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A normal form of thin fluid film equations

provides initial conditions

A. J. Roberts∗

February 8, 2008

Abstract

We use dynamical systems theory to construct the normal form
of the Navier–Stokes equations for the flow of a thin layer of fluid
upon a solid substrate. The normal form equations illuminate the
fluid dynamics by decoupling the long-term flow of interest from the
rapid viscous decay of the transient shear modes. The normal form
clearly shows the centre manifold of the lubrication model and shows
the result that the initial condition for the fluid thickness of the lu-
brication model is not the initial physical fluid thickness, but instead
is modified by the initial lateral shear flow. With these initial condi-
tions, better forecasts will be made using the lubrication model. This
dynamical systems approach will also enable similar illumination of
other complicated models of dynamics.
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1 Introduction

The flow of a thin layer of fluid is important in numerous industrial and
natural processes: industrial applications include the coating processes of
autobodies, beverage containers, sheet goods and films, decorative coating,
and gravure roll coating; biomedical applications include the liquid films

Tony Roberts, February 8, 2008



1 Introduction 3

covering the cornea of the eye or protecting the linings of the lungs [5]. A
variety of mathematical models of the fluid dynamics have been developed to
aid understanding and prediction of the flow. For examples see the extensive
reviews of Chang [2], Ruschak [15] or Oron, Davis and Bankoff [9]. On a flat
substrate and in one lateral dimension the usual model for the evolution of
a viscous fluid film’s thickness η(x, t), driven only by surface tension, is the
following nondimensional “lubrication” model [14, e.g.]

∂η

∂t
≈ −1

3
We

∂

∂x

(

η3 ∂3η

∂x3

)

, (1)

where the Weber number We measures the strength of surface tension in the
thin film flow. This is a considerable simplification of the governing equations
when compared to the full Navier–Stokes equations.

Consider making a forecast with the lubrication model (1) from some
initial state of the fluid, say with physical thickness η0. Surely one just sets
the initial field η(x, 0) to the initial thickness of the actual fluid η0(x). Herein
we discover this is incorrect and that instead the correct initial condition for
the lubrication model (1) is more accurately

η(x, 0) ≈ η0 − Re
∂

∂x

∫ η0

0

(η0y − 1
2
y2)u0 dy , (2)

where u0(x, y) is the initial lateral velocity field of the fluid, and Re is an
appropriate Reynolds number. This initial condition accounts for the flow of
fluid in the transient viscous decay of the initial velocity field.

For example, two colliding sheets of fluid form a hump. Suppose the
initial fluid state is that of a constant thickness, η0 constant, and Couette
flow, u0 = U0f(x)y/η0 where f(x) describes the lateral variations in strength
of the initial lateral shear flow. Then from (2) the corresponding initial
thickness for the model (1) is

η(x, 0) ≈ η0 − Re
5U0η

3
0

24
f ′(x) . (3)
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1 Introduction 4

Two colliding sheets of fluids corresponds to a localised and negative deriva-
tive f ′(x); in this case the initial condition (3) says the best forecast is
obtained by starting the model from an initial condition with a hump pro-
portional to −f ′(x). This hump accounts for the transient collection of fluid
at the collision as the lateral velocity decays through viscosity. This physi-
cally reasonable result agrees with earlier work [17, 16].

Here we develop analysis, Section 3.3, to determine that the parabolic
weight function is correct in the integral of (2). Further, we introduce and
use a framework, Section 3, to show that (2) is just the first approximation
in an asymptotic series for the correct prescription of the initial conditions
for the lubrication model (1), see Section 4. The theoretical framework is
that of the normal form transformation in dynamical systems with centre
manifolds [4, 3]. The continuity equation of incompressible fluid dynamics
is an algebraic equation; thus, we make the novel application of the normal
form transformation to differential algebraic systems.

Because of the complicated detail and form of the fluid dynamics equa-
tions, we introduce the normal form transformation in Section 2 using a
relatively simple example dynamical system. The transformation is a near
identity transformation with the aim of nonlinearly decoupling the dynami-
cal equations as far as possible. In systems with a centre manifold, the centre
manifold model appears immediately, see the example of Section 2.1, as first
recognised by Elphick et al. [4]. Cox and Roberts [3] then recognised that
the normal form also immediately provides the correct initial conditions for
a model, see the example of Section 2.2. The example is a coupled differen-
tial algebraic system; in Sections 2.3–2.4 we show that the normal form may
none-the-less be constructed in the usual manner.

Then in Section 3 we introduce the fluid equations and develop the nor-
mal form transformation that decouples the viscously decaying dynamics of
lateral shear from the long lasting slow evolution of the thickness of the fluid
film. When decoupled, the arguments of Section 4 provide initial conditions
for the lubrication model (1). Equation (2) gives the leading nontrivial terms
in the asymptotic expression for the initial condition.
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2 An example introduces the normal form 5

2 An example introduces the normal form

Here we explore a straightforward artificial example (introduced in [16]) to
illustrate the techniques used later in the normal form derivation of the initial
conditions (2) for the lubrication model (1). This example reflects in detail
many essential aspects of the relation between the normal form and initial
conditions, and how to use the freedom inherent in the derivation. Someone
very familiar with normal form transformations may skip this section.

Consider the following index 2 differential-algebraic system which is struc-
turally analogous to the thin fluid film equations (45–50) introduced in Sec-
tion 3 (variable subscripts denote differentiation):

ut + ǫu2 + uv + ǫp +
(
1 + ǫ2

)
u + ǫη = 0 , (4)

vt + ǫuv + v2 + p +
(
1 + ǫ2

)
v = 0 , (5)

ǫu + v = 0 , (6)

ηt + ǫuη − v = 0 . (7)

Some trajectories of solutions are shown in Figure 1. In this section u(t),
v(t), p(t) and η(t) represent analogues of a fluid film’s velocity, pressure
and thickness. The small parameter ǫ is introduced to mimic slow lateral
variations in the fluid thickness and flow. The normal form transformation
we explore in this section clarifies the long term evolution of the above finite
set of ordinary differential evolution equations.

Low-dimensional dynamics: When ǫ = 0 , the system (4–7) has the equi-
librium solutions η = const, u = v = p = 0 (mimicking a uniform motionless
fluid layer of thickness η). These equilibria, call the set of them M0, are sta-
ble: linearising, putting ǫ = 0 and seeking nontrivial solutions proportional
to exp(λt) leads to requiring the determinant

∣
∣
∣
∣
∣
∣
∣
∣

λ + 1 0 0 0
0 λ + 1 0 0
0 1 1 0
0 −1 0 λ

∣
∣
∣
∣
∣
∣
∣
∣

= λ(λ + 1) = 0 . (8)
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Figure 1: simulations of the example system (4–7) for ǫ = 0.4 over time
interval 6 at time steps of ∆t = 0.2 and projected onto the ηu-plane. This
shows the exponential quick collapse of states onto the low-dimensional centre
manifold (solid curve) given by (9).

This shows: the rapid O
(
e−t

)
decay to any of the equilibria is determined

by the u-equation (4); equation (7) determines η is a neutral mode; whereas
the other two equations do not contribute dynamics because of the need to
satisfy the algebraic ‘continuity’ equation (6). For small ǫ 6= 0 , instead of
η being constant, we thus expect that η will evolve slowly on a nearby and
similarly exponentially attractive set of states, called the centre manifold.
This is confirmed by the numerical simulations shown in Figure 1. We soon,
Section 2.1, confirm this nearby centre manifold of slow long term evolution
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is

u = −ǫη
(
1 − 3ǫ2

)
+ ǫ3η2 + O

(
ǫ5

)
, (9)

v = ǫ2η
(
1 − 3ǫ2

)
− ǫ4η2 + O

(
ǫ5

)
, (10)

p = −ǫ2η
(
1 − ǫ2

)
+ O

(
ǫ5

)
. (11)

On this centre manifold the slow model evolution is

ηt = ǫ2(1 + η)η − ǫ4(1 + η)(3 + η) + O
(
ǫ5

)
. (12)

By the centre manifold relevance theorem [7, Chapt. 5, e.g.] or [1], we expect
the long term behaviour of all nearby solutions are described by (9–12).

Elphick et al. [4] noted that low-dimensional centre manifold models such
as (9–12) are an immediate consequence of transforming differential equations
into a normal form. Cox & Roberts [3] observed that the projection of initial
conditions onto such models also immediately follows from such a normal
form. However, neither group explicitly addressed dynamics governed by
systems of differential-algebraic equations. Here we demonstrate how the
techniques adapt easily to differential-algebraic systems such as both (4–7)
and also incompressible fluid dynamics, see Section 3. We illuminate the
dynamics and modelling of such systems with a normal form transformation.

2.1 Interpret the normal form transformation

In Section 2.3 we will show how to construct the near identity transform to
new dynamical variables that simplifies the description of the dynamics. But
first we show how the resultant transformation illuminates the dynamics by
decoupling the long-term evolution from the short-term decaying transients,
and by decoupling the algebraic component of the governing equations. Sub-
stitute into the dynamical system (9–12), with new variables denoted by
Fraktur font, the near identity transformation:

η = h + ǫ(1 + h)u + ǫ2 1
2
(1 + h)u2 + ǫ3(1 + h)[−(2 + h)u + 1

6
u3]
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+ ǫ4(1 + h)[−(7

4
+ 3

4
h)u2 + 1

24
u4] + O

(
ǫ5

)
, (13)

u = u − ǫh + ǫ3[(3 + h)h + 1

2
(1 + h)u2] + ǫ4 1

12
(1 + h)u3 + O

(
ǫ5

)
, (14)

v = v − ǫu + ǫ2h − ǫ4[(3 + h)h + 1
2
(1 + h)u2] + O

(
ǫ5

)
, (15)

p = p − ǫ2h − ǫ3(1 + h)u + ǫ4[h − 1

2
(1 + h)u2] + O

(
ǫ5

)
. (16)

Then the example dynamical system (4–7) becomes

ht = ǫ2(1 + h)h − ǫ4(1 + h)(3 + h) + O
(
ǫ5

)
, (17)

ut = −
[

1 + ǫ2(2 + h) − ǫ4(1 + h)(3 + h)
]
u + O

(
ǫ5

)
, (18)

v = p = 0 . (19)

Crucially, the normal form system (17–19) captures all the solutions of the
original system (4–7), at least in some neighbourhood of the equilibria M0.
The reason is simply that the transformation (13–16) is a smooth reparametri-
sation of the complete state space near M0. Thus from arbitrary feasible
initial conditions the normal form system (17–19) retains all the transient
dynamics and all the long-term dynamics provided the dynamics stay within
the neighbourhood of M0. Consider the effects of this transformation.

1. The algebraic part of the original system (4–7) is transformed into the
trivial and decoupled algebraic equations (19), namely v = p = 0 .

2. See immediately from the form (18) that u = 0 is an invariant manifold
of the dynamics, and is exponentially quickly attractive to a wide vari-
ety of nearby initial conditions. Thus this normal form clearly displays
the attractive centre manifold is u = 0 . In original variables, the trans-
formation (13–16) then immediately shows the centre manifold maps
to η = h and the earlier claimed (9–11).

3. Also see the evolution (17) of h reaffirms the earlier claimed centre
manifold model (12).

4. Lastly, a crucial feature of the h evolution (17) is that it is independent
of u in this normal form. Thus all states with the same h but different u

only differ in the evolution of u, the h evolution is identical. Next we
use this to deal with initial conditions.
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Figure 2: centre manifold u = 0 (thick curve) of the example system (4–7)
for ǫ = 0.4 . The 16 transverse curves, called isochrons, show initial points
which have the same long term dynamics.

2.2 Project initial conditions

Consider the result of specifying some initial condition in a simulation, say

η(0) = η0 , u(0) = u0 , v(0) = v0 , p(0) = p0 . (20)

In general these will not lie on the centre manifold model (9–11), see for
example the simulations shown in Figure 1. Following the arguments in [3],
we use the normal form to deduce how to project such an initial condition
into one for the low-dimensional model (12).

But first we numerically illustrate the projection. Numerical solutions are
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feasible for simple systems. By running simulations, such as those in Figure 1,
we draw contours of all initial conditions whose subsequent solutions end up
at the same location (to an exponentially small difference) on the centre
manifold after some fixed time, see Figure 2.1 All the points reaching the
same location at the same fixed time must then have the same long term
evolution. Hence, all initial conditions lying on one of the contours in Figure 2
must be projected onto the centre manifold where the contour intersects the
manifold. Then the model will predict the correct long term evolution from
the originally specified initial condition.

Any such initial condition corresponds to some point (h0, u0, v0, p0) in the
transformed variables. First, revert the series in the transformation (13–16)
to find the initial state in the normal form variables

h0 = η0 − ǫ(1 + η0)u0 − ǫ2(1 + η0)(η0 −
1

2
u2

0)

+ ǫ3 1

6
(1 + η0)(18 + 18η0 − u2

0)u0

+ ǫ4 1
24

(1 + η0)(84η2
0 + 144η0 − 90η0u

2
0 − 102u2

0 + u4
0) + O

(
ǫ5

)
,(21)

u0 = u0 + ǫη0 − ǫ2(1 + η0)u0 − ǫ3(4 + 2η0)η0

+ 1

4
ǫ4(1 + η0)(24 + u2

0 + 16η0)u0 + O
(
ǫ5

)
, (22)

v0 = v0 + ǫu0 , (23)

p0 = p0 + ǫ2η0 − ǫ4η0 + O
(
ǫ5

)
. (24)

Second, for this system with an algebraic component the initial conditions (20)
must be consistent with the algebraic constraints (19), namely v0 = p0 = 0 ;
hence, we require the original system to satisfy

v0 = −ǫu0 and p0 = −ǫ2η0 + ǫ4η0 + O
(
ǫ5

)
. (25)

Finally, when u0 is non-zero the initial condition is off the centre manifold
u = 0 . But in the normal form (17–18) the evolution of h is unaffected by
the evolution of u. Further, u decays to zero exponentially quickly. Thus,

1These contours are called isochrons [6, 3]; they are also known as the stable fibra-
tions [8, §5.2].
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2 An example introduces the normal form 11

apart from an exponentially decaying transient, the evolution from (h0, u0)
will be identical to that from the point (h0, 0) on the centre manifold. Thus
the appropriate initial condition for the low-dimensional model (12) is not
η(0) = η0 but instead that η(0) = h0 as given by (21). This projection of the
initial condition takes into account the initial transients in the dynamics.

2.3 Construct the normal form

We now explore how to construct the particular normal form transform (13–
16) that has the requisite properties we used in the previous Section 2.2. The
construction has considerable detail, see [3, 18, 8], with many subtleties in
its application to this problem. To find the transformation (13–16) with cor-
responding evolution (17–19), we seek a near identity coordinate transform
in the general form

η = h + H(h, u, ǫ) , u = u + U(h, u, ǫ) ,

v = v + V (h, u, ǫ) , p = p + P (h, u, ǫ) , (26)

such that the differential-algebraic system (4–7) takes this differential-algebraic
normal form

ht = H(h, ǫ) , ut = −u + U(h, u, ǫ) , v = p = 0 , (27)

where the functions H , U , V , P , H and U are strictly nonlinear functions of
h, u and ǫ, and where we require

U strictly linear in u , that is U ∝ u . (28)

That these properties (27–28) can be found is assured by the linearisation
leading to (8): the zero eigenvalue assures that η ≈ h evolves nonlinearly;
the −1 eigenvalue assures us that u ≈ u decays linearly with some nonlinear
modifications; and the lack of other eigenvalues assures us that the normal
form has two algebraic constraints on the other variables. The condition (28)
ensures that u = 0 , with v = p = 0 , immediately describes the exponentially
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attractive centre manifold [4]. Consequently, the model evolution is simply
ht = H(h, ǫ) , from (27), and the projection of initial conditions is done along
curves of constant h.

The most straightforward construction uses iteration similar to that in-
troduced for constructing centre manifolds [11]. Suppose we have some cur-
rent approximation to the transformation and the evolution; for examples,
H = V = U = P = H = U = 0 is an initial approximation, whereas (13–18)
is an approximation with errors O

(
ǫ5

)
. Given some such approximation, we

seek small corrections, denoted by primes, that improve the current approx-
imation: that is, for example, we seek u = u + U + U ′ for some small U ′ to
be determined. Substitute these into the governing system (4–7) and omit
products of small corrections to obtain a system of equations to solve for
corrections. For example, the left-hand side of the η-equation (7) becomes,
upon using the chain rule,

ηt + ǫuη − v

=
∂η

∂h

∂h

∂t
+

∂η

∂u

∂u

∂t
+ ǫuη − v

=

(

1 +
∂H

∂h
+

∂H ′

∂h

)

(H + H′) +

(
∂H

∂u
+

∂H ′

∂u

)

(−u + U + U ′)

+ ǫ(u + U + U ′)(h + H + H ′) − (v + V + V ′)

≈

(

1 +
∂H

∂h

)

H +
∂H

∂u
(−u + U) + ǫ(u + U)(h + H) − (v + V )

+ H′ − u
∂H ′

∂u
− V ′

= R7 + H′ − u
∂H ′

∂u
− V ′ ,

where R7 denotes the residual of (7) at the current approximation. Hence
to choose corrections which reduce the residual we need to solve (32) below.
Similarly for the other equations to require the solution of

u
∂U ′

∂u
− U ′ = R4 + U ′ , (29)
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u
∂V ′

∂u
− V ′ − P ′ = R5 , (30)

−V ′ = R6 , (31)

u
∂H ′

∂u
+ V ′ = R7 + H′ , (32)

where Ri denotes the residual of the system’s equations (4–7) evaluated at
the current approximation. For example, at the initial approximation H =
V = U = P = H = U = 0 , and using v = p = 0 , the residuals

R4 = ǫu2 + ǫ2u + ǫh , R5 = 0 , R6 = ǫu , and R7 = ǫuh . (33)

Now, see that the algebraic equation (6) immediately gives the V -correction
through (31), and that the dynamic equation (5) for v immediately gives the
P -correction through (30). For example, in the initial iterate V ′ = −ǫu and
P ′ = 0 . The other two components are more subtle.

• For equation (32), since V ′ is known, any term involving a factor uq in
the residual R7 − V ′ will cause, via the homological operator u∂H′

∂u
, a

term with uq/q in the transformation H ′; for example, with R7 − V ′ =
ǫu(h + 1) the correction H ′ = ǫu(h + 1) . However, any term in the
residual R7 − V ′ with no u factor cannot be matched by a term in H ′,
as u∂H′

∂u
necessarily involves u, and must instead be matched by a term

in the evolution U ′. Thus the transformation is found so that the
evolution of h only involves h itself as required by (27).

• For equation (29) any term involving a factor uq in the residual R4 will
cause, via the homological operator u∂U ′

∂u
− U ′, a term with uq/(q −

1) in the transformation U ′; for example, with R4 = ǫu2 + ǫh the
correction U ′ = ǫu2 − ǫh . However, any term linear in u, such as the
term ǫ2u in (33), must be used to correct the evolution via U ′. Thus
the transformation is done so that the evolution of u satisfies (28).

In this manner iteration builds asymptotic approximations to the normal
form transformation and the evolution, such as the earlier (13–19).
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2.4 Homogeneous solutions provide freedom

There are extra complications because the normal form transformation is
not unique. In general the transformations (26) are chosen to minimise the
number of terms in the corresponding normal form dynamical equations (27)
by placing as many terms as possible in the transformation (26). However,
the result then depends upon our choice of basis for the algebra. Here we
briefly explore the options available to us while retaining all the properties
required to extract the centre manifold model and the projection of initial
conditions.

As an aside note that the essential properties of the normal form are
displayed in Figure 2: the curve of u = 0 must correspond to the centre
manifold (the thick curve); and the curves of constant h must correspond to
the isochrons (thin contours). Freedom comes from being able to parametrise
these curves in state space in any smooth way consistent with these require-
ments.

The simplest way to identify freedom is to find the homogeneous solutions
of the correction equations (29–32) for H , V , U , P , H and U . The full
homological operator [8, e.g.] for this problem appears on the left-hand side
of (29–32); it operates on the space of multinomials in u, h and ǫ, but only
the polynomials in u are significant as h and ǫ do not appear in the operator.
First see that homogeneous solutions must have V ′ = P ′ = 0 . Then, second,
two families of linearly independent solutions are

(H ′,H′) = (uq, quq) , U ′ = U ′ = 0 , (34)

and (U ′,U ′) = (uq, (q − 1)uq) , H ′ = H′ = 0 . (35)

Thus we can always change an iterate by some linear combination of these
solutions, multiplied by some function of h and ǫ, and only affect higher-order
terms in the transformation.

• Consider (34) with q ≥ 1 : introducing any such component will destroy
the essential property that the evolution in h is independent of u that
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we require to use the normal form to project initial conditions. Thus
we cannot use this freedom.

• Consider (34) with q = 0 , that is (H ′,H′) = (1, 0) : introducing such
a component, multiplied by an arbitrary function of h and ǫ, allows
us to widely vary the relationship between the original variable η and
the transformed variable h. If we maintain the exact identity between
these variables, η = h when u = 0 , then the model variable h has the
same physical meaning as the variable η. Although not essential, this
seems desirable as it enhances physical interpretation. We choose this
option.

However, the normal form transformation may instead be used to im-
mediately put the evolution equations on the centre manifold in one of
the well established canonical normal forms [8, Chapt. 6], [10, Chapt. 3]
or [7, Chapt. 3]. This alternative also uses the freedom identified here,
but reduces the physical connection and is not implemented here.

• Consider (35) with q = 0 , that is (U ′,U ′) = (1,−1) : we cannot use this
freedom as, by introducing terms only in h and ǫ into U ′, it destroys
the requirement that u = 0 is the centre manifold of the u evolution.

• Consider (35) with q ≥ 1 : these homogeneous solutions allows us to
alter the precise meaning of the transformed variable u . Note that the
linearised dynamics about the centre manifold u = 0 are unaffected
by any such change as terms linear in u, corresponding to q = 1 , do
not affect the evolution U ′. For example, we could use this freedom
to replace the strict linearity condition (28) for the evolution of u and
instead require the normal form

u = u + U(h, ǫ) , and U(h, 0, ǫ) = 0 , (36)

so that u measures precisely the departure of the state of the system
from the centre manifold. For example, here the corresponding alter-
native normal form transform is

η = h + ǫ(1 + h)u + ǫ2 1
2
(1 + h)u2
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− ǫ3 1

6
(1 + h)(12 − u2 + 6h)u + O

(
ǫ4

)
, (37)

u = u − ǫh + ǫ3(3 + h)h + O
(
ǫ4

)
, (38)

v = v − ǫu + ǫ2h + O
(
ǫ4

)
, (39)

p = p − ǫ2h − ǫ3(1 + h)u + O
(
ǫ4

)
, (40)

with corresponding evolution

ht = ǫ2(1 + h)h + O
(
ǫ4

)
, (41)

ut = −[1 + ǫ2(2 + h)]u − ǫ3 1

2
(1 + h)u2 + O

(
ǫ4

)
, (42)

v = p = 0 . (43)

We adopt this alternative when constructing the normal form of the
dynamics of thin fluid films.

Using such freedom we find the centre manifold and the projection of initial
conditions is the same. For example, the direction of the projection of initial
conditions, the tangent to the isochrons [6, 3], at the centre manifold u = 0
is the same, namely







ηu

uu

vu

pu







=







ǫ(1 + h) − ǫ3(1 + h)(2 + h)
1
−ǫ

−ǫ3(1 + h)







+ O
(
ǫ5

)
. (44)

This equivalence is reassuring because the different possible transformations
still represent the same dynamical processes.

3 Normal form of thin fluid film equations

In this section we take the equations for a thin fluid film and transform them
into a normal form that separates the dynamics of the viscously decaying
modes from the large scale mode of slow evolution of the fluid film’s thickness.
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3.1 Nondimensionalise the fluid film equations

Consider the two-dimensional flow of a thin film of Newtonian fluid along
a flat substrate. We adopt a nondimensionalisation based upon the char-
acteristic thickness of the film H , and some characteristic velocity U : for
a specific example, in a regime where surface tension drives a flow against
viscous drag the characteristic velocity is U = σ/µ and thus the Weber num-
ber We = σ/(Uµ) = 1 ; alternatively U might be chosen to characterise the
difference between a given initial lateral velocity and that corresponding to
the lubrication model (1). Reverting to the general case, the reference length
is H , the reference time H/U , and the reference pressure µU/H . The varying
free surface is located at y = η(x, t), where x and y are lateral and normal
coordinates respectively. The flow, with velocity q = (u, v) and pressure p,
is governed by the nondimensional incompressible Navier-Stokes equations

Re(qt + q · ∇q) = −∇p + ∇2q , (45)

where Re = UHρ/µ is a Reynolds number characterising the importance
of the inertial terms compared to viscous dissipation, supplemented by the
continuity equation

∇ · q = 0 , (46)

non-slip boundary conditions on the substrate

q = 0 on y = 0 , (47)

and tangential stress and normal stress conditions on the free surface

(1 − η2
x)(uy + vx) = 2ηx(ux − vy) on y = η , (48)

p +
We ηxx

(1 + η2
x)

3/2
=

2

1 + η2
x

[vy + ux − ηx(uy + vx)] on y = η . (49)

We close the problem with the kinematic condition relating the velocity of
the fluid on the surface to the evolution of the free surface:

ηt = −∂x

∫ η

0

u dy = v − uηx on y = η . (50)
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The fluid film is assumed to be so thin that the gravitational force in the
momentum equations is neglected in this initial research project. The other
main assumption we make is that the lateral variations are slow.

3.2 Introduce the normal form transform

Centre manifold techniques construct a model of the fluid flow assuming
that lateral derivatives, ∂x, are small [11, 12, e.g.]. Here we limit our aim
to encompass flows with a lateral velocity which is also a small departure
from the centre manifold of slow evolution. In the normal form we thus
seek fields u(x, y, t), v(x, y, t), p(x, y, t) and h(x, t) which are a near identity
transform of the physical fluid fields. We label these “quasi-” because they
are approximately the same as the well known physical fields. Based upon
the flow states we know for thin fluid films:

η = h + O
(
u4/3 + ∂4

x

)
, (51)

v = v + O
(
u4/3 + ∂4

x

)
, (52)

p = p − We hxx + O
(
u4/3 + ∂4

x

)
, (53)

u = u + We(hy − 1

2
y2)hxxx + O

(
∂5

x

)
. (54)

As in Section 2.4, see equation (36), we have here defined the lateral quasi-
velocity u to be exactly the lateral velocity field’s departure from that of
the centre manifold model, approximately We(hy− 1

2
y2)hxxx . Because of the

algebraic components in the fluid film equations we know the normal form
has the two trivial algebraic equations

v = 0 and p = 0 . (55)

Initially we assume the normal form also has trivial algebraic boundary con-
ditions:

u = v = 0 on y = 0 ,
∂u

∂y
= p = 0 on y = h ; (56)
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but later we find it is necessary to modify one of these. Lastly, the lateral
quasi-velocity and the fluid quasi-thickness evolve according to

∂u

∂t
= U(u, h) =

1

Re

∂2u

∂y2
+ O

(
u5/3 + ∂5

x

)
, (57)

∂h

∂t
= H(h) = −1

3
(h3hxxx)x + O

(
∂6

x

)
, (58)

where U(0, h) = 0 . This last property of U ensures that the trivial u = 0
forms the centre manifold of the dynamics. Hence (57) encapsulates that
lateral shear flows dominantly decay by viscous diffusion, and the classic
thin film model, ht ≈ −1

3
(h3hxxx)x , is then recovered. This is our purpose

for the normal form transformation (51–54).

Note that the very small difference, O
(
u4/3 + ∂4

x

)
, between the physical

fluid thickness η and the quasi-thickness h identified in (51) means that
evaluation on y = η and y = h are almost everywhere interchangeable to the
order of accuracy determined in this section.

Also note that the form of many of the order of errors in the above are
equivalent to having just one scaling parameter and assuming the lateral
quasi-velocity field |u| scales with ∂3

x.
2 However, here we are primarily in-

terested in determining the dominant nontrivial effects of a lateral velocity
field and thus we do not seek higher order in ∂x except where u is involved.
Consequently we later move to refine the approximations to a form where |u|
is asymptotically larger and scales with ∂2

x—adopting a single scaling param-
eter would hinder this development so we adopt this more flexible expression
of asymptotic errors.

In principle we proceed to use an iteration process to deduce the details of
the normal form transformation. However, for the moment we only attempt
just a little more than the first iteration. This is enough to discover highly
nontrivial properties of the projection of initial conditions.

2I use the notation that an asymptotic error O
(
αp+βq

)
to denote the error may involve

terms in αmβn for p/m+q/n ≥ 1 . Thus, for example, here with small quantities u and ∂x,
uxx, h2

xu and h2

xhxxx are all O
(
u5/3 + ∂5

x

)
.
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3.3 Fluid conservation evolves the free surface

Seek a correction to the free surface η = h + η′ , using conservation of
fluid (50):3

∂η

∂t
= −∂x

∫ η

0

u dy

⇒
∂h

∂t
+

∂η′

∂t
= −∂x

[∫ η

0

u dy + (1

2
hη2 − 1

6
η3)hxxx

]

+ O
(
u2 + ∂6

x

)

⇒
∂h

∂t
+

∂η′

∂t
= −∂x

∫ h

0

u dy − 1
3
(hhxxx)x + O

(
u2 + ∂6

x

)

⇒
∂η′

∂t
= −∂x

∫ h

0

u dy + O
(
u2 + ∂6

x

)
. (59)

We used the known evolution of the film thickness (58), that ht ≈ −1

3
(h3hxxx)x ;

if we had not known this already, then at this step we would have discovered
it was necessary; we can only put into η′ terms which involve u because terms
which only involve h are rendered ineffective in ∂η′

∂t
by the very slow evolution

of h. Due to the form of the right-hand side for ∂η′

∂t
in (59), now try a change

to the fluid thickness involving a weighted integral of the lateral velocity:

η′ = ∂x

∫ h

0

w(y; h)u dy + O
(
u2 + ∂6

x

)

⇒
∂η′

∂t
= ∂x

{

∂h

∂t
u(h)w(h; h)

︸ ︷︷ ︸

negligible

+

∫ h

0

w
∂u

∂t
+

∂w

∂h

∂h

∂t
u

︸ ︷︷ ︸

negligible

dy

}

+ O
(
u2 + ∂6

x

)

⇒
∂η′

∂t
= ∂x

{∫ h

0

w
1

Re

∂2u

∂y2
dy

}

+ O
(
u2 + ∂6

x

)

3The same result is also obtained from the kinematic condition, ηt = v−uηx on y = η ,
using the next approximation for the normal velocity field which is obtained in the next
subsection.
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⇒
∂η′

∂t
= ∂x

{

1

Re

[

w
∂u

∂y
− w′u

]h

0

+

∫ h

0

w′′(y)
1

Re
u dy

}

+ O
(
u2 + ∂6

x

)
,

where primes on the weight function w denote y derivatives. Equate this
to (59), recognising that u = 0 on y = 0 and ∂u

∂y
= 0 on y = h , to deduce the

weight function satisfies

w′′ = −Re , w(0) = 0 , w′(h) = 0 ⇒ w = Re(hy − 1

2
y2) . (60)

Thus the free surface

η = h + Re ∂x

∫ h

0

(hy − 1
2
y2)u dy + O

(
u2 + ∂6

x

)
, (61)

in terms of the normal form fields h and u.

Initial conditions: Revert (61) and (54) to

h ≈ η − Re ∂x

∫ η

0

(ηy − 1

2
y2)u dy , and u ≈ u − (ηy − 1

2
y2)ηxxx .

Then recall that in the normal form (57–58), the quasi-velocity u → 0 quickly
through viscosity. Thereafter, when u = 0 , the fluid thickness η and the
quasi-thickness h are identical, by (61). Further, η and h evolve according
to the same models, (1) and (58) respectively, and in the normal form (57–
58) the evolution of the quasi-thickness h is independent of quasi-velocity.
Hence, from the above reversion, to make the correct long term forecast with
the lubrication model we must start with the initial fluid thickness η(x, 0) as
claimed in (2).

In the remainder of this section we demonstrate that this initial condition
is the first nontrivial approximation in an asymptotic expansion based upon
the normal form of thin film fluid dynamics.
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3.4 Continuity updates the normal velocity

Upon substituting the current approximation, u from (54) and v ≈ v + v′

where v = 0 from (55), the continuity equation (46) implies

v = v −

∫ y

0

ux dy − ∂x[(
1
2
hy2 − 1

6
y3)hxxx] + O

(
u2 + ∂6

x

)
. (62)

As necessary, for quasi-fields v = u = 0, this reduces to the well established
normal velocity field for the centre manifold model.

3.5 Normal momentum updates pressure

Seek to update p ≈ p − We hxx + p′. Noting u ∂v
∂x

, v ∂v
∂y

= O
(
u2

x + ∂8
x

)
and

∂2v
∂x2 = O

(
u2 + ∂6

x

)
, consider

Re

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]

+
∂p

∂y
=

∂2v

∂x2
+

∂2v

∂y2

⇒ −uxy + u0
xy +

∂p′

∂y
= −uxy − We ∂x[(h − y)hxxx] + O

(
u2 + ∂6

x

)

⇒ p′ = We ∂x[
1

2
(h − y)2hxxx] + (h − y)u0

xy + p′′ + O
(
u2 + ∂6

x

)
,

where the superscript 0 on u0
xy denotes evaluation on the substrate y =

0 , soon the superscript h will denote evaluation on the fluid surface y =
h , and p′′(x, t) is an integration constant to be determined from the free
surface normal stress. The normal stress condition on y = η is equivalent to
evaluating on y = h to as yet negligible relative error of O

(
u4/3 + ∂4

x

)
; thus

p(1 + η2
x) + We ηxx(1 −

1
2
η2

x)

= 2

[
∂v

∂y
+ η2

x

∂u

∂x
− ηx

(
∂u

∂y
+

∂v

∂x

)]

+ O
(
u2 + ∂6

x

)

⇒ −We(hxx + h2
xhxx) + p′′ + We(hxx −

1

2
h2

xhxx)
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= 2
[
−uh

x −
1

2
∂x(h

2hxxx) + 0 − hxu
h
y − 0

]
+ O

(
u2 + ∂6

x

)

⇒ p′′ = We ∂x(h
2hxxx) + We 3

2
h2

xhxx − 2uh
x − 2uh

yhx + O
(
u2 + ∂6

x

)
,

Hence the more refined description of the pressure field is

p = p − We
{
hxx −

3

2
h2

xhxx + 1

2
∂x[(h

2 + 2hy − y2)hxxx]
}

+ (h − y)u0
xy − 2∂x(u

h) + O
(
u2 + ∂6

x

)
. (63)

3.6 Lateral momentum determines lateral velocity

Seek to update u ≈ u + u′ and ∂u
∂t

≈ 1
Re

∂2u
∂y2 +U ′ . However, as flagged earlier,

we are more interested in the effects of the lateral velocity field u in the
normal form rather than higher orders in the lateral gradients ∂x modifying
the leading order evolution (58). Thus we change our expressions of errors to
a form equivalent to scaling the lateral velocity u with ∂2

x rather than with ∂3
x

as done so far. Then working to errors O
(
u5/2 + ∂5

x

)
enables us to resolve

terms such as lateral diffusion uxx while omitting fifth derivatives of the free
surface.

Using computer algebra, see [13] for the Reduce code, which also con-
firms that the residual in the Navier-Stokes equations (45) is O

(
u5/2 + ∂5

x

)
,

we determine

Re

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]

+
∂p

∂x
=

∂2u

∂x2
+

∂2u

∂y2

⇒ ReU ′ + Re
∂u′

∂t
−

∂2u′

∂y2
= uxx − ∂x[(h − y)u0

xy]

+ 2uh
xx − 2h2

xu
h
yy + O

(
u5/2 + ∂5

x

)
, (64)

At the free surface the tangential stress supplies

(1 − η2
x)

(
∂u

∂y
+

∂v

∂x

)

+ 2ηx

(
∂v

∂y
+

∂u

∂x

)

= 0
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⇒
∂u′

∂y
=

∫ h

0

uxx dy + 4uh
xhx + O

(
u5/2 + ∂5

x

)
, (65)

when evaluated on the free surface, y ≈ h . We could satisfy this stress
condition by changing the velocity field in the interior through a compo-
nent in u′. However, recall that the lateral quasi-velocity u has more direct
meaning when the normal form is chosen so that the physical velocity u is
independent of u except for the leading term, see (54). Thus, satisfy this
inhomogeneous bc by changing the surface boundary condition (56) for u to

∂u

∂y
=

∫ h

0

uxx dy + 4hxu
h
x + O

(
u5/2 + ∂5

x

)
on y = h . (66)

Consequently a new term on the left-hand side of (65) cancels the right-hand
side terms, leaving the homogeneous bc

∂u′

∂y
= 0 on y = h . Now consider

the lateral momentum update equation (64): all terms in the right-hand
side involve u and so they are all placed into the evolution U ′. Thus the
lateral velocity is still given by (54), but we improve the description of the
evolution to

Re
∂u

∂t
= uyy + uxx − ∂x[(h − y)u0

xy] + 2uh
xx − 2h2

xu
h
yy + O

(
u5/2 + ∂5

x

)
. (67)

As required, the normal form equation (67) with boundary condition (66)
has u = 0 as an attractive invariant (centre) manifold. Then with lateral
quasi-velocity u = 0 the lateral velocity field (54) reduces to the conventional
thin fluid film approximation u ≈ We(hy − 1

2
y2)hxxx .

3.7 Fluid conservation refines the evolution

We seek a further refinement to the description of the fluid thickness (61)
using conservation of fluid (50). The aim is to discover more effects of the
lateral velocity and so we work to errors O

(
u3+∂6

x

)
. There is considerable de-

tail in determining the new terms, relegated to the computer algebra in [13],
but the basic technique follows that used in Section 3.3. To the required
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order of accuracy we know the quasi-thickness evolution (58); thus the only
freedom available is to update the fluid thickness from (61) by some small
change η′′. Substitute the lateral velocity field into (50) to obtain (using
superscripts 0 and h to denote evaluation on the bed and quasi-surface, but
now also using superscript y to denote

∫ y

0
· dy)

∂η′′

∂t
= +1

8
h4u0

xxxy + 5
6
h3hxu

0
xxy + 1

3
h3hxxu

0
xy + h2h2

xu
0
xy −

2
3
h3uh

xxx

+ 2h3h2
xu

h
xyy + 2h3hxhxxu

h
yy − h2(uy

xxx)
h − 5h2hxu

h
xx − 2h2hxxu

h
x

+ 4h2h3
xu

h
yy − 2hhx(u

y
xx)

h − 4hh3
xu

h
x + (uyyy

xxx)
h + hx(u

yy
xx)

h

+ O
(
u3 + ∂6

x

)
. (68)

All these residual terms are O
(
u∂3

x

)
, there is no component of O

(
u∂2

x

)
. We

summarise the details of the derivation in the next paragraph, but a solution
for the above refinement of the fluid thickness η is

η′′(h, u) = Re
{∫ h

0
( 1

24
y4 − 1

6
hy3 − 1

4
h2y2 + 3

2
h3y − 1

8
h4)uxxx dy

+ hx

∫ h

0
(−1

6
y3 − 1

2
hy2 + 13

2
h2y − 5

6
h3)uxx dy

+ hh2
x

∫ h

0
(4y − h)ux dy + h2hxx

∫ h

0
(2y − 1

3
h)ux dy

+ 12h3h2
xu

h
x + 26

3
h3hxhxxu

h + 7h2h3
xu

h + 3h4hxu
h
xx

+ 2h4hxxu
h
x + h4hxxxu

h − 2h4h3
xu

h
yy

}

. (69)

Thus for this η′′ the normal form for the fluid thickness is now

η = h + Re ∂x

∫ h

0
(hy − 1

2
y2)u dy + η′′(h, u) + O

(
u3 + ∂6

x

)
. (70)

In the next section we use this transformation to determine more details
about the initial conditions for the model of thin fluid film (1).

But before proceeding we overview the machinations needed to derive
the refinement (69). Recall that the left-hand side ∂η′

∂t
is approximated by a

formal expression:
∂η′

∂t
≈

1

Re

∂η′

∂u

∂2u

∂y2
.
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Thus the components in the residual on the right-hand side of (68) which
involve two or more derivatives of y can be matched by a component in the
refinement η′′ with two less derivatives in y. The other components, involving
the first y-derivative or integrals of the quasi-velocity u, must be matched by
an integral component in the refinement η′′ as we did in Section 3.3. I achieve
such matching through considerable trial and error, and in three stages.

• Starting with the term with the most y-integrals, namely (uyyy
xxx)

h, the
three y-derivatives in this boundary contribution is matched through
multiple integration by parts of ∂tuxx ∝ uxxyy with a weight function
which is quartic in y. This and the bed component in h4u0

xxxy gives the
first integral in (69). This first term in (69) also changes some other
terms in the residual (68). Then we progress to the other terms with
less y-integrals and match them with simpler integrals as seen in (69).

• When all components as yet unmatched have two or more y-derivatives
then we simply directly match them with the boundary contributions
seen in (69).

• However, there is a difficulty: terms with odd y derivatives and eval-
uated at the quasi-surface cannot be matched in the above procedure.
Instead we use the surface boundary condition (66), either directly or its
derivatives, to eliminate such terms. For example, differentiating (66)
with respect to x gives

uh
xy + hxu

h
yy

=
∫ h

0
uxxx dy + 5hxu

h
xx + 4hxxu

h
x + 4h2

xu
h
xy + O

(
u5/2 + ∂5

x

)

=
∫ h

0
uxxx dy + 5hxu

h
xx + 4hxxu

h
x − 4h3

xu
h
yy + O

(
u5/2 + ∂5

x

)
,

where the last term uh
xy has a single y-derivative and so is replaced by

its leading order approximation, namely −hxu
h
yy. The above and higher

order derivatives are implemented in computer algebra [13]. Similarly,
time derivatives of (66), recalling Re ut = uyy , provide replacements for
higher order odd y-derivatives of u.
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With these methods we find that (69) is the solution for the update η′′.

4 Revert the normal form to give initial con-

ditions

Given an initial state of the fluid film we determine the appropriate initial
condition for the fluid thickness in the lubrication model (1). First translate
the initial condition to the normal form variables h and u, then since the
evolution of h is independent of quasi-velocity u, the correct initial condition
for the lubrication model (1) is η(x, 0) = h0 .

Suppose the fluid has initial thickness η0(x), lateral velocity field u0(x, y),
normal velocity field v0(x, y) and pressure field p0(x, y). The fields v0 and p0

must be consistent with the fluid equations (45–50), but then play no role in
the following. We revert (54) to obtain the initial quasi-lateral velocity

u0 = u0 − We(η0y − 1

2
y2)η0xxx + O

(
u3 + ∂6

x

)
, (71)

as the quasi-thickness h = η + O
(
u3/2 + ∂3

x

)
, by (70) for example, and so

h is replaced by the initial fluid thickness η0 to our order of accuracy. This
quasi-lateral velocity u0 characterises the distance from the initial fluid state
to a state of the lubrication model.

Now find how this distance affects the initial fluid thickness. Revert (70)
and evaluate at the initial fluid state, using (71) and h = η + O

(
u3/2 + ∂3

x

)
,

to give the initial quasi-thickness

h0 = η0 − Re ∂x

∫ η0

0

(η0y − 1

2
y2)u0 dy − η′′(η0, u0) + O

(
u3 + ∂6

x

)
, (72)

where η′′ is specified by (69). Recall the purpose of the normal form is to
ensure the evolution of quasi-thickness h is independent of the quasi-velocity
and hence the transient viscous decay of lateral velocity will bring the fluid
to the solution of the lubrication model (1) which started from the initial
condition η(x, 0) = h0 as specified in (72). This initial condition permits us
to make accurate long term forecasts with the model.

Tony Roberts, February 8, 2008



5 Conclusion 28

5 Conclusion

We use a normal form transformation to illuminate the dynamics of a thin
layer of fluid. This is achieved by decoupling the slow long-lasting lubri-
cation mode from the viscously decaying lateral shear modes. A simple
example shows that the differential algebraic nature of the fluid equations
is handled by straightforward modifications of the usual procedure to con-
struct a normal form. Further, invoking the slowly-varying assumption that
lateral derivatives are small enables us to deduce a normal form for the fluid
dynamics albeit with significant technical detail requiring computer algebra
to check. This normal form then provides us with the rationale to choose the
initial condition (2) to make forecasts with the lubrication model(1). The
next challenge is to connect this normal form analysis to the projection of
initial conditions, started in [16], which is based upon the adjoint near a
centre manifold model.

Acknowledgement: I thank Sergey Suslov for his valuable input into all
stages of this work.
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