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Abstract

In applications of centre manifold theory we need more flexible er-
ror estimates than that provided by, for example, the Approximation
Theorem 3 by Carr [4, 6]. Here we extend the theory to cover the case
where the order of approximation in parameters and that in dynam-
ical variables may be completely different. This allows, for example,
the effective evaluation of low-dimensional dynamical models at finite
parameter values.
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1 Introduction

Interest in the dynamical behaviour of a physical system usually lies in the rel-
atively low-dimensional evolution after heavily damped modes have become
insignificant. There are many successful applications of centre manifold tech-
niques to create models of these relatively simple dynamics. We here mention
some applications to physical fluid mechanics. Iooss [16, 17], and Laure [18]
analysed the dynamics of Taylor vortices in Taylor-Couette flow, whereas
Chossat [7] and Hill [13] discuss the non-axisymmetric dynamics involving
mode competition by using centre manifold theory. Mode interactions in the
dynamics of convection in porous media are analysed with centre manifolds
by Neel [26, 27, 28] and Graham & Steen [12]. Arneodo et al [1, 2, 3] re-
duced the dynamics of triple convection down to a set of three coupled odes,
numerically verified the modelling and then proved the existence of chaos.
Roberts et al discussed centre manifolds of forced dynamical systems [9], and
derived low-dimensional models using centre manifold techniques for contam-
inant dispersion in channels [24], shear dispersion in pipes [25], thin film fluid
dynamics [33], coating flows over a curved substrate in space [35, 20], and
Mei, Roberts & Li [22, 23] derived models for turbulent shallow water flow
written in terms of vertically averaged quantities derived from the k-ǫ model
for turbulent flow. Such applications assure us that centre manifold theory
provides a useful route to the low-dimensional modelling of high-dimensional
dynamical systems.

Centre manifold theory guarantees the existence of low-dimensional mod-
els, matches the solutions of original and the low-dimensional systems, and
quantifies errors in the approximation. Algebraic techniques to construct
low-dimensional models are based upon the theory. In problems specified
in the standard form (8), the centre manifold may be calculated simply
by iteration, see Carr [4] for example. For the more directly applicable
form u̇ = Lu + f (u, ǫ), solutions in the form of an asymptotic power series
are found using methods developed by Coullet & Spiegel [8] (and reinvented
by Leen [19]). The derivation of initial conditions for such low-dimensional
models is given through projecting the initial condition of the system onto the
centre manifold [10, 30, 31, 34]. But many of the applications require more
flexible errors estimates. For example, physical models recoverd by evalua-
tion at a finite value of a supposedly asymptotically small parameter often
need high order approximations in the parameter [24, 32, 22, 33, 23, 21].
Thus asymptotic errors estimates need to be made to high order in some
parameters and only low order in other variables. In Section 3 we extend
a theorem of Carr & Muncaster [4, 5] to rigorously support such flexible
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approximations.

2 A simple example

To introduce the issues, consider the well known prototype bifurcation prob-
lem

ẋ = ǫx− xy , ẏ = −y + x2 , (1)

where ǫ is a parameter. By adjoining the trivial equation, it becomes:

ǫ̇ = 0 , ẋ = ǫx− xy , ẏ = −y + x2 . (2)

According to the distribution of the eigenvalues of the system, we may seek
a centre manifold of form y = h(x, ǫ). Substituting this into the system (2)
we deduce that h must satisfy

h = x2 − ∂h

∂x
x(ǫ− h) . (3)

Solving this iteratively leads to the approximations

h(0) = 0 , h(1) = x2 , h(2) = x2 − 2ǫx2 + 2x4 , etc. (4)

Now elementary calculation shows that the above approximations h(n) sat-
isfy (3) to a residual O (|(ǫ, x)|n+2) as (ǫ, x) → 0; an error equivalently ex-
pressed as O (ǫn+2 + xn+2) since a term cǫp

′

xq′ (for some constant c 6= 0)
is O (ǫp + xq) only if p′/p + q′/q ≥ 1. Therefore the centre manifold is
y = h(x, ǫ) = h(n) +O (|(ǫ, x)|n+2) by, for example, Theorem 3 of [5, p264].

The limitation in applications is that the established theorem on approx-
imation strongly couples the order of truncation in both parameters and
variables—the “weight” of the parameter and variable is the same in the
error estimate. Some flexibilty may be introduced by a nonlinear transfor-
mation of the parameters; for example, introduce δ =

√
ǫ and instead of (2)

study
δ̇ = 0 , ẋ = δ2x− xy , ẏ = −y + x2 . (5)

The resultant iterative solution of (3) is identical to (4). The only difference is
that the approximation theorem asserts the errors in h(n) are O (|(δ, x)|2n+2)
as (δ, x) → 0, that is, O (ǫn+1 + x2n+2). Thus certain trivial nonlinear trans-
formations make no difference to the algebraic analysis but do affect the error
estimate. There must be more flexibility in the errors than has so far been
proved.
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A more flexible error bound to include the effects of both ǫ and x to
any desired orders is to express and seek errors as O (xq, ǫp). Note that
f = O (xq, ǫp) means that any terms in f of the form cǫp

′

xq′ (for some constant
c 6= 0) must satisfy p′ ≥ p or q′ ≥ q. For example, we may deduce, supported
by Theorem 1 herein,

h = x2(1 − 2ǫ+ 4ǫ2) + x4(2 − 16ǫ+ 88ǫ2) + O
(

x6, ǫ3
)

. (6)

This kind of error allows us separately to choose the orders of the parameter ǫ
and the variable x which we want to include in the centre manifold. For
example, here we may compute to higher orders in ǫ, observe the pattern
of coefficients in this simple problem, and realise [29] that the above is the
low-order Taylor polynomial in ǫ of

h =
x2

1 + 2ǫ
+

2x4

(1 + 2ǫ)2(1 + 4ǫ)
+ O

(

x6
)

. (7)

Such approimations to high-order in parameters and low-order in dynamical
variables were used, before proof, and are essential to the analyses in [24, 32,
22, 33, 23, 21].

3 The flexible extension

Consider dynamical systems expressed in the form

ẋ = Ax + f(x,y, ǫ) ,

ẏ = By + g(x,y, ǫ) , (8)

where x ∈ IRm, y ∈ IRn, ǫ ∈ IRl and A and B are constant matrices such
that all the eigenvalues of A have zero real parts, and all eigenvalues of
B have negative real parts. Functions f and g are nonlinear for x, y, ǫ

and f (0, 0, 0) = g(0, 0, 0) = f ′(0, 0, 0) = g′(0, 0, 0) = 0 (where f ′ =
[fx,fy ,fǫ], and similarly for g′ and other Jacobians).

For any function φ : IRm× IRl → IRn which is a continuously differentiable
function and φ(0, 0) = φ′(0, 0) = 0, define

(Hφ) = φx(x, ǫ)[Ax + f(x,φ(x, ǫ), ǫ)] −Bφ(x, ǫ) − g(x,φ(x, ǫ), ǫ) .

Also let O (sq, ǫp) denote any terms of the form cǫp1

1 . . . ǫpl

l s
q1

1 . . . sqm

m (where
the constant c 6= 0) which satisfy p1 + · · · + pl ≥ p or q1 + · · · + qm ≥ q and
pi, qj ≥ 0.
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Theorem 1 (Approximation) Suppose that

(Hφ)(x, ǫ) = O(xq, ǫp) as (x, ǫ) → 0 ,

where p ≥ 1, q > 1, then

|h(x, ǫ) − φ(x, ǫ)| = O (xq, ǫp) as (x, ǫ) → 0 .

That is, the errors in the approximation φ to a centre manifold h is the same

as the order of the residuals of the equations of the dynamical system.

Proof: This proof is adapted from Carr [4, pp25–28].

Let θ : IRm × IRl → IRn be a continuously differentiable function with
compact support such that

θ(x, ǫ) = φ(x, ǫ) for |(x, ǫ)| small .

Set

N(x, ǫ) = θx(x, ǫ) [Ax + F (x, θ(x, ǫ), ǫ)]

− Bθ(x, ǫ) − G (x, θ(x, ǫ), ǫ) , (9)

where

F (x,y, ǫ) = f

(

xψ
(

x

δ

)

,y, ǫ
)

,

G(x,y, ǫ) = g

(

xψ
(

x

δ

)

,y, ǫ
)

,

where ψ : IRm → [0, 1] is a infinitely differentiable function with ψ(x)=1
when |x| ≤ 1 and ψ(x) = 0 when |x| ≥ 2 and δ is a positive real number.
The properties of F and G are the same as in [4, p18] for ǫ small. So
N(x, ǫ) = O (xq, ǫp) as (x, ǫ) → 0.

For a > 0 and b > 0 let Γ be the set of Lipschitz functions h : IRm ×
IRl → IRn with Lipschitz constant b, |h(x, ǫ)| ≤ a for (x, ǫ) ∈ IRm × IRl and
h(0, 0) = 0. With the supremum norm ‖ . ‖, Γ is a complete space.

For h ∈ Γ and x0 ∈ IRm, let x(t,x0,h) be the solution of

ẋ = Ax + F (x,h, ǫ) , x(0,x0,h) = x0 .

The bounds on F and h ensure that the solutions of the above equation
exists for all time t. Define an operator T on Γ by

(Th)(x0) =
∫ 0

−∞

e−BsG (x(s,x0,h),h(x(s,x0,h)), ǫ) ds .
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We know that T is a contraction mapping and the centre manifold y =
h(x, ǫ) is a fixed point of T for a, b and δ small enough from the proof of
the existence theorem [4, pp.16–19]. Define

SZ = T (Z + θ) ,

for Z such that Z + θ ∈ Γ. The domain of S is a closed subset of Γ since
θ ∈ Γ. Since |SZ1 − SZ2| = |T (Z1 + θ) − T (Z2 + θ)|, thus S is also a
contraction mapping. For K > 0 let1

Y =
{

Z ∈ Γ | |Z(x, ǫ)| ≤ K(xq, ǫp), ∀(x, ǫ) ∈ O ⊂ IRm × IRl
}

,

where O is a neighbourhood of the origin in IRm × IRl. Since N(x, ǫ) =
O(xq, ǫp) as (x, ǫ) → 0, then

|N(x, ǫ)| ≤ C1(x
q, ǫp) , (x, ǫ) ∈ O (10)

where C1 is a constant. Thus Y is not empty because N ∈ Y ⊂ Γ by defining
θ(x, ǫ) such that C1 ≤ K. If we can find a constant K such that S maps Y
into Y , then ∃ Z0 ∈ Y is a fixed point of S, and

Z0 = S(Z0) = T (Z0 + θ) − θ ,

that is, T (Z0 + θ) = Z0 + θ ,

i.e., Z0 + θ is a centre manifold of (8), let h = Z0 + θ,

|h(x, ǫ) − θ(x, ǫ)| = Z0 ≤ K(xq, ǫp) .

To finish the proof define

Q(x,Z, ǫ) = θx(x, ǫ) [F (x, θ + Z, ǫ) − F (x, θ, ǫ)] − N(x, ǫ)

+ G (x, θ + Z, ǫ) − G (x, θ, ǫ) .

Then

|Q(x,Z, ǫ)| ≤ |Q(x, 0, ǫ)| + |Q(x,Z, ǫ) − Q(x, 0, ǫ)|
= |N(x, ǫ)| + |Q(x,Z, ǫ) − Q(x, 0, ǫ)| . (11)

From the properties of F and G on p18 in [4] and θ′(0, 0) = 0, we have

|Q(x,Z, ǫ) − Q(x, 0, ǫ)| ≤ k(δ)|Z| for |Z| ≤ δ . (12)

1K(xq, ǫp) denotes the product of K and sum of finite terms cǫ
p1

1
· · · ǫpl

l x
q1

1
· · ·xqm

m ,
where p1 + · · · + pl ≥ p or q1 + · · · + qm ≥ q and pi,qj ≥ 0, c is a non-zero constant.
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Using (10), (11) and (12),

|Q(x,Z, ǫ)| ≤ (C1 +Kk(δ))(xq, ǫp) , for Z ∈ Y . (13)

Using the same calculations as (2.5.9) on p27 [4], for each r > 0, there is a
constant M(r) such that

|x(t,x0, ǫ)| ≤M(r)|x0|e−γt , t ≤ 0 (14)

where γ = r + 2M(r)k(δ) and x(t,x0, ǫ) is the solution of

ẋ = Ax + F (x,Z(x, ǫ) + θ(x, ǫ), ǫ) , x(0,x0, ǫ) = x0 .

Using (2.3.6) on p18 and (2.5.3) on p26 in [4], and (13), (14), if Z ∈ Y

|(SZ)(x0, ǫ) ≤
∣

∣

∣

∣

∫ 0

−∞

e−Bs(C1 +Kk(δ))(xq, ǫp) ds
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ 0

−∞

e−Bs(C1 +Kk(δ))M(r)qe−qγs(xq
0, ǫ

p) ds

∣

∣

∣

∣

≤ C(C1 +Kk(δ))M(r)q(β − γq)−1(xq
0, ǫ

p) .

provided δ and r small enough so that β − γq > 0. Choose O and δ small
enough and K large enough such that K ≥ C(C1 +Kk(δ))M(r)q(β− γq)−1.
Therefore S : Y → Y . Hence Theorem 1 holds. ♠

More general theorems allowing varying orders of truncations within pa-
rameters and dynamical variables may be also useful. However, most such
cases can be easily established by simple nonlinear transformations of the
parameters along the same lines as the example in (5).

In applications, such as many fluid dynamics problems, we need the-
ory not only dealing with infinite dimensional problems, but also infinite
dimensional centre manifolds. Carr [6] presented the corresponding results
for infinite dimensional problems, and analysed two problems arising from
partial differential equations for finite dimensional centre manifolds. The
restrictions upon the nonlinear terms f is that f has order 2 continuous
derivative and f (0) = f ′(0) = 0. More recently, Gallay [11] gave an exten-
sion of the existence theorem to infinite dimensional centre manifolds, but a
bounded restriction on the nonlinear terms is required. This condition limits
its rigorous application. Scarpellini [36] apparently places significantly less
restrictions upon the nonlinearities in the dynamical equations, but while he
addresses infinite dimensional centre manifolds, the results are severely con-
strained by requiring finite dimensional stable dynamics. Hărăguş [14, 15]
has developed theory supporting infinite dimensional models, such as the
Korteweg-de Vries equation, but only by placing extreme restrictions upon
the linear operators. We identify the extension of the theorems to infinite
dimensional centre manifolds as a significant problem for future research.
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