -c -o ofdm.o ofdm.cpp

g++ -c -o noise.o noise.cpp

g++ -c -o ber.o ber.cpp

g++ -c -o signal.o signal.cpp

g++ -c -o antenna.o antenna.cpp

g++ -c -o bitsstrm.o bitsstrm.cpp

g++ -c -o binary.o binary.cpp

g++ -c -o debug.o debug.cpp

g++ -c -o standard.o standard.cpp

g++ -c -o allvals.o allvals.cpp

C.2 Compilation With MinGW and G++ 64

g++ -o sim4G.exe sim4G.o simulation.o mimo.o channel.o ofdm.o noise.o ber.o sign

al.o antenna.o bitsstrm.o binary.o debug.o standard.o allvals.o

>

C.2.1 Running The Program

As mentioned in Section C.1, the standard program came with a maximum array size of

1024×1024. This was to accommodate future technological advances, in both antennas

(which is currently limited to 4 antennas in an array) and cpu cores (which at the time

of writing, the maximum could vary between 8 to 16, although the Linux kernel has

capability of managing 1024, hence the maximum value). This is also the number of

times the program was (eventually going to be) able to fork.

Smaller array sizes therefore need to be specified at the command line, unless one

desires to wait. For instance, as follows is the simulation under normal conditions, and

then with a 10× 10 construct...

>sim4G

Initialising data.

You have requested a 1024 by 1024 array.

This may take a while...

Running simulation...

Success! Exiting.

>sim4G 10 10 1800

Initialising data.

You have requested a 10 by 10 array.

This may take a while...

Running simulation...

C.2 Compilation With MinGW and G++ 65

Success! Exiting.

>

A similar listing of the program running, this time with all debug statement turned on

so as to show how it operates, follows. For the sake of simplicity, this output is a 1× 1

array.

>sim4g 1 1 +

non-default run, parsing options

MIMO: NUMOFTX = 1 and NUMOFRX = 1

MIMO TRANSMITTER (mobile):

1

OFDM channel aok, size = 1801

Noise channel aok, size = 900

BER channel aok, size = 901

MIMO: Rx channel ok, bandwidth: 900

MIMO: Rx array created: 1

MIMO RECEIVER (base-station):

1

OFDM channel aok, size = 1801

Noise channel aok, size = 900

BER channel aok, size = 901

MIMO: Tx channel ok, bandwidth: 900

MIMO: Tx-array created: 1

Attempting forks.

printing to files.

everything deleted

>

The OFDM signal has a higher signal length, as it has an actual signal inside it —

C.2 Compilation With MinGW and G++ 66

one that is sampled at just over twice whatever the maximum bandwidth present in

the system, which in this case, is 900. Noise, where length is not so critical, is exactly

half, as is BER — which is more concerned with finding signal differences — and both

signals can be easily adjusted in size regardless.

To show the flexibility of the system, the debug run is repeated this time with more

antennas, and a higher bandwidth of 1900 (MHz).

>sim4g 10 10 1900 +

non-default run, parsing options

MIMO: NUMOFTX = 10 and NUMOFRX = 10

MIMO TRANSMITTER (mobile):

1

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

2

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

3

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

4

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

5

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

6

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

C.2 Compilation With MinGW and G++ 67

7

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

8

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

9

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

10

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

MIMO: Rx channel ok, bandwidth: 1900

MIMO: Rx array created: 10

MIMO RECEIVER (base-station):

1

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

2

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

3

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

4

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

5

C.2 Compilation With MinGW and G++ 68

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

6

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

7

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

8

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

9

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

10

OFDM channel aok, size = 3801

Noise channel aok, size = 1900

BER channel aok, size = 1901

MIMO: Tx channel ok, bandwidth: 1900

MIMO: Tx-array created: 10

Attempting forks.

printing to files.

everything deleted

>

This proves the program’s ability to register more than one character at each option.

Higher numbers could have been used, to further demonstrate the programs capability

to implement a large-sized antenna array — up to 1024× 1024 arrays were possible, if

one so chose. It was not done here simply because of buffer over-runs (of output, not

C.3 Actual Output 69

data capability) on the terminals being used.

One more interesting point, before handing over to actual output (instead of proof of

compilation).

The standard the simulation held to, as it as so well documented, is the GSM bands,

in terms of frequency location — that is, in full, 850 MHz, 900 MHz, 1800 MHz, and

1900 MHz. The standard one used, failing one supplied by the user, was 900 MHz —

and if the user failed to hit one of the GSM bands, this was the band used — as this

is the band most commonly used around the world at the time of writing.

C.3 Actual Output

As was mentioned in Chapter 6 and Chapter 7, the final code was subject to a shorted

development, debugging, and implementation cycle — what some might call “rapid

development”. As such, there is, at the point of writing, technically no output being

produced — beyond that obtained via checks through debugging statements and the

like.

That being said, it can be guaranteed these three things:

• The “OFDM” signal is a sinusoidal signal, sampled at 1800 times a second.2

• The “Noise” signal is one of random noise.

• The “BER” signal is ready and waiting to find the difference between them.

Unfortunately, producing actual output such as might be converted into technical

graphs had to be moved beyond the date of the dissertation submission. It might be

emphasised, however, that what has been done, has been done in basically 2 months.

For the those interested, a brief discussion of the actual output plans have been included

in Section C.4.
2It is the modulation and demodulation where the IFFT and FFT take place. Hence the signal does

need to have data, regardless of the modulation methods in use.

C.4 Converting Data to Graphical 70

C.4 Converting Data to Graphical

The plans for converting the actual data of the simulation to a graph(s) had been all

laid out. All that remained was the implementation — and the time to do so.

The plan was to use the svg standard, from the WW3 consortium — as has been

already implemented in a number of graphical manipulators, the most notable of which

is Inkscape3. The svg standard is used to create an image from a text file, which is

perfect for a C++ file — where output is done into either text or binary. This would

require adding a few extra modules to the program (if it was run in-situ), or creating

a separating program (if it was run on the output file produced by the simulation).

Either option would be possible.

A generic sketch of the proposed simulation’s output file follows.

MOBILE

plot begin

title text

xlabel text

ylabel text

point [g,r,c]

plot end

group begin

ber1.begin ber2.begin ber3.begin ber4.begin

...

ber1.end ber2.end ber3.end ber4.end

group begin

BASE

plot begin

title text

xlabel text

ylabel text

point [g,r,c]

plot end

3 As a point of interest, the flowcharts, from Chapter 6, Section 6.2, were actually constructed using

Inkscape.

C.4 Converting Data to Graphical 71

group begin

ber1.begin ber2.begin ber3.begin ber4.begin

...

ber1.end ber2.end ber3.end ber4.end

group begin

The [g,r,c] declaration is a hint to the order to look up the data in each ‘group’ or

collection of data, i.e. group, then row, then column.

Here, ber1.begin and so on represent calls to the actual BER signals, to retrieve data,

and so would be replaced in the file by actual numbers / values. The rest would appear

as above, as actual text. This would be passed to the SVG program, wherever it occurs,

to be converted into a SVG image of a graph in a relatively simple process — certainly

much faster than feeding the values into MATLAB.

It also has the advantage that, if the option of a stand-alone program is used, the graph

can be changed by various options on the command line. Simple!

Appendix D

Source Code

73

First, it should be clear that it was not easy to decide how to list the program. A

program, especially one such as this, could not have a static model or approach to its

development1, and so its growth does not exactly fit most “computer science” models.

This gives rise to the following two questions. Should the listing be top-down, from

main to the last, and thus lose a little in understanding what each function, even

though this approach would highlight the execution flow of the program? Or should

the listing be down-to-top, to reflect actual development, although this loses the benefit

of execution flow? In the end, the former was the approach chosen, with data-types

explained as they occur.

Secondly, an explanation of the programming choices.

Some standard files, used throughout the code, will be listed first. These were developed

to aid the debugging process, and to prevent retyping (and relisting) of often used

header files. As much as possible, actual code was removed from the header and

placed in the implementation file. There are some case, in a few modules, were the

implementation files are bare — reflecting the ”still-in-development” nature of the

program itself.

Something referred to quite frequently within the code, is the acronym “MOCA”. It

refers to the MIMO-OFDM-Channel-Array system that was implemented (as was

explained in Chapter 6). It was, quite understandably, shortened to MOCA2.

One final point is variable vs. function notation. All variables start with a lowercase

letter, and functions start with an uppercase. Secondary words within names are

capitalised, without underscores. This has commonly been referred to as “Hungarian”

notation, in terms of the capitalization. Although in most cases there has been an

effort to avoid inclusion of the name of the data type in the variable, and to instead

strive for descriptive names, the former is probably the naming style more often used

throughout the code.

Now for the files themselves.

1 Especially in the debugging process, where modules seem to grow and change of their own accord.
2 Being a computer program, though, it was most often used as “Moca” or “moca”.

D.1 The makefile 74

D.1 The makefile

Perhaps one of the best ways to get an overview of what’s ahead is to look at what

compiles, and how it compiles. At the risk of overwhelming some, here is the makefile.

It is, however, a generic makefile. There is nothing “flashy” and stylish about this. It

simply calls the compiler, hands it the files, and stands back. That is all there is to it.

There is, in total, 14 modules (15 if the main is counted as a separate module — which

is a matter of semantics). Final dependencies were generated automatically through

an option with the G++ compiler. This is the version included in the makefile below.

Listing D.1: The generic makefile.
1 # makefile

#
3 # Generic make file for Simulate4G

#
5 # Requires any make and the GCC compiler

#
7 # (c) by Sarah Hugo 2009

Research Project 09 -042
9 # Experimental Analysis for a 4G Mobile Network

University of Southern Queensland
11

CC=g++
13 CFLAGS=-fpermissive -flax -vector -conversions -fimplicit -templates -x c++

LDFLAGS=
15 #-std=gnu ++98

OBJECTS=sim4G.o simulation.o mimo.o channel.o ofdm.o noise.o ber.o \
17 signal.o antenna.o bitsstrm.o binary.o debug.o standard.o allvals.o

19 sim4G.exe: $(OBJECTS)
$(CC) -o sim4G.exe $(OBJECTS) $(LDFLAGS)

21
allvals.o: allvals.cpp allvals.h

23 antenna.o: antenna.cpp antenna.h debug.h standard.h allvals.h channel.h \
noise.h signal.h bitsstrm.h ofdm.h

25 ber.o: ber.cpp standard.h debug.h signal.h bitsstrm.h ber.h
binary.o: binary.cpp binary.h debug.h standard.h

27 bitsstrm.o: bitsstrm.cpp standard.h bitsstrm.h debug.h binary.h
channel.o: channel.cpp channel.h debug.h standard.h allvals.h noise.h \

29 signal.h bitsstrm.h ofdm.h
debug.o: debug.cpp debug.h standard.h

31 mimo.o: mimo.cpp mimo.h debug.h standard.h allvals.h antenna.h channel.h \
noise.h signal.h bitsstrm.h ofdm.h

33 noise.o: noise.cpp standard.h debug.h signal.h bitsstrm.h noise.h
ofdm.o: ofdm.cpp standard.h debug.h signal.h bitsstrm.h ofdm.h

35 signal.o: signal.cpp signal.h debug.h standard.h bitsstrm.h
sim4G.o: sim4G.cpp standard.h simulation.h debug.h allvals.h mimo.h \

37 antenna.h channel.h noise.h signal.h bitsstrm.h ofdm.h
simulation.o: simulation.cpp debug.h standard.h allvals.h simulation.h \

39 mimo.h antenna.h channel.h noise.h signal.h bitsstrm.h ofdm.h
standard.o: standard.cpp standard.h

41

43 clean:
rm *.o sim4G.exe

45

47 .PHONY: clean

49 #END OF MAKEFILE

D.2 The allvals module 75

D.2 The allvals module

This is where most (as many as possible) of the constants used throughout the program

were defined. The reasons for this were pragmatic. It kept them in one place — it thus

saved hunting through the files for one single value — and allowed for easy access and

changing for debugging and, later, testing. (See Chapter 6 and Chapter 7 for details.

Listing D.2: Standard values: The ’allvals.h’ header file.
1 /* **

* Sarah A Hugo
3 * #09 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* AllVals.h
9 * -- header file of values

* --> defines various important values for the simulation
11 * for later (easier) access.

* --> defines values for the Multiple -Antenna -Channel -Signals (MACS)
13 * system with easy access

**
15 * Quick and easy definition of "global" simulation values , that are here for

* quick and easy access.
17 * Similar to the Binary class in implementation , all I want is access to

* values , not so much ’objects ’, so its a *struct* with values , *not* a
19 * class with values and functions.

* That’s why there’s two ’struct ’s: one huge version for the simulation
21 * itself , and another "stripped down" version for the "MACS" system.

*
23 * SimVals and MacsVals can both be found here

** */
25

#ifndef _ALLSYSVALS_H_
27 #define _ALLSYSVALS_H_

29

31 namespace Sim4G
{

33 /* SimVals:
* public definitions of helper values for the simulation

35 * for easy access elsewhere / at all places
*/

37 struct SimVals
{

39 public:
// pretend "constructor"

41 explicit SimVals ():
// sim init

43 maxProgOpts (4),
isUsualRun (0), doIPrintHelp (1),

45 areFilesGiven (2), isADebugRun (3),
// antenna init

47 txArrayIdx (0), rxArrayIdx (1),
freqBandIdx (2), fileNameIdx (3),

49 // antenna init vals
GsmLoc (900), maxArraySize (1024)

51 { }
// ----

53 // Access to Values
// Simulation.h/.cpp: about the program and/or user options:

55 // maximum number of standard program relation options
const size_t maxProgOpts;

57 // for iterating through progOpts array (starting at 0)
// progOpts

59 // = {isUsualRun , doIPrintHelp , areFilesGiven , isADebugRun}
const size_t isUsualRun;

61 const size_t doIPrintHelp;
const size_t areFilesGiven;

63 const size_t isADebugRun;
// for iterating through userOpts vector (starting at 1)

65 // userOpts

D.2 The allvals module 76

// = {iTxArraySize , iRxArraySize , freqBandIdx , fileNameIdx}
67 const size_t txArrayIdx;

const size_t rxArrayIdx;
69 const size_t freqBandIdx;

const size_t fileNameIdx;
71

// ----
73 // Antenna.h/.cpp: antenna array constants

// flexible value , for future technology (pipe dreams) *g*
75 const size_t maxArraySize;

// MHz location of GSM band: 900
77 // (also used in simulation.h/.cpp)

const size_t GsmLoc;
79 // END of SimVals struct

};
81

83

85 /* because we only need a stripped down version of SimVals for the
* MIMO -OFDM system with all the init vals , here’s a smaller version

87 * with less (yet "more", funnily enough) values
* This value system also affects the channel and array system.

89 * So its the Multiple -Antenna -Channel -Signals value system ... or MACS. :)
*/

91 struct MacsVals
{

93 public:
// pretend "constructor

95 explicit MacsVals ():
//init vals

97 GsmLoc (900), maxArraySize (1024) , maxBandwidth (100),
// Antenna array types

99 mobileAr (1), baseAr (2), personalAr (3),
// Channel signal indexes

101 ofdmType (1), noiseType (2), berType (3)

103 { }

105 // ----
// Antenna.h/.cpp: antenna array constants

107 // flexible value , for future technology (pipe dreams) *g*
const size_t maxArraySize;

109 // MHz location of GSM band: 900
// (also used in simulation.h/.cpp)

111 const size_t GsmLoc;
// max size of our antenna/channel constructs

113 const size_t maxBandwidth;
// arbitary values designating antenna types

115 const size_t mobileAr;
const size_t baseAr;

117 const size_t personalAr; // not yet implemented !!!

119 // ----
// Channel.h/.cpp: channel constants

121 // defines which type of signal dealing with
const size_t ofdmType;

123 const size_t noiseType;
const size_t berType;

125 // END of MacsVals struct
};

127

129 }
// end of namespace in header

131
#endif

133 // end of _ALLSYSVALS_H_ header

Both structs in ”allvals” are simply initialised declared to have values in the header

file. Therefore, there is no work for the implementation file. But as the header is not

pre-compiled, it is included here for completeness and to ensure the compiler compiles

and links the header file as it should. It also includes the call to the <cstdlib> header,

for the size t definition — as otherwise, the module would fail, as it is basically a

D.2 The allvals module 77

stand-alone module.

Listing D.3: Standard values: the ’allvals.cpp’ implementation file.
/* **

2 * Sarah A Hugo
* #09 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * AllVals.cpp
* -- implementation file of values

10 * --> defines various important values for the simulation
* for later (easier) access.

12 * --> defines values for the MIMO -OFDM -Channel -Array (MOCA)
* system with easy access

14 **
* All values are in the header file , so need for anything here.

16 ** */

18 #include <cstdlib >
#include "allvals.h"

D.3 The standard module 78

D.3 The standard module

From prior programming experience, there have always been a number of standard

headers that have been repeatedly called when crafting a module. This program was

no different. To save time — and typing — there was this, one of the more important

sections of the program. It simply provided a list of the routinely called header files

used throughout the modules. As such, it was called in every module in some way,

or was an implicit dependency — the only one that did not, in fact, was “allvals” of

Section D.2.

Listing D.4: Standard header list: the ’standard.h’ list of headers.
/* ***

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * Standard.h
* -- header file with typical include files

10 * --> things used frequently , but changed infrequently
**

12 * Call this instead of retyping them out each time.
* WARNING: These headers have been carefully searched through and checked

14 * to make sure these calls are accurate and needed. Please do NOT remove.
** */

16
#ifndef _STANDARD_H_BASE_

18 #define _STANDARD_H_BASE_

20 // generally implicitly included but some compilers don’t, so just in case ...
// uncomment the next line if you have the header ...

22 //#include <libio.h> // for the pesky NULL definition DO NOT REMOVE
#include <cmath > // because we need to use sinf() for signals

24

// input/output
26 #include <stdio.h> // foundation block of i/o

#include <iostream > // c++ streams
28 #include <fstream > // file streams for i/o

#include <sstream > // string streams
30

// exceptions
32 #include <stdexcept > // error types: because they happen

#include <cstddef > // see above
34 #include <exception > // ditto

36 // types
#include <string > // c++ improvement on the char*

38 #include <deque > // container
#include <vector > // container

40 #include <iterator > // what makes deques and vectors work

42 // namespaces ...
using namespace std;

44
#endif

46 // end of _STANDARD_H_BASE_

D.3 The standard module 79

And for completeness, as all headers (unless pre-compiled) need an implementation file

to ensure the header is called...

Listing D.5: Standard header list: the ’standard.cpp’ implementation file.
/* **

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project

6 * This code is freely available under the GNU General Public
* License.

8 ***
* Standard.h

10 * -- header file with typical include files
* --> things used frequently , but changed infrequently

12 ***
* Call this instead of retyping them out each time.

14 *** */

16 #include "standard.h"

D.4 The debug module 80

D.4 The debug module

Also from prior programming experience, it was known that it was handy to have a

way to print out debugging statements as one went through the code’s development

cycle. As such, this was a standard header-implementation module for debugging often

used in personal projects, that fitted neatly into the code — the main work was passing

down the boolean values through function parameters from main right down to where

it was needed.

This module will implement the debug statements (found scattered throughout the

code). The debug statements, and this module, have been left in for the sake of com-

pleteness. Access to their output is achieved via running the programming as

> sim4g +

> ./sim4g.exe +

where > represents the console/terminal command line (be it Linux or Dos)3. Removing

the + from the command line (it can be put there in any order among other command

line inputs) will not print any debug statements to the ’console’ or ’terminal’.

When the program was ready for final release, the programmer simply has to remove

the capability of the program to recognise the + switch (and the associated note in

the help screen). The program will then assume default operation, with all debug

statements turned off.

Listing D.6: Debuging statement streams: ’debug.h’ header file
1 /* ***

* Sarah A Hugo
3 * #9 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Debug.h
9 * -- debug class header file

* --> outputs debugging strings to a given strm
11 * --> default is cout , but other strms may be specified

**
13 * Implements a debugging class. Turned ’on’, it displays the debugging

* statements throughout the code to the ostream given to the class when it
15 * is implemented (default: std::clog). Turned ’off ’, these statements are

* not displayed , and the program functions as normal.
17 * Use as per nomal cout/clog stream , but without specifing endline:

3 Both syntaxes are provided for completeness.

D.4 The debug module 81

* Debug(bool) << "" << val;
19 **

* It is turned ’off’ and ’on’ by passing a command argument ’+’ to the program
21 * at runtime. The lack of it turns the statements ’off ’. The presence of the

* ’+’ turns the statements ’on ’.
23 ** */

25 #ifndef _DEBUGGING_H_
#define _DEBUGGING_H_

27

// standard header -- for i/o, types , namespaces , and exceptions
29 #include "standard.h"

31

namespace Sim4G {
33

// class for debugging
35 class Debug {

private:
37 // disallow copying

// private data member
39 const bool doIPrint; // print if true

41 public:
// public constructor and destructor

43 Debug(bool turnItOnOff): doIPrint(turnItOnOff) { }
// force going to new line at end of output

45 ~Debug() {
if (doIPrint) {

47 std::clog << std::endl;
}

49 }

51

// handy overloading of an already overloaded operator
53 // so we can output the debugging statements ...

// ... pass some string
55 std:: ostream& operator << (const char someChars []);

// ... pass some type
57 std:: ostream& operator << (void* itemToPass);

59 };

61 }

63 #endif
// end of _DEBUGGING_H_ header

And the implementation file, where the main work on the output streams takes place...

Listing D.7: Debugging statement stream: ’debug.cpp’ implementation file.
/* ***

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public
* License.

8 **
* Debug.h

10 * -- debug class header file
* --> outputs debugging strings to a given strm

12 * --> default is cout , but other strms may be specified
**

14 * Relatively trivial details of the overloading of the ’<<’ operator ... aka
* how it outputs to the console , and doesn’t if it doesn’t need to.

16 ** */

18 #include "debug.h"

20 using Sim4G::Debug;

22

// handy overloading of an already overloaded operator
24 // so we can output the debugging statements

std:: ostream& Debug::operator << (const char someChars []) {
26 // if not requried to print (doIPrint is false)

D.4 The debug module 82

// to make sure we don’t print if don’t need to
28 if (! doIPrint) {

// basically do nothing , output nothing
30 std::clog.setstate(std::clog.failbit);

return std::clog;
32 }

// else add if something to print and output as we go
34 else {

for (size_t i=0; someChars[i]!=’\0’; i++) {
36 std::clog.put(someChars[i]);

}
38 return std::clog.flush ();

}
40 }

42 std:: ostream& Debug::operator << (void* itemToPass) {
// if doIPrint is false , and not required to print

44 // to make sure we don’t print if don’t need to
if (! doIPrint) {

46 // so basically do nothing , output nothing
std::clog.setstate(std::clog.failbit);

48 return std::clog;
}

50 // otherwise , add everything to strm and output as we go
else {

52 return std::clog << itemToPass;
}

54 }

D.5 The Sim4G module 83

D.5 The Sim4G module

This is the main file. It might seem overwhelming, but it can be simply broken down

down into two groups:

• A quick parse through the command line options to hand them over for simulation.

• Directing program flow:

– Initialising data.

– Running the simulation.

– Handling errors from the above, and/or avoiding unwanted behavior.

The largest portion of work done is in the second group: direction program flow, in par-

ticular error catching and avoiding unwanted behavior. In error catching, this requires

catching all the exceptions thrown throughout the subsequent modules, handling them,

and returning appropriate information to both the user and the operating system. In

terms of unwanted behavior, for instance, if the user requests help, it goes straight to

the help screen function and then exits, without having to initialise data and run the

simulation.

Being a C++ program, main is not the actual program. The actual program happens

through the Simulation class — in main, its object is sim — which, in turn, is what

actually handles initialising the data and running the program through sim’s functions.

It is also sim that is responsible for throwing the errors that main has to handle.

Listing D.8: The main file: ’sim4g.cpp’ implementation file.
/* ***

2 * Sarah A Hugo
* #09 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * sim4G.cpp -- aka main.cpp
* -- source file for actual simulation

10 * --> starts everything running , handles it , and exits
**

12 * Retrieves command line inputs , puts them into an options list for later
* parsing , then initialises and "runs" the simulation.

14 * Also handles (catches) any thrown errors during the process of running said
* simulation , and returns the appropriate error value -- usually to the

16 * console , but can be any interfacing application -- via std::cout.
* Other note: Simulation output goes into text files for later output into

D.5 The Sim4G module 84

18 * graphical form. Can be renamed from command line.
** */

20

22 // standard header for i/o, namespaces , exceptions , ’n types
#include "standard.h"

24 // my header for the simulation
#include "simulation.h"

26 // my header for debugging (optional display - default is no)
#include "debug.h"

28
using namespace Sim4G;

30

32

/* forward declaration of helper funcs:
34 * pushes options into (optList and progOpts) from (argv and argc)

*/
36 void CreateOptList(int , char*[], std::vector <char*>&, bool []);

/* Print helpful words on error , and tell the user to seek out help.
38 * (and how to do so)

*/
40 void PrintFinalWords(bool myError);

42 /* Internal format of command -line input:
* argv [0] => program path/name

44 * argv [1] => where options start
* argv[n] => nth option

46 * argv[argc +1] = null0
* int argc => total no. of commands/paths/names/options available

48 */
int main(int argc , char* argv [])

50 {
bool myError = false;

52

// standard options
54 // from Sim4G:: PROGLIST

// { isUsualRun , doPrintHelp , areFilesGiven , isADebugRun };
56 bool myProgOpts [4] = { true , false , false , false };

58 std::vector <char*> lineOptList; // list of options from user
// pick up options from the user , and our standard opts

60 CreateOptList(argc , argv , lineOptList , myProgOpts);

62 // having checked options , set up simulation
SimVals simStandards = SimVals ();

64 Simulation* sim = new Simulation ();
if (!sim) {

66 std::cerr << "Failed to allocate memory for simulation."
<< " Exiting." << std::endl;

68 PrintFinalWords(myError = false);
return -1;

70 }
// get user’s/sim’s options and commands from command line

72 sim ->MakeSimOpts(lineOptList , myProgOpts);

74 // temp save of trigger values: debugging and default runs
bool ynDebug = myProgOpts[simStandards.isADebugRun];

76 bool isDefault = myProgOpts[simStandards.isADebugRun];

78 // if need to print help , that’s all we need to do
if (myProgOpts[simStandards.doIPrintHelp]) {

80 // print help , with (optional) extra embellishments
sim ->HelpScreen(ynDebug);

82 return 0;
}

84

// run actual simulation and create data only when have to
86 try {

// because this may take a while , print something for user
88 // trick: only print this on standard (non debug) run

if (! ynDebug) {
90 std::cout << "Initialising data." << std::endl;

}
92 sim ->InitialiseData ();

} catch(logic_error) {
94 // thrown by mimo on being unable to set up rx/tx array

std::cerr << "MIMO error. Internal logic. Exiting." << std::endl;
96 PrintFinalWords(myError = true);

return -1;
98 } catch(runtime_error) {

// thrown on memory problems in Mimo , but it could be input (cmd line)
100 std::cerr << "MIMO error. Memory or input." << std::endl;

PrintFinalWords(myError = false);
102 return -2;

D.5 The Sim4G module 85

}
104

// all data initialised , safe to run the simulation
106

// again , print a helpful message for the user
108 // that appears on a standard run

if (! ynDebug) {
110 std::cout << std::endl;

std::cout << "Running simulation ..." << std::endl;
112 }

sim ->Run(isDefault , ynDebug);
114

// space here to "feed" a presentation func the sim object
116 // aka Sim4GPres(sim);

// aka Sim4GTextOut(sim);
118 // aka Sim4GSvgOut(sim);

// *before* the object is destroyed ...if you want to.
120

// everything run ok , so exit
122 if (! ynDebug) {

std::cout << std::endl;
124 std::cout << "Success! Exiting." << std::endl;

std::cout << std::endl;
126 }

delete sim;
128 return 0;

}
130

/* printer: what to print when something wrong happens
132 * depending on if its the user’s fault or my fault

* AKA optimally , you should never these words
134 */

void PrintFinalWords(bool myError)
136 {

std::cout << std::endl;
138 // on error , its our fault

if(myError) {
140 std::cout << "Oops. I seem to have made a mistake somewhere!"

<< std::endl;
142 } else {

// otherwise , its their fault
144 std::cout << "Oh dear , you’ve made a mistake somewhere!"

<< std::endl
146 << "Perhaps you gave me the wrong data." << std::endl

<< "Or your memory needs some attention." << std::endl;
148 }

std::cout << "Use the help screen that comes with this program for advice."
150 << std::endl

<< "Try using ‘--help’ or ‘--?’ as options , next time , okay?"
152 << std::endl

<< "Thanks." << std::endl;
154

}
156

158 /* helper function ...
* add options to vector of Options List

160 */
void CreateOptList(int argc , char* argv[],

162 std::vector <char*>& optList , bool progOpts [])
{

164 // standard options
SimVals simStandards = SimVals ();

166 size_t maxProgs = simStandards.maxProgOpts;
// add onto the optList the program -related options

168 if (argc > 1) {
// get here if (at least) one user -provided option available

170 // set to: non -standard -run , no-print -help ,
// no -files -given , old -debug -status

172 bool oldDebugState = progOpts[simStandards.isADebugRun];
for (size_t i=0; i<maxProgs; i++) {

174 progOpts[i] = false;
}

176 progOpts[simStandards.isADebugRun] = oldDebugState;
// now we iterate through available options

178 int i = 1;
do {

180 // option available , automatic entry into opt -list
optList.insert(optList.end(), argv[i]);

182 // check if provided filenames for output
if (argv[i][0] == ’-’ && argv[i][1] != ’-’) {

184 // adjust progOpts and our optionslist accordingly
progOpts[simStandards.areFilesGiven] = true;

186 } else if (argv[i][0] == ’-’ && argv[i][1] == ’-’) {
// request for help , so trigger and rmeove

D.5 The Sim4G module 86

188 progOpts[simStandards.doIPrintHelp] = true;
optList.pop_back ();

190 } else if (argv[i][0] == ’+’) {
// debug statements request , so trigger and remove

192 progOpts[simStandards.isADebugRun] = true;
optList.pop_back ();

194 }
// option handled , move onto next option/entry

196 i++;
} while (argv[i] != NULL);

198 }
}

D.6 The Simulation module 87

D.6 The Simulation module

The Simulation class. It takes the list of options from the command line and parses

them into something useful (MakeSimOpts, using optList from main and simStandards,

of type SimVals from Section D.2), thus making sure that what was received from the

command line as options is within standard, acceptable ranges (i.e. GSM frequency

range, size of antenna array(s), standard output file, et cetera).

Simulation also has a SimOut function, which is where the actual output to the file

takes place.

Listing D.9: The controlling ’Simulation’ class: ’simulation.h’ header file.
1 /* ***

* Sarah A Hugo
3 * #09 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Simulation.h
9 * -- header file for simulation

* --> defines / controls everything
11 **

* Overall running and initialisation of the simulation. Also takes care of
13 * overall input/output , and error/exception catching.

** */
15

#ifndef _SIMULATION_H_
17 #define _SIMULATION_H_

19

// for debuging
21 #include "debug.h"

// standard header -- for i/o, types , namespaces , and exceptions
23 #include "standard.h"

// for standard simulation values
25 #include "allvals.h"

// for the multiple antenna array definition
27 #include "mimo.h"

29
namespace Sim4G

31 {
class Simulation

33 {
private:

35 // standard simulation values
SimVals simStandards;

37 // the list of program -related options
// via simStandards :{ isUsualRun ,doIPrintHelp ,areFilesGiven ,isADebugRun}

39 bool progOpts [4];
// a list of opts from command line to parse (vary with each run)

41 // via simStandards :{ rxArraySize , txArraySize , freqBand , fileNames}
vector <char*> userOpts;

43 // the actual options passed by the user
std:: string binFiles; // string to hold the users filenames

45 size_t numOfTx; // number of transmitter antennas
size_t numOfRx; // number of receiver antennas

47 size_t freq; // frequency band to operate at
// parses simulation opts to get them into a useable form

49 // throws exceptions if encounters major errors
void ParseCommLine(vector <char*>&, bool *);

51 // gets the user opts (from command line) into more useable forms
void RetrieveSimOpts ();

53

// data members (that hold all the functions we need)
55 Mimo* allAntennas; // antennas to transmit/receive

// Functions for basic running of simulation ...

D.6 The Simulation module 88

57 void TransmitReceive (); // send signals between antennas
void FindErrors (); // results of sending/receiving (BER)

59 void SimOut(bool); // output of simulation data

61 public:
// Functions to create and destory the basic simulation

63 Simulation ()
{

65 // get the standard values for later use
SimVals simStandards = SimVals ();

67 }
~Simulation ();

69 // Function to get simulation options in order
// using data from command line (from main ->sim4g.exe)

71 void MakeSimOpts(vector <char*>&, bool *);
// Once parsing completed , initialise data

73 void InitialiseData ();
// Function to display help if needed

75 void HelpScreen(bool);
// Function to actually *run* the simulation

77 // (with forking , and bools for default run and doing debugging)
void Run(bool , bool);

79 };

81

// end of namespace 4GSim (for now)
83 }

85 // end of _SIMULATION_H_

87 #endif

And the implementation file. Note how much of the actual function definitions actually

take place in the implementation file. This is the true modular style, and is what is

done as much as possible.

The SimOut function was designed to set up the file for output, pass the file down the

simulation to where the output would actually take place, receive the results, then close

the file. It has not, as this stage, been implemented, nor has its associated functions

been implemented, and so its contents are commented out.

Listing D.10: The controlling ’Simulation’ class: ’simulation.cpp’ implementation file.
1 /* ***

* Sarah A Hugo
3 * #09 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Simulation.h
9 * -- header file for simulation

* --> defines / controls everything
11 **

* Overall running and initialisation of the simulation. Also takes care of
13 * overall input/output , and error/exception catching.

** */
15

// standard headers
17 #include "debug.h"

#include "standard.h"
19 // my headers

#include "allvals.h"
21 #include "simulation.h"

#include "channel.h"
23 #include "mimo.h"

25 using Sim4G::Debug;

D.6 The Simulation module 89

using Sim4G:: SimVals;
27 using Sim4G:: Simulation;

using Sim4G:: Channel;
29 using Sim4G::Mimo;

31

/* parsing option list to make them usable for the simulation:
33 * equates given optlist (from sim4g [main]) to classes [this], and

* given progOpts (from main) to classes (this).
35 */

void Simulation :: ParseCommLine(std::vector <char*>& optList , bool* givenPOpts)
37 {

this ->userOpts.swap(optList);
39 // get out the first four options

size_t maxSize = this ->simStandards.maxProgOpts;
41 for (size_t i=0; i<maxSize; i++) {

this ->progOpts[i] = givenPOpts[i];
43 }

}
45

/* Gets the command line opts from ’userOpts vector into the classes own
47 * variables.

* Takes no arguments , returns none.
49 */

void Simulation :: RetrieveSimOpts ()
51 {

// to accept user options ...
53 size_t numUserOpts = this ->userOpts.size ();

55 // parse through the inputs , handling more and more inputs in turn
// using cascading if statements

57 // ugly fix but it *works *... trust me on this one

59 // at least 4 input extra input:
// filenames provided , by user

61 if (numUserOpts > this ->simStandards.fileNameIdx) {
this ->binFiles = this ->userOpts.at(this ->simStandards.fileNameIdx);

63 } else {
// but if filename not provided ... get default value

65 this ->binFiles = "output.tdt"; // file: Text Deliminated by Tabs
}

67

// at least 3 extra input:
69 // frequency band to use provided , by user

if (numUserOpts > this ->simStandards.freqBandIdx) {
71 // allocate to user option and make sure its a GSM band

this ->freq = atoi(this ->userOpts.at(this ->simStandards.freqBandIdx));
73 if (!(this ->freq ==850 || this ->freq ==900 || this ->freq ==1800

|| this ->freq ==1900)) {
75 // if not within GSM range , make standard GSM band

this ->freq = this ->simStandards.GsmLoc;
77 }

} else {
79 // but if frequency not provided ... get default value

this ->freq = this ->simStandards.GsmLoc;
81 }

83 // at least 2 extra input:
// at least both antenna arrays , by user

85 if (numUserOpts > this ->simStandards.rxArrayIdx) {
// convert char to number

87 this ->numOfRx = atoi(this ->userOpts.at(this ->simStandards.rxArrayIdx));
// make sure value is within limits of technology

89 if (this ->numOfRx > this ->simStandards.maxArraySize) {
this ->numOfRx = this ->simStandards.maxArraySize;

91 }
} else {

93 // but if receiver array not providedget default value
this ->numOfRx = this ->simStandards.maxArraySize;

95 }

97 // at least 1 extra input:
// number of antennas (array) at Transmitter (Tx) provided (max 4)

99 if (numUserOpts > this ->simStandards.txArrayIdx) {
// convert char to number

101 this ->numOfTx = atoi(this ->userOpts.at(this ->simStandards.txArrayIdx));
// make sure value is within limits of technology

103 if (this ->numOfTx > this ->simStandards.maxArraySize) {
this ->numOfTx = this ->simStandards.maxArraySize;

105 }
} else {

107 // but if num of transmitter array not provided ... get default value
this ->numOfTx = this ->simStandards.maxArraySize;

109 }

D.6 The Simulation module 90

// if 0 inputs , don’t need to do anything
111 // default values already handled

}
113

115 // Controller function for parsing simulation data from command line
void Simulation :: MakeSimOpts(vector <char*>& optList , bool* givenProgOpts)

117 {
// get options into useable form for simulation

119 ParseCommLine(optList , givenProgOpts);
// safe to proceed with simulation , able to run as user desired

121 // so get what we need to run
RetrieveSimOpts ();

123 }

125 // actually initialise the data
void Simulation :: InitialiseData ()

127 {
// create antennas with capability of sending signals between them

129 bool ynDebug = this ->progOpts[this ->simStandards.isADebugRun];
if (this ->progOpts[this ->simStandards.isUsualRun]) {

131 try {
// is a default run

133 Debug(ynDebug) << "usual run , default options";
// setup as per normal: max mobiles , max base -stations :)

135 Mimo* allAntennas = new Mimo(this ->numOfRx , this ->numOfTx ,
this ->freq , ynDebug);

137 } catch(logic_error) {
// thrown by mimo on being unable to setup rx/tx array

139 // in big trouble , unable to continue
throw(logic_error("Setup. Unable to continue. Exiting"));

141 } catch(runtime_error) {
// not enough memory , still can’t continue

143 throw(runtime_error("Memory. Unable to continue. Exiting."));
}

145 } else {
Debug(ynDebug) << "non -default run , parsing options";

147 // provide antennas with user values
try {

149 // setup with user defined vals , my -defined debug statement trigger
Mimo* allAntennas = new Mimo(this ->numOfTx , this ->numOfRx ,

151 this ->freq , ynDebug);
} catch(logic_error) {

153 // thrown by mimo on unable to setup receiver/transmitter array
// in big trouble , unable to continue

155 throw(logic_error("Setup. Unable to continue. Exiting"));
} catch(runtime_error) {

157 // not enough memory , still can’t continue
throw(runtime_error("Memory. Unable to continue. Exiting."));

159 }
}

161 }

163 // save data and destroy the simulation ’s objects
Simulation ::~ Simulation ()

165 {
bool yn = this ->progOpts[this ->simStandards.isADebugRun];

167 Debug(yn) << "everything deleted";
// destroy the antennas and channel information

169 // because everything is in deques , the deques handle the memory
// and we don’t have to do anything

171 }

173 // Disply help to standard out (cout) about application if requested
void Simulation :: HelpScreen(bool doIPrint)

175 {
// :) Print extra embellishments if the ’debug’ mode is turned on

177 bool yn = doIPrint;
Debug(yn) << "***************************************";

179 std::cout << "this is the help screen." << std::endl;
Debug(yn) << "***************************************";

181 Debug(yn) << " ";
std::cout << "this is the list of inputs" << std::endl;

183 std::cout << "" << std::endl;
}

185

// Info of how it runs ...
187 void Simulation ::Run(bool ynDefRun , bool turnItOn)

{
189 Debug(turnItOn) << "Attempting forks.";

Debug(turnItOn) << " ";
191 //fill antenna signals and fork

// SendSig (); on each antennas

D.6 The Simulation module 91

193 // wait for forks to finish
// check results

195 //mimo.CheckBER ();
// stop forking

197 // all done , so output and return
SimOut(turnItOn);

199 return;
}

201

203

// Function to provide output from the simulation ’s results ...
205 void Simulation :: SimOut(bool isADebugRun)

{
207

Debug(isADebugRun) << "printing to files.";
209 /* MacsVals macsStandards = MacsVals ();

211 // open text file

213 size_t fadetype;
if (fadetype == macsStandards.RiceFade) {

215 // input results into file
} else if (fadetype == macsStandards.RayleighFade) {

217 // input results into file
} else {

219 // do nothing
// or provide error (?)

221 }

223 // close text file

225 // error check throughout !!
*/

227 }

229

231 // end of implementation file

D.7 The Mimo module 92

D.7 The Mimo module

This is the crux of the MACS system mentioned previously in the dissertation.

The Channel and Antenna types, that are inserted into the deques (pronounced “deck”s),

are as the name suggests, the containers for the channel and antenna implementations

respectively. Channel, in particular, holds all signals for each Antenna. These deques

are the most important containers in the program, and they cannot fail — hence the

fact that Mimo throws exceptions if it detects errors in the setup process. Notes for

how accessing each channel relates to each antenna are in the file’s top comment block.

Listing D.11: The overall ’Mimo’ class: ’mimo.h’ header file.
/* ***

2 * Sarah A Hugo
* #09 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * Mimo.h
* -- header file for multiple input multiple output

10 * --> class definition
* --> the Mimo -Ofdm -Channel -Array system in action

12 **
* Sets up and initialises the entire system , from the Channels (with its

14 * signal system) to the Antenna array system.
* This is what is called in Simulation , and this is what calls everything

16 * else. In other words , if this breaks ...RUN. Quickly.
**

18 * HOW TO OPERATE (aka the implicit link):
* When accessing an antenna , the same deque index (*.at() function) will give

20 * you the antenna ’s channel , and vice versa. It’s very simple.
* To make it easier for yourself , you *could* make a function that , given an

22 * index , could return either depending on your return type --- but genuine
* C++ compilers *will* complain about this. Remembering the index trick is,

24 * in the end , easier.
* **So do not forget **

26 ** */

28 #ifndef _MIMO_H_
#define _MIMO_H_

30

// for debuging
32 #include "debug.h"

// standard header -- i/o, types , exceptions , namespaces
34 #include "standard.h"

// standard antenna related values
36 #include "allvals.h"

// the antenna definition
38 #include "antenna.h"

// the channel definition
40 #include "channel.h"

42
namespace Sim4G

44 {

46 class Mimo
{

48 private:
MacsVals macsStandards;

50 // number of antennas in array
const size_t NUM_OF_RX;

52 const size_t NUM_OF_TX;
// arrays of antennas at receiver/transmitter

54 deque <Antenna > baseArray;
deque <Antenna > mobArray;

56 // channel used to send signals
deque <Channel > airForMobiles;

D.7 The Mimo module 93

58 deque <Channel > airForBaseStats;

60 // private helper functions
Channel SetUpChannel(size_t , size_t , size_t , bool);

62 void SetUpReceiverArray(size_t , size_t , bool);
void SetUpTransmitterArray(size_t , size_t , bool);

64
public:

66 //set up the class
explicit Mimo(size_t numTx , size_t numRx , size_t freq , //...

68 bool doIDebug): NUM_OF_TX(numTx), NUM_OF_RX(numRx)

70 {
// construct list of vals.

72 MacsVals macsStandards = MacsVals ();

74 // if on a standard run , print something helpful for the user
// b/c this may take a while

76 if(! doIDebug) {
std::cout << "You have requested a " << this ->NUM_OF_TX

78 << " by " << this ->NUM_OF_RX << " array."
<< std::endl;

80 std::cout << "This may take a while ..." << std::endl;
std::cout << std::endl;

82 }

84 // set up receiver channel and antenna
Debug(doIDebug) << "MIMO: NUMOFTX = " << this ->NUM_OF_TX

86 << " and NUMOFRX = " << this ->NUM_OF_RX;

88 // catch thrown errors and throw back out to simulation
try {

90 SetUpReceiverArray(NUM_OF_RX , freq , doIDebug);
} catch(logic_error) {

92 throw(logic_error("Unable to set up receiver array."));
} catch(runtime_error) {

94 throw(runtime_error("Memory allocation problems."));
}

96

// catch thrown errors and throw back out to simulation
98 try {

SetUpTransmitterArray(NUM_OF_TX , freq , doIDebug);
100 } catch(logic_error) {

throw(logic_error("Unable to set up receiver array."));
102 } catch(runtime_error) {

throw(runtime_error("Memory allocation problems"));
104 }

}
106 // Destructor --> safe to use , no static members employed

~Mimo()
108 {

// by destroying antennas , we also destroy the channels
110 // NOTE TO OTHERS: deques handle own memory , no need for ’delete ’

}
112 // check it exist

bool Exists ()
114 {

return !(baseArray.empty() || mobArray.empty ());
116 }

// output results / data in mimo system
118 // input: filename to output channel info into

void MimoSysOutput(std::string , bool doIDebug);
120

// access tx’s and rx’s arrays (USE WITH CAUTION !!)
122 deque <Antenna >* GetbaseArray ()

{
124 return &baseArray;

}
126 deque <Antenna >* GetmobArray ()

{
128 return &mobArray;

}
130

// number of antennas in the rx and tx arrays
132 size_t NumOfbaseArray ()

{
134 return NUM_OF_TX;

}
136 size_t NumOfmobArray ()

{
138 return NUM_OF_RX;

}
140 };

// end of namespace for now
142 }

D.7 The Mimo module 94

144 // end of _MIMO_H_
#endif

And the implementation file. This is where the work is done, to set up each Channel

and Antenna, according to the requested numbers of receivers and transmitters. Each

receiver and transmitter has a separate setup function — it could have been more

streamlined by making a ’generic’ function, but this was more a micro-optimisation

than a macro-optimisation. In this case, the decision was made to go with what worked

and leave final ‘tweaks’ for afterwards.

Listing D.12: The overall ’Mimo’ class: ’mimo.cpp’ implementation file.
1 /* ***

* Sarah A Hugo
3 * #09 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Mimo.cpp
9 * -- source file for setting up multiple input , multiple output

* --> all the equations involved , multi rx , multi tx
11 * --> aka the Multiple -Antenna -Channel -Signals (MACS) system at work

**
13 * Sets up and initialises the entire system , from the Channels (with its

* signal system) to the Antenna array system.
15 * This is what is called in Simulation , and this is what calls everything

* else. In other words , if this breaks ...Run.
17 ** */

19 // standard files
#include "debug.h"

21 #include "standard.h"
// my implementation files

23 #include "mimo.h"
#include "channel.h"

25 #include "antenna.h"
#include "allvals.h"

27

// general classes
29 using Sim4G::Debug;

using Sim4G::Mimo;
31 using Sim4G:: Antenna;

using Sim4G:: Channel;
33

35 Channel Mimo:: SetUpChannel(size_t antennaArray , size_t numInArray ,
size_t freq , bool doIDebug)

37 {
// set up channel

39 Debug(doIDebug) << " ";
if (antennaArray == this ->macsStandards.mobileAr) {

41 Debug(doIDebug) << "MIMO TRANSMITTER (mobile):";
}

43 else {
Debug(doIDebug) << "MIMO RECEIVER (base -station):";

45 }
return (Channel(numInArray , doIDebug , freq));

47 }

49

// how to setup an antenna array for receiver (mobile) in 3 easy steps
51 void Mimo:: SetUpReceiverArray(size_t numInArray , size_t freq , bool doIDebug)

{
53 // setup the channel

Channel tmp = SetUpChannel(this ->macsStandards.mobileAr , numInArray ,
55 freq , doIDebug);

// failsafe
57 if (tmp.Healthy ()) {

D.7 The Mimo module 95

this ->airForMobiles.insert(this ->airForMobiles.end(), tmp);
59 } else {

Debug(doIDebug) << "Failure to setup Rx channel. RUN!";
61 throw std:: logic_error("Rx channel failed");

}
63 Debug(doIDebug) << "MIMO: Rx channel ok, bandwidth: " << freq;

65 // create antenna entry in rx deck give it the created channel
// insert (at end of antArray) the (last channel -sys created)

67 for (size_t i=0; i<numInArray; i++) {
this ->mobArray.push_back(Antenna(i, this ->macsStandards.mobileAr ,

69 freq , this ->NUM_OF_RX , doIDebug));
}

71 // should not happen , but just in case (memory problems)
if(mobArray.empty ()) {

73 throw runtime_error("Array empty.");
}

75 Debug(doIDebug) << "MIMO: Rx array created: " << mobArray.size ();
return;

77 }

79

// how to setup an antenna array for transmitter (basestation) in 3 easy steps
81 void Mimo:: SetUpTransmitterArray(size_t numInArray , size_t freq , bool doIDebug)

{
83 // setup the channel

Channel tmp = SetUpChannel(this ->macsStandards.baseAr , numInArray ,
85 freq , doIDebug);

87 // failsafe
if (tmp.Healthy ()) {

89 this ->airForBaseStats.insert(this ->airForBaseStats.end(), tmp);
} else {

91 Debug(doIDebug) << "Failure to setup Tx channel. RUN!";
throw std:: logic_error("Rx channel failed");

93 }
Debug(doIDebug) << "MIMO: Tx channel ok , bandwidth: " << freq;

95

// create antenna entry in rx deck give it the created channel
97 // insert (at end of antArray) the (last channel -sys created)

for (size_t i=0; i<numInArray; i++) {
99 this ->baseArray.push_back(Antenna(i, this ->macsStandards.baseAr ,

freq , this ->NUM_OF_TX , doIDebug));
101 }

// should not happen , but just in case (memory problems)
103 if(mobArray.empty ()) {

throw runtime_error("Array empty.");
105 }

Debug(doIDebug) << "MIMO: Tx-array created: " << baseArray.size ();
107 return;

}

D.8 The Antenna module 96

D.8 The Antenna module

Notice that although the Antenna has a close tie with Channels, it itself has no reference

to an actual Channel object (capitalisation, at this point, refers to the simulation

implementation). Any reference to one caused errors, and so was removed. It does,

however, have a counter, named channelNo, that can be accessed by others (namely

Mimo, Section D.7) to relate the two.

Listing D.13: The overall ’Antenna’ class: ’antenna.h’ header file.
/* ***

2 * Sarah A Hugo
* #09 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * Antenna.h
* -- header file for the antenna characteristics

10 * --> overall look at the antennas and how they work in
* a 4G system.

12 **
* Makes an antenna "struct", for placing *within* a deque , as happens in Mimo.

14 * FOR FUTURE REFERENCE: This is NOT a class. It only has a "pretend" creator
* to make things easier.

16 * Do NOT explicitly delete. Let the deques take care of it , and be happy.
* Could not be easier.

18 ** */

20
#ifndef _ANTENNA_H_

22 #define _ANTENNA_H_

24 // for debuging
#include "debug.h"

26 // standard header -- i/o, types , exceptions , namespaces
#include "standard.h"

28 // for standard antenna/signal values
#include "allvals.h"

30

32 namespace Sim4G
{

34 // the Antenna class of characteristics
struct Antenna

36 {
private:

38 // restrict access to generic creation
MacsVals macsStandards;

40 Antenna(void) {}
// private data members of class

42 size_t channelNo; // relates Antenna to Channel
size_t frequency; // frequency of operation (MHz)

44 size_t antType; // type of station designated by antenna
size_t arraySize; // number of antennas around it in array

46 public:
Antenna(size_t count , size_t typeOfStation , size_t HzBand ,

48 size_t arraynum , bool doIDebug)
{

50 MacsVals macsStandards = MacsVals ();
// decide how to set up each antenna ...

52 channelNo = count;
arraySize = arraynum;

54 antType = typeOfStation;
frequency = HzBand;

56 // set up antenna types
if (antType == this ->macsStandards.mobileAr) {

58 // set up mobile
// particular parameters of the mobile

60 } else if (antType == this ->macsStandards.baseAr) {
// set up base station

62 // particular parameters of the basestation
} else {

D.8 The Antenna module 97

64 // set up "personal antenna"
// no accomodation as yet for "personal antennas"

66 // ie antennas fitted to vehicles
}

68 }/*
// copy constructor -- VITAL b/c its a *struct* not a class

70 Antenna(const Antenna &)
{}*/

72

// relate Antenna to Channel
74 size_t GetChannelNo ();

// function to output antenna information into strm
76 void AntennaOutput(std:: ofstream& outstrm);

};
78 // end of namespace Sim4G (for now)

}
80

//end of _ANTENNA_H_
82 #endif

And the implementation file.

Listing D.14: The overall ’Antenna’ class: ’antenna.cpp’ implementation file.
1 /* ***

* Sarah A Hugo
3 * #09 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Antenna.cpp
9 * -- implementation file for the antenna

* --> details of implementation at the antennas and how they work in
11 * a 4G system.

**
13 * As Antenna has been made a struct (for insertion in ’deque’s in Mimo),

* there is very little implementation (at this stage) in here.
15 * Further development might see this page more full , and so it is included

* for completeness --- and the compiler.
17 ** */

19 #include "antenna.h"

21 using Sim4G:: Antenna;
using Sim4G::Debug;

23

25 /* GetChannelNo ()
* The relationship between Antenna and Channel , for Mimo.

27 * Takes no arguments , returns a size_t counter.
*/

29 size_t Antenna :: GetChannelNo ()
{

31 return channelNo;
}

D.9 The Channel module 98

D.9 The Channel module

This is defines the three signals that exist for each Antenna: Ofdm, Nosie, and Ber,

and defines also what functions are needed to initialise them.

Listing D.15: The overall ’Channel’ medium class: ’channel.h’ header file.
/* ***

2 * Sarah A Hugo
* #09 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * Channel.h
* -- header file for simulating a channel (aka a transmission medium)

10 * --> using *bitsstrm* to simulate modulation + noise
* --> bandwidth , frequency , noise , etc.

12 * --> relies on Ofdm and Noise classes
* --> in turn , based on BitsStrm and Binary

14 * --> call THIS instead of anything else
**

16 * Because Channel is eventually going into a deque (in Mimo), its a struct ,
* not a class. Do NOT make a class , or fear the wrath of the compiler. You

18 * have been warned. Keep it a struct , and leave memory management to the
* deque.

20 ** */

22
#ifndef _CHANNEL_H_

24 #define _CHANNEL_H_

26 // for debuging
#include "debug.h"

28 // standard header -- i/o, types , exceptions , namespaces
#include "standard.h"

30 // for standard antenna/signal values
#include "allvals.h"

32 // the noise signal definition
#include "noise.h"

34 // the ofdm signal defintion
#include "ofdm.h"

36 // the ber signal defintion
#include "ber.h"

38

40 namespace Sim4G
{

42 // further addition to the Sim4G:
// the Channel class for properties of a transmission medium

44 // call this to send signals back and forth between antennas , etc.
struct Channel

46 {
private:

48 // PRIVATE DATE MEMBERS
// the size of strms (aka the bandwidth) requested

50 size_t bandwidth;
// a bitsstrm of modulated signal

52 Ofdm* ofdmSig;
// a noisy signal to add

54 Noise* noisySig;
// the difference between the signals that occurs during

56 // transmission in the medium
Ber* berSig;

58

/* Accessors: keep private (for now)
60 * access to actual signals is only done within the class

*/
62 Ofdm* GetOfdmSig ();

Noise* GetNoiseSig ();
64 Ber* GetBerSig ();

// PRIVATE FUNCTIONS
66 /* to create signals -- don’t allow public access

*/
68 void CreateASignalStrm(size_t sigType , bool isADebugRun);

void MakeChannel(size_t , bool);
70 public:

/* creation of the channel (transmission medium)

D.9 The Channel module 99

72 * in this case thru air
*/

74 Channel(size_t numSignalsNeeded , bool doIDebug ,
size_t newBand): bandwidth(newBand)

76 {
if (numSignalsNeeded <= 0) {

78 return;
} else {

80 MakeChannel(numSignalsNeeded , doIDebug);
}

82 }

84 /* copy constructer -- VITAL b/c its a *struct* not a class
*/

86 /* Channel(const Channel& other)
{

88 Channel(C ;
}

90 */
// OTHER FUNCTIONS

92 Channel operator= (Channel& other);
Channel operator *();

94 // allow copying
bool Healthy ()

96 {
return (ofdmSig ->IsSignalOk () &&

98 noisySig ->IsSignalOk () && berSig ->IsSignalOk ());
}

100

// BER: how successful sending the signal was
102 void FindBER (); // find the BER()

void ChannelOutput (); // output BER to file / strings
104 // send and receive signal (from ’unknown ’ antennas)

void SendSignal ();
106 void SendSignalWithNoise ();

void SendSignalWithoutNoise ();
108 void ReceiveSignal ();

void ReceiveSignalWithNoise ();
110 void ReciveSignalWithoutNoise ();

};
112 }

114

// end of _CHANNEL_H_
116 #endif

And the implementation file. Close observers might note the very distinct similarity

between the Signal’s. This was, in fact, deliberate, and is highlighted and explained in

Section D.10 to Section D.13.

Listing D.16: The overall ’Channel’ medium class: ’channel.cpp’ implementation file.
/* ***

2 * Sarah A Hugo
* #09 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * Channel.cpp
* -- source file for channel implemation

10 * --> all those extra details
**

12 * Because Channel is eventually going into a deque (in Mimo), its a struct ,
* not a class. Do NOT make a class , or fear the wrath of the compiler. You

14 * have been warned. Keep it a struct , and leave memory management to the
* deque.

16 ** */

18

// my headers
20 #include "standard.h"

#include "channel.h"
22 #include "ofdm.h"

#include "noise.h"

D.9 The Channel module 100

24 #include "allvals.h"

26 using Sim4G::Debug;
using Sim4G:: Channel;

28 using Sim4G::Ofdm;
using Sim4G::Noise;

30 using Sim4G::Ber;
using Sim4G:: BitsStrm;

32 using Sim4G:: MacsVals;

34 // PRIVATE FUNCTION
// create signal bitsstrms , as large as the requested bandwidth

36 void Channel :: CreateASignalStrm(size_t thisSig , bool doIDebug)
{

38 MacsVals macsStandards = MacsVals ();
size_t sigSize;

40 BitsStrm bitsToAdd;
std:: string myStr;

42 if (thisSig == macsStandards.ofdmType) {
// creating ofdm BitsStrm

44 Ofdm* tmp = new Ofdm(doIDebug , bitsToAdd , this ->bandwidth);
this ->ofdmSig = tmp;

46 sigSize = this ->ofdmSig ->SigSize ();
myStr = "OFDM ";

48 } else if (thisSig == macsStandards.noiseType) {
// creating noisy BitsStrm

50 Noise* tmp = new Noise(doIDebug , bitsToAdd , this ->bandwidth);
this ->noisySig = tmp;

52 sigSize = this ->noisySig ->SigSize ();
myStr = "Noise";

54 } else if (thisSig == macsStandards.berType) {
// set up BER channel: difference between signals at transmission

56 // add many more until until our ’ber’ is necessary size
Ber* tmp = new Ber(doIDebug , bitsToAdd , this ->bandwidth);

58 this ->berSig = tmp;
sigSize = this ->berSig ->SigSize ();

60 myStr = "BER ";
}

62 // signal created
Debug(doIDebug) << " " << myStr << " channel aok , size = " << sigSize;

64 }

66

// PRIVATE FUNCTION
68 // helper to set up the channel

void Channel :: MakeChannel(size_t numSignals , bool doIDebug)
70 {

// create as many as needed
72 MacsVals macsStandards = MacsVals ();

for (size_t i=1; i<= numSignals; i++) {
74 Debug(doIDebug) << " " << i;

CreateASignalStrm(macsStandards.ofdmType , doIDebug);
76 CreateASignalStrm(macsStandards.noiseType , doIDebug);

CreateASignalStrm(macsStandards.berType , doIDebug);
78 // check it was ok

/* try {
80 if (this ->GetOfdmSig()->IsSignalOk ()) {

Debug(doIDebug) << " Channel (" << i
82 << "): displaying binary(s) in ofdm channel ";

size_t tmpNum = (this ->GetOfdmSig()->GetSymbol (25));
84 Debug(doIDebug) << " " << tmpNum;

}
86 } catch(out_of_range) {

Debug(doIDebug) << " Chanel (" << i
88 << "): could not be printed ";

}*/
90 // start again at creating a signal

}
92 }

94

// PRIVATE ACCESS
96 // so that access to actual streams is only done within the class

// overall access only knows about the channel
98 Ofdm* Channel :: GetOfdmSig ()

{
100 return this ->ofdmSig;

}
102 Noise* Channel :: GetNoiseSig ()

{
104 return this ->noisySig;

}
106 Ber* Channel :: GetBerSig ()

{

D.9 The Channel module 101

108 return this ->berSig;
}

110

112 // PUBLIC FUNCTION(S)

114 /* a little operator overloading:
* assignment with another Channel passed by reference

116 */
Channel Channel :: operator= (Channel& other)

118 {
// swap values

120 this ->ofdmSig = other.ofdmSig;
this ->noisySig = other.noisySig;

122 this ->berSig = other.berSig;
this ->bandwidth = other.bandwidth;

124 return *this;
}

126 /* more overloading:
* indirection: the * operator , aka , access to ’this’

128 * VITAL for the copy constructor
*/

130 Channel Channel :: operator *()
{

132 return *this;
}

D.10 The Signal module 102

D.10 The Signal module

The Signal class, which is actually a virtual class. The virtual keyword means that

classes which inherit off it can rewrite it as needed (to be explained later).

All signals share basic characteristics, such as amplitude, bandwidth, et cetera. How-

ever, the main focus of the program was always on a bit implementation, and the

Signal classes (see Section D.11 to Section D.13) would be consistently using the pro-

vided bit implementation — the BitsStrm type mentioned here. It would only be how

it was implemented that would vary. Moreover, each Signal implementation would

consistently want to access the BitsStrm in certain ways, and require certain types of

data. To save retyping code for each class, it was far simpler to create a virtual class,

and simply inherit functionality and data types off the virtual class.

That was the aim of providing this virtualised. class.

Listing D.17: The abstract ’Signal’ class: ’signal.h’ header file.
1 /* ***

* Sarah A Hugo
3 * #9 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Signal.h
9 * -- header file for the (abstract -ish) signal class

* --> defines basic signal characteristics.
11 **

* Implements the BitsStrm class in an easy to use class , that can be easily
13 * inherited by modulating (ie OFDM) and noise modeling classes in turn.

* Saves reinventing the wheel for signal basics each time.
15 ** */

17 #ifndef _ADT_SIGNAL_H_
#define _ADT_SIGNAL_H_

19

21 // for debuging
#include "debug.h"

23 // standard header -- i/o, types , exceptions , namespaces
#include "standard.h"

25 // the bitsstrm definition -- throws bits around in a strm
#include "bitsstrm.h"

27 // the binary things
#include "binary.h"

29

31 namespace Sim4G
{

33

// the basic (abstract -ish) Signal class
35 // inherits functions , capabilities , etc from BitsStrm container

class Signal
37 {

private:
39 BitsStrm sigstrm;

protected:
41 // data that can be inherited/initialised by subsequent classes

// once -off func: set bitsstrm , according to given characteristics
43 void SetSigStrm(BitsStrm someSignal)

{

D.10 The Signal module 103

45 sigstrm = someSignal;
return;

47 }
// once -off func: set bitstrm -- set to a given size (zeroed values)

49 void SetSigStrm(size_t goThisFar)
{

51 for(size_t i=0; i<goThisFar; i++) {
sigstrm.PushFront(Binary ());

53 }
return;

55 }
public:

57 // in lieu of a contstructor ...
virtual void SetUpSignal ()

59 {
// calls the two SetSigStrm functions

61 // to be defined however derived classes wish
return;

63 }
// option (for using Signal as its own type)...

65 virtual void SetUpSignal(BitsStrm someSignal , size_t goThisFar)
{

67 SetSigStrm(someSignal);
SetSigStrm(goThisFar);

69 return;
}

71 // return sigstrm (bitsrream) so that derived classes ...
// can be call it / defined later as need arises

73 BitsStrm GetSigStrm ()
{

75 return sigstrm;
}

77

// check stream
79 bool IsSignalOk ()

{
81 return !(this ->sigstrm.IsEmpty ());

}
83

// get info about the strm --> can also be defined later (if need be)
85 // -- defined here , tho , to provide option of saving time later

deque <Binary >* GetAllStrm ()
87 {

return this ->sigstrm.GetBitStrm ();
89 }

std:: string GetOneString(size_t pos = 0)
91 {

return this ->sigstrm.GetStrmString(pos);
93 }

std:: string GetAllString ()
95 {

this ->sigstrm.GetStrmString(this ->sigstrm.Begin(),
97 this ->sigstrm.End ());

}
99 size_t GetOneNum(size_t pos = 0)

{
101 return this ->sigstrm.GetStrmNum(pos);

}
103 deque <unsigned long > GetAllNum ()

{
105 return this ->sigstrm.GetStrmNum(this ->sigstrm.Begin(),

this ->sigstrm.End ());
107 }

109

// some basic signal -related functions
111 // to be defined in subsequent classes as desired

virtual BitsStrm Modulation ()
113 {

return (sigstrm);
115 }

virtual BitsStrm Demodulation ()
117 {

return (sigstrm);
119 }

121

// operator overloading
123 Signal operator= (Signal* other)

{
125 this ->sigstrm = other ->sigstrm;

return *this;
127 }

D.10 The Signal module 104

129 };

131 }

133 #endif
// end of _ADT_SIGNAL_H_

And the implementation file. As its a virtual class, all implementation is in the header

file. As before though, the implementation file is included for correctness and to ensure

compilation.

Listing D.18: The basic ’Signal’ class: ’signal.cpp’ implementation file.
/* ***

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * Signal.h
* -- header file for the (abstract -ish) signal class

10 * --> defines basic signal characteristics.
**

12 * Abstract class.
* All definitions are in the header file. No need for anything here.

14 ** */

16 #include "signal.h"

D.11 The Noise module 105

D.11 The Noise module

This is the first of three Signal class. It inherits off the Signal class, by the line

class Noise: public Signal

This makes accessible to the class all the functions and types Signal defined in the

same public/private way they were defined in Signal. In this way, Noise has access

to Signal’s functions, has the option of rewriting these functions (to create its own

implementation of a Signal). Moreover, when Noise is implemented in external classes

as an object, it keeps its data type, the BitsStrm implementation, private, to avoid

unwanted modification.

Listing D.19: The more advanced ’Noise’ signal class: ’noise.h’ header file.
/* ***

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public
* License.

8 **
* Noise.cpp

10 * -- source file for Noise simulation
* --> echoes and fading effects on the bitsstrm via random numbers

12 * --> used to represent the signal
**

14 * Implements the Signal (basic) class and gives the details of how it applies
* to noise (Rice and Rayleigh , *not* Gaussian).

16 * As it expands on Signal , it also uses BitsStrm ’s.
** */

18

20 #ifndef _NOISE_SIG_H_
#define _NOISE_SIG_H_

22

// for debuging
24 #include "debug.h"

// standard header -- i/o, types , exceptions , namespaces
26 #include "standard.h"

// the abstract signal definition
28 #include "signal.h"

// the bitsstrm definition -- throws bits around in a strm
30 #include "bitsstrm.h"

32
namespace Sim4G

34 {

36 // the Noise class:
// an implementation of the (virtual/abstract) Signal class

38 class Noise: public Signal
{

40 private:
bool isADebugRun;

42 size_t bandwidth;
// protect default constructor

44 Noise()
{ }

46 // reimplementation and addition to the Signal class
void SetUpSignal(BitsStrm);

48
public:

50 explicit Noise(bool doIDebug , BitsStrm& someStrm , size_t someNum):
bandwidth(someNum)

52 {
// for debugging purposes

54 isADebugRun = doIDebug;

D.11 The Noise module 106

// initialise the strms
56 this ->SetUpSignal(someStrm);

}
58 ~Noise()

{ }
60

62 // Get Signal
Signal* GetSignal ()

64 {
return this;

66 }

68 // sizes:
// size of the "stream" associated to the signal

70 size_t SigSize ();
// size of memory

72 size_t MaxCapacity ();

74 };

76 }

78 // end of _NOISE_SIG_H_
#endif

And the implementation file. This is where Noise creates the randomised signal, and

defines the extra details to its Signal model.

Listing D.20: The more advanced ’Noise’ signal class: ’noise.cpp’implementation file.
1 /* ***

* Sarah A Hugo
3 * #9 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Noise.cpp
9 * -- source file for noisy signal implementations

* --> details of fading , echoes , etc.
11 **

* Implements the Signal (basic) class and gives the details of how it applies
13 * to noise (Rice and Rayliegh , *not* Gaussian).

* As it expands on Signal , it also uses BitsStrm ’s.
15 ** */

17 // extra headers (for this file only)
#include <ctime > // for the time() function

19 #include <cstdlib > // for the srand() and rand() functions

21 // standard header includes
#include "standard.h"

23 #include "debug.h"

25 // my implementation files
#include "signal.h"

27 #include "noise.h"
#include "bitsstrm.h"

29 #include "binary.h"

31 using Sim4G::Debug;
using Sim4G:: Signal;

33 using Sim4G::Noise;
using Sim4G:: BitsStrm;

35 using Sim4G:: Binary;

37

void Noise:: SetUpSignal(BitsStrm somethingToAdd)
39 {

// srand() and rand() are in cstdlib (see above)
41 // and are used to generate random numbers (for noise)

43 // randomize our ’pseudo -random ’ number generator
// so its numbers are always different

45 srand (time(NULL));
// push random numbers into stream

47 size_t goThisFar = (this ->bandwidth - 1);
for (size_t i=0; i<goThisFar; i++) {

D.11 The Noise module 107

49 // generate random (bool) values and insert into somethingToAdd
somethingToAdd.PushBack(Binary(rand() % 1));

51 }

53 // add randomized "stream" to our signal
this ->SetSigStrm(somethingToAdd);

55 }

57

// size(s): of the stream
59 size_t Noise :: SigSize ()

{
61 return this ->GetSigStrm (). Size ();

}
63 // size(s): of the memory

size_t Noise :: MaxCapacity ()
65 {

return this ->GetSigStrm (). MaxCapacity ();
67 }

D.12 The Ofdm module 108

D.12 The Ofdm module

Similar to Noise, Ofdm creates its own implementation of the Signal class, redefining

functions as needed.

Listing D.21: The more advanced ’Ofdm’ signal class: ’ofdm.h’ header file.
1 /* ***

* Sarah A Hugo
3 * #9 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Ofdm.h
9 * -- header file for orthogonal frequency division multiplexing

* --> overall look at class
11 * --> simplified implementation of IFFTs and FFTs

* --> via modification of a bitsstrm
13 **

* Provides the OFDM implemation of the Signal class , and the bit - based
15 * implementation (if time) of an IFFT and FFT.

* As it expands on Signal , it also uses BitsStrm ’s.
17 ** */

19 #ifndef _OFDM_SIG_H_
#define _OFDM_SIG_H_

21

23 #ifndef M_PI
#define M_PI 3.14159265359f

25 #endif

27

// for debuging
29 #include "debug.h"

// standard header -- i/o, types , exceptions , namespaces
31 #include "standard.h"

// the abstract signal definition
33 #include "signal.h"

// the bitsstrm definition -- throws bits around in a strm
35 #include "bitsstrm.h"

37

39 namespace Sim4G
{

41 // the OFDM class:
// an extension/implementation of the (virtual/abstract) Signal class

43 class Ofdm: public Signal
{

45 private:
// private data members

47 bool isADebugRun;
size_t bandwidth;

49 // private implementation of the basic Signal functions
void SetUpSignal(BitsStrm &);

51

void ModulateSignal (); // simplified IFFT -- bitsstrm version
53 void DeModulateSignal (); // simplified FFT -- bitsstrm version

55 public:
// set up the signal system

57 Ofdm(bool doIDebug , BitsStrm& someStrm , size_t someNum):
bandwidth(someNum)

59 {
// for debugging purposes

61 isADebugRun = doIDebug;
// initialise the strms

63 this ->SetUpSignal(someStrm);
}

65 // stop the signal system
~Ofdm()

67 { }

69 // check the signal
size_t GetSymbol(size_t pos = 0)

71 {
return this ->GetOneNum(pos);

73 }

D.12 The Ofdm module 109

75 // accessors
// Get Signal

77 Signal* GetSignal ()
{

79 return this;
}

81

// sizes: of the "stream" associated with the signal
83 size_t SigSize ();

// sizes: of the memory allocated to the "stream "/ signal
85 size_t MaxCapacity ();

87 // public implementation and addition to the Signal class

89 // send the signal - output results of modulation
Signal* SendSignal ()

91 {
// ModulateSignal ();

93 return GetSignal ();
}

95 // receive the signal - output results of demodulation
Signal* ReceiveSignal ()

97 {
// DeModulateSignal ();

99 return GetSignal ();
}

101

};
103

}
105

#endif
107 // end of _OFDM_SIG_H_

And the implementation file. Note that in actually setting up the Signal, it required

placing in it an actual signal (this is according to the basic signal model, mentioned in

Section 2.4.1).

Listing D.22: The more advanced ’Ofdm’ signal class: ’ofdm.cpp’ implementation file.
1 /* ***

* Sarah A Hugo
3 * #9 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* Ofdm.cpp
9 * -- source file for orthogonal frequency division multiplexing

* --> extra details of implentation using Signal class.
11 * --> simplified implementation of IFFTs and FFTs

* --> via modification of a bitsstrm
13 **

* Provides the OFDM implemation of the Signal class , and the bit -based
15 * implementation (if time) of an IFFT and FFT.

* As it expands on Signal , it also uses BitsStrm ’s.
17 ** */

19

// standard header files
21 #include "standard.h"

#include "debug.h"
23 // my implementation files

#include "signal.h"
25 #include "ofdm.h"

27

// access to classes
29 using Sim4G::Debug;

using Sim4G:: Signal;
31 using Sim4G::Ofdm;

using Sim4G:: BitsStrm;
33

35 /* generate a (basic) sinusoidal signal for later modulation and demodulation

D.12 The Ofdm module 110

* and ‘push’ it onto the stream that represents our signal
37 */

void Ofdm:: SetUpSignal(BitsStrm& somethingToAdd)
39 {

// make ’sinusoid ’ and insert onto provided stream
41 // Nyquist: sample at twice highest frequency present

size_t goThisFar = (this ->bandwidth)*2;
43 for (size_t i=0; i<goThisFar; i++) {

// max samples per second of a sinusoidal signal model
45 somethingToAdd.PushBack(Binary ((unsigned long)

(100.0f*sinf(goThisFar*i*M_PI))));
47 }

// initialise the ofdm sig with generated sinusoidal "stream"
49 this ->SetSigStrm(somethingToAdd);

}
51

// size(s): of the stream
53 size_t Ofdm:: SigSize ()

{
55 return this ->GetSigStrm (). Size ();

}
57 // size(s): of the memory

size_t Ofdm:: MaxCapacity ()
59 {

return this ->GetSigStrm (). MaxCapacity ();
61 }

D.13 The Ber module 111

D.13 The Ber module

As before, Ber sets up its own version of a Signal implementation. In this case, it read-

ies itself for finding the difference between Signals (note the FindTheDifference(Signal,Signal)

function). This is where having a virtual Signal class comes in so handy. It does not

matter to the Ber class what class they are — as long as they are the same basic type

Listing D.23: The more advanced ’Ber’ signal class: ’ber.h’ header file.
/* ***

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * Ber.cpp
* -- implementation file for BER (bit error rate)

10 * --> overall look at class
* --> combines a signal with noise to find the difference

12 **
* Implements the Signal class (is of type Signal).

14 * A signal , that is used to find the *difference* between two other signals.
** */

16

18 #ifndef _BER_SIG_H_
#define _BER_SIG_H_

20

// for debuging
22 #include "debug.h"

// standard header -- i/o, types , exceptions , namespaces
24 #include "standard.h"

// the abstract signal definition
26 #include "signal.h"

// the bitsstrm definition -- throws bits around in a strm
28 #include "bitsstrm.h"

30
namespace Sim4G

32 {
/* The BER class:

34 * an extension/implementation of the (virtual/abstract) Signal class
* Sets up just like any other signal , but , given two signals , will

36 * find the difference. (and store it)
*/

38 class Ber: public Signal
{

40 private:
// private data members

42 bool isADebugRun;
size_t bandwidth;

44 // private implementation of the basic Signal functions
void SetUpSignal(BitsStrm &);

46
public:

48 // set up the signal system
Ber(bool doIDebug , BitsStrm& someStrm , size_t someNum):

50 bandwidth(someNum)
{

52 // for debugging purposes
isADebugRun = doIDebug;

54 // initialise the strms
this ->SetUpSignal(someStrm);

56 }
// destruct

58 ~Ber()
{

60 }

62 // WARNING: may not be fully implemented.
/* Finds the difference between two (given) signals

64 * and stores it within itself.
*/

66 void FindTheDifference(Signal*, Signal *);

D.13 The Ber module 112

68 // ---
// Accessors

70 // for later access
Signal* GetSignal ();

72 // sizes:
// size of the "stream" associated to the signal

74 size_t SigSize ();
// size of memory

76 size_t MaxCapacity ();
};

78 }

80 #endif
//end of _BER_SIG_H_ header

And the implementation file. Similar to ’Ofdm’ and ’Noise’, not much is in the imple-

mentation, as much of basic definition of signal characteristics has already been done

in the ’Signal’ class.

Listing D.24: The more advanced ’Ber’ signal class: ’ber.cpp’ implementation file.
1 /* ***

* Sarah A Hugo
3 * #9 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

* ber.cpp
9 * -- header file for BER (bit error rate)

* --> overall look at class
11 * --> combines a signal with noise to find the difference

**
13 * Implements the Signal class.

* A signal , that is used to find the *difference* between two other signals.
15 ** */

17

// standard header files
19 #include "standard.h"

#include "debug.h"
21 // my implementation files

#include "signal.h"
23 #include "ber.h"

25 // access to classes
using Sim4G::Debug;

27 using Sim4G:: Signal;
using Sim4G::Ber;

29 using Sim4G:: BitsStrm;

31

/* SetUpSignal ()
33 * Make the BER signal reflect the given "stream" and our own bandwidth

* passed down throughout the simulation *just* for this moment.
35 */

void Ber:: SetUpSignal(BitsStrm& somethingToAdd)
37 {

// push vals onto stream , so its *not* empty
39 size_t goThisFar = somethingToAdd.Size ();

for(size_t i=0; i<goThisFar; i++) {
41 somethingToAdd.PushBack (1);

}
43 // make the BER signal real and large as requested

this ->SetSigStrm(somethingToAdd);
45 this ->SetSigStrm(this ->bandwidth - 1);

}
47

// ----
49 // PUBLIC FUNCTIONS

51 /* GetSignal ()
* Access to the actual BER signal

53 */

D.13 The Ber module 113

Signal* Ber:: GetSignal ()
55 {

return this;
57 }

59 /* size(s): of the stream
*/

61 size_t Ber:: SigSize ()
{

63 return this ->GetSigStrm (). Size ();
}

65 /* size(s): of the memory
*/

67 size_t Ber:: MaxCapacity ()
{

69 return this ->GetSigStrm (). MaxCapacity ();
}

D.14 The BitsStrm module 114

D.14 The BitsStrm module

This module implements the Binary module, and turns it into a proper C++ “con-

tainer”. That is, it provides it with iterators, and provides access to the container

through the iterator.

Close observers may note that this is actually what in Java would be termed a “wrap-

per” class. That is, it places the object (Binary) in a container (the deque, pronounced

”deck”), and promptly calls it the deque a “stream” that is accessed through the deque’s

own functions. However, as far as external modules know, the BitsStrm has a ”stream”

inside it that it is accessing through iterators and stream-positions, just like any other

high-level ‘container’ in C++. (The only thing it lacks to act as a true C++ “stream”

is the over-riding the << and >> operators to act as extra (lazy) insertions and/or i/o

ability...which were not done simply due to lack of time4.)

Because it uses iterators, instead of the << and >> operators, however, focus shifts to

the ‘pushing’ and ’popping’. The standard deque only comes the pop’s that don’t save,

and push’s that only allow one type of variable to be inserted. This module focused

on adding extra functionality, for all types of situations. (The implementation section

will explain further.)

Listing D.25: The basic ’BitsStrm’ container: ’bitsstrm.h’ header file.
/* ***

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * BitsStrm.h
* -- header file for bitsstrm (sends bits from A to B)

10 * --> overall look at class
* --> because C++ doesn’t come with them automatically

12 **
* Carries on from the Sim4G Binary module.

14 * Implements what the <bitset > header in C++ fails to fully do: a binary
* object (decimal with binary rep.) in a container with iterators: allows

16 * access along the edges of the container -- a binary "stream" (aka a
* *deque* of binaries).

18 * Also allows for basic math operations on "streams" (and on binary objects
* themselves) and for "stream" comparisions.

20 ** */

22
#ifndef _BITSSTRM_H_MID_

24 #define _BITSSTRM_H_MID_

26 // for debuging

4 And, in some cases, over-riding these operators can “break” the container. This was deemed a

viable option when the module worked, and worked well, without this extra “functionality”.

D.14 The BitsStrm module 115

#include "debug.h"
28 // standard header -- i/o, types , exceptions , namespaces

#include "standard.h"
30 // the binary definition -- the binaries everything is based on

#include "binary.h"
32

34

36 namespace Sim4G
{

38 class BitsStrm
{

40 private:
// define the "stream ": binary numbers in a double -header container

42 deque <Binary > binsStrm;
//template <typename Strm > bs;

44

// PRIVATE FUNC: protect unauthorised access to "stream"
46 // Mimic the functionality of the deque for the "stream"

// CAREFUL AND FINAL: removal from "stream"
48 // do NOT use for i/o functions: suited to popping from "stream"

void RemoveFromBack(Binary); // saves one ptr
50 void RemoveFromBack(size_t , BitsStrm &); // saves lots of pointers

unsigned long RemoveFromBack(unsigned long &); // returns saved num
52 void RemoveFromBack(BitsStrm &); // put into "stream"

void RemoveFromFront(Binary); // saves binary into pointer
54 unsigned long RemoveFromFront(unsigned long &); // returns saved num

void RemoveFromFront(size_t , BitsStrm &);// saves lots of pointers
56 void RemoveFromFront(BitsStrm &); // put into "stream"

protected:
58 // allowing for protected construction of "stream"

// (especially by inherited/derived classes)
60 void MakeStrm ()

{
62 // add to front of *empty* container (deque)

Binary zeroedBinary = Binary ();
64 this ->binsStrm.assign(1, zeroedBinary);

}
66 void MakeStrm(Binary binToAdd)

{
68 Binary zeroedBinary = Binary ();

this ->binsStrm.assign(1, zeroedBinary);
70 this ->binsStrm.push_back(binToAdd);

}
72 public:

// create bitsstrm
74 BitsStrm ()

{
76 MakeStrm ();

}
78 BitsStrm(Binary binToAdd)

{
80 MakeStrm(binToAdd);

}
82 // destroy bitsstrm

~BitsStrm ()
84 { }

86 // "STREAM" INFORMATION
// "stream" size

88 size_t Size ();
// max capacity: size * size of binwords

90 size_t MaxCapacity ();
// is it a empty bitsstrm?

92 bool IsEmpty ();
void ClearStrm ();

94 Binary StrmAt(size_t); // checked access
Binary operator [](size_t) const; // unchecked access

96

98 // OP OVERLOADING

100 // I/O OPS: rightshifting leftshifting (piping)

102 // MATH OPS: arithmatic and assign
BitsStrm operator= (BitsStrm& other);

104 BitsStrm operator= (deque <Binary >&);

106 // TRUTH OPS: boolean ops

108

// access "stream" components
110 // entire "stream"

deque <Binary >* GetBitStrm ()

D.14 The BitsStrm module 116

112 {
return &binsStrm;

114 }
// get the binary numbers of the "stream ":

116 // "unchecked" access -- usually to first element in "stream"
std:: string GetStrmString ();

118 // checked access -- the string of the binary value at that strmpos
std:: string GetStrmString(size_t strmpos);

120 // from first to last (begin to end)
std:: string GetStrmString(deque <Binary >:: iterator ,

122 deque <Binary >:: iterator);
// get the numbers of the "stream ":

124 // "unchecked" access -- usually to first element in "stream"
unsigned long GetStrmNum ();

126 // checked access -- equivalent decimal value at the given strmpos
unsigned long GetStrmNum(size_t strmpos);

128 // all the decimal values from where to where (usually begin to end)
deque <unsigned long > GetStrmNum(deque <Binary >:: iterator ,

130 deque <Binary >:: iterator);
// safer: single component of "stream"

132

134 // "stream" iterators
deque <Binary >:: iterator Begin ();

136 deque <Binary >:: const_iterator Begin () const;
deque <Binary >:: iterator End();

138 deque <Binary >:: const_iterator End() const;
deque <Binary >:: reference Front ();

140 deque <Binary >:: const_reference Front() const;
deque <Binary >:: reference Back ();

142 deque <Binary >:: const_reference Back() const;
deque <Binary >:: reverse_iterator RBegin ();

144 deque <Binary >:: const_reverse_iterator RBegin () const;
deque <Binary >:: reverse_iterator REnd ();

146 deque <Binary >:: const_reverse_iterator REnd() const;

148 // insert operations
deque <Binary >:: iterator Insert(deque <Binary >:: iterator , Binary &);

150 void Insert(deque <Binary >:: iterator , size_t , const Binary &);
void Insert(deque <Binary >:: iterator , deque <Binary >:: iterator ,

152 deque <Binary >:: iterator);
// assignment operations -- use with care!!

154 void Assign(deque <Binary >:: iterator , deque <Binary >:: iterator);
void Assign(size_t , Binary &);

156

158 // popping -- saving what is ’popped ’ out of the "stream" if needed
void PopBack (); // standard

160 void PopBack(size_t , BitsStrm &); // save requested amount
size_t PopBack(unsigned long &); // save number , return it

162 void PopBack(Binary); // save into ptr
void PopBack(BitsStrm &); // save into "stream"

164 void PopFront (); // standard
void PopFront(size_t , BitsStrm &); // save requested amount

166 size_t PopFront(unsigned long &); // save number , return it
void PopFront(Binary); // save into ptr

168 void PopFront(BitsStrm &); // save into "stream"
// pushing -- insertion of values into "stream"

170 void PushBack(size_t); // push this number of values
void PushBack(Binary); // push this binary onto "stream"

172 void PushBack(BitsStrm &); // append the "stream"
void PushFront(size_t); // insert onto front this many values

174 void PushFront(Binary); // insert this binary into front
void PushFront(BitsStrm &); // insert "stream" into front

176 };
}

178
#endif

180 // end of _BITSSTRM_H_MID_

D.14 The BitsStrm module 117

This, as always, is were the main work happens, and where all the functions are defined.

As noted earlier, the main focus is on the ‘push’ and ‘pop’ functions — and in turn, on

the customised ’insert’ and ’remove’.

Although the extra functions (’insert’ and ’assign’) are provided, they are almost never

used. It was found that once the stream was initialised, everything could be accom-

plished through the customised ‘push’ and ’pop’ functions.

Listing D.26: The basic ’BitsStrm’ container: ’bitsstrm.cpp’ implementation file.
/* ***

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * BitsStrm.cpp
* -- source file for bitsstrm (sending bits from A to B)

10 * --> extra details of class implemetation
* --> because C++ doesn’t come with this automatically

12 **
* Carries on from the Sim4G Binary module.

14 * Implements what the <bitset > header in C++ fails to fully do: a binary
* object (decimal with binary rep.) in a container with iterators: allows

16 * access along the edges of the container -- a binary "stream" (aka a
* *deque* of binaries).

18 * Also allows for basic math operations on "streams" (and on binary objects
* themselves) and for "stream" comparisions.

20 ** */

22

// standard headers
24 #include "standard.h"

// my headers
26 #include "bitsstrm.h"

#include "binary.h"
28

30 // standard components
using std:: deque;

32 // my own components
using Sim4G:: BitsStrm;

34 using Sim4G:: Binary;

36

// -------
38 // Mimic the behaviour of the deque

// -------
40

// Information about the "stream "/deque
42

// check size
44 size_t BitsStrm ::Size()

{
46 return this ->binsStrm.size ();

}
48 size_t BitsStrm :: MaxCapacity ()

{
50 Binary tmpBin;

this ->PopFront(tmpBin);
52 return (this ->Size() * tmpBin.WordSize ());

}
54 // check if its empty

bool BitsStrm :: IsEmpty ()
56 {

return this ->binsStrm.empty ();
58 }

void BitsStrm :: ClearStrm ()
60 {

return this ->binsStrm.clear ();
62 }

64 // checked access
Binary BitsStrm :: StrmAt(size_t somePos)

D.14 The BitsStrm module 118

66 {
return this ->binsStrm.at(somePos);

68 }
// unchecked access to bitsstrm -- so be careful

70 Binary BitsStrm :: operator [](size_t somePos) const
{

72 if (somePos < 0) {
throw std:: out_of_range("BitsStrm (): Failed range check");

74 } else {
return this ->binsStrm[somePos];

76 }
}

78

// -------
80 // OPERATOR OVERLOADING

// -------
82

// -------
84 // MATH OPS: arithmatic and assign

BitsStrm BitsStrm :: operator= (BitsStrm& other)
86 {

this ->binsStrm = other.binsStrm;
88 return *this;

}
90 BitsStrm BitsStrm :: operator= (deque <Binary >& otherStrm)

{
92 this ->binsStrm = otherStrm;

return *this;
94 }

96 // -------
// TRUTH OPS: boolean ops

98

100

102

// Mimic deque insertion: Wrappers for the deque/" stream" insertion
104 // to be used by classes that have this as a member (object)

deque <Binary >:: iterator BitsStrm :: Insert(deque <Binary >:: iterator here ,
106 Binary& binVal)

{
108 return this ->binsStrm.insert(here , binVal);

}
110 void BitsStrm :: Insert(deque <Binary >:: iterator here , size_t count ,

const Binary& binVal)
112 {

this ->binsStrm.insert(here , count , binVal);
114 return;

}
116 void BitsStrm :: Insert(deque <Binary >:: iterator here ,

deque <Binary >:: iterator first ,
118 deque <Binary >:: iterator last)

{
120 this ->binsStrm.insert(here , first , last);

return;
122 }

124 // Assignment via iterators
void BitsStrm :: Assign(deque <Binary >:: iterator iterFirst ,

126 deque <Binary >:: iterator iterLast)
{

128 this ->binsStrm.assign(iterFirst , iterLast);
return;

130 }
void BitsStrm :: Assign(size_t count , Binary &binToAssign)

132 {
this ->binsStrm.assign(count , binToAssign);

134 return;
}

136

138 // Get the binary numbers of the "stream"

140 // return the binary string -- unchecked access
// returns the binary number , usually of the first element in the "stream"

142 std:: string BitsStrm :: GetStrmString ()
{

144 return this ->StrmAt (0). GetBinStr ();
}

146 // return the binary string -- checked acces
// returns the binary number of the given strmpos

148 std:: string BitsStrm :: GetStrmString(size_t pos)
{

150 return this ->StrmAt(pos). GetBinStr ();
}

D.14 The BitsStrm module 119

152 // returns lots of binary strings -- checked access
// returns the binary numbers of the "stream"

154 // between the iterators (from where to where)
std:: string BitsStrm :: GetStrmString(deque <Binary >:: iterator first ,

156 deque <Binary >:: iterator last)
{

158 // somethng to hold it, deliminate , and a place to begin
std:: string stringToHoldIt;

160 std:: string delim = " ";
deque <Binary >:: iterator myIter = this ->Begin ();

162 // iterate through the "stream"
for (size_t strmpos =0; myIter <=last; strmpos++, myIter ++) {

164 // if strmpos is within the given range , add to the string
if (myIter >= first) {

166 // add to the string
stringToHoldIt.append(this ->StrmAt(strmpos). GetBinStr ());

168 if (myIter != last) {
stringToHoldIt.append(delim);

170 }
}

172 }
return stringToHoldIt;

174 }

176

// Get the decimal values of the "stream"
178

// returns a single decimal values -- unchecked access
180 // returns the decimal number , usually of the first element in the "stream"

unsigned long BitsStrm :: GetStrmNum ()
182 {

return this ->StrmAt (0). GetDec ();
184 }

// returns a single decimal value -- checked access
186 // returns the equivalent decimal value at the given strmpos

unsigned long BitsStrm :: GetStrmNum(size_t pos)
188 {

return this ->StrmAt(pos). GetDec ();
190 }

// from where to where (usually begin to end) -- checked access
192 // returns the (deque) of decimals for the "stream" between the iterators

deque <unsigned long > BitsStrm :: GetStrmNum(deque <Binary >:: iterator first ,
194 deque <Binary >:: iterator last)

{
196 // something to hold it and a place to begin

std::deque <unsigned long > dequeOfNums;
198 deque <Binary >:: iterator myIter = this ->Begin ();

// iterate
200 for (size_t strmPos =0; myIter <=last; strmPos++, myIter ++) {

// if strmPos is within the given range , add to our dequeOfNumbers
202 if (myIter >= first) {

// add to the dequeOfNumbers
204 dequeOfNums.insert(dequeOfNums.end(), this ->GetStrmNum(strmPos));

}
206 }

return dequeOfNums;
208 }

210

212

// "stream" iterators
214 deque <Binary >:: iterator BitsStrm ::Begin ()

{
216 return this ->binsStrm.begin ();

}
218 deque <Binary >:: const_iterator BitsStrm :: Begin() const

{
220 return this ->binsStrm.begin ();

}
222 deque <Binary >:: iterator BitsStrm ::End()

{
224 return this ->binsStrm.end();

}
226 deque <Binary >:: const_iterator BitsStrm ::End() const

{
228 return this ->binsStrm.end();

}
230 deque <Binary >:: reference BitsStrm ::Front()

{
232 return this ->binsStrm.front ();

}
234 deque <Binary >:: const_reference BitsStrm :: Front() const

D.14 The BitsStrm module 120

{
236 return this ->binsStrm.front ();

}
238 deque <Binary >:: reference BitsStrm ::Back()

{
240 return this ->binsStrm.back ();

}
242 deque <Binary >:: const_reference BitsStrm ::Back() const

{
244 return this ->binsStrm.back ();

}
246 deque <Binary >:: reverse_iterator BitsStrm :: RBegin ()

{
248 return this ->binsStrm.rbegin ();

}
250 deque <Binary >:: const_reverse_iterator BitsStrm :: RBegin () const

{
252 return this ->binsStrm.rbegin ();

}
254 deque <Binary >:: reverse_iterator BitsStrm ::REnd()

{
256 return this ->binsStrm.rend ();

}
258 deque <Binary >:: const_reverse_iterator BitsStrm ::REnd() const

{
260 return this ->binsStrm.rend ();

}
262

// -------
264 // Popping and Pushing

// -------
266

// Pop: with options of passing arguments to save what’s been popped
268

// Popping from the back
270 // standard pop -- no saving

void BitsStrm :: PopBack ()
272 {

binsStrm.pop_back ();
274 }

// pop a certain amount from provided "stream"
276 void BitsStrm :: PopBack(size_t someAmount , BitsStrm& bitsToSave)

{
278 RemoveFromBack ((unsigned long)someAmount , bitsToSave);

return;
280 }

// pop a single binary value
282 void BitsStrm :: PopBack(Binary binToSave)

{
284 RemoveFromBack(binToSave);

return;
286 }

// pop a single binary number and save it into argument
288 size_t BitsStrm :: PopBack(unsigned long& savedNum)

{
290 return (size_t)RemoveFromBack(savedNum);

}
292

// pop from back into provided "stream" (as much as given "stream" will hold)
294 void BitsStrm :: PopBack(BitsStrm& bitsToSave)

{
296 RemoveFromBack(bitsToSave);

return;
298 }

// Popping from the back
300 // standard pop from front of "stream" -- no saving

void BitsStrm :: PopFront ()
302 {

binsStrm.pop_front ();
304 }

// pop from back a certain amount into provided "stream"
306 void BitsStrm :: PopFront(size_t someAmount , BitsStrm& bitsToSave)

{
308 RemoveFromFront(someAmount , bitsToSave);

return;
310 }

// pop a single binary number and save it into argument
312 size_t BitsStrm :: PopFront(unsigned long& savedNum)

{
314 return (size_t)RemoveFromBack(savedNum);

}
316 // pop from "stream" front a single binary value

void BitsStrm :: PopFront(Binary binToSave)

D.14 The BitsStrm module 121

318 {
RemoveFromFront(binToSave);

320 return;
}

322 // pop from front into provided "stream" (as much as given "stream" will hold)
void BitsStrm :: PopFront(BitsStrm& bitsToSave)

324 {
RemoveFromFront(bitsToSave);

326 return;
}

328

// Push: standard insertion , aka insertion on request
330

// Pushing into the back
332 // push into back of "stream" as many values as requested (from given "stream ")

void BitsStrm :: PushBack(size_t numToAdd)
334 {

// checked addition
336 // only add to "stream" if number reasonable (in positive range)

if (numToAdd > 0) {
338 // for checked addition to the "stream"

for (size_t i=0; i<numToAdd; i++) {
340 this ->PushBack(Binary ());

}
342 }

return;
344 }

346 // push into back of "stream" a single binary value
void BitsStrm :: PushBack(Binary newBin)

348 {
// checked addition

350 // check for safety that given binary is a-ok
if (! newBin.HasFailed ()) {

352 // only get to here if it is a-ok
// if "stream" is unitialised

354 if (this ->IsEmpty ()) {
// literally assign memory to the "stream"

356 this ->Assign(1, newBin);
} else {

358 // otherwise safe to add , so add memory to it
this ->binsStrm.push_back(newBin);

360 }
}

362 return;
}

364 /* push into back of "stream" the new "stream"
*/

366 void BitsStrm :: PushBack(BitsStrm& bitsToAdd)
{

368 // checked addition
// only add if the "stream" exists to add with/to

370 if (! bitsToAdd.IsEmpty ())
{

372 // add onto end of our stream the new "stream"
this ->Insert(this ->End(), bitsToAdd.Begin(), bitsToAdd.End ());

374 }
return;

376 }
/* push into front of "stream" as many values as requested

378 */
void BitsStrm :: PushFront(size_t numToAdd)

380 {
// checked addition

382 // only add to stream if number is reasonable (positive range)
if (numToAdd > 0) {

384 return;
} else {

386 // now safe for checked addition to the "stream"
for (size_t i=0; i<numToAdd; i++) {

388 this ->PushBack(Binary ());
}

390 return;
}

392 }
/* push into front of "stream" the value requested

394 */
void BitsStrm :: PushFront(Binary newBin)

396 {
// checked addition

398 // check something there to add
if (! newBin.HasFailed ()) {

400 // only get here if the ’newBin ’ is a-ok
// if our "stream" is unitialised

D.14 The BitsStrm module 122

402 if (this ->IsEmpty ()) {
// literally assign memory to the "stream"

404 this ->Assign(1, newBin);
} else {

406 // otherwise it has memory , so we can add memory to it
this ->binsStrm.push_front(newBin);

408 }
}

410 return;
}

412 /* push provided "stream" onto front of our "stream"
*/

414 void BitsStrm :: PushFront(BitsStrm& bitsToAdd)
{

416 // checked addition
// check for safety that ’bitsToAdd ’ is initialised with values

418 if (! bitsToAdd.IsEmpty ()) {
// only get here if ’bitsToAdd ’ is a-ok

420 this ->Insert(this ->Begin(), bitsToAdd.Begin(), bitsToAdd.End ());
}

422 return;
}

424

426

// -------
428 // Private functions

// -------
430

// Access "stream" Components -- addition , removal
432 // (also can be used for i/o functions)

434 /* -------
* Remove elements from "stream"

436 * removes a certain number of bits , saves into (given) "stream"
*/

438 void BitsStrm :: RemoveFromBack(size_t numBitsToTake , BitsStrm& savingStrm)
{

440 // find a max size we need to go to
size_t tempSize = this ->Size ();

442 // make sure temp "stream" to store the binary values is empty
savingStrm.IsEmpty ();

444 // check number to add is reasonable
if (numBitsToTake <= 0) {

446 // if unreasonable request (can’t add zero or neg amounts)
return; // did not remove any , return 0

448 } else if (numBitsToTake >= tempSize) {
// if not enough bits , empty what can (aka clear "stream ")

450 savingStrm = this ->binsStrm;
return; // the entire "stream"

452 } else {
// safe , so remove amount desired

454 for (size_t i=0; i<numBitsToTake; i++) {
savingStrm.Insert(savingStrm.End(), this ->binsStrm[i]);

456 this ->PopBack (); // adjust our "stream" to reflect removal
}

458 return; // return proof desired amount removed
}

460 }
// pop a single (binary) value and return the information as a decimal

462 unsigned long BitsStrm :: RemoveFromBack(unsigned long& numToSaveInto)
{

464 Binary tmpBin = this ->Back ();
this ->PopBack ();

466 return tmpBin.GetDec ();
}

468

// remove from "stream" a binary number
470 // BETTER -- saves the ptr

void BitsStrm :: RemoveFromBack(Binary newBin)
472 {

// no need to check for NULL in newBinPtr
474 // simple removal of single binary value to provided pointer

newBin = this ->Back (); // save pointer
476 this ->PopBack (); // remove ptr from "stream"

return;
478 }

480 // Remove from "stream" to "stream" -- takes all values
// BETTER -- takes care of ptr values within "stream"

482 void BitsStrm :: RemoveFromBack(BitsStrm& savingStrm)
{

484 //check for safety
if (savingStrm.IsEmpty ()) {

D.14 The BitsStrm module 123

486 return;
} else {

488 // safe to pop out of our "stream" and into provided "stream"
size_t numToTake = savingStrm.Size ();

490 for (size_t i=0; i<numToTake; i++) {
savingStrm.Insert(savingStrm.End(), this ->binsStrm[i]);

492 this ->PopBack (); // adjust our "stream" to reflect removal
}

494 return;
}

496 }

498 // -------
// Save lots of pointers

500 // returns a "stream"
void BitsStrm :: RemoveFromFront(size_t numBitsToTake ,

502 BitsStrm& savingStrm)
{

504 // find a max size we need to go to
size_t tempSize = this ->Size ();

506 // make sure temp "stream" to store the binary values is empty
savingStrm.ClearStrm ();

508 // check number to add is reasonable
if (numBitsToTake <= 0) {

510 // if unreasonable request (can’t add zero or neg amounts)
return; // did not remove any , return 0

512 } else if (numBitsToTake >= tempSize) {
// if too many bits around , empty what can

514 savingStrm = this ->binsStrm; // aka the entire "stream"
return;

516 } else {
// remove amount desired

518 for (size_t i=0; i<numBitsToTake; i++) {
savingStrm.Insert(savingStrm.End(), this ->binsStrm[i]);

520 this ->PopBack (); // adjust our "stream" to reflect removal
}

522 return; // return proof desired amount removed
}

524 }
// pop a single (binary) value and return the information as a decimal

526 unsigned long BitsStrm :: RemoveFromFront(unsigned long& numToSaveInto)
{

528 Binary tmpBin = this ->Front ();
this ->PopFront ();

530 return tmpBin.GetDec ();
}

532 // pop and save the information from the "stream" into the single binary
void BitsStrm :: RemoveFromFront(Binary newBin)

534 {
// simple change of where pointers point to

536 newBin = this ->Front (); // save pointer and object
this ->PopFront ();

538 return;
}

540

// instead of popping and losing information , pop into provided "stream"
542 void BitsStrm :: RemoveFromFront(BitsStrm& savingStrm)

{
544 // check not given dud "stream"

if (savingStrm.IsEmpty ()) {
546 return;

} else {
548 // safe to pop out of our "stream" and into provided "stream"

size_t numToTake = savingStrm.Size ();
550 for (size_t i=0; i<numToTake; i++) {

savingStrm.Insert(savingStrm.End(), 1, this ->binsStrm[i]);
552 this ->PopFront (); // adjust our "stream" to reflect removal

}
554 return;

}
556 }

D.15 The Binary module 124

D.15 The Binary module

This is truly the backbone of the simulation. On this module, is everything based.

The focus is on storing a decimal (base-10) and its binary equivalent (base-2). To save

space, and to hold true to the bit nature, the binary is stored with a number of bools,

this is, true or false values that are on all computers 1 bit long. The advantage of

using bools is that its far easier to check the value is assigned than if the other 1-bit

value (char) was used, and the bools are themselves represented internally as 1 for

true and 0 for false. However, in assigning how long the binary word is, it is easier

use the size of the char, as this is an easier accessed standard definition than the bool.

Listing D.27: The basic ’Binary’ data: ’binary.h’ header file.
/* ***

2 * Sarah A Hugo
* #9 -042: Experimental Analysis of a 4G Mobile Network

4 * ENG 4903 USQ Research Project
**

6 * This code is freely available under the GNU General Public License.
**

8 * Binary.h
* -- header file for binary values

10 * --> overall look at class
* --> as C++ doesn’t come with them automatically

12 * the way I need to use them
**

14 * Turns a binary number itno a C++ base object. The only thing it lacks as a
* "proper" C++ container is the use of iterators.

16 ** */

18 #ifndef _BINARY_H_BASE_
#define _BINARY_H_BASE_

20

// for CHAR_BIT definition
22 #include <limits.h>

24 // for debuging
#include "debug.h"

26 // standard header -- i/o, types , exceptions , namespaces
#include "standard.h"

28

30 namespace Sim4G
{

32 // structure to hold the Binary:
// a decimal and its equivalent binary value

34 struct Binary
{

36 private:
// data members

38 unsigned long dec;
// positve characters , to display the binary version of the number

40 // (only as long as the size of our ’dec ’)
vector <bool > bin; // true is 1, false is 0 :)

42

// how to pack bits into each binary word
44 enum

{
46 // determined at runtime according to particular

// compilar and computer being run on
48 BINWORDSIZE = (size_t)(sizeof(unsigned long)),

BITSPERWORD = (size_t)(CHAR_BIT*sizeof(unsigned long)),
50 MAXWORDSIZE = BINWORDSIZE*BITSPERWORD

};
52 // long int , all positive (as must be for binary numbers)

// bin to dec , dec to bin , with/without parameters

D.15 The Binary module 125

54 void DecToBin ();
void DecToBin(unsigned long somedec);

56 unsigned long BinToDec ();
unsigned long BinToDec(Binary someBinChars);

58 unsigned long BinToDec(std:: string someBinStr);
public:

60 // pretend constructors
Binary ()

62 {
dec = 0;

64 DecToBin ();
}

66 Binary(unsigned long newDec)
{

68 dec = newDec;
DecToBin ();

70 }
// allow for straight access to decimal value

72 unsigned long GetDec ()
{

74 return dec;
}

76 // tweak access to binary: return the string of the binary value
std:: string GetBinStr ();

78

// STUCT RELATED FUNCTIONS
80 // in lieu of a constructor , set the values manually

void SetBin ();
82 void SetBin(unsigned long newDec);

// size of binary ’word’
84 unsigned long WordSize ();

// reset to the ’word’ to zero
86 void Reset ();

// are all of the binary values set to true? (computationaly intensive)
88 bool All ();

// are any of the binary values set to true? (not so intensive)
90 bool Any ();

// return true if there’s no binary value to handle
92 bool HasFailed ();

94 //...
//...

96 //...
//...

98

// BIT OPS: use the bit operations to do things
100

// bitwise rightshift: rightshift with binaries
102 Binary RShift (const Binary& other);

// bitwise rightshift: rightshift with unsigned long
104 Binary RShift (const unsigned long someval);

// bitwise leftshift: leftshift with binaries
106 Binary LShift (const Binary& other);

// bitwise leftshift: leftshift with unsigned long
108 Binary LShift (const unsigned long someval);

// bitwise OnesComplement: NOT in general
110 Binary OnesComp ();

// bitwise AND: ANDing with binaries
112 Binary AND (const Binary& other);

// bitwise AND: ANDing with unsigned longs
114 Binary AND (const unsigned long someval);

// bitwise OR: OR’s with binaries
116 Binary OR (const Binary& other);

// bitwise OR: OR’s with unsigned longs
118 Binary operator| (const unsigned long someval);

// bitwise XOR: XOR’s with binaries
120 Binary XOR (const Binary& other);

// bitwise XOR: XOR’s with unsigned longs
122 Binary XOR (const unsigned long someval);

124 // MATH OPS: assignment and arithmatic

126 // assignment of a unsigned long value only
Binary operator= (const unsigned long decvalue);

128 // addition: addition of binaries
Binary operator+ (const Binary& other);

130 // addition: addition of decimals
Binary operator+ (const unsigned long someval);

132 // addition: addition with equals sign
Binary operator += (const Binary& other);

134 // addition: addition with increments
/* Binary operator ++();

136 Binary operator ++();*/

D.15 The Binary module 126

// subtraction: subtraction of binaries
138 Binary operator - (const Binary& other);

// subtraction: subtraction of decimals
140 Binary operator - (const unsigned long someval);

// subtraction: subtraction with equals sign
142 Binary operator -= (const Binary& other);

// subtraction: subtraction with decrements
144 /* Binary operator --();

Binary operator --();*/
146 // multiplication: multiplication of binaries

Binary operator* (const Binary& other);
148 // multiplication: multiplication of decimals

Binary operator* (const unsigned long someval);
150 // multiplication: multiplication with equals sign

Binary operator *= (const Binary& other);
152 // division: division of binaries

Binary operator/ (const Binary& other);
154 // division: division of decimals

Binary operator/ (const unsigned long someval);
156 // division: division with equals sign

Binary operator /= (const Binary& other);
158

// TRUTH OPS: booleans
160

// equality test -- with binary
162 bool operator == (const Binary& other);

// equality test -- with decimal
164 bool operator == (const unsigned long someval);

// notequal test -- with binary
166 bool operator != (const Binary& other);

// notequal test -- with decimal
168 bool operator != (const unsigned long someval);

170

// FRIENDLY OPS:
172 // ...

174

// end of struct :: Binary
176

};
178 }

180 // end of _BINARY_H_BASE_
#endif

This is where the ’backbone’ is implemented, and where the decimal to binary (and

vice versa) conversion actually happens. This section took the most thought to ensure

the binary was an accurate representation of the decimal. Thankfully, C/C++ comes

with modulus (%) operator and bool-assignment (?), that took care of most of the work.

The syntax of the ? operator is as follows:

var = exp-to-check ? val-if-true : val-if-false;

It is this operator usage, in DecToBin(), that is the focal-point of the entire module.

Listing D.28: The basic ’Binary’ representation: ’binary.cpp’ implementation file.
1 /* ***

* Sarah A Hugo
3 * #9 -042: Experimental Analysis of a 4G Mobile Network

* ENG 4903 USQ Research Project
5 **

* This code is freely available under the GNU General Public License.
7 **

D.15 The Binary module 127

* Binary.cc
9 * -- source file for binary values

* --> extra class definitions
11 * --> because C++ doesn’t come with them automatically

**
13 * Turns a binary number into a C++ base object. The only thing it lacks as a

* "proper" C++ container is the use of iterators.
15 ** */

17 // my headers
#include "binary.h"

19 #include "standard.h"

21 // using namespace declarations
using std:: string;

23 using std:: vector;
// Sim4G

25 using Sim4G:: Binary;

27

// Struct related functions:
29 // retreiving information about the function for the user

31 // STUCT RELATED FUNCTIONS
// size of binary ’word’

33 unsigned long Binary :: WordSize ()
{

35 return MAXWORDSIZE;
}

37 // set the decimal value
void Binary :: SetBin ()

39 {
this ->dec = 0;

41 DecToBin (0);
}

43 void Binary :: SetBin(unsigned long newDec)
{

45 this ->dec = newDec;
DecToBin(newDec);

47 }

49 // reset to the ’word’ to zero
void Binary :: Reset()

51 {
this ->dec = 0;

53 DecToBin (0);
}

55

// return true if there’s no binary value to handle
57 bool Binary :: HasFailed ()

{
59 return bin.empty ();

}
61

// are any of the binary values set to true?
63 // (computationally intensive)

bool Binary ::All()
65 {

// ...
67 return false;

}
69

// are any of the binary values set to true?
71 // (not so intensive , but not as thorough)

bool Binary ::Any()
73 {

// ...
75 return true;

}
77

79 Binary Binary :: RShift (const Binary& other)
{

81 return Binary(this ->dec << other.dec);
}

83 // bitwise rightshift: rightshift with unsigned long
Binary Binary :: RShift (const unsigned long someval)

85 {
return Binary(this ->dec << someval);

87 }
// bitwise leftshift: leftshift with binaries

89 Binary Binary :: LShift (const Binary& other)
{

91 return Binary(this ->dec >> other.dec);
}

93 // bitwise leftshift: leftshift with unsigned long

D.15 The Binary module 128

Binary Binary :: LShift (const unsigned long someval)
95 {

return Binary(this ->dec >> someval);
97 }

// bitwise OnesComplement: NOT in general
99 Binary Binary :: OnesComp ()

{
101 return Binary (~(this ->dec));

}
103 // bitwise AND: ANDing with binaries

Binary Binary ::AND (const Binary& other)
105 {

return Binary(this ->dec & other.dec);
107 }

// bitwise AND: ANDing with unsigned longs
109 Binary Binary ::AND (const unsigned long someval)

{
111 return Binary(this ->dec & someval);

}
113 // bitwise OR: OR’s with binaries

Binary Binary ::OR (const Binary& other)
115 {

return Binary(this ->dec | other.dec);
117 }

// bitwise OR: OR’s with unsigned longs
119 Binary Binary :: operator| (const unsigned long someval)

{
121 return Binary(this ->dec | someval);

}
123 // bitwise XOR: XOR’s with binaries

Binary Binary ::XOR (const Binary& other)
125 {

return Binary(this ->dec ^ other.dec);
127 }

// bitwise XOR: XOR’s with unsigned longs
129 Binary Binary ::XOR (const unsigned long someval)

{
131 return Binary(this ->dec ^ someval);

}
133

// MATH OPS: assignment and arithmatic
135

// assignment of a unsigned long value only
137 Binary Binary :: operator= (const unsigned long decvalue)

{
139 this ->dec = decvalue;

BinToDec(this ->dec);
141 return *this;

}
143 // addition: addition of binaries

Binary Binary :: operator+ (const Binary& other)
145 {

return Binary(this ->dec + other.dec);
147 }

// addition: addition of decimals
149 Binary Binary :: operator+ (const unsigned long someval)

{
151 return Binary(this ->dec + someval);

}
153 // addition: addition with equals sign

Binary Binary :: operator += (const Binary& other)
155 {

return Binary(this ->dec + other.dec);
157 }

// addition: addition with increments
159 /* Binary Binary :: operator ++ {

// postincrement
161 this.dec++;

DecToBin(this.dec);
163 return *this;

}
165 Binary Binary :: operator ++ {

// preincrement
167 ++this.dec;

DecToBin(this.dec);
169 return *this;

}*/
171 // subtraction: subtraction of binaries

Binary Binary ::operator - (const Binary& other)
173 {

return Binary(this ->dec - other.dec);
175 }

D.15 The Binary module 129

// subtraction: subtraction of decimals
177 Binary Binary ::operator - (const unsigned long someval)

{
179 return Binary(this ->dec - someval);

}
181 // subtraction: subtraction with equals sign

Binary Binary ::operator -= (const Binary& other)
183 {

return Binary(this ->dec - other.dec);
185 }

// subtraction: subtraction with decrements
187 /* Binary Binary ::operator -- {

this.dec --;
189 DecToBin(this.dec);

return *this;
191 }

Binary Binary ::operator -- {
193 --this.dec;

DecToBin(this.dec);
195 return *this;

}*/
197 // multiplication: multiplication of binaries

Binary Binary :: operator* (const Binary& other)
199 {

return Binary(this ->dec * other.dec);
201 }

// multiplication: multiplication of decimals
203 Binary Binary :: operator* (const unsigned long someval)

{
205 return Binary(this ->dec * someval);

}
207 // multiplication: multiplication with equals sign

Binary Binary :: operator *= (const Binary& other)
209 {

return Binary(this ->dec * other.dec);
211 }

// division: division of binaries
213 Binary Binary :: operator/ (const Binary& other)

{
215 unsigned long temp;

// avoid division by zero errors by simply returning zero
217 if (other.dec ==0) {

return Binary (); // zeroed binary number
219 } else {

// otherwise return the division result
221 temp = (unsigned long)(this ->dec / other.dec);

return Binary(temp);
223 }

}
225 // division: division of decimals

Binary Binary :: operator/ (const unsigned long someval)
227 {

return Binary(this ->dec / someval);
229 }

// division: division with equals sign
231 Binary Binary :: operator /= (const Binary& other)

{
233 return Binary(this ->dec / other.dec);

}
235

// TRUTH OPS: booleans
237

// equality test -- with binary
239 bool Binary :: operator == (const Binary& other)

{
241 return (this ->dec == other.dec);

}
243 // equality test -- with decimal

bool Binary :: operator == (const unsigned long someval)
245 {

return (this ->dec == someval);
247 }

// notequal test -- with binary
249 bool Binary :: operator != (const Binary& other)

{
251 return (this ->dec != other.dec);

}
253 // notequal test -- with decimal

bool Binary :: operator != (const unsigned long someval)
255 {

return (this ->dec != someval);
257 }

D.15 The Binary module 130

259

// ---- PRIVATE FUNCS
261 // For Decimal to Binary conversion , and vice versa

263 /* this.dec has the value of the decimal to be converted to the
* ’binary ’ character array

265 */
void Binary :: DecToBin ()

267 {
// iterate thru the array , checking for modulos

269 unsigned long mask = 1;
// if intel: mask = (double) 1 << (BINWORDSIZE - 1);

271 for (unsigned long i=0; i<MAXWORDSIZE; i++) {
bin.push_back(this ->dec & mask ? true : false);

273 }
return;

275 }

277 /* If someone requests the binary of a decimal they’ve provided
*/

279 void Binary :: DecToBin(unsigned long somenum)
{

281 this ->dec = somenum;
DecToBin ();

283 return;
}

285

/* If someone requests the decimal without details just return our
287 * own decimal without fussing around

*/
289 unsigned long Binary :: BinToDec ()

{
291 return this ->dec;

}
293

/* If someone requests a strange decimal
295 * make it our own decimal and return it

*/
297 unsigned long Binary :: BinToDec(Binary somebin)

{
299 if (somebin.dec != this ->dec) {

// begin the conversion process
301 this ->dec = somebin.dec;

DecToBin(somebin.dec);
303 return this ->dec;

} else {
305 // otherwise return our own decimal ’cause it was the same

return this ->dec;
307 }

}
309

// Converting given binary string to an actual decimal number
311 // (provided binary string is as long as we need)

unsigned long Binary :: BinToDec(std:: string someBinStr)
313 {

// check string is long enough to fit
315 size_t strSize = someBinStr.size ();

if (strSize < MAXWORDSIZE) {
317 // nasty fix: because string resize will fill with 1 character only ,

// and I want to fill with multiple values
319 std:: string tmpStr = someBinStr;

for (; strSize < MAXWORDSIZE;) {
321 // so , to make string longer , as much as needed

// and fill with our ’temp’ string
323 someBinStr.append(tmpStr);

strSize = someBinStr.size ();
325 }

// catch -all statement for greater strings than desired
327 someBinStr.resize(MAXWORDSIZE);

strSize = someBinStr.size ();
329 } else if (strSize > MAXWORDSIZE) {

// if string not too long
331 // crop string to suit (will have to accept loss of values)

someBinStr.resize(MAXWORDSIZE);
333 strSize = someBinStr.size ();

}
335 // the string is now the size of MaxWordSize

// knowing this , it can be inserted directly into our own values
337 int newNum =0;

std:: string :: reverse_iterator strRItr = someBinStr.rend ();
339 for (unsigned int i = 0; i<someBinStr.size (); i++, strRItr ++) {

// iterate through binary string (back -to -front) comparing each
341 // character to ’1’ so know what we need to do

if (* strRItr == ’1’) {

D.15 The Binary module 131

343 // transfer to our bin , and add to decimal
this ->bin.insert(this ->bin.begin(), true);

345 newNum += (i*2);
} else {

347 // transfer to bin
this ->bin.insert(this ->bin.begin(), false);

349 }
}

351 // equivalent of new binary is in newNum , so save values and return
this ->dec = newNum;

353 return this ->dec;
}

355

// convert the char array to string for easier C++ input/output
357 std:: string Binary :: GetBinStr ()

{
359 std:: string mystr;

// check initialisation (empty string , not rubbish values)
361 if (!mystr.empty ()) {

// *not* empty (something in it), initialisation wrong , so clear it
363 mystr.clear ();

}
365 // empty string , so its an easy insert (just one value at a time)

for (size_t i=0; i<MAXWORDSIZE; i++) {
367 // insert equivalent of the bool value into string as a character

if (bin[i]) {
369 mystr.append(1, ’1’);

} else {
371 mystr.append(1, ’0’);

}
373 }

return mystr;
375 }

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Nomenclature
	Chapter Introduction
	Aims and Objectives
	Overview of the Dissertation

	Chapter Background
	Mobile Communications
	Terminology

	Frequency, EM, and the Cellular Concept
	The Mobile 'Radio'
	Antennas
	The Cellular Concept

	Fading and Interference
	Multipath Propagation

	Signals, Channels and Channel Capacity
	Signal vs Channels
	Capacity and Shannon's Limit

	Conclusions

	Chapter OFDM
	OFDM: What Is It?
	Sampling a Signal
	The Sampling Theorem

	OFDM: The Model
	Conclusions

	Chapter MIMO
	MIMO: What Is It?
	The SISO Problem
	The Antenna Array
	MIMO: The Model

	Conclusions

	Chapter MIMO-OFDM: The Concept
	MIMO and OFDM Together
	Drawbacks
	Conclusion

	Chapter Simulation
	Programming in C++
	The Light In The Tunnel

	The Final Implementation
	Binaries, Bits, and Streams
	Streaming Data
	Streams as Signals

	Further Thought
	Impressions and Recommendations

	Chapter Simulation Results
	Ouptut
	Performance Analysis
	Conclusions

	Chapter Conclusions
	Areas For Improvement
	Final Thoughts

	List of References
	Appendix Project Specification
	Appendix Additional Information
	Types of Fading and Interference
	ISI: Inter-Symbol Interference
	Gaussian Fading
	Ricean Fading
	Rayleigh Fading

	Appendix Compilation and Output
	Compilation in VC 2008 Express
	Compilation With MinGW and G++
	Running The Program

	Actual Output
	Converting Data to Graphical

	Appendix Source Code
	The makefile
	The allvals module
	The standard module
	The debug module
	The Sim4G module
	The Simulation module
	The Mimo module
	The Antenna module
	The Channel module
	The Signal module
	The Noise module
	The Ofdm module
	The Ber module
	The BitsStrm module
	The Binary module

