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WILLIAM KINGDON CLIFFORD
(1845–1879)

Joe Rooney

Department of Design and Innovation, The Open University, Walton Hall,
Milton Keynes MK7 6AA, UK
E-mail: j.rooney@open.ac.uk

Abstract. William Kingdon Clifford was an English mathematician and philosopher who
worked extensively in many branches of pure mathematics and classical mechanics. Although
he died young, he left a deep and long-lasting legacy, particularly in geometry. One of the
main achievements that he is remembered for is his pioneering work on integrating Hamilton’s
Elements of Quaternions with Grassmann’s Theory of Extension into a more general coher-
ent corpus, now referred to eponymously as Clifford algebras. These geometric algebras are
utilised in engineering mechanics (especially in robotics) as well as in mathematical physics
(especially in quantum mechanics) for representing spatial relationships, motions, and dynam-
ics within systems of particles and rigid bodies. Clifford’s study of geometric algebras in both
Euclidean and non-Euclidean spaces led to his invention of the biquaternion, now used as an
efficient representation for twists and wrenches in the same context as that of Ball’s Theory of
Screws.

Biographical Notes

William Kingdon Clifford was a 19th Century English mathematician and
scientific philosopher who, though he lived a short life, produced major con-
tributions in many areas of mathematics, mechanics, physics and philosophy.
This he achieved during a mere fifteen-year professional career. He was the
archetypal polymath, since as well as displaying remarkable mathematical
skills, he was also an accomplished literature and classics scholar. Clifford
was fluent in reading French, German and Spanish, as he considered these
to be important for his mathematical work. He learned Greek, Arabic and
Sanskrit for the challenge they presented, Egyptian hieroglyphics as an intel-
lectual exercise, and Morse code and shorthand, because he wished to under-
stand as many forms for communicating ideas as possible. During his lifetime
Clifford was energetic and influential in championing the scientific method in
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Fig. 1. A portrait of William Kingdon Clifford (1845–1879). (Source: School of Mathem-
atics and Statistics, University of St Andrews, Scotland) (URL: http://www-history.mcs.st-
and.ac.uk/history/PictDisplay/Clifford.html)

social and philosophical contexts, and was a leading advocate for Darwinism.
He and his wife Lucy socialised regularly with many famous scientists and
literary figures of the period. He even had several non-academic strings to
his bow, notably gymnastics and kite flying, at which he impressed his con-
temporaries on numerous occasions. He was slight of build but his renowned
physical strength and athletic skills no doubt came to the fore when, on a sci-
entific expedition to Sicily (for the 22 December 1870 solar eclipse), he was
shipwrecked near Catania and survived. Despite this experience he fell in love
with the Mediterranean area. Sadly his health was relatively poor throughout
his life and he died of pulmonary tuberculosis (then referred to as consump-
tion) at the early age of 33 (Chisholm, 2002).

William Kingdon Clifford was born on 4th May 1845 at Exeter in the
county of Devon in the south-west of England. His father (William Clifford)
was a book and print seller (mainly of devotional material), an Alderman
and a Justice of the Peace. His mother Fanny Clifford (née Kingdon) was the
daughter of Mary-Anne Kingdon (née Bodley) who was related to Sir Thomas
Bodley (1545–1613). The latter had been a lecturer in natural philosophy at
Magdalen College, Oxford University during the reign of Queen Elizabeth I,
and was one of the main founders of the Bodleian Library in Oxford. As a
child William Kingdon lived at 9 Park Place in Exeter, the house where his
mother had been born, just a short walk from 23 High Street, Exeter, where
the family later moved. Exeter Civic Society has since placed a commemor-
ative plaque on the wall of 9 Park Place, for ease of identification. Clifford
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suffered early tragedy in his short life with the death of his mother in 1854,
aged 35, when he was only nine. His father re-married, had four more chil-
dren, and eventually died in 1878, aged 58, in Hyères, France.

On 7 April 1875 William Kingdon Clifford, aged 29, married Sophia Lucy
Jane Lane, aged 28, of Camden Town, London. Lucy (her preferred appella-
tion) claimed, romantically, to have been born in Barbados, but it seems that
her only association with the island was through her grandfather John Brand-
ford Lane, who had been a landowner there. It is unlikely that Lucy herself
was ever there, and indeed there was some mystery about her background,
not least because she continually lied about her age, reducing it eventually by
ten years, apparently to conceal details of her past (Chisholm, 2002).

Ostensibly, William and Lucy had a happy marriage and produced two
daughters. However, he was prone to overwork, lecturing and performing ad-
ministrative duties during the daytime, and doing research and writing his
many papers and articles at night. This probably led to a deterioration in his
health, which had never been robust, and in the Spring of 1876 he accepted
his poor state of health and agreed to take a leave of absence from his duties.
The family then spent six months in the Mediterranean region (Algeria and
Spain) while he convalesced, before returning to his academic post at Univer-
sity College, London in late 1876. Within eighteen months his health failed
again and he travelled to the Mediterranean once more, this time returning in
a feeble state in August 1878. By February 1879, with the rigours of the Eng-
lish winter in full force, desperate measures were required, and despite the
dangers of travel in such a poor state of health William sailed with the family
to the Portuguese island of Madeira in the North Atlantic Ocean to attempt to
recuperate. Unfortunately he never recovered and after just a month of debil-
itating illness he died on 3 March 1879 at Madeira of pulmonary tuberculosis.
His body was brought back to England by his wife and was buried in High-
gate Cemetery in London. The following epitaph (taken from Epictetus) on
his tombstone was chosen by Clifford himself on his deathbed:

I was not, and was conceived.
I loved and did a little work.

I am not, and grieve not.

Sadly the marriage had been cut short after only four years with the un-
timely death of William aged 33. During their four-year marriage, and sub-
sequently as his widow, Lucy had become a successful novelist, playwright
and journalist. Throughout their time together they moved in sophisticated
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social circles – scientific as well as literary. After William’s death Lucy be-
came a close friend of Henry James and regularly mixed socially with many
other prominent figures including Virginia Woolf, Rudyard Kipling, George
Eliot, Thomas Huxley and Thomas Hardy. Lucy outlived William by fifty
years and died on 21 April 1929, aged 82. She was buried beside her hus-
band in Highgate Cemetery. The following epitaph for Lucy was added to
Clifford’s tombstone:

Oh, two such silver currents when they join
Do glorify the banks that bound them in.

Clifford’s formal education had begun when he gained a place at the Ex-
eter Grammar School. However, he only spent a few months there before he
transferred in 1856 to the Mansion House School, also in Exeter. This school
was subsequently renamed Mr. Templeton’s Academy, and was eventually
demolished by Exeter City Council after having been bombed in 1942 during
World War II. In 1858 and 1859, whilst at Mr. Templeton’s Academy, Clifford
took both the Oxford and the Cambridge University Local Examinations in
an impressive range of subjects, gaining many distinctions. Continuing his
excellent academic record, Clifford won, at age 15, a Mathematical and Clas-
sical Scholarship to join the Department of General Literature and Science at
King’s College, London, and so he left Mr Templeton’s Academy in 1860. At
King’s College more achievements followed when he won the Junior Math-
ematical Scholarship, the Junior Classical Scholarship and the Divinity Prize,
all in his first year. He repeated the first two of these achievements in both
his second and third years at King’s College, and additionally he won the
Inglis Scholarship for English Language, together with an extra prize for the
English Essay. Clifford left King’s College in October 1863, at age 18, after
securing a Foundation Scholarship to Trinity College, Cambridge, to study
Mathematics and Natural Philosophy. At Cambridge he continued to shine
academically, winning prizes for mathematics and for a speech he presented
on Sir Walter Raleigh. He was Second Wrangler in his final examinations
in 1867 and gained the Second Smith’s Prize. Clifford was awarded his BA
degree in Mathematics and Natural Philosophy in 1867. He completed his
formal education on receiving an MA from Trinity College in 1870.

On 18 June 1866, prior to obtaining his BA, Clifford had become a mem-
ber of the London Mathematical Society, which held its meetings at Uni-
versity College. He had served on its Council, attending all sessions in the
periods 1868/69 to 1876/77. Within a year of being awarded his BA, Clifford
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was elected in 1868 to a Fellowship at Trinity College. He remained at Trin-
ity College until 1871 when he left to take up an appointment as Professor of
Mathematics and Mechanics at University College, London. It appears that he
had ‘lost his (Anglican Christian) faith’ and realistically could no longer re-
main at Trinity College. Unlike Trinity College, University College had been
founded in 1827 as a strictly secular institution and the Professors were not
required to swear allegiance to a religious oath. This liberal-mindedness ap-
pealed to Clifford’s freethinking viewpoint at the time, although he had been
a staunch Anglican in his youth. In June 1874 Clifford was elected as a Fellow
of the Royal Society, and soon afterwards he was also elected as a member of
the Metaphysical Society. The latter was chiefly concerned with discussing
arguments for or against the rationality of religious belief, in the prevailing
intellectual climate where Darwinian evolutionary theory was at the forefront
of debate. At this time he also delivered popular science lectures as well as
investigating psychical research and he was instrumental in debunking spirit
mediums and general claims for so-called paranormal activity.

Clearly, Clifford had wide-ranging interests, producing a considerable
output of work, considering his brief life span. However, much of his aca-
demic writings were published posthumously. His academic publications fall
mainly into three categories – Popular Science, Philosophy and Mathematics.

List of Main Works

A good representative example of Clifford’s Popular Science Lectures is
“Seeing and Thinking”. His main Philosophical Works include the import-
ant “The Ethics of Belief” (Clifford, 1877), “Lectures and Essays”, and “The
Common Sense of the Exact Sciences”. However, his Mathematical Works,
such as “Elements of Dynamic Vol. 1”, “Elements of Dynamic Vol. 2”,
and “Mathematical Papers” (Clifford, 1882), are especially interesting in
the present context. In particular, the “Mathematical Papers” (edited by R.
Tucker) published originally in 1882, and reprinted in 1968 (by Chelsea
Publishing Company, New York), is the most relevant reference here. These
mathematical papers were organised by their editor into two main groupings,
namely: Papers on Analysis, and Papers on Geometry. The former analysis
papers were grouped into papers on Mathematical Logic, Theory of Equa-
tions and of Elimination, Abelian Integrals and Theta Functions, Invariants
and Covariants, and Miscellaneous. Although at least four papers within this
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Analysis grouping are relevant in Mechanism and Machine Science, they are
not of central importance. The papers in Tucker’s Geometry grouping are the
more relevant ones. Tucker organised Clifford’s geometry papers into papers
on Projective and Synthetic Geometry, Applications of the Higher Algebra to
Geometry, Geometrical Theory of the Transformation of Elliptic Functions,
Kinematics, and Generalised Conceptions of Space. At least sixteen papers
from this Geometry grouping are directly related to the Mechanism and Ma-
chine Science field, but the following six are of fundamental importance:

Preliminary Sketch of Biquaternions (Clifford, 1873)
Notes on Biquaternions
Further Note on Biquaternions
On the Theory of Screws in a Space of Constant Positive Curvature
Applications of Grassmann’s Extensive Algebra (Clifford, 1876a)
On the Classification of Geometric Algebras (Clifford, 1876b)

Here, only the first of these papers (on biquaternions) will be reviewed.

Review of Main Works on Mechanism and Machine Science

Preamble

Partly because of his short life, much of Clifford’s academic work was pub-
lished posthumously. However, his widespread network of scientific contacts,
and his reputation as an outstanding teacher, together with his clear notes and
instructive problems ensured that he gained the acknowledgement that he de-
served during his lifetime. In the context of the history of mechanism and
machine science, his papers on geometry (Clifford, 1882) are most relevant,
particularly those on kinematics, and on generalised conceptions of space.

A general rigid-body spatial displacement with no fixed point can be
achieved as a twist about a screw axis. This is a combination of a rotation
about and a translation along a specific straight line (the axis) in 3D space
(Ball, 1900). A similar situation arises when the rigid body undergoes con-
tinuous spatial motion, in which case, at any instant of time, it is performing
a twist-velocity about a screw axis. Analogously, the most general system
of forces acting on a rigid-body may be replaced with an equivalent wrench
about a screw axis. This is a combination of a single force acting along a
specific straight line (the axis) in 3D space, together with a couple, first in-
troduced by Poinsot (1806), acting in any plane orthogonal to the line. These
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scenarios may be represented algebraically in many different ways (Rooney,
1978a), but Clifford’s biquaternion (Clifford, 1873) offers one of the most
elegant and efficient representations for kinematics.

All three of Clifford’s papers on biquaternions discuss and develop the
concept, although the first paper, Preliminary Sketch of Biquaternions, is the
main one that introduces the biquaternion – it is considered to be a classic
and is the main one to be reviewed here. The second paper, Notes on Bi-
quaternions, was found amongst Clifford’s manuscripts and was probably
intended as a supplement to the first paper. It is short and develops some of
the detailed aspects of biquaternion algebra. The third paper, Further Note
on Biquaternions, is more extensive and it discusses and clarifies why a bi-
quaternion may be interpreted in essentially two different ways, either as a
generalised type of number, or as an operator.

Preliminary Sketch of Biquaternions

The idea of a biquaternion, as presented in Clifford’s three papers, Prelim-
inary Sketch of Biquaternions, Notes on Biquaternions and Further Note on
Biquaternions (Clifford, 1882), originated with Clifford, although the term
“biquaternion” had been used earlier by Hamilton (1844, 1899, 1901). to de-
note a quaternion consisting of four complex number components, rather than
the usual four real number components. Clifford acknowledges Hamilton’s
priority here but he considers that because “all scalars may be complex”
Hamilton’s use of the term is unnecessary. Clifford adopts the word for a
different purpose, namely to denote a combination of two quaternions, algeb-
raically combined via a new symbol, ω, defined to have the property ω2 = 0,
so that a biquaternion has the form q+ωr, where q and r are both quaternions
in the usual (Hamiltonian) sense.

The symbol ω (and its modern version, ε) has been the focus of much
misunderstanding since it is a quantity whose square is zero and yet is not
itself zero, nor is it ‘small’. It should be viewed as an operator or as an abstract
algebraic entity, and not as a real number. Clifford confuses matters further by
using the symbol in several different contexts. In Part IV (on elliptic space)
of the Preliminary Sketch of Biquaternions paper ω has a different meaning
and an apparently different multiplication rule ω2 = 1, and in the papers
Applications of Grassmann’s Extensive Algebra and On the Classification
of Geometric Algebras there is yet another related use of the symbol ω, and
this time its defining property is ω2 = ±1. In the early part of the Preliminary
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Sketch of Biquaternions paper Clifford even uses ω to denote angular velocity,
so there is much scope for confusion.

The classic first paper on biquaternions, Preliminary Sketch of Biqua-
ternions, is organised into five sections. Section I introduces and discusses
the occurrence of various different types of physical quantity in mechan-
ical systems, and how they may be represented algebraically. Section II pro-
ceeds to construct a novel algebra, for manipulating various physical quant-
ities, based on an extension and generalisation of Hamilton’s algebra of qua-
ternions, and this is where the term biquaternion is introduced. Section III
briefly investigates non-Euclidean geometries (and specifically elliptic geo-
metry with constant positive curvature) for the purpose of interpreting some
of the projective features and properties of biquaternions. Section IV exam-
ines several particular physical quantities and shows that in some sense their
‘ratio’ is a biquaternion. Finally Section V looks at five specific geometrical
scenarios involving biquaternions. The short second paper of the trio, Notes
on Biquaternions, appears to continue this latter Section V with a further two
geometrical scenarios.

Clifford’s motivation in creating his biquaternion derives essentially from
mechanics, and in Section I of Preliminary Sketch of Biquaternions he draws
attention to the inadequacies of algebraic constructs such as scalars and vec-
tors for representing some important mechanical quantities and behaviours.
Many physical quantities, such as energy, are adequately represented by a
single magnitude or scalar. But he states that other quantities, such as the
translation of a rigid body, where the translation is not associated with any
particular position, require a magnitude and a direction for their specifica-
tion. Another example is that of a couple acting on a rigid body, where again
a magnitude and direction are required but the position of the couple is not
significant. The magnitude and direction of either a translation or of a couple
may be represented faithfully by a vector, as Hamilton had shown.

However, Clifford emphasises that there are several mechanical quantities
whose positions are significant, as well as their magnitudes and directions.
Examples include a rotational velocity of a rigid body about a definite axis,
and a force acting on a rigid body along a definite line of action. These cannot
be represented adequately just by a vector, and Clifford introduces the term
rotor (probably a contraction of ‘rotation vector’) for these quantities, that
have a magnitude, a direction and a position constrained to lie along a straight
line or axis.
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In order to combine or to compare scalar, vector and rotor quantities, some
form of consistent algebra is desirable that faithfully represents the required
processes of combination/comparison. Scalar quantities may be dealt with us-
ing the familiar real number algebra. Its standard operations of addition, sub-
traction, multiplication and division usually yield intuitively plausible results
for the magnitudes of scalars.

For vectors in a 2D space the complex numbers (considered as 2D vec-
tors), offer something fundamentally new in that they can be used to represent
and compare directions as well as magnitudes, by forming the ratio of two
complex numbers and hence by using the complex number division opera-
tion. Moreover, complex numbers may be used as operators for rotating and
scaling geometrical objects in a 2D space.

In the case of vector quantities in 3D space, consistent addition and sub-
traction operations may be defined using “vector polygons” to combine vec-
tors (denoted by straight line segments) in a way that takes account of their
directions. The standard approach is based on empirical knowledge of how
two translations (or two couples) behave in combination. So, two vectors may
be added (subtracted) to give a meaningful sum (difference), which is itself
another vector. But if an attempt is made to compare two vectors, in the way
that two scalars might be compared, by forming their ratio using algebraic
division, there is a problem.

In 3D space Hamilton (1844, 1899, 1901) had shown that it is difficult
to define any form of division operation to obtain the ratio of two vectors
because such a ratio could not itself be a vector. He had demonstrated con-
clusively that forming the ‘ratio’ of two 3D vectors requires the specification
of four independent scalar quantities, and so the outcome must be a 4D object
in general. He had also shown that two different vector ‘ratios’ are obtained
from ‘left-division’ and ‘right-division’ (left- and right-multiplication by an
inverse), and so the operation is non-commutative. Hamilton had solved the
problem by inventing quaternions and their consistent non-commutative (4D)
algebra. A 3D vector algebra cannot be closed under multiplication and ‘divi-
sion’, despite the fact that it is closed under addition and subtraction. Instead
the 3D vectors must be embedded in a 4D space and treated as special cases
of 4D vectors with one zero component. Hamilton’s algebra was based on a
quaternion product that could be partitioned into a scalar part and a vector
part. These parts were subsequently treated separately by Gibbs as a ‘dot’
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product and a ‘cross’ product to form the basis of his later vector algebra
(Gibbs, 1901).

Clifford extends Hamilton’s approach and investigates the situation with
rotors, which are even more problematical than 3D vectors. In this case em-
pirical knowledge and experience demonstrate that the combination of two
rotational velocities with different (skew) axes does not produce a rotational
velocity. Instead it produces a general rigid-body motion. In a similar way the
combination of two forces with different (skew) lines of action does not pro-
duce another force with a definite line of action. Instead it produces a general
system of forces (Ball, 1900). So, an algebra for rotors in 3D space cannot be
expected to be closed under addition or subtraction, and by analogy with the
situation with 3D vectors neither can it be expected to be closed under multi-
plication or division. Clifford tackles the problem by proceeding to develop a
consistent approach that can deal comprehensively with scalars, vectors and
rotors, together with their combinations under suitably defined operations of
addition, subtraction, multiplication and division. His aim is to provide an
algebra for an extended range of physical quantities in mechanics.

As a first step Clifford refers to Ball’s work on screw theory (Ball, 1900)
which he acknowledges as a complete exposition of general velocities of rigid
bodies and of general systems of forces on rigid bodies. Ball had shown that
the most general velocity of a rigid body is equivalent to a rotation velocity,
about a definite axis, combined with a translation velocity along this axis,
thus forming a helical motion, which he referred to as a twist velocity about a
screw. The screw consists of a screw axis (the same line as the rotation axis)
together with a pitch (a linear magnitude) given by the ratio of the magnitude
of the translational velocity to the magnitude of the rotational velocity. The
twist velocity is hence a screw with an associated (angular speed) magnitude.

Analogously Ball had also shown that the most general system of forces
on a rigid body is equivalent to a single force with a definite line of action,
combined with a couple in a plane orthogonal to this axis, thus forming a
helical force system that he referred to as a wrench about a screw. In this case
the screw consists of a screw axis (the same line as the line of action of the
single force) together with a pitch (a linear magnitude) given by the ratio of
the magnitude of the couple to the magnitude of the single force. The wrench
is hence a screw with an associated (force) magnitude.

Clifford completes Section I of the paper by introducing the term motor
(probably a contraction of ‘motion vector’) to denote this concept of a (force
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Fig. 2. The ratio of two vectors. (Source:
W.K. Clifford, 1882, Collected Papers, fa-
cing p. 228, Chelsea Publishing Company,
New York)

Fig. 3. The ratio of two rotors. (Source:
W.K. Clifford, 1882, Collected Papers, fa-
cing p. 228, Chelsea Publishing Company,
New York)

or angular speed) magnitude associated with a screw. He thus designates the
sum of two or more rotors (representing forces or rotation-velocities) as a
new object, namely a motor, and then establishes that although the addition
of rotors is not closed, the addition of motors is closed. By considering any
vector and any rotor to be degenerate forms of motor, and noting that the sum
of two motors is always a motor, Clifford effectively achieves an algebra of
vectors, rotors and motors that is closed under addition and subtraction.

In Section II of Preliminary Sketch of Biquaternions Clifford proceeds
to develop further his algebra of motors by examining whether or not he can
define their multiplication and ‘division’. He begins by noting that Hamilton’s
quaternion may be interpreted either as the ratio of two 3D vectors, or as the
operation which transforms one of the vectors into the other. He illustrates
this with a figure (Figure 2) showing two line segments, labelled AB and
AC, to represent the two vectors. These have different lengths (magnitudes)
and directions, and although the vectors have arbitrary positions, the line seg-
ments are positioned conveniently so that they both emanate from the same
point, A. He explains that AB may be converted into AC by rotating it around
a rotation axis through A that is perpendicular to the plane BAC, until AB

has the same direction as AC, and then stretching or shrinking its length until
it coincides with AC. The process of combining the rotation with the magni-
fication may be thought of as taking the ratio of AC to AB, or alternatively
as operating on AB to produce AC. Hamilton had previously shown this pro-
cess to be representable as a quaternion q. It may be written either in the form
of a ratio AC/AB = q or in the form of an operation q · AB = AC. If the
magnification is ignored, the rotation by itself essentially represents the ratio
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of two directions, namely those of AC and AB, or, equivalently, the process
of transforming one direction into the other.

Clifford states that this particular quaternion q will operate on any other
vector AD in the plane BAC in the same way, so that another such vector AD

will be rotated about the same axis perpendicular to the plane BAC through
the same angle, and be magnified in length by the same factor to become AE

in the plane BAC, where angle DAE equals angle BAC. However, he also
states that this quaternion q operating on any vector, say AF , not lying in the
plane BAC does not rotate and magnify AF in this way. In fact he gives no
meaning to this operation. So, a quaternion formed from the ratio of the two
vectors AB and AC can operate only on vectors in the plane BAC.

By analogy with Hamilton’s quaternion, used for the ratio of two 3D vec-
tors, Clifford considers forming the ratio of two rotors. He describes how two
rotors (with different (skew) axes) may be converted one into the other. Again
he uses a diagram (Figure 3) to illustrate the procedure. The two rotors are
represented as two line segments lying along (skew) axes, and labelled AB

and CD. These have different lengths (magnitudes), directions and positions,
but they are partially constrained in position to always lie somewhere along
their respective axes. He states that there is a unique straight line that meets
both rotor axes at right angles, and he positions the line segments so that the
points A and C lie on this unique line. The length of the line segment AC then
represents the shortest distance between the two rotor axes. Clifford outlines
how the rotor AB may be converted into the rotor CD, in three steps. Firstly,
rotate AB about the axis AC into a position AB ′, which is parallel to CD.
Secondly, translate AB ′ along AC, keeping it parallel to itself, into the pos-
ition CD′. Thirdly, stretch or shrink the length of CD′ until it coincides with
CD. The combination of the first two operations is clearly seen to be a twist
about the screw with axis AC with pitch given by length AC/angle BAB ′.
The third operation is simply a magnification (a scale factor). So, Clifford
demonstrates that the ratio of the two given rotors AB and CD is a twist about
a screw combined with a (real number) scale factor. He writes this ratio in the
form CD/AB = t or alternatively as an operation in the form t · AB = CD,
and he refers to t as a tensor-twist (the word “tensor” in the sense that he
uses it here is not related to the modern use of the word). If the scale factor is
ignored, the twist about the screw by itself essentially represents the ratio of
two (skew) axes, namely those of CD and AB, or, equivalently, the process
of transforming one axis into the other.
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Clifford states that this particular tensor-twist t (the ratio of the two rotors
AB and CD) will operate on any other rotor EF whose axis meets the axis
of t (that is the axis of AC) at right angles. It will rotate EF about the axis
of AC through an angle BAB ′, translate it along this axis through a distance
equal to the length of AC, and stretch or shrink its length in the ratio of the
lengths of CD to AB. However, Clifford also states that t operating on any
rotor, say GH , that does not meet the axis of AC, or that does not meet it
at right angles, will not rotate, translate and magnify GH in this way. In this
case he gives no meaning to the operation. So, a ratio of two rotors AB and
CD can operate only on other rotors whose axes intersect their screw axis
orthogonally.

At this stage the ratio of two vectors has been considered (following
Hamilton) and the ratio of two rotors has been derived. Clifford now invest-
igates the ratio of two motors. He first looks at a special case, namely that
where the two motors have the same pitch. He shows that in this case the ra-
tio of these two motors is again a tensor-twist. His proof relies on expressing
each of the motors as the sum (actually he uses a linear combination) of two
rotors (he had stated earlier that the sum of two rotors is a motor). Clifford
considers the first motor to be a linear combination of two rotors α and β, so
the first motor is mα+nβ, where m and n are real scale factors (scalars). Then
he considers a tensor-twist t whose axis intersects both of the axes of α and
β at right angles (hence the axis of t lies along the common perpendicular of
the axes of α and β). The effect of t on the rotor α is to produce a new rotor
γ = tα, and similarly t acting on the rotor β produces another new rotor
δ = tβ. He now forms a second motor, this time from a linear combination
of the two new rotors γ and δ, by using the same scale factors m and n as
he used in constructing the first motor, giving the second motor as mγ + nδ.
This ensures that the second motor has the same pitch as the first motor. Fi-
nally, he assumes that the distributive law is valid for rotors and constructs
the following sequence: t (mα + nβ) = m(tα) + n(tβ) = mγ + nδ. Hence
he shows that:

t = mγ + nδ

mα + nβ

is the ratio of the two motors having the same pitch.
This establishes that the ratio of two motors with the same pitch is again

a tensor-twist. Unfortunately, if the motors do not have the same pitch, their
ratio is not a tensor-twist, and so Clifford then sets out to derive the general
case. The procedure is quite lengthy and involves the introduction of a new
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operator ω with a somewhat counter-intuitive property, namely ω2 = 0. In
modern times this symbol has been changed to ε, partly to avoid confusion
with the commonly used symbol for rotational speed, and partly to suggest
pragmatically that it is akin to a small quantity whose square may be neg-
lected in algebraic calculations and expansions. It is now referred to as a dual
number, or more specifically as the dual unit.

Clifford considers that the ratio of two general motors will be established
if a geometrical operation can be found that converts one motor, say A, into
another motor, say B. He begins his analysis of the general case by observing
that every motor can be decomposed into the sum of a rotor part and a vector
part, and that the pitch of the motor is given by the ratio of the magnitudes of
the vector and rotor parts. This is justified empirically by remembering that
a wrench (an example of a motor) consists of the sum of a force with its line
of action (a rotor), and a couple in a plane orthogonal to the line of action (a
vector). Another example is a twist velocity (a motor) consisting of the sum
of a rotational velocity about an axis (a rotor), and a translational velocity
along the axis (a vector). Clifford states that, because of this generally avail-
able decomposition of any motor into a rotor plus a vector, it is possible to
change arbitrarily the pitch of the motor without changing the rotor part, by
combining the motor with some other suitable vector. So, to convert a given
general motor A into another given general motor B, he proceeds by introdu-
cing an auxiliary motor B ′ that has the same rotor part as B but that has the
same pitch as A. He has already shown that the ratio of two motors with the
same pitch is a tensor-twist, so he immediately knows the ratio B ′/A = t .
He expresses B ′ in terms of B by adding an appropriate vector, −β, so that:
B = B ′ + β where β is a vector parallel to the axis of B.

Clifford can then write the ratio of B to A as:

B

A
= B ′

A
+ β

A
= t + β

A
.

This is the sum of a tensor-twist t with a new object β/A. The latter is the ratio
of a vector in some direction, to a motor with an axis generally in a different
direction, and as yet its nature is unknown. He proceeds to investigate the
nature of this new ratio by introducing a symbol ω to represent an operator
that converts any motor into a vector parallel to the axis of the motor and of
magnitude equal to the magnitude of the rotor part of the motor. Thus, for
example, ω converts rotation about any axis into translation parallel to that
axis. Similarly, ω converts a force along its line of action into a couple in a
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plane orthogonal to that line of action. By definition ω operates on a motor,
and the effect of ω operating on a vector such as a translation or a couple is
to reduce these to zero. So, ω operating on a motor, produces a (free) vector
from its rotor part and simultaneously eliminates the vector part of the motor.
Thus, operating with ω twice in succession on any motor A always reduces
the motor to zero, that is ω2A = 0, or expressed simply, in more modern
form, ω2 = 0.

Clifford states the above operation algebraically as ωA = α, where A

is a general motor and α is the (free) vector with the same direction and
magnitude as the rotor part of A. He recalls that the ratio of two vectors is a
quaternion and hence β/α = q is a quaternion, so β = qα. This allows him
to write the following sequence: β = qα = qωA, so that: β/A = qω, and
therefore: B/A = t + qω.

The latter expresses the ratio of two general motors A and B as the sum of
two parts, namely a tensor-twist t and a quaternion q multiplied by ω. At this
stage Clifford has derived a clear interpretation for the ratio of two motors
but he is not content with this form. He proceeds to interpret the ratio B/A

differently and eventually expresses it in an alternative interesting form.
His alternative interpretation requires some further analysis, but it leads to

a more sophisticated result involving the new concept of a biquaternion. He
starts by considering an arbitrary point, O, in space as an origin. From em-
pirical knowledge of forces, couples, rotational and translational velocities,
he is able to state that, in general, any motor may be specified uniquely as
the sum of a rotor with axis through the origin, O, and a (free) vector, with a
different direction from that of the rotor. He proceeds to observe that rotors
whose axes always pass through the same fixed point behave in exactly the
same way as (free) vectors. The ratio of any two of these rotors is of course
a tensor-twist, because both have the same (zero) pitch. But the pitch of this
tensor-twist is zero because the rotor axes intersect (in modern terms there
is no translation along a common perpendicular line), and so the ratio of the
two rotors through the same fixed point is essentially a quaternion with axis
constrained to pass through the fixed point.

At this stage Clifford’s notation becomes slightly confusing. Now he
chooses to use a cursive Greek letter to represent a rotor whose axis passes
through the origin, and the same cursive Greek letter prefixed by the symbol
ω to represent a vector with the same magnitude and direction as the corres-
ponding rotor. So, the rotor α whose axis passes through the origin, and the
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vector ωα are parallel in direction and they have the same magnitude. This
does make sense because, as stated earlier, the effect of ω operating on any
motor, including the zero-pitch motor α (a rotor) with axis through the origin,
is to convert it into a vector in just this way. Clifford writes (à la Hamilton)
the ratio of two such vectors ωα and ωβ as a quaternion p = ωβ/ωα and
by ‘cancelling’ the ω this becomes p = β/α where α and β are rotors with
axes through the origin. [Clifford uses the letter q, rather than p, as a general
symbol for a quaternion, but the letter p has been substituted here instead to
distinguish it as a different quaternion from the one to be introduced below.]
So, in this way he has shown that the quaternion p represents either the ra-
tio of two vectors ωα and ωβ, or, equivalently, the ratio of two respectively
parallel rotors α and β with axes passing through the origin.

Clifford is now able to state the general expression for a motor as α +ωβ.
This agrees with empirical evidence since it is the sum of a rotor α, with
axis through the origin, and a (free) vector ωβ, with a direction that differs, in
general, from the direction of α. The ratio of two such general motors, α+ωβ

and γ + ωδ, is the algebraic expression:

γ + ωδ

α + wβ
.

To evaluate this, Clifford continues by recognising that the ratio of the two
rotors α and γ , with axes through the origin, is some quaternion, γ /α = q.
From this he has that qα = γ , and so q(α + ωβ) = qα + qωβ = γ + ωqβ.
But now he has to determine the geometrical nature of the algebraic product
qβ in this expression. Operating on α with q clearly rotates it into γ , but since
β does not in general lie in the same plane as α and γ , the geometrical effect
of operating on β with q is not yet known, although algebraically it is just
another quaternion.

Clifford tackles this problem of geometrical interpretation by introducing
yet another quaternion r and using the algebra of quaternions to derive, in
the first instance, some formal algebraic expressions. Since any algebraic
combination of quaternions, vectors (equivalent to quaternions with zero first
component) and rotors through a fixed point (equivalent to vectors) is a qua-
ternion, he defines r as the quaternion,

r = δ − qβ

α
,

from which he has: rα = δ − qβ. He then operates on this with ω and ob-
tains ωrα = ωδ − ωqβ. Finally, he adds this equation to the earlier one



William Kingdon Clifford 95

q(α + ωβ) = γ + ωqβ, to derive the following expression:

(q + ωr)(α + ωβ) = γ + ωδ,

in which the defining property ω2 = 0 is used. Re-writing the final expression
in the form:

γ + wδ

α + ωβ
= q + ωr

shows that the ratio of two general motors is the sum of two terms. The first is
a quaternion and the second is a quaternion operated on by ω. Clifford refers
to this new quantity, representing the ratio of two general motors, as a biqua-
ternion. Unfortunately, he then states that this biquaternion has no immediate
interpretation as an operator in the way that a quaternion operates on a vec-
tor to give another vector (if the first vector is orthogonal to the axis of the
quaternion). This conclusion is somewhat unsatisfactory but in the remaining
Sections III–V of the paper Preliminary Sketch of Biquaternions he addresses
the shortcoming by setting the biquaternion concept in the wider context of
projective geometry. He ends the section with the following Table 1, summar-
ising his perception of the situation so far.

Table 1. Summary of geometrical forms and their representations. (Source: W.K. Clifford,
1882, Collected Papers, p. 188, Chelsea Publishing Company, New York)

In Section III of Preliminary Sketch of Biquaternions, Clifford amplifies
the concept of the biquaternion in the context of non-Euclidean spaces, par-
ticularly the elliptic geometry of constant positive curvature. This is a gener-
alisation into 3D (curved space) of the 2D geometry of the (curved) surface of
a sphere. Using the formalism of projective geometry he outlines the follow-
ing facts, relating to this elliptic (constant positive curvature) non-Euclidean
space:
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• Every point has a unique set of three coordinates, and conversely every
set of three coordinate values defines a unique point;

• There is a quadric surface, referred to as the Absolute, for which all its
points and tangent planes are imaginary;

• Two points are referred to as conjugate points, with respect to the absolute,
if their ‘distance’ (an angle) apart is a quadrant, and two lines or two
planes are conjugate if they are at right angles to each other;

• In general, two lines can be drawn so that each meets two given lines at
right angles, and the former are referred to as polars of each other;

• A twist-velocity of a rigid body has two axes associated with it because
translation along one axis is equivalent to rotation about its polar axis and
vice versa;

• A twist-velocity of a rigid body has a unique representation as a combin-
ation of two rotation-velocities about two polar axes;

• The motion of a rigid body may be expressed in two ways, either as a
twist-velocity about a screw axis with a certain pitch, or as a twist-velocity
about the polar screw axis with the reciprocal of the first pitch;

• In general, a motor may be expressed uniquely as the sum of two polar
rotors;

• A special type of motor arises when the magnitude of the two polar rotors
are equal, because the axes of the motor are then indeterminate, so that
the motor behaves as a (free) vector;

• There are right vectors and left vectors in elliptic space, depending on the
handedness of the twist of the motor from which they are derived, whose
axes are indeterminate;

• In elliptic space if a rigid body rotates about an axis through a certain ‘dis-
tance’ and simultaneously translates along it through an equal ‘distance’,
then all points of the body travel along ‘parallel straight lines’ and the mo-
tion is effectively a rotation about any one of these lines together with an
‘equal’ translation along it.

From these facts Clifford derives the following proposition at the end of Sec-
tion III:

Every motor is the sum of a right and a left vector.

This he expresses in the form

A = 1

2
(A + A′) + 1

2
(A − A′),
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where A is the motor and A′ is its polar motor, and where (A + A′) and
(A −A′) are both motors of pitch unity, but one is right-handed and the other
is left-handed.

In Section IV of Preliminary Sketch of Biquaternions, Clifford continues
with his treatment of motors in the context of elliptic geometry and essen-
tially sets up a coordinate system for rotors passing through the origin. He
bases this on the three mutually perpendicular unit rotors i, j , and k whose
axes are concurrent at the origin. Any rotor through the origin then has the
form ix + jy + kz, where x, y, and z are scalar quantities (ratios of mag-
nitudes). He gives another interpretation to i, j , and k as operators. Thus for
instance i operates on any rotor that intersects the axis of i at right angles and
rotates it about the axis of i through a right angle. Similar comments apply
to j and k, and their axes. Clifford refers to these operations as rectangular
rotations. Performing repeated rectangular rotations leads to the familiar qua-
ternion equations i2 = j 2 = k2 = ijk = −1 and hence Clifford interprets
the unit quaternions i, j and k as rectangular rotations about the coordinate
axes. He states that for operations on rotors which are orthogonal to, but do
not necessarily intersect, the axes of i, j , and k, the quaternion equations are
still valid.

The rotor ix+jy+kz is interpreted as a rectangular rotation about the axis
of the rotor, combined with a scale factor (x2 + y2 + z2)1/2. It operates only
on those rotors whose axes intersect its axis at right angles. The remainder of
Section IV explores various consequences of these interpretations and con-
cludes with another proof that the ratio of two motors is a biquaternion, as
defined in Section II.

The final Section V of Preliminary Sketch of Biquaternions, is short and
deals with some applications of the rotor concept in elliptic geometry looking
at special cases of geometrical interest. There are five sub-sections as follows:
Position-Rotor of a point; Equation of a Straight Line; Rotor along Straight
Line whose Equation is given; Rotor ab joining Points whose Position-Rotors
are α, β; Rotor parallel to β through Point whose Position-Rotor is α. These
are not reviewed here since they are not of central interest to the field of
Mechanism and Machine Science.
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Modern Interpretation of Contributions to Mechanism and
Machine Science

Preamble

Since the time of Clifford’s seminal papers on biquaternions considerable
progress has been made in this topic. The theoretical aspects have been sig-
nificantly advanced by mathematicians developing new types of ‘number’,
such as dual numbers and double numbers (Dickson, 1923, 1930; Yaglom,
1968), and new fields in abstract algebra such as the eponymous Clifford al-
gebras (Grassmann, 1844; Clifford, 1876a, 1876b; Altmann, 1986; Hestenes
and Sobczyk, 1987; Conway and Smith, 2003; Rooney and Tanev, 2003;
Rooney 2007). In the realm of applications, major progress has been made
in mechanics (particularly in kinematics) using various dual quantities and or
motors (Denavit, 1958; Keler, 1958; Yang, 1963, 1969; Yang and Freuden-
stein, 1964; Dimentberg, 1965; Yuan, 1970, 1971; Rooney, 1974, 1975b), and
many other leading researchers in mechanics refer to quaternions and biqua-
ternions in dealing with screw theory, notably (Hunt, 1978; Davidson and
Hunt, 2004). In physics also (and particularly in quantum mechanics) various
types of Clifford algebras are in use (Hestenes, 1986; Penrose, 2004). Fur-
thermore, other related application areas have used or could profitably use
the quaternion concept (Rogers and Adams, 1976; Kuipers, 1999) and could
benefit from a generalisation to the biquaternion. However, it must be said
that Clifford’s inventions have not had universal acceptance, and, as noted
by Baker and Wohlhart (1996), one early researcher in particular (von Mises,
1924a, 1924b) deliberately set out to establish an approach to the analysis of
motors that did not require Clifford’s operator ω.

Clifford’s important achievements are numerous and wide-ranging, but
in the present context the more significant ones include: the invention of the
operator ω; the clarification of the relationship between (flat) spatial geometry
and (curved) spherical geometry; the derivation of the biquaternion concept;
and the unification of geometric algebras into a scheme now referred to as
Clifford algebras. But before considering these in more detail from a modern
viewpoint it is worth drawing attention to some problematical aspects.

Despite the elegance of Clifford’s work on biquaternions, there are several
subtleties that must be considered in the context of mechanics. The immedi-
ate problem, apparent from the outset is that a biquaternion, defined originally
by Clifford as a ratio of two motors, does not appear to be interpretable as an
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operator that generally transforms motors, one into another. Actually it can
be interpreted in a restricted sense in this way provided that it operates only
on motors whose axes intersect the axis of the biquaternion orthogonally.
This is analogous to the situation with Hamilton’s quaternion and rotations.
However, these difficulties are resolved by forming a triple product operation,
involving three terms, rather than the one used initially by Clifford, involving
just two terms, and by not interpreting the quaternion units i, j , and k as ro-
tations through a right angle about the x, y, and z axes, respectively, as is
commonly done (Porteous, 1969; Rooney, 1978a; Altmann, 1989). This new
three-term biquaternion operation allows any motor to be screw displaced into
another position and orientation and not just those motors whose axes are or-
thogonal to and intersect the biquaternion axis. By way of comparison the
equivalent operation for quaternions rotates any vector and not just those or-
thogonal to the axis of the quaternion (Brand, 1947, Rooney, 1977; Hestenes,
1986).

A second problem arising from Clifford’s work on biquaternions relates
to the use in dynamics of his operator ω, with the property ω2 = 0. Since its
introduction it has taken on a wider life of its own and is now studied (inde-
pendently of its roots in mechanics) as an abstract algebraic entity (Dickson,
1923, 1930). Currently, it is referred to as a dual number, and is designated by
the symbol ε, where ε2 = 0 (Yaglom, 1968). It was introduced, , essentially
in the contexts of geometry, statics and kinematics and has been employed
very successfully there. In the realm of mechanics in general it has spawned
a range of dual-number and other dual-quantity techniques applicable in the
analysis and synthesis of mechanisms, machines and robots (Denavit, 1958;
Keler, 1958; Yang, 1963, 1969; Yang and Freudenstein, 1964; Dimentberg,
1965; Yuan, 1970, 1971; Rooney, 1974, 1975b). However, although these
techniques generally work well in geometry, statics and kinematics, where
spatial relationships, rotational velocities, forces and torques are the focus,
they are often of more limited use in dynamics, where accelerations, and iner-
tias are additionally involved. Here again there is some difficulty of interpret-
ation but perhaps more importantly the algebraic structure of the dual number
and other dual quantities do not appear properly to represent the nature of the
underlying dynamical structures (von Mises, 1924a,b; Kislitzin, 1938; Sho-
ham and Brodsky, 1993; Baker and Wohlhart, 1996).



100 Joe Rooney

Dual Numbers, Dual Angles, Dual Vectors and Unit Dual Quaternions

When considering the geometry or motion of objects in 3D space the most
common transformations in use are those that operate on points. These are
referred to as point transformations and the familiar 4 × 4 real matrix, op-
erating on the homogeneous coordinates of any point, falls into this class
(Maxwell, 1951; Rooney, 1977). However, the modern use of Clifford’s op-
erator ω and his biquaternion, together with quantities derived from them,
essentially rests on a consideration of 3D space as a collection of (straight)
lines as well as points, because lines occur (as rotation and screw axes) in
any discussion of motion and the forces that cause motion. A line has four
degrees of freedom of position and orientation and requires four independent
coordinates for its specification (Semple and Roth, 1949), whereas a point
needs only three coordinates. The transformations required for lines are nat-
urally referred to as line transformations. One type of representation of lines,
and also of transformations of lines, involves dual numbers (the modern ver-
sion of Clifford’s operator ω). Lines may be represented using dual vectors,
whereas transformations are represented using dual quaternions (the modern
version of Clifford’s biquaternions).

It has proved convenient to use six so-called Plücker coordinates in the
mathematical description of a line (Plücker, 1865; Brand, 1947). These are
analogous to the four homogeneous coordinates used to represent a point
(Maxwell, 1951).

The six Plücker coordinates arise as the components of two vectors (Fig-
ure 4). The first vector, L, with three components, L, M and N , defines the
direction of the given line. The second vector, L0, with components, L0,
M0 and N0, is the moment of the line about the origin. So, r × L = L0,
where r is the position vector of any point on the line. Now, it is clear
from contemporary standard vector algebra (Gibbs, 1901; Brand, 1947) that
L · L0 = L0 · L = (r × L) · L = 0, and so the two vectors L and
L0 are always orthogonal. The six Plücker coordinates satisfy the relation-
ship L · L0 = LL0 + MM0 + NN0 = 0. Additionally, the vectors,
µL = (µL,µM,µN) and µL0 = (µL0, µM0, µN0) for arbitrary non-zero
µ, give the same line as before. It is usual to choose L as a unit vector and
hence to choose L, M and N such that L2+M2+N2 = 1, so that they repres-
ent the direction cosines of the line. There are hence two conditions imposed
on the six Plücker coordinates and only four independent coordinates remain,
as expected for a line in 3D space.



William Kingdon Clifford 101

Fig. 4. The six Plücker coordinates (L, M ,
N ; L0, M0, N0) of a straight line in 3D
space, represented by a unit dual vector L̂,
where L defines the direction of L̂ and L0 is
the moment of L̂ about the origin. (Source:
J. Rooney, 1978a, p. 46)

Fig. 5. A general dual vector L̂ (a motor),
representing a screw in 3D space, where L
defines the magnitude and direction of L̂,
where L′

0 is the moment of L̂ about the ori-
gin, and where |L′′

0 |/|L| defines the pitch of
the screw. (Source: J. Rooney, 1978a, p. 50)

If the line passes through the origin, its moment, L0, is zero, it is specified
by a single vector L, and it has only two degrees of freedom. Lines through
the origin may therefore be put into one-one correspondence with the points
on the surface of a unit sphere centred on the origin, and this forms part of the
basis of the relationship between spherical (2D curved) geometry and spatial
(3D flat) geometry.

The new location of a specific point under a line transformation is ob-
tained by operating separately on any two lines which intersect in the point at
its initial position, and then determining their new point of intersection after
the transformation. This is analogous to the method used to find the new loc-
ation of a line under a point transformation. In this case the procedure is to
transform any two points lying on the initial line and then to determine the
line joining their new positions.

The six Plücker coordinates (L,M,N;L0,M0, N0) of a line, define the
position and orientation of the line with respect to a point O, the origin. To
describe the relative orientation of two directed skew straight lines in space
a unique twist angle, α and a unique common perpendicular distance, d, are
defined, although these two variables do not completely specify the config-
uration since the common perpendicular line itself must also be given. The
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situation is analogous to the case of two intersecting lines (Rooney, 1977).
There the lines define a unique angle at which they intersect, but the normal
line to the plane in which they lie is needed for a complete specification of the
relative orientation. It is advantageous to combine the two real variables (scal-
ars), α and d, into a type of ‘complex number’, known as a dual number. It
is not widely known that the usual complex number may be generalised, and
there are a further two essentially different types (Yaglom, 1968). All three
are considered in (Rooney, 1978b) in the context of geometry and kinematics.
These are:

the complex number a + ib, where i2 = −1

the dual number a + εb, where ε2 = 0

the double number a + jb, where j 2 = +1

Fig. 6. Dual angles in 3D space: (a) the dual angle, α + εd , between two skew lines; (b) the
dual angular displacement, θ + εS, of a rigid body. (Source: J. Rooney, 1978a, p. 47)

Algebraically, each of the three different types of complex number is just
an ordered pair (a, b) of real numbers with a different multiplication rule for
the product of two such ordered pairs. The symbol ε in the dual number is es-
sentially the operator originally introduced by Clifford, (1873), although here
it is an abstract algebraic quantity rather than an operator in mechanics. The
usefulness of this type of abstract number derives from the work of (Study,
1901) who showed how the twist angle, α and common perpendicular dis-
tance, d, between two skew lines may be combined into a dual number of the
form α + εd (where ε2 = 0). This is referred to as the dual angle between the
lines (Figure 6a).

Dual angles also occur in the description of a general rigid-body spatial
displacement, which involves a real angle and a real distance (Figure 6b).
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Fig. 7. The dual direction cosines, cos(αx + εdx), cos(αy + εdy), and cos(αz + εdz) of a
directed line in space. (Source: J. Rooney, 1978a, p. 48)

It was Chasles (1830) who proved that such a displacement was equivalent
to a combination of a rotation about and a translation along some straight
line. Later Ball (1900) referred to this as a screw displacement about a screw
axis. The motion thus defines a unique screw axis, a unique real angle θ (the
rotation), and a unique real distance S (the translation). The variables θ and
S may be combined into a dual number of the form θ + εS. This dual number
is essentially a dual angle since the screw displacement may be specified by
the initial and final positions of a line perpendicular to the screw axis, and
these positions form a pair of skew lines (Figure 6b). Thus a spatial screw
displacement can be considered to be a dual angular displacement about a
general line (the screw axis) in space.

A given line in space, which does not pass through the origin, has three
dual angles associated with it and they define it completely. These are the
dual angles αx + εdx , αy + εdy , and αz + εdz, that it makes with the three
coordinate axes (Figure 7). These three dual angles may be related to the
six Plücker coordinates (L,M,N;L0,M0, N0), using rules for the expansion
of (trigonometric) functions of a dual variable, and it is shown in Rooney
(1978a) that the relationships are:

cos(αx + εdx) = L + εL0,

cos(αy + εdy) = M + εM0,

cos(αz + εdz) = N + εN0.
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The three dual numbers L + εL0, M + εM0 and N + εN0 are referred
to as the dual direction cosines of the line and they may be considered to be
the three components of a unit dual vector, L̂ in the same way that (L,M,N)

forms a unit real vector, L whose components are three real direction cosines.
The dual vector describing any line in space is written:

L̂ = L+εL0 = (L,M,N)+ε(L0,M0, N0) = (L+εL0,M+εM0, N+εN0).

Here the circumflex over a quantity does not indicate a unit quantity. It is
referred to as the dual symbol and it is used always to signify a dual quantity
(a dual number, dual vector, dual matrix, or dual quaternion). Thus, α + εd

would be written as α̂, and θ + εS as θ̂ . Similarly L̂ would be L + εL0. The
first component of the dual quantity (L, α, θ , L, etc.) is referred to as the
real or primary part and the second component (L0, d, S, L0, etc.) is the dual
or secondary part. Geometrically, the relationship between a real quantity,
say α, and its corresponding dual quantity α̂ (= α + εd) is essentially the
relationship between the geometry of intersecting lines (spherical geometry)
and the geometry of skew lines (spatial geometry).

Spherical geometry is partly concerned with subsets of points on the sur-
face of a unit sphere. For example, three great-circle arcs define a spherical
triangle (Todhunter and Leathem, 1932). But, since any point on the surface
defines a unique (radial) line joining it to the centre, O, of the sphere, spher-
ical geometry is also concerned with sets of intersecting straight lines in space
(Figure 8a). The two viewpoints are equivalent and the length of a great-circle
arc on the surface corresponds to the angle between the two intersecting lines
defining the arc’s endpoints. Three intersecting lines determine a spherical
triangle.

Spatial geometry is partly concerned with the more general situation of
non-intersecting or skew straight lines in space. For example, three skew lines
define a spatial triangle (Yang, 1963), and Figure 8b illustrates these lines
and their three common perpendiculars. For spatial rotations about a fixed
point, O, the rotation axes all intersect in O and the geometry is spherical
(Rooney, 1977). For screw displacements about skew lines the geometry is
spatial (Rooney, 1978a).

The relationship between spherical geometry and spatial geometry was
formalised by Kotelnikov (1895) in his Principle of Transference. The ori-
ginal reference is very difficult to obtain and consequently the precise
statement of the principle and its original proof are not generally avail-
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Fig. 8. The relationship between spherical geometry and spatial geometry: (a) a spherical
triangle; (b) a spatial triangle. (Source: J. Rooney, 1978a, p. 51)

able (Rooney, 1975a). The one-many relationship may be expressed as
α ↔ α + εd and θ ↔ θ + εS. One version of the principle states that

all laws and formulae relating to a spherical configuration (involving
intersecting lines and real angles) are also valid when applied to an
equivalent spatial configuration of skew lines if each real angle, α

or θ , in the spherical formulae is replaced by the corresponding dual
angle, α + εd or θ + εS.

The real direction cosines, L, M and N , of a line through the origin in-
volve the real angles αx , αy , and αz, and the dual direction cosines, L + εL0,
M + εM0 and N + εN0, of a general line involve the dual angles αx + εdx ,
αy + εdy , and αz + εdz. Thus, in applying the principle, real angles and real
direction cosines must be replaced with dual angles and dual direction cosines
respectively.

The dual vector L̂ = L + εL0 representing a line, as in Figure 4, not
passing through the origin is not the most general type of dual vector that
may occur since, in Figure 4, L and L0 are orthogonal and L is a unit vector,
so there L̂ = L + εL0 is a unit dual vector. In the general case L need
not be a unit vector and need not be orthogonal to L0, which is then not the
moment of L̂ about the origin. What is obtained is a dual vector with six
independent real components (L, M, N , L0, M0 and N0), which is referred
to as a motor (Clifford, 1873; Brand, 1947). This describes a line in space (as
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before) but with two extra magnitudes. The situation is illustrated by Figure 5,
and the two extra magnitudes are the magnitude of L (this was previously a
unit vector in Figure 4) and the component of L0 along L, namely L′′

0 (this
was previously zero in Figure 4). The direction of the line is still given by L,
and the component of L0 perpendicular to L, namely L′

0, now represents the
moment of L about the origin, O.

A dot product and a cross product may be defined for general dual vectors
in the style of Gibbs (1901). Thus, given two dual vectors Â and B̂, where
Â = A + εA0 and B̂ = B + εB0, the dot product, or scalar product (Brand,
1947), is defined as:

Â · B̂ = (A + εA0) · (B + εB0) = A · B + ε(A · B0 + A0 · B).

This is a dual number in general and is independent of the location of O, the
origin. It can be shown that if Â and B̂ are unit dual vectors defining two lines
in space and if the dual angle between the lines is α̂ = α + εd then

Â · B̂ = cos α̂ = cos(α + εd) = cos α − εd sin α.

This is in complete analogy with the relationship between two unit real vec-
tors and the real angle between them: A · B = cos α. If the scalar product of
two non-parallel unit dual vectors is real (that is, if the dual part is zero) then
the lines intersect. In addition if the scalar product is zero (that is, if both real
and dual parts are zero) then the lines intersect at right angles (Brand, 1947).

In a similar way the cross product, or motor product (Brand, 1947) of two
dual vectors in the style of Gibbs (1901) is defined as:

Â × B̂ = (A + εA0) × (B × εB0) = A × B + ε(A × B0 + A0 × B).

This is a motor in general and the line it defines is the common perpendicular
line to Â and B̂ (Figure 6a). If Ê = E + εE0 is a unit line vector representing
this common perpendicular, if α̂ = α + εd is the dual angle between Â and
B̂, and if Â and B̂ are unit dual vectors then it can be shown that

Â × B̂ = sin α̂Ê = (sin α + εd cos α)Ê.

Again this is in complete analogy with the real vector case: A × B = sin αE.
If the motor product of two unit dual vectors is a pure dual vector (that is,
if the real or primary part is zero) then the lines are parallel. In addition if
the dual part is also zero then the lines are collinear (Brand, 1947). Finally it
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is possible to define scalar triple products and motor triple products for dual
vectors in complete analogy with the usual real vector case.

Now, because the general spatial screw displacement (Figure 6b) of a rigid
body consists of a rotation through an angle θ about and a translation through
a distance S along an axis in space (Chasles, 1830; Ball, 1900), a total of six
parameters are necessary to define the displacement completely. Four para-
meters specify the axis (a line in 3D space), one parameter specifies θ , and
one parameter specifies S. It thus appears that a single finite screw displace-
ment may be represented by a general dual vector or motor (Clifford, 1873;
Brand, 1947) since two magnitudes (θ and S) and a line having both direction
and position are involved.

However, although this relatively simple representation is possible, it is
not a very satisfactory one. The disadvantages arise in attempting to obtain the
resultant of two successive screw displacements (this should itself be a screw
displacement). One problem is that two screw displacements do not commute
and the order in which they occur must first be specified. The resultant mo-
tor cannot therefore just be given by the sum (which is commutative) of the
two individual motors, as it should be, if the screw displacements behaved as
true motors. This situation is analogous to that encountered in attempting to
use a simple vector representation for the sum of two finite rotations about a
fixed point (Rooney, 1977). In that case the parallelogram addition law fails
to give the resultant of two such rotations. As a consequence it is not pos-
sible to use a simple motor representation for screw displacements. Instead,
a line transformation is used for the representation (Rooney, 1978a). The line
transformation (representing a screw) is derived from a point transformation
(representing a rotation) by replacing real angles and real direction cosines
with dual angles and dual direction cosines in accordance with the Principle
of Transference. The line transformation approach leads to the modern equiv-
alent of Clifford’s biquaternion, namely the unit dual quaternion representa-
tion, involving a combination of quaternions and dual numbers. The unit dual
quaternion derives from a unit quaternion by replacing the four real compon-
ents of the latter with four dual number components. Alternatively two real
quaternions are combined as the primary and secondary parts of the resulting
unit dual quaternion.

The concept of a quaternion, as introduced and developed by Hamilton
(1844, 1899, 1901), was invented to enable the ratio of two vectors to be
defined and thus could be used to stretch-rotate one vector, r, into another,
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r′, by premultiplying the first with a suitable quaternion. In this case r would
be premultiplied by the product r′r−1. The latter ‘quotient’ of vectors is a
quaternion if the inverse r−1 of r is given an appropriate definition. The op-
eration of premultiplying r by the quaternion r′r−1 may be viewed as a point
transformation operating on the point represented by the position vector r.

The equivalent operation for line transformations requires an operator
capable of operating on a line, and screw displacing it. A point transform-
ation operates on the position vector, r, of a point to give another position
vector, r′. A line is represented by a unit dual vector L̂ = L + εL0, where
L · L = 1, and L · L0 = 0, so by analogy the problem is essentially one of
transforming one unit dual vector L̂1 into another, L̂2. As with the quaternion
ratio of two vectors, r′r−1, this may be achieved if an appropriate ratio or

quotient B̂Â
−1

of two general dual vectors Â and B̂ can be defined. It was an
analogous problem that led Clifford to invent the biquaternion as the ratio of
two motors (Clifford, 1873). It transpires that the ratio of two general dual
vectors is an operator formed from a combination of a quaternion and a dual
number. Nowadays this is referred to as a unit dual quaternion, although it is
essentially a biquaternion.

The relative spatial relationship of two general dual vectors Â and B̂ re-
quires eight parameters for its specification. Four of these define the common
perpendicular line between the axes of the motors; two more specify the dual
angle between these axes; and finally two parameters are required to repres-
ent the ratios of the two magnitudes associated with the second motor to those
associated with the first. So an operator to transform Â into B̂ must also have
at least eight parameters in its specification.

A dual quaternion q̂ is a 4-tuple of dual numbers of the form
q̂ = (q1 +εq01, q2 +εq02, q3 +εq03, q4 +εq4), where ε2 = 0, and hence it has
eight real components, q1, q2, q3, q4, q01, q02, q03 and q04. It may be written
alternatively, as with all dual quantities, in terms of primary and secondary
parts as

q̂ = (q1, q2, q3, q4) + ε(q01, q02, q03, q04) = q + εq0,

where q and q0 are real quaternions. This looks just like Clifford’s biqua-
ternion q +ωr where ω2 = 0. The operator for screw displacement is formed
from a dual quaternion by providing the latter with an appropriate consistent
algebra.
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An algebra is imposed on dual quaternions by defining a suitable multi-
plication rule (addition and subtraction are performed componentwise). The
rule that corresponds with that of Clifford (1873), for his biquaternions, is
essentially equivalent to that for the real quaternions (Hamilton, 1844, 1899,
1901; Rooney, 1977) but with each real component replaced by the corres-
ponding dual component. So, write two dual quaternions, p̂ and q̂, in the
form

p̂ = (p1 + εp01) + (p2 + εp02)i + (p3 + εp03)j + (p4 + εp04)k,

q̂ = (q1 + εq01) + (q2 + εq02)i + (q3 + εq03)j + (q4 + εq04)k.

Then the dual quaternion product of p̂ and q̂ is defined by expanding the
expression p̂q̂ using the standard rules of algebra together with the multi-
plication rules for products of quaternions, i2 = j 2 = k2 = ijk = −1 and
ij = k = −ji, jk = i = −kj , ki = j = −ik, and finally using the rule
ε2 = 0, to give:

p̂q̂ = [(p1q1 − p2q2 − p3q3 − p4q4)

+ ε(p1q01 − p2q02 − p3q03 − p4q04 + p01q1 − p02q2 − p03q3 − p04q4)]
+ [(p1q2 + p2q1 + p3q4 − p4q3)

+ ε(p1q02 + p2q01 + p3q04 − p4q03 + p01q2 + p02q1 + p03q4 − p04q3)]i
+ [(p1q3 − p2q4 + p3q1 + p4q2)

+ ε(p1q03 − p2q04 + p3q01 + p4q02 + p01q3 − p02q4 + p03q1 + p04q2)]j
+ [(p1q4 + p2q3 − p3q2 + p4q1)

+ ε(p1q04 + p2q03 − p3q02 + p4q01 + p01q4 + p02q3 − p03q2 + p04q1)]k.

Division is defined (as an inverse of multiplication) for dual quaternions in
terms of a conjugate and a norm. This is analogous to the division process for
quaternions. The conjugate of q̂ is defined as

q̂ = (q1 + εq01) − (q2 + εq02)i − (q3 + εq03)j − (q4 + εq04)k

and the norm of q̂ is defined as the dual number

|q̂| = (q1 + εq01)
2 + (q2 + εq02)

2 + (q3 + εq03)
2 + (q4 + εq04)

2

= (q2
1 + q2

2 + q2
3 + q2

4 ) + 2ε(q1q01 + q2q02 + q3q03 + q4q0).
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The inverse or reciprocal of q̂ is then

q̂−1 = q̂

|q̂| .

This is not defined if the primary part, q, of q̂ is zero (that is, if q1 = q2 =
q3 = q4 = 0) since the norm is then zero. It is easily checked that, for a
non-zero norm, q̂q̂−1 = q̂−1q̂ = 1. If |q̂| = 1 the dual quaternion is a unit
dual quaternion.

In complete analogy with the real quaternions and real vectors considered
in Rooney (1977), it is possible to use a dual quaternion to provide a dual
vector algebra (Brand, 1947; Yang, 1963; Rooney, 1977). Thus a dual vector
is identified with a dual quaternion having a zero first (dual number) compon-
ent. Given two such dual vectors

Â = (A1 + εA01)i + (A2 + εA02)j + (A3 + εA03)k,

B̂ = (B1 + εB01)i + (B2 + εB02)j + (B3 + εB03)k,

their dual quaternion product is

ÂB̂ = −[(A1 + εA01)(B1 + εB01)

+ (A2 + εA02)(B2 + εB02) + (A3 + εA03)(B3 + εB03)]
+ [(A2 + εA02)(B3 + εB03) − (A3 + εA03)(B2 + εB02)]i
+ [(A3 + εA03)(B1 + εB01) − (A1 + εA01)(B3 + εB03)]j
+ [(A1 + εA01)(B2 + εB02) − (A2 + εA02)(B1 + εB01)]k.

This is expressed more concisely in terms of the scalar and motor products
already defined earlier for dual vectors (Brand, 1947). It is then easily shown
that the dual quaternion product of Â and B̂ is

ÂB̂ = −Â · B̂ + Â × B̂.

This product is in general a dual quaternion since the first component (the
scalar product) is non-zero unless the lines associated with Â and B̂ intersect
at right angles.

The ‘ratio’ of any two dual vectors B̂ and Â can now be formed as
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B̂Â
−1 = − B̂Â

|Â| ,

where Â
−1

is the (dual quaternion) inverse of Â. This product B̂Â
−1

is a dual
quaternion and it will operate on the dual vector Â to give the dual vector B̂

since (B̂Â
−1

)Â = B̂. It is the modern form of Clifford’s biquaternion. There
are of course two ratios since dual quaternions do not commute, and it is

equally possible to consider the ‘ratio’ Â
−1

B̂ in the above.

The operator B̂Â
−1

operates on Â to produce B̂. But an operation is re-
quired which will screw displace any dual vector along a given line, and not
just those intersecting the line orthogonally. For this reason, and by use of
arguments similar to those considered in Rooney (1977), the following type
of three-term product operation is needed to operate on any dual vector Â to

screw displace it into Â
′
:

Â
′ = q̂−1

n̂ (θ̂)Âq̂n̂(θ̂).

Here

q̂n̂(θ̂) = cos
θ̂

2
+ sin

θ̂

2
n̂

is a unit dual quaternion, and q̂−1
n̂ (θ̂) is its inverse (equal to its conjugate

since its norm is unity). The dual angle θ̂ = θ + εS combines the screw
displacement angle θ , and distance S, along the screw axis n̂, where

n̂ = (l + εl0)i + (m + εm0)j + (n + εn0)k

represents the line of the screw axis, with direction cosines (l,m, n) and mo-
ment (l0,m0, n0) about the origin, and where

(l + εl0)
2 + (m + εm0)

2 + (n + εn0)
2 = 1.

The trigonometric functions of the dual variable θ̂ are evaluated using the
rules for expanding functions of a dual variable, namely:

cos(θ + εS) = cos θ − εS sin θ,

sin(θ + εS) = sin θ + εS cos θ.

The above operation, Â
′ = q̂−1

n̂ (θ̂)Âq̂n̂(θ̂), achieves the desired general screw

transformation of any Â into a new position Â
′
. It is equivalent to Clifford’s
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Fig. 9. The general spatial screw displacement of a coordinate system about a screw axis
through angle θ and distance S. (Source: J. Rooney, 1984, p. 237)

tensor-twist, since it does not change the pitch of Â. Although the operation
is expressed in terms of the half dual angle

θ̂

2
= θ

2
+ ε

S

2
,

it actually screw transforms Â into Â
′
through the full dual angle θ̂ = θ + εS.

The necessity for introducing the half dual angle into the unit dual quaternion
echoes the situation that occurs with the representation of rotations about a
fixed point using unit quaternions (Rooney, 1977). It was Rodrigues (1840)
who first recognised this need when several rotations are performed consecut-
ively (Baker and Parkin, 2003). It transfers naturally into the screw displace-
ment situation. Because of the half dual angle the representation is double
valued since q̂n̂(θ̂ + 2π) = −q̂n̂(θ̂).

The form of the unit dual quaternion q̂n̂(θ̂) representing a general screw
displacement of the xyz Cartesian coordinate system about a line with dir-
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ection cosines (l,m, n) and moment (l0,m0, n0) about the origin, through an
angle θ and a distance S (see Figure 9), is expanded as:

q̂n̂(θ̂) = cos
θ̂

2
+ sin

θ̂

2
n̂

= cos
θ + εS

2
+ sin

θ + εS

2
[(l + εl0)i + (m + εm0)j + (n + εn0)k]

=
[

cos
θ

2
− ε

S

2
sin

θ

2

]

+
[
l sin

θ

2
+ ε

(
l
S

2
cos

θ

2
+ l0 sin

θ

2

)]
i

+
[
m sin

θ

2
+ ε

(
m

S

2
cos

θ

2
+ m0 sin

θ

2

)]
j

+
[
n sin

θ

2
+ ε

(
n
S

2
cos

θ

2
+ n0 sin

θ

2

)]
k.

A unit dual quaternion q̂n̂(θ̂) is specified by only six (rather than eight)
independent parameters because it has a unit norm, and so the operation
Â

′ = q̂−1
n̂ (θ̂)Âq̂n̂(θ̂) screw transforms the dual vector Â without stretching

it (its two magnitudes remain unchanged). It also transforms unit dual vec-
tors L̂ into unit dual vectors.

The unit dual quaternion representation (the modern equivalent of
Clifford’s biquaternion, specifically his tensor-twist) for a screw displacement
is elegant and economical compared with other representations. It is particu-
larly useful when performing multiple screw displacements in succession, as
is frequently required in the field of Mechanism and Machine Science. The
representation is of course double- valued, so care must be taken in its use.
It is considered to be one of the best representations of line transformations
since it is so concise and is perhaps the most easily visualised of all the screw
representations because the screw axis, n̂, and the dual angular displacement,
θ + εS , enter so directly into its specification.
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