
An effective spectral collocation method for the

direct solution of high-order ODEs

N. Mai-Duy∗

School of Aerospace, Mechanical and Mechatronic Engineering,

The University of Sydney, NSW 2006, Australia

Submitted to Commun. Numer. Meth. Engng, 20/3/2005;

Resubmitted 23/8/2005; Revised 19/10/2005

∗Corresponding author: Telephone +61 2 9351 7151, Fax +61 2 9351 7060, E-mail

nam.maiduy@aeromech.usyd.edu.au

1



SUMMARY

This paper reports a new Chebyshev spectral collocation method for directly solving

high-order ordinary differential equations (ODEs). The construction of the Cheby-

shev approximations is based on integration rather than conventional differentiation.

This use of integration allows the multiple boundary conditions to be incorporated

more efficiently. Numerical results show that the proposed formulation significantly

improves the conditioning of the system and yields more accurate results and faster

convergence rates than conventional formulations.

KEY WORDS: spectral collocation methods; high-order ordinary differential equa-

tions; multiple boundary conditions; integrated basis-functions

1 INTRODUCTION

Spectral methods are one of the principal methods of discretization for the numer-

ical solution of differential equations. The main advantage of these methods lies in

their accuracy for a given number of unknowns. For smooth problems in simple ge-

ometries, they offer exponential rates of convergence/spectral accuracy. In contrast,

finite-difference and finite-element methods yield only algebraic convergence rates.

The three most widely used spectral versions are the Galerkin, collocation, and tau

methods. The theory and application of spectral methods are covered extensively

in review articles and monographs, see for example [1-5].

High-order ODEs arise in many applications. Examples include the transverse vi-

bration of a uniform beam that can be modelled by a fourth-order ODE; the vibra-

tional behaviour of a ring-like structure by a sixth-order ODE [6,7]; the bending of

a cylindrical barrel shell by an eighth-order ODE [8]; and the thermal instability of
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a horizontal layer of a fluid heated from below under the effect of rotation and/or a

magnetic field by a sixth-, eighth-, tenth- or twelfth-order ODE [9-11].

There is a relatively small literature on spectral methods for the direct solution of

such high-order problems. In solving a high-order ODE without splitting it into a

set of low-order ODEs, one needs to concern the treatment of multiple boundary

conditions. In the context of the spectral collocation method, there are three basic

approaches to implementing the multiple boundary conditions.

Conventional approach 1 (CA1): This approach modifies the basis functions

to incorporate the boundary conditions, see e.g. [4]. For example, in solving the

clamped-clamped-beam eigenvalue problem, one can multiply interpolating polyno-

mials by (1 − x2); the solution procedure then becomes simple: (i) to collocate the

governing equation at the interior points and (ii) to remove the first and last columns

of the obtained system. However, it is difficult to apply this approach to problems

involving complicated boundary conditions.

Conventional approach 2 (CA2): This approach takes fewer nodes from the data

set to collocate the differential equation, see e.g. [4]. Let p be the order of a high-

order ODE (also the number of boundary conditions) and (N + 1) be the number

of grid points. The ODE is approximated only at the (N + 1 − p) points. Apart

from the two boundary points, the question here is which grid points are further

put aside. The performance of the spectral collocation method can depend on the

choice of such points. On the other hand, the implementation of this approach is

straightforward.

Conventional approach 3 (CA3): This approach uses fictitious points as addi-

tional unknowns, see e.g. [3]. A set of (p−2) fictitious nodes is added to the original

data set. The location of these points can be chosen arbitrarily. Since the truncated

3



Chebyshev series expansion can be seen as the Lagrange interpolation polynomial

based on the collocation points, one can construct the Chebyshev differentiation

matrices using the recurrence finite-difference formulae on arbitrarily spaced grids

[3]. Like the case of second-order ODEs, the high-order ODE is forced to be sat-

isfied exactly at the interior points. Since the unknown vector is larger, it allows

one to add (p− 2) additional equations to the main system to impose the multiple

boundary conditions. This approach requires a larger set of data points. However, it

provides proper implementation of the multiple boundary conditions and overcomes

difficulties encountered in the first approach.

Recently, in the context of radial-basis-function networks, a new collocation for-

mulation based on integration for solving high-order ODEs was proposed [12]. In

this study, this formulation is extended to the case of Chebyshev polynomials. The

Chebyshev approximations of the dependent variable and its derivatives are con-

structed through an integration process; the integration constants are exploited to

deal with the multiple boundary conditions. There is no need here to introduce fic-

titious points or to reduce the number of nodes used for collocating the ODE. The

proposed Chebyshev collocation method is applicable to general high-order ODEs,

where these equations can have variable coefficients, nonlinear terms, nonhomoge-

neous terms, complicated boundary conditions and numerous different derivatives.

The method is verified through the solution of such ODEs governing initial-value,

boundary-value and eigenvalue problems. Among those are the free vibration of a

nonuniform ring, the free vibration of a uniform beam, and the Hamel flow problem

that have a wide range of applications in engineering. Numerical results show that

the proposed approach outperforms conventional approaches regarding the condi-

tioning of the system, accuracy and convergence rate.

The remainder of the paper is organized as follows. In section 2, a brief review of the

Chebyshev polynomials is given. A new Chebyshev collocation formulation based on
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integration for directly solving high-order ODEs is presented in section 3. In section

4, the proposed method is verified through the solution of various problems governed

by ODEs of the second-, fourth-, sixth-, eighth- and twelfth-orders. Section 5 gives

some concluding remarks.

2 CHEBYSHEV POLYNOMIALS

The Chebyshev polynomial of first kind Tk(x) is defined by

Tk(x) = cos(k arccos(x)), k = 0, 1, 2, · · · , (1)

where −1 ≤ x ≤ 1. The polynomial Tk(x) can be expanded in power series as

T0(x) = 1, (2)

Tk(x) =
k

2

[k/2]∑

m=0

(−1)m
2k−2m(k −m− 1)!

m!(k − 2m)!
xk−2m, k > 0, (3)

where [k/2] is the integer part of k/2.

3 THE SPECTRAL COLLOCATION METHOD

Consider the following ODE

Lu = f, a ≤ x ≤ b, (4)

where L is a differential operator and f is a given function. This equation is cou-

pled with a set of prescribed conditions to constitutive the initial-value/boundary-

value/eigenvalue problem. The domain of interest is represented by a set of unevenly-
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spaced Gauss-Lobatto (G-L) points

{xi}Ni=0 =

{
cos

(
πi

N

)}N

i=0

(5)

which cluster at boundaries.

3.1 Conventional differentiation-based formulations (CDFs)

An approximate solution u(x) is sought in the truncated Chebyshev series form

u(x) =
N∑

k=0

akTk(x), (6)

where {ak}Nk=0 is the set of expansion coefficients to be found. The pth-order deriva-

tive of the variable u is then obtained through differentiation as

dpu(x)

dxp
=

N∑

k=0

ak
dpTk(x)

dxp
. (7)

The use of G-L points (5) allows a fast Fourier transform to be employed to shift

between spectral space {ak}Nk=0 and physical space {ui}Ni=0:

ak =
2

Nc̄k

N∑

i=0

1

c̄i
uiTk(xi), (8)

where c̄0 = c̄N = 2, c̄i = 1 for i = 1, 2, · · · , N − 1.
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The evaluation of the derivatives (7) at the G-L points yields

d̂u

dx
= D(1)û = Dû, (9)

d̂2u

dx2
= D(2)û = D2û, (10)

· · · · · · · · · · · ·

d̂pu

dxp
= D(p)û = Dpû, (11)

where the symbol .̂ is used to denote a vector, e.g., û = (u(x0), u(x1), · · · , u(xN))T

and

d̂pu
dxp =

(
dpu
dxp (x0),

dpu
dxp (x1), · · · , d

pu
dxp (xN)

)T
, and D(.) are the differentiation matrices.

The entries of D (D(1)) are given by

Dij =
c̄i
c̄j

(−1)i+j

xi − xj
, 0 ≤ i, j ≤ N, i 6= j, (12)

Dii = − xi
2(1 − x2

i )
, 1 ≤ i ≤ N − 1, (13)

D11 = −DNN =
2N2 + 1

6
. (14)

As an alternative approach, the diagonal entries of D can be computed in the way

that represents exactly the derivative of a constant [13]

Dii = −
N∑

j=0,j 6=i

Dij. (15)

Higher-order derivatives D(p) can be constructed using recursions, see e.g. [3,14],

which are faster and more numerically stable. The roundoff properties of the spectral

differentiation matrices were studied in, e.g., [13,15].

Using the above expressions, the ODE can be transformed into a set of algebraic

equations. The multiple boundary conditions are imposed by using the CA2/CA3
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that was briefly reviewed earlier. The obtained system is then solved for the values

of the variable u at the grid points. There are a number of software packages

implementing spectral methods. Among them are MATLAB packages by Trefethen

[4] and Weideman and Reddy [16]. The former and Fornberg’s recursion codes used

for finding finite-difference weights on arbitrarily spaced grids [3] are employed in

the present work for calculating the CDF case.

3.2 The proposed integration-based formulation (PIF)

For the proposed formulation, the highest-order derivative dpu/dxp in the differential

equation is sought in the truncated Chebyshev series form

dpu(x)

dxp
=

N∑

k=0

akTk(x). (16)

Expressions for lower derivatives and the variable itself are then obtained through

integration as

dp−1u(x)

dxp−1
=

N∑

k=0

akI
(p−1)
k (x) + c1, (17)

dp−2u(x)

dxp−2
=

N∑

k=0

akI
(p−2)
k (x) + c1x+ c2, (18)

· · · · · · · · · · · · · · ·

du(x)

dx
=

N∑

k=0

akI
(1)
k (x) + c1

xp−2

(p− 2)!
+ c2

xp−3

(p− 3)!
+ · · · cp−2x+ cp−1, (19)

u(x) =
N∑

k=0

akI
(0)
k (x) + c1

xp−1

(p− 1)!
+ c2

xp−2

(p− 2)!
+ · · · cp−1x+ cp, (20)

where I
(p−1)
k (x) =

∫
Tk(x)dx, I

(p−2)
k (x) =

∫
I

(p−1)
k (x)dx, · · · , I(0)

k (x) =
∫
I

(1)
k (x)dx,

and c1, c2, · · · , cp are integration constants. These integrals can be determined by
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using recurrence relations [5]

∫
T0(x)dx = T1(x), (21)

∫
T1(x)dx =

1

4
[T0(x) + T2(x)] , (22)

∫
Tk(x)dx =

1

2

[
Tk+1(x)

(k + 1)
− Tk−1(x)

(k − 1)

]
, k > 1, (23)

or integrating (2)-(3) directly, e.g., for k > 0:

I
(p−1)
k (x) =

∫
Tk(x)dx =

k

2

[k/2]∑

m=0

(−1)m
2k−2m(k −m− 1)!

m!(k − 2m+ 1)!
xk−2m+1, (24)

I
(p−2)
k (x) =

∫
I

(p−1)
k (x)dx =

k

2

[k/2]∑

m=0

(−1)m
2k−2m(k −m− 1)!

m!(k − 2m+ 2)!
xk−2m+2, (25)

· · · · · · · · · · · · · · ·

I
(0)
k (x) =

∫
I

(1)
k (x)dx =

k

2

[k/2]∑

m=0

(−1)m
2k−2m(k −m− 1)!

m!(k − 2m+ p)!
xk−2m+p. (26)

It can be seen that apart from the Chebyshev coefficients {ak}Nk=0, the PIF ((16)-

(20)) produces new coefficients (integration constants {ci}pi=1) whose number is equal

to the order of ODE/the number of boundary conditions, i.e. p. As a result, it allows

one (i) to approximate the ODE at the whole set of G-L points and (ii) to add p

additional equations to the main system to impose p boundary conditions. In this

sense, the PIF makes the implementation of these two parts of the solution procedure

independent of each other for any order of ODE.

9



The evaluation of (16)-(20) at the G-L points leads to

d̂pu

dxp
= Tŝ = I(p)ŝ, (27)

̂dp−1u

dxp−1
= I(p−1)ŝ, (28)

· · · · · · · · ·

d̂u

dx
= I(1)ŝ, (29)

û = I(0)ŝ, (30)

where ŝ = (a0, a1, · · · , aN , c1, c2, · · · , cp)T and I(p−1), I(p−2), · · · , I(0) are the known

integration matrices. For convenience of computation, I(p), I(p−1), · · · , I(1) are aug-

mented using zero-submatrices so that they have the same dimension as I(0).

From (9)-(11) and (27)-(30), it can be seen that the CDF and PIF have similar

discrete approximation forms (D ⇔ I and û ⇔ ŝ). Thus, the process of reduc-

ing the differential equation to a set of algebraic equations by the PIF is similar

to that by the CDF. A distinct difference between the two formulations in imple-

mentation is that imposition of the multiple boundary conditions is conducted by

means of integration constants (ŝ is larger than û) for the PIF and by the node-

reduction/fictitious-point technique for the CDF. Both formulations result in dense

system matrices of similar size.
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4 NUMERICAL RESULTS

In the following examples, the accuracy of a numerical solution produced by an

approximation scheme is measured via the discrete relative L2 error defined as

Ne =

√∑N
i=0 [ue(xi) − u(xi)]

2

∑N
i=0 ue(xi)

2
, (31)

where ue and u are the exact and approximate solutions, respectively. Nonlinear

systems of equations are solved using the Picard-type and Newton-type iteration

schemes. It is noted that the former is relatively easy to implement, but its conver-

gence is often slow.

4.1 Second-order boundary-value problem

The PIF is first tested through the solution of the following second-order ODE

d2u

dx2
+sin(x)

du

dx
+exp(x)u = −16π2 sin(4πx)+4π sin(x) cos(4πx)+exp(x) [2 + sin(4πx)] ,

(32)

defined over −1 ≤ x ≤ 1 and subject to the Robin boundary conditions

u(±1) +
du(±1)

dx
= 2 + 4π.

The exact solution can be verified to be ue = 2 + sin(4πx). Seven data sets,

{10, 15, · · · , 40} G-L points, are employed to study this problem. The Robin bound-

ary conditions are imposed explicitly by adding two additional equations to the main

system. Results concerning the conditioning and the discrete relative L2 error ob-

tained by the CDF and PIF are shown in Table 1. For the former, two versions

of computing D(2) are employed. The first version denoted by CDF1 uses the for-
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mula D(2) = D2, while the second one (CDF2) uses the explicit expression of D(2)

[5]. The relative L2 errors obtained by CDF1 and CDF2 are “exactly the same”

for (N + 1) = {10, 15, · · · , 30}, but different for (N + 1) = {35, 40}. In terms of

accuracy, the PIF produces more accurate results than the CDFs; for example, at

(N +1) = 30, Nes are 1.54×10−11 (PIF) and 4.71×10−8 (CDF1,2). In terms of the

conditioning of the system, the PIF yields at least two orders of magnitude lower

than the CDFs; furthermore, when (N + 1) increases from 10 to 40, the condition

number increases from 2.08×103 to 1.30×106 for the CDFs, but only from 5.30×101

to 9.41 × 101 for the PIF. Exponential rates of convergence are achieved for both

formulations. The order of the error, which is defines as Ne = O(N−α), at the first

six sets is O(N−21.58) for the PIF and O(N−18.62) for the CDF1; the PIF case yields

faster convergence.

For the CDF case, if one tries to add an algebraic polynomial (c1x + c2) to (6) in

order to have similar forms as the PIF case, i.e.,

u(x) =
N∑

k=0

akTk(x) + c1x+ c2, (33)

du

dx
=

N∑

k=0

ak
dTk(x)

dx
+ c1, (34)

d2u

dx2
=

N∑

k=0

ak
d2Tk(x)

dx2
, (35)

the obtained system of equations is singular because the first and last two columns

of matrices D(2) and T are identical.
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4.2 Fourth-order problems

4.2.1 Initial-value problem

Consider the following fourth-order initial-value problem

(x3 − 3x2 + 6x− 6)
d4u

dx4
− x3d

3u

dx3
+ 3x2d

2u

dx2
− 6x

du

dx
+ 6u = 0, −1 ≤ x ≤ 1, (36)

Initial conditions: u(−1),
du(−1)

dx
,
d2u(−1)

dx2
,
d3u(−1)

dx3
,

Exact solution: ue = exp(x) + 5x3 − 2x2 + x.

The initial values are obtained using the exact solution. Six data sets, {4, 6, · · · , 14}

G-L points, are employed. For the CDF case, the three derivative initial conditions

are enforced explicitly by adding three additional equations to the main system. It

is difficult to apply the approach CA1 to this problem; only the two approaches CA2

and CA3 are employed here. Results concerning the condition number and accuracy

obtained by the proposed and conventional approaches are given in Table 2. The

PIF significantly improves the conditioning of the system over the CDFs, e.g., 2

orders of magnitude for the coarsest grid and 5 orders of magnitude for the finest

grid. Furthermore, the PIF yields the most accurate results, followed by the CA3

and then CA2; for example, at (N + 1) = 12, Nes are 2.13× 10−15, 5.92× 10−12 and

2.15 × 10−8, respectively. The results of the CA2 are less accurate (a few orders of

magnitude greater), probably due to the fact that the ODE is not approximated at

every interior point. On the other hand, all approaches feature exponential rates of

convergence. The orders of the relative L2 error measured at (N+1) = {6, 8, 10, 12}

are O(N−24.32), O(N−20.52) and O(N−16.29) for the PIF, CA3 and CA2, respectively;

the PIF provides faster convergence.
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4.2.2 Boundary-value problem - Hamel flow problem

A steady-state two-dimensional flow in the region between two semi-infinite plane

walls set at an angle 2α is known as the Hamel flow problem [17]. It is convenient

to use polar co-ordinates (r, θ) where r is measured from the intersection of the two

walls and θ is measured from the centreline of the duct. The inward flow, which is

driven by a steady line sink at the apex, is assumed to be purely radial along the

lines θ=constant (−α ≤ θ ≤ α). Since the stream function ψ depends only on θ,

the dimensionless governing equation for the Hamel flow can be written as

d4ψ

dθ4
+ 4

d2ψ

dθ2
− 2Re

dψ

dθ

d2ψ

dθ2
= 0, (37)

subject to the boundary conditions

ψ(±α) = ±1, and
dψ(±α)

dθ
= 0,

where Re is the Reynolds number. For creeping flow (Re = 0) and viscous flow with

very large values of Re, they can be solved analytically and their solutions are given

by

ur(θ)

ur(0)
=

cos(2θ) − cos(2α)

1 − cos(2α)
(Re = 0), (38)

ur(θ)

ur(0)
= 3 tanh2

[
(0.5αRe)0.5 (1 − |θ|/α) + tanh−1(2/3)0.5

]
− 2 (Re≫), (39)

where ur is the radial velocity defined as ur = −1
r
∂ψ
∂θ

. More details can be found in

[17].

The domain of interest is θ ∈ [−α, α] = [−π/6, π/6]. For creeping flow, six data sets,

{5, 7, · · · , 15} G-L points, are employed. The conditioning and accuracy obtained by

the PIF and CDFs are given in Table 3. Some remarks on the performance of the two
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formulations are similar to the previous problem. For viscous flow, this fourth-order

ODE is nonlinear and hence must be solved iteratively. The nonlinearity is handled

here using trust-region methods that retain two attractive features, namely rapid

local convergence of the Newton iteration scheme and strong global convergence of

the Cauchy method [18]. It is noted that Newton’s method can run into difficulties if

the starting point is far from the solution and the Jacobian matrix is ill-conditioned.

A range of Re = {0, 10, 50, 100, 1000, 5000} is considered. The computed solutions

at the lower and nearest value of Re are utilized as an initial guess. The radial-

velocity profiles obtained by the present formulation for various Reynolds numbers

using 51 G-L points are plotted in Figure 1. The computed results at Re = 5000

are compared to those obtained using (39); good agreement can be seen. When the

Reynolds number increases, the velocity magnitude becomes nearly constant except

near the plate walls, forming boundary layers of thickness O(
√
α/Re) (Figure 1).

4.2.3 Eigenvalue problem - Free vibration of a uniform beam

The PIF is further verified through the solution of fourth-order eigenvalue problems

subject to various types of boundary conditions. Consider the free lateral vibration

of a uniform beam. The non-dimensional governing equation can be written as

d4φ

dx4
= λφ, 0 ≤ x ≤ 1, (40)

and the boundary conditions are given by

φ(0) = φ′(0) = φ(1) = φ′(1) = 0, for a clamped-clamped beam (CC), (41)

φ(0) = φ′(0) = φ(1) = φ′′(1) = 0, for a clamped-hinged beam (CH), (42)

φ(0) = φ′′(0) = φ(1) = φ′′(1) = 0, for a highed-hinged beam (HH), (43)
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where λ is the eigenvalue and φ is the eigenfunction. Exact solutions are found by

solving the frequency equations

cos(λ) cosh(λ) = 1, (CC), (44)

tan(λ) − tanh(λ) = 0, (CH), (45)

sin(λ) = 0, λ = nπ, (HH). (46)

Discretizing (40) at the whole set of G-L points and implementing the boundary

conditions (41), (42) or (43) constitute the following two subsets of equations

Aa − λ4Ba = 0, (47)

Ca = 0, (48)

or

(A1,A2)(a1, a2)
T − λ4(B1,B2)(a1, a2)

T = 0, (49)

(C1,C2)(a1, a2)
T = 0, (50)

where A1 and B1 are matrices of dimension (N + 1) × (N + 1), A2 and B2 of

(N + 1) × 4, C1 of 4 × (N + 1), C2 of 4 × 4, a1 of 1 × (N + 1), and a2 of 1 × 4.

After performing some algebraic manipulation, the above system of equations takes

the form

[(A1 − A2C
−1
2 C1) − λ4(B1 − B2C

−1
2 C1)]a

T
1 = 0. (51)

A simple coordinate transformation ([0, 1] → [−1, 1]) is carried out. Results con-

cerning λk, k = 1, · · · , 5, are shown in Table 4. Very accurate results and fast

convergence are achieved. For example, the percentage errors for the case of a

hinged-hinged beam using 18 grid points are 2.8 × 10−14, 1.4 × 10−14, 4.5 × 10−12,

3.7 × 10−10 and 1.3 × 10−7% for λ1, · · · , λ5, respectively.
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4.3 Sixth-order eigenvalue problem - Free vibration of a ring

The vibrational behaviour of a ring-like structure governed by a sixth-order ODE

[6,7] is considered in this section. A ring has rectangular cross-sections of constant

width and parabolically variable thickness. The case of normal, in-plane modes of

vibration is studied here, where one disregards stretching in the axial direction.

4.3.1 A circular ring with supports

In this case, the non-dimensional governing equation is given by

β1v
[6] + β2v

[5] + β3v
[4] + β4v

′′′

+ β5v
′′

+ β6v
′ − Ω2

(
fv

′′

+ f
′

v
′ − π2fv

)
= 0, (52)

0 ≤ α ≤ 1,

subject to the boundary conditions

v(0) = v
′

(0) = v
′′′

(0) = 0, v(1) = v
′

(1) = v
′′′

(1) = 0,

where v[q] = dqv/dαq, v is the tangential displacement, α is the dimensionless vari-

able, Ω is the dimensionless frequency and

β1 = φ/π4, β2 = 3φ
′

/π4, β3 = (2φ/π2) + (3φ
′′

/π4),

β4 = (4φ
′

/π2) + (φ
′′′

/π4), β5 = φ+ (3φ
′′

/π2), β6 = φ
′

+ (φ
′′′

/π2),

φ = [f(α)]3, f(α) = −4(r − 1)α2 + 4(r − 1)α+ 1,

in which r is the variable related to the thickness of the cross-section of the ring.

The variable coefficients in (52) involve sixth-order polynomials in α. The solution

procedure for this problem is similar to that for the previous problem and therefore
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is omitted here for brevity. Six data sets, {7, 9, · · · , 17} G-L points, are employed.

The fundamental frequencies obtained are listed in Table 5. The corresponding

values predicted by the optimized Rayleigh-Ritz method [6] and the GDQR method

[7] are also given for comparison purpose. They are in good agreement. The present

method achieves highly accurate results using considerably small numbers of grid

points. For r = 1.5, at least 4 significant digits remain constant when (N +1) ≥ 13.

4.3.2 A completely free ring

In this case, the non-dimensional governing equation is given by

β1v
[6] + β2v

[5] + β3v
[4] + β4v

′′′

+ β5v
′′

+ β6v
′ − Ω2

(
fv

′′

+ f
′

v
′ − π2fv/4

)
= 0,

(53)

0 ≤ α ≤ 1,

subject to the boundary conditions

v(0) = v
′′

(0) = 0, φ
′

(0)
[
v

′

(0) + 4v
′′′

(0)/π2
]

+ 4φ(0)v[4](0)/π2 = 0,

v(1) = v
′′

(1) = 0, φ
′

(1)
[
v

′

(1) + 4v
′′′

(1)/π2
]

+ 4φ(1)v[4](1)/π2 = 0,

where

β1 = 16φ/π4, β2 = 48φ
′

/π4, β3 = (8φ/π2) + (48φ
′′

/π4),

β4 = (16φ
′

/π2) + (16φ
′′′

/π4), β5 = φ+ (12φ
′′

/π2), β6 = φ
′

+ (4φ
′′′

/π2),

φ = [f(α)]3, f(α) = −(r − 1)α2 + 2(r − 1)α+ 1.

Five data sets, {5, 7, · · · , 13} G-L points, are employed. Table 6 displays the funda-

mental frequencies obtained by the present method together with those obtained by
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the GDQR [7] and Rayleigh-Ritz [6] methods, where good agreement can be seen.

Highly accurate results are achieved. For r = 1.5, at least 4 significant digits remain

constant when (N + 1) ≥ 9.

4.4 Eighth-order boundary-value problem

The governing equation and boundary conditions are, respectively, given by

d8u

dx8
= 7!

[
exp(−8u) − 2

(1 + x)8

]
, a = 0 ≤ x ≤ b =

√
e− 1, (54)

u(a) = 0, u(b) = 1/2,

u[2i](a) = −(2i− 1)!, u[2i](b) = −(2i− 1)!e−i, i = 1, 2, 3,

for which the exact solution is ue = ln(1+x). This nonlinear problem is taken from

[10]. A Picard-type iteration is employed to render the nonlinear term linear. Eleven

data sets, {6, 8, · · · , 26} G-L points, are employed. For this high-order problem, the

condition numbers of the system matrix obtained by the CA2 and CA3 are very

large (Table 7). It is remarkable that the condition numbers obtained for the PIF

case only have the order of 104 for all the data sets. The relative L2 errors are of

O(10−3) −O(10−6), O(10−4) −O(10−9) and O(10−6) −O(10−16) for the CA2, CA3

and PIF, respectively; the PIF is far superior to the CA2 and CA3.

4.5 Twelfth-order boundary-value ODE

This problem is taken from [11], where the governing equation is

d12u

dx12
= 11!

[
exp(−12u) − 2

(1 + x)12

]
, a = 0 ≤ x ≤ b = e1/3 − 1, (55)
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and the boundary conditions are

u(a) = 0, u(b) = 1/3,

u[2i](a) = −(2i− 1)!, u[2i](b) = −(2i− 1)!e−2i/3, i = 1, · · · , 5,

for which the exact solution is ue = ln(1 + x). For this very high-order problem,

the two approaches CA2 and CA3 fail to obtain a converged solution since their

matrices are close to singular; for example, at (N + 1) = 4, the conditioning of the

system of the CA3 is already up to 2.77 × 1016. Table 8 presents the conditioning

of the system and the accuracy of the solution obtained by the PIF; an exponential

rate of convergence is achieved.

5 CONCLUDING REMARKS

This paper presents a new Chebyshev spectral collocation method for directly solving

high-order ODEs. The Chebyshev expressions representing the dependent variable

and its derivatives are constructed through an integration process. This use of

integration provides an effective way to implement the multiple boundary conditions,

without the need to introduce fictitious points or the need to reduce the number

of nodes used for discretizing the ODE. It works in a similar fashion for different

types of the boundary condition and different orders of the ODE. The proposed

method appears to be particularly well suited to problems governed by very high-

order ODEs. Numerical results show that its performance is superior to those of

conventional methods in terms of the conditioning of the system, accuracy and

convergence rate.
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Table 1: Second-order boundary-value problem: Conditioning and accuracy. Note
that a(b) means a× 10b.

(N + 1) Condition number Ne(u)
CDF1 CDF2 PIF CDF1 CDF2 PIF

10 2.08(3) 2.08(3) 5.30(1) 3.53(0) 3.53(0) 3.15(0)
15 1.39(4) 1.39(4) 6.16(1) 1.33(0) 1.33(0) 1.49(-2)
20 5.34(4) 5.34(4) 6.93(1) 2.64(-2) 2.64(-2) 6.02(-5)
25 1.50(5) 1.50(5) 7.62(1) 1.02(-4) 1.02(-4) 1.01(-7)
30 3.48(5) 3.48(5) 8.26(1) 4.71(-8) 4.71(-8) 1.54(-11)
35 7.07(5) 7.07(5) 8.85(1) 3.60(-11) 4.90(-11) 7.65(-12)
40 1.30(6) 1.30(6) 9.41(1) 1.14(-12) 2.54(-11) 4.43(-11)
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Table 2: Fourth-order initial-value problem: Conditioning and accuracy (for the
CA2 case, two interior points x1 and xN−1 are put aside; for the CA3 case, two
fictitious points are set to ±1.1).

(N + 1) Condition number Ne(u)
CDF PIF CDF PIF

CA2 CA3 CA2 CA3
4 — 1.59(4) 1.21(2) — 5.83(-3) 5.15(-5)
6 1.10(4) 2.47(5) 1.47(2) 1.03(-2) 7.10(-5) 4.32(-7)
8 1.39(5) 1.94(6) 1.70(2) 3.38(-4) 4.30(-7) 4.44(-10)
10 1.06(6) 9.08(6) 1.89(2) 3.82(-6) 1.52(-9) 5.11(-13)
12 5.58(6) 2.79(7) 2.07(2) 2.15(-8) 5.92(-12) 2.13(-15)
14 2.24(7) 6.02(7) 2.23(2) 4.78(-11) 7.66(-12) 5.93(-16)
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Table 3: Fourth-order boundary value problem, Hamel flow, Re = 0: Conditioning
and accuracy (for the CA2 case, two interior points x1 and xN−1 are put aside; for
the CA3 case, two fictitious points are set to ±1.1).

(N + 1) Condition number Ne(u)
CDF PIF CDF PIF

CA2 CA3 CA2 CA3
5 4.68(2) 7.14(3) 2.50(2) 2.78(-2) 1.01(-3) 4.90(-5)
7 7.28(3) 7.01(4) 2.92(2) 3.22(-4) 5.49(-6) 1.64(-7)
9 5.17(4) 3.99(5) 3.30(2) 2.21(-6) 1.41(-8) 2.47(-10)
11 2.98(5) 1.46(6) 3.63(2) 6.65(-9) 2.75(-11) 2.82(-13)
13 1.29(6) 3.93(6) 3.94(2) 1.70(-11) 1.48(-13) 3.67(-16)
15 4.56(6) 7.82(6) 4.22(2) 2.31(-13) 4.88(-13) 1.55(-16)
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Table 4: Fourth-order eigenvalue problem, free vibration of a uniform beam: eigen-
values obtained by the PIF.

(N + 1) λ1(error %) λ2(error %) λ3(error %) λ4(error %) λ5(error %)
clamped-clamped beam

8 4.7300(0.000) 7.8516(0.021) 11.1296(1.218) 13.9699(1.183) 24.9089(44.159)
10 4.7300(0.000) 7.8532(0.000) 10.9992(0.032) 14.0925(0.315) 18.1575(5.085)
12 4.7300(0.000) 7.8532(0.000) 10.9956(0.000) 14.1355(0.012) 17.3471(0.395)
14 4.7300(0.000) 7.8532(0.000) 10.9956(0.000) 14.1371(0.000) 17.2810(0.012)
16 4.7300(0.000) 7.8532(0.000) 10.9956(0.000) 14.1372(0.000) 17.2788(0.000)
18 4.7300(0.000) 7.8532(0.000) 10.9956(0.000) 14.1372(0.000) 17.2788(0.000)

clamped-hinged beam
8 3.9266(0.000) 7.0683(0.003) 10.2606(0.494) 13.2950(0.425) 20.1161(21.964)
10 3.9266(0.000) 7.0686(0.000) 10.2111(0.008) 13.3384(0.100) 16.9003(2.466)
12 3.9266(0.000) 7.0686(0.000) 10.2102(0.000) 13.3514(0.003) 16.5196(0.158)
14 3.9266(0.000) 7.0686(0.000) 10.2102(0.000) 13.3518(0.000) 16.4940(0.003)
16 3.9266(0.000) 7.0686(0.000) 10.2102(0.000) 13.3518(0.000) 16.4934(0.000)
18 3.9266(0.000) 7.0686(0.000) 10.2102(0.000) 13.3518(0.000) 16.4934(0.000)

hinged-hinged beam
8 3.1416(0.000) 6.2831(0.001) 9.4535(0.304) 12.4428(0.983) 19.0139(21.046)
10 3.1416(0.000) 6.2832(0.000) 9.4251(0.003) 12.5551(0.089) 16.0377(2.099)
12 3.1416(0.000) 6.2832(0.000) 9.4248(0.000) 12.5662(0.001) 15.7241(0.103)
14 3.1416(0.000) 6.2832(0.000) 9.4248(0.000) 12.5664(0.000) 15.7083(0.002)
16 3.1416(0.000) 6.2832(0.000) 9.4248(0.000) 12.5664(0.000) 15.7080(0.000)
18 3.1416(0.000) 6.2832(0.000) 9.4248(0.000) 12.5664(0.000) 15.7080(0.000)

26



Table 5: Sixth-order eigenvalue problem, free vibration of a non-uniform ring with
constraints: fundamental frequencies.

PIF GDQR Rayleigh-Ritz
r 7 9 11 13 15 17 [7] [6]

1.0 2.2659 2.2667 2.2667 2.2667 2.2667 2.2667 2.2667 2.274
1.1 2.4134 2.4137 2.4137 2.4137 2.4137 2.4137 2.4137 2.416
1.2 2.5531 2.5569 2.5568 2.5568 2.5568 2.5568 2.5568 2.557
1.3 2.6690 2.6975 2.6966 2.6966 2.6966 2.6966 2.6966 2.697
1.4 2.7086 2.8387 2.8334 2.8334 2.8334 2.8334 2.8335 2.834
1.5 2.5572 2.9886 2.9673 2.9677 2.9677 2.9677 2.9678 2.970
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Table 6: Sixth-order eigenvalue problem, free vibration of a non-uniform ring with-
out constraints: fundamental frequencies.

PIF GDQR Rayleigh-Ritz
r 5 7 9 11 13 [7] [6]

1.0 2.6822 2.6833 2.6833 2.6833 2.6833 2.6833 2.687
1.1 2.8450 2.8452 2.8452 2.8452 2.8452 2.8452 2.846
1.2 3.0063 3.0062 3.0062 3.0062 3.0062 3.0062 3.006
1.3 3.1672 3.1665 3.1665 3.1665 3.1665 3.1665 3.167
1.4 3.3279 3.3262 3.3263 3.3263 3.3263 3.3263 3.326
1.5 3.4886 3.4857 3.4858 3.4858 3.4858 3.4858 3.486
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Table 7: Eighth-order boundary-value problem: Conditioning and accuracy (for the
CA2 case, 3 interior points adjacent to each boundary are put aside; for the CA3
case, fictitious points are set to {±1.3,±1.2,±1.1}).

(N + 1) Condition number Ne(u)
CDF PIF CDF PIF

CA2 CA3 CA2 CA3
6 — 8.48(10) 1.51(4) — 1.17(-5) 5.27(-6)
8 — 6.74(11) 1.74(4) — 2.86(-7) 2.09(-8)
10 4.01(9) 3.39(12) 1.95(4) 1.70(-3) 7.92(-9) 2.58(-10)
12 3.80(10) 1.21(13) 2.13(4) 2.71(-4) 4.04(-8) 3.43(-12)
14 3.57(11) 1.20(14) 2.29(4) 2.79(-5) 2.92(-8) 5.04(-14)
16 2.76(12) 8.76(14) 2.45(4) 1.92(-6) 3.72(-7) 9.19(-16)
18 2.03(13) 3.87(15) 2.59(4) 2.09(-6) 6.16(-7) 2.61(-16)
20 1.17(14) 1.14(16) 2.73(4) 1.03(-6) 8.51(-6) 2.71(-16)
22 5.73(14) 2.45(16) 2.86(4) 1.04(-4) 2.92(-5) 2.95(-16)
24 2.41(15) 8.22(16) 2.98(4) 7.87(-5) 5.33(-5) 3.03(-16)
26 9.08(15) 4.33(17) 3.10(4) 3.11(-5) 5.97(-4) 4.07(-16)
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Table 8: Twelfth-order boundary-value problem: Conditioning and accuracy of the
PIF. Note that the CDF case fails to obtain a converged solution since the system
matrices obtained are close to singular. For example, at (N+1) = 4, the conditioning
of the system of the CA3 is up to 2.77 × 1016.

(N + 1) Condition number Ne(u)
4 4.18(8) 2.67(-5)
6 5.15(8) 2.22(-7)
8 5.95(8) 4.67(-10)
10 6.65(8) 4.55(-12)
12 7.27(8) 4.08(-14)
14 7.83(8) 5.57(-16)
16 8.36(8) 2.89(-16)
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Figure 1: Fourth-order boundary-value problem, Hamel flow: the radial-velocity
profiles for various values of the Reynolds number.
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