
                                                                                                                                                                                                                                                                                                                     

 

UNIVERSITY OF SOUTHERN QUEENSLAND 

 

  

  

 

 

DETERMINING BROADACRE CROP AREA ESTIMATES 

THROUGH THE USE OF MULTI-TEMPORAL MODIS 

SATELLITE IMAGERY FOR MAJOR AUSTRALIAN WINTER 

CROPS 

 

 

 

 

 

A Dissertation submitted by: 

 

  Andries B Potgieter, MSc. Mathematical Statistics 

 

 

 

For award of 

Doctor of Philosophy 

 

 

2009 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents 



 

 

Abstract 

 

Since early settlement, agriculture has been one of the main industries 

contributing to the livelihoods of most rural communities in Australia. The wheat 

grain industry is Australia’s second largest agricultural export commodity, with an 

average value of $3.5 billion per annum. Climate variability and change, higher input 

costs, and world commodity markets have put increased pressure on the sustainability 

of the grain industry. This has lead to an increasing demand for accurate, objective 

and near real-time crop production information by industry. To generate such 

production estimates, it is essential to determine crop area planted at the desired 

spatial and temporal scales. However, such information at regional scale is currently 

not available in Australia. 

 

The aim of this study was to determine broadacre crop area estimates through the 

use of multi-temporal satellite imagery for major Australian winter crops. 

Specifically, the objectives were to: (i) assess the ability of a range of approaches to 

using multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS) 

imagery to estimate total end-of-season winter crop area; (ii) determine the 

discriminative ability of such remote sensing approaches in estimating planted area 

for wheat, barley and chickpea within a specific cropping season; (iii) develop and 

evaluate the methodology for determining the predictability of crop area estimates 

well before harvest; and (iv) validate the ability of multi-temporal MODIS 

approaches to determine the pre-harvest and end-of-season winter crop area estimates 

for different seasons and regions. 

 

MODIS enhanced vegetation index (EVI) was used as a surrogate measure for 

crop canopy health and architecture, for two contiguous shires in the Darling Downs 

region of Queensland, Australia. Multi-temporal approaches comprising principal 

component analysis (PCA), harmonic analysis of time series (HANTS), multi-date 

MODIS EVI during the crop growth period (MEVI), and two curve fitting procedures 

(CF1, CF2) were derived and applied. These approaches were validated against the 

traditional single-date approach. Early-season crop area estimates were derived 

through the development and application of a metric, i.e. accumulation of consecutive 



 

 

16-day EVI values   than 500 ( 500TEVI ), at different periods before flowering. 

Using ground truth data, image classification was conducted by applying supervised 

(maximum likelihood) and unsupervised (K-means) classification algorithms. The 

percent correctly classified and kappa coefficient statistics from the error matrix were 

used to assess pixel-scale accuracy, while shire-scale accuracy was determined using 

the percent error (PE) statistic. A simple linear regression of actual shire-scale data 

against predicted data was used to assess accuracy across regions and seasons. Actual 

shire-scale data was acquired from government statistical reports for the period 2000, 

2001, 2003 and 2004 for the Darling Downs, and 2005 and 2006 for the entire 

Queensland cropping region. 

 

Results for 2003 and 2004 showed that multi-temporal HANTS, MEVI, CF1, CF2 

and PCA methods achieved high overall accuracies ranging from 85% to 97% to 

discriminate between crops and non-crops. The accuracies for discriminating between 

specific crops at pixel scale were less, but still moderate, especially for wheat and 

barley (lowest at 57%). The HANTS approach had the smallest mean absolute 

percent error of 27% at shire-scale compared to other multi-temporal approaches. For 

early-season prediction, the 500TEVI  metric showed high accuracy (94% to 98%) 

at a pixel scale and high R
2
 (0.96) for predicting total winter crop area planted.  

 

The rigour of the HANTS and the 500TEVI  approaches was assessed when 

extrapolating over the entire Queensland cropping region for the 2005 and 2006 

season. The combined early-season estimate of July and August produced high 

accuracy at pixel and regional scales with percent error of 8.6% and 26% below the 

industry estimates for 2005 and 2006 season, respectively. These satellite-derived 

crop area estimates were available at least four months before harvest, and deemed 

that such information will be highly sought after by industry in managing their risk. 

In discriminating among crops at pixel and regional scale, the HANTS approach 

showed high accuracy. Specific area estimates for wheat, barley and chickpea were, 

respectively, 9.9%, -5.2% and 10.9% (for 2005) and -2.8%, -78% and 64% (for 

2006). Closer investigation suggested that the higher error in 2006 area estimates for 

barley and chickpea has emanated from the industry figures collected by the 

government. 



 

 

 

Area estimates of total winter crop, wheat, barley and chickpea resulted in R
2
 

values of 0.92, 0.89, 0.82 and 0.52, when contrasted against the actual shire-scale 

data. A significantly high R
2
 (0.87) was achieved for total winter crop area estimates 

in Augusts across all shires for the 2006 season. Furthermore, the HANTS approach 

showed high accuracy in discriminating cropping area from non-cropping area and 

highlighted the need for accurate and up-to-date land use maps.  

 

This thesis concluded that time-series MODIS EVI imagery can be applied 

successfully to firstly, determine end-of-season crop area estimates at shire scale. 

Secondly, capturing canopy green-up through a novel metric (i.e. 500TEVI ) can 

be utilised effectively to determine early-season crop area estimates well before 

harvest. Finally, the extrapolability of these approaches to determine total and 

specific winter crop area estimates showed good utility across larger areas and 

seasons. Hence, it is envisaged that this technology is transferable to different regions 

across Australia. The utility of the remote sensing techniques developed in this study 

will depend on the risk agri-industry operates at within their decision and operating 

regimes. Trade-off between risk and value will depend on the accuracy and timing of 

the disseminated crop production forecast. 
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Preface 

 

“My son, farming (the farm) and I can not provide you with what an education 

can equip you with, and most of all, it (education) can‟t be taken away from you.” 

Dad, 1986; South Africa 

 

 

Growing up on a mixed cropping farm in the Free State, South Africa, I have 

seen, experienced and lived through the emotions of the negative and positive impacts 

of climate variability on our farm, during the 80s and 90s. The effect, physically and 

emotionally, affected my parents more severely, in particular my father who never 

gave up, but instead persevered year-after-year working the land, until the end of his 

life in 1990. The interplay of colours, patterns and depth created by the hue 

reflectance of pastures, crops and landscapes, approaching the farm from the hill, is 

still vivid in my mind. These images are akin to a painter’s palette. Thus, I want to 

dedicate my thesis specifically, to my late father, but also to farmers in general, who 

sturdily facing enormous physical, economical and ecological challenges each day, 

and unintentionally contributing to the ever changing mosaic of vivid images when 

viewed from space, i.e. ―a farmer‟s palette”.  

 

During these years and particularly during the end of my master degree, the idea 

of doing a PhD study program was seeded. It was not until 1995, when I met Dr 

Graeme Hammer from Australia, and specifically, in 1997 during a conversation with 

him in South Africa, that the idea of a PhD became more than just an idea. However, 

at that stage it was still only a dream.  

 

In 1999, I was appointed as a research scientist to the Queensland Department of 

Primary Industries (QDPI), Australia. My job was made easier by the kind and 

friendly acceptance I received from the DPI, and specifically the Agricultural 

Production Systems Research Unit (APSRU) group, though sometimes I must have 

caused laughs with my pronunciation and word choice, which very quickly could get 

me into awkward situations. Nonetheless, it was and is still great working with 

colleagues from APSRU. Under the supervision of Dr Graeme Hammer, my job was 



 

viii 

to develop and operationalise a regional scale commodity forecasting system. The 

uptake by industry confirmed the success of the system, which soon lead to the need 

for accurate production estimates.  

 

The missing link however, is the availability of objective accurate and in-time 

crop area estimate, across large areas, well before harvest. In early 2003, the impetus 

and objective of the current thesis took shape and became a reality in a conversation 

with Graeme Hammer. I became a part-time PhD candidate not long after.  
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Chapter 1 

Introduction 

 

 

“It is our will and pleasure that you do immediately upon your landing after 

taking measures for securing yourself and the people who accompany you from any 

attacks or interruptions of the natives…proceed to the cultivation of the land 

[emphasis provided] …and with all convenient speed transmit a report of the actual 

state of the soil…and the most effectual means of improving and cultivating the 

same.”  

King George III (1787) 

 

 

1.1 Crop Production Then and Now 

Agriculture and crop production is an intrinsic commission in securing the 

survival of the human species. This was very much evident when the first settlers 

landed on the east coast of Australia and is illustrated through the above quotation 

from one of the earliest documents related to settlement in the continent 

(Commonwealth of Australia 1914). This was the order approximately 200 years ago 

by King George III (England) to Governor Philip before he set out to establish the 

new penal settlement at Botany Bay in New South Wales, Australia (Shaw 1993). 

Crop production was at the heart of these pioneers as they started a new life, on a new 

continent, with its many unknown vagaries. 

 

Today, through the evolution of agricultural technology in crop varieties, 

management practices and farming equipment, along with other factors, wheat 

production in Australia (Figure 1.1) has significantly increased from 500 thousand 

tonnes in the mid 19
th

 century to nearly 20 million tonnes in the last decade (ABS 

2004). For barley, the degree of increase in production over the last century was much 

higher. The production started ~10,000 tonnes in the late 19
th

 century, and has 

increased to ~4 million tonnes on average today. A major advance for wheat 

production occurred during the last part of the 20
th

 century when an increase of up to 
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30 percent in decadal yield occurred (Knopke et al. 2000). This makes cereal crop 

production, specifically wheat, one of the most important agricultural commodities 

(after beef) for the continent.  

 

In spite of this significant increase in crop production, the economic survival of 

the producer is still highly dependent on the environment in which they operate. 

Currently, however, the operating environment has become increasingly challenging 

due to factors like domestic and world markets that are affecting commodity price 

regimes, climate variability and climate change that influence production risk, and 

increasing costs of inputs, which impinge on business profitability. Furthermore, 

these factors operate at different temporal and spatial scales (Meinke et al. 2006a) and 

cause current producers to be risk orientated and, thus, more vigilant in their decision 

making processes in order to ensure social, economical and environmental 

sustainability. This is very different from the physical and cognitive well-being 

regimes (i.e. decisions were more likely focussed on how to survive from day to day 

or week to week) associated with their ancestors during early and late 19
th

 century 

settlement on the Australian continent.  

 

0

5

10

15

20

25

1
8
6
1

1
8
7
9

1
8
8
5

1
8
9
1

1
8
9
7

1
9
0
3

1
9
0
9

1
9
1
5

1
9
2
1

1
9
2
7

1
9
3
3

1
9
3
9

1
9
4
5

1
9
5
1

1
9
5
7

1
9
6
3

1
9
6
9

1
9
7
5

1
9
8
1

1
9
8
7

1
9
9
3

1
9
9
9

2
0
0
5

Year

P
ro

d
u

c
ti

o
n

 (
M

T
o

n
s
) 

&
 A

re
a
 (

M
H

a
)

Area (Wheat) Production (Wheat) Area(Barley) Production (Barley)

 

Figure 1.1: Time series of total area planted for wheat (orange line) and barley (brown line) and 

total production for wheat (blue line) and barley (green line) for Australian from 1862 to 2004 

(ABS 2004).  
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1.2 Statement of the Problem 

In Australia, like in many other semi-arid continents, wheat production is mainly 

affected by climate variability (Nix 1975). Thus, to remain economically viable in an 

internationally competitive market, the producer needs to have a sound understanding 

of the sources of climate variability, their predictability and access to objective tools 

and information, which can be used to assess specific management options in 

agronomic, economic, and environmental terms (Meinke et al. 2003). Having access 

to such decision support tools has become increasingly necessary to the producer to 

better deal with production risk. Numerous objective decision-making tools have 

been designed to assist agri-industry in managing production risk at paddock/farm 

level (Hammer et al. 2001; Nelson et al. 2002). During the past decade, this 

development has extended to the regional level (Potgieter et al. 2002; Stephens et al. 

2000) with objective systems for estimating regional crop production that provide 

information to support policy (e.g. drought declarations) and industry (e.g. 

commodity storage and trading).  

 

During the late 20
th

 century, most regional crop estimate frameworks were based 

on local knowledge from local experts (e.g. extension officers, farmers, grain traders 

etc.). Hence, they depended heavily on how well the experts knew their regions. 

These estimates were often based on historical regional, state and national level 

statistics, which were, and still are, collated by the Australian Bureau of Statistics 

(ABS) via an agricultural census/survey at the shire (statistical local area) scale. This 

approach forms the basis on which various government bodies (e.g. Australian 

Bureau of Agricultural Resource Economics (ABARE), Bureau of Resource Science 

(BRS), Queensland Government (QG)) make decisions, such as, which shires should 

be classified as drought stricken during drought years. Such decisions have a major 

impact on the coping ability of communities.  

 

In the late 1990s, the ABS census was changed to a yearly survey and a 5-yearly 

census, which further confounded the availability of accurate crop information. In 

addition, the statistics collated during survey years by ABS, such as the 2002 season, 
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are disseminated at a statistical division level (group of shires) (Lester 2008). Lack of 

detailed shire scale information during 4 out of 5 years further emphasises the need 

for alternative of near real-time accurate and objective crop production estimates to 

assist agri-industry decision-making at regional scale. This has been especially the 

case during the last five years when, for example, the severe drought of 2002 reduced 

the economic growth of the Australian economy by approximately 0.75 percentage 

points (Penm 2002).  

 

The Regional Commodity Forecasting System (RCFS), which is being used 

operationally by the Queensland Department of Primary Industries & Fisheries 

(QDPI&F) to predict shire-scale wheat and sorghum yield on a monthly basis 

(www.dpi.qld.gov.au/fieldcrops) is an example of the type of system required to 

deliver objective information to industry in a timely manner. This system, which 

commenced in 1999, generates a yield forecast distribution of wheat and sorghum on 

a monthly basis through the integration of a simple stress index model (Potgieter et al. 

2005a; Potgieter et al. 2006; Stephens et al. 1998) and the El Niño Southern 

Oscillation (ENSO) based climate forecast system generally known as the SOI phase 

system (Stone et al. 1996b). This is run for each month throughout the crop-growing 

season (winter and summer) for all main crop-producing shires in Australia to 

generate updated forecasts as the season unfolds. A shortcoming of this system, 

however, is that it generates an estimate of yield per unit area—not total production. 

This estimate is being used by decision-makers in conjunction with their subjective 

knowledge of total area planted at a shire or broader scale to calculate total 

production. Thus, in order to generate total production predictions, a real-time 

estimate of the crop area planted is needed. This is necessary in determining near 

real-time production figures for updating supply chain information at the regional, 

state and national levels.  

 

While there are alternative methods (e.g. survey or census) to derive information 

on crop area planted, the use of satellite information offers more objectivity, 

timeliness, repeatability as well as likely increased accuracy. Over the years, satellite-

based derived information in agriculture, using high spatial resolution imagery to low 

spatial resolution imagery, has been invaluable in decision-making processes of 

http://www.dpi.qld.gov.au/fieldcrops
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governments (e.g. disaster relief), business and natural resource managers (e.g. extent 

and impact of floods or hail) and producers (e.g. precision agriculture) across 

different scales (Figure 1.2). Until now, the potential for remotely sensed based 

regional crop-forecasting systems has not been fully realised because of the high 

resource costs (i.e. imagery, computer disk space and speed) and the difficulty in 

applying high spatial resolution imagery to large areas. However, the advent of 

Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, launched in 

April 2000, provides significant opportunity to address the issues of cost and useable 

pixel size for regional applications. In this study, it was proposed to use MODIS 

imagery to determine crop area planted as a means to aid targeted agricultural 

forecasting systems in estimating crop production at a regional scale (Figure 1.2).  
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Figure 1.2: Information flow between decision-makers at the different scales and 

application levels of remotely sensed data. This thesis targets data outputs at the regional 

scale. 
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Although various international studies have utilised MODIS in determining land 

use patterns (Muchoney et al. 2000; Price 2003; Zhan et al. 2002), vegetation 

phenology (Zhang et al. 2003) or rice production in the northern Hemisphere (Xiao et 

al. 2005), no specific studies on its utility for determining total and crop specific 

winter crop area estimates well before harvest have been reported.  

 

Therefore, given the potential integration of MODIS with a rigorous regional 

agro-climatic crop forecasting system, such approach is expected to lead to rapid, 

objective and sound production estimates that have the potential to underpin better-

informed production risk decisions at a regional level. 

 

 

1.3 Significance of the Study 

Accurate, objective and near real-time estimates of crop area planted are intrinsic 

to determining regional production estimates for any crop. Currently, no accurate near 

real-time estimates of wheat area planted at shire scale exist in the public domain in 

Australia. Information is available currently via the ABS survey and census data with 

a lag of 2 to 3- years after the event; an example was the 2005/2006 census year, 

when the agricultural statistics at shire scale was released only in early 2008 (ABS 

2008). 

 

Many within the grains industry (from bulk handlers to government policy 

makers), particularly in the recently deregulated marketing environment, seek 

advance information on likely production and its geographical distribution to assist 

them in sound production risk management processes. Such information is also 

sought by government agencies (e.g. ABARE) in relation to policy interventions 

triggered by the degree of exceptional circumstances (e.g. drought, bumper crops, 

etc.). The current regional commodity forecasting system (RCFS) of QDPI&F 

partially addresses this need through its monthly crop outlook report. However, this 

report only disseminates wheat yield per unit area (t/ha) at a shire scale and does not 

address the issue of area planted and, hence, total crop production. This information 

on yield only (as derived from the simple agro-climatic model) can be sometimes 

misleading; an example was the case in the 2004 winter crop season for south-east 

Queensland (QLD). During this season, an average wheat yield crop was forecast for 
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most of the Darling Downs shires. However, the total production for wheat was 

below to very much below average crop for the 2004 season. This anomaly was 

caused by the lack of widespread sowing rainfall throughout the region, which 

resulted in the area sown to winter crop to be well below the potential area that could 

be planted. Thus, having the additional knowledge about crop area planted is critical 

to providing reliable forecasts of crop production.  

 

This clearly illustrates the need for developing a system that can address the 

missing link: i.e. an accurate and objective way of determining winter crop area 

planted at a shire scale. The accessibility of up-to-date, objective and accurate 

agricultural statistics is of utmost importance to assist government and industry in 

decision-making processes well before harvest. Moreover, the change of the 

agricultural statistics census from an annual to a 5-yearly time frame by ABS, has 

elevated the need for an objective regional commodity/crop production forecast to an 

even higher priority. 

 

 

1.4 Research Objectives 

The aim of this study was to develop remote sensing techniques to determine 

winter crop area estimates at different spatial scales through the use of multi-temporal 

MODIS satellite imagery. More specifically, the objectives were to:  

 Assess the ability of a range of approaches in using multi-temporal MODIS 

imagery to estimate total end-of-season winter crop area; 

 Determine the discriminative ability of such remote sensing approaches in 

estimating area totals for wheat, barley and chickpea within a specific 

cropping season; 

 Develop and evaluate the methodology for determining the predictability of 

crop area estimates well before harvest (early-season) for wheat, barley and 

chickpea; and 

 Validate the ability of multi-temporal MODIS approaches, as derived in the 

study region, to determine the pre-harvest and end-of-season winter crop 

area estimates for different seasons and regions. 
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1.5 Organisation of the Thesis 

Chapter 1 presents a brief history of winter crop production trends in Australia 

and provides background and justification for the thesis. The research gap (i.e. the 

need for winter crop area estimates) was identified, and the aim and specific 

objectives of the research study were presented. Chapter 2 reviews the literature on 

the current state of knowledge on regional scale crop area estimate approaches. This 

includes crop area estimates using remotely sensed data, the importance of temporal 

and spatial resolution, the advent of MODIS, and the ability of satellite imagery to 

discriminate among crops. In Chapter 3, the common research design and protocols to 

achieve the specific objectives are discussed. This includes the delineation of the 

study region, common data resources, classification approaches and the validation 

approach used. 

 

Comparing the efficacy of different approaches to using multi-temporal MODIS 

data to determine end-of-season crop area estimates and their ability to discriminate 

between specific winter crops is addressed in Chapter 4. This addresses the first two 

specific objectives as discussed in the previous section. Chapter 5 addresses the third 

objective on exploring early season crop area estimates through the use of multi-

temporal MODIS imagery. Chapter 6 examines the ability of the derived approaches 

(Chapters 4 and 5) to determine crop area estimates across seasons and regions, which 

addresses the fourth objective of this research. The overall summary, general 

conclusions and recommendations of the research study are given in Chapter 7.             
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Chapter 2 

Literature Review 

 

“Knowledge is of two kinds. We know a subject ourselves, or we know where we 

can find information on it.” 

Samuel Johnson (1709 - 1784), quoted in Boswell's Life of Johnson 

 

 

2.1 Introduction 

During the last century, seasonal climate and ensuing crop production have 

become more variable. This has prompted those in the industry to become better risk 

managers in order to achieve economic, social and environmental sustainability 

(Chapter 1). Furthermore, the sustainability of agricultural industries is not only 

impacted by world economies, price volatility or government drought policy but also 

by the fluctuation and change in climate (Meinke et al. 2006b). Recent research has 

suggested that El Niño-like events, i.e. usually associated with a reduction in rainfall 

over most parts of north-eastern Australia, may increase in magnitude and frequency 

due to existing climate change trends (IPCC 2001, 2007). Therefore, accurate and 

timely agricultural information (i.e. production statistics) has become highly sought 

after by the industry and government decision-making agencies (Hammer et al. 

2001). However, there is no efficient, operational, near-real time production 

information system for Australia, similar to that used by the United States 

Department of Agriculture to assess yearly and half-yearly crop status through area-

frame surveys (http://www.usda.gov). There is a clear need to develop and 

operationalise a system for regional scale crop area estimates in Australia. Currently, 

Australia has no operational remotely sensing based framework exists to determine 

regional scale winter crop area estimates.  

 

In this chapter, the scientific literature relating to crop area estimate approaches is 

examined. Issues relating to accuracy, scale and costs are reviewed in section 2.2, 

while the evolution of remote sensing in agriculture is briefly described in section 2.3. 

Sections 2.4 and 2.5 deal with issues relating to the temporal and spatial resolution of 

http://www.usda.gov/
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remotely sensed data. The advent of the MODIS platform is reviewed in section 2.6, 

while section 2.7 addresses the evolution of vegetation indices. The ability to 

discriminate between specific crops through the application of remotely sensed data is 

discussed in section 2.8. Traditional classification approaches in remote sensing is 

elaborated in section 2.9. Further literature reviews, specific to chapter objectives, 

will be presented in Chapters 3, 4, 5 and 6. 

 

 

2.2 Accuracy, Scale and Cost of Remote Sensing Systems 

In Australia, various crop yield forecasting methods exist. They predict crop yield 

at point/paddock/farm scale (Keating et al. 2003; Nelson et al. 2002) and 

regional/state/national scale (Potgieter et al. 2002; Potgieter et al. 2005a; Potgieter et 

al. 2006; Stephens et al. 1989), through the use of detailed to parsimonious crop 

simulation models. Attempts to using remotely sensed data to estimate crop yield at a 

shire scale have also been reported for Western Australia (WA). Those studies related 

crop yield to traditional monthly aggregated Normalised Difference Vegetation Index 

(NDVI) values (Smith et al. 1995; Stephens 1995). They have shown that a 

significant moderate relationship existed (R
2
 ranged from 46% to 56%) between the 

NDVI Advance Very High Resolution Radiometer (AVHRR) green vegetation cover 

index and shire scale wheat yield across most of the WA broad cropping region. 

However, outcomes from these studies have not been integrated in an operational 

remote sensing based framework to determine total winter crop area/yield estimates 

as well as areas planted to specific crops at a regional scale. The lack of successful 

integration of such remotely sensed system is likely attributed to the higher accuracies 

of agro-climatic and empirical rainfall index models to predict shire scale wheat 

yields in WA.  

 

Previous research efforts addressed the issue of determining crop area estimates 

and incorporating such outcomes into an operational system. For example, the ability 

of a range of approaches to predict broad-scale crop yield and planted area were 

contrasted in a detailed study in 1996 (Hammer et al. 1996). In this study, numerous 

crop yield prediction models ranging from empirical regression models, simple agro-

climatic models and detailed dynamic crop models were contrasted. They also 

examined the application of remote sensing (Landsat Thematic Mapper (Landsat TM) 
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and AVHRR satellite imagery) to predicting shire-scale crop area. This study found 

that the medium resolution (30 m) imagery of Landsat TM showed significantly 

higher accuracy (R
2
 = 0.91) in predicting actual total winter crop area planted at a 

state level (i.e. Queensland), than the coarse resolution (1.1 km) AVHRR system (R
2 

= 0.76). However, the Landsat TM system could not be applied operationally because 

of the high cost of imagery (at least in previous years) and low repeat cycle, which is 

a major impediment in near-real time operational crop forecasting. Although the 

AVHRR system is less likely to be constrained by cloud cover because of its high 

temporal frequency (i.e. daily), its pixel size of 1.1 km resulted in much lower 

predictive accuracy. In addition, although the AVHRR system showed appreciable 

potential in mapping of broad cropping areas, it has no discriminatory power in the 

classification of crop species (e.g. wheat, barley) at any given location (Hammer et al. 

1996).  

 

The uptake and implementation of finer resolution satellite platforms like Landsat 

TM has been hampered by cost when an operational mode is considered. For 

example, to acquire Landsat 5/7 ortho-corrected images costs $1200 per scene. To 

cover the whole cropping region of Queensland, the data would thus cost ~ $15600 

(13 full images x $1200) (www.ga.gov.au/acres/prod_ser/). This is further 

confounded by the infrequent satellite passes over an area (~16 day intervals) and the 

degree of cloud cover during such overpass.  

 

The latter approach is more accurate, but it is costly and time-consuming when 

applied to large areas. Applications from the AVHRR and recently launched 

Moderate Resolution Imaging Spectroradiometer (MODIS) platforms have attributes 

of low-cost and rapidness, but has a restricted spatial resolution, specifically the 

AVHRR platform (Chen et al. 2008). This emphasises the need for a remote sensing 

system, which is inexpensive, has a high temporal resolution (e.g. 1-2 days) and more 

importantly, has a relatively good spatial resolution (e.g. 250 m pixel size).  

 

 

http://www.ga.gov.au/acres
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2.3 Remote Sensing in Agriculture  

The practice of remote sensing, which focuses on the examination of images of 

the earth’s surface, has rapidly evolved since the discovery of the infrared spectrum 

and photography in the early 1800s (Campbell 2002). Various milestones in history 

(specifically war time research) have shaped the discipline we today know as remote 

sensing. One such clear milestone in the development of this field was the work done 

by Robert Colwell in 1965 on small-grain cereal crops and their diseases through the 

use of colour infrared film (also known as camouflage detection film). His work 

delineated the boundaries of modern remote sensing and anticipated many of the 

opportunities and difficulties of this field of reconnaissance. After 1960, when the 

first meteorological satellite was launched, a rapid sequence of events followed. 

During the 1970s and 1980s digital image processing came of age. During the early 

1990s university degrees in remote sensing became available at most universities, 

which also lead to the integration of this science with other geographic sciences 

(including cartography, surveying and geographic information systems, to name a 

few) (Jensen 2007). In 1999, the National Aeronautics and Space Administration 

(NASA) launched Terra-1, which was the first satellite system specifically designed 

to acquire global coverage to monitor changes in nature and the extent of the earth’s 

ecosystems. This marked the advent of an era of broad-scale remote sensing of the 

earth (Campbell 2002). 

 

Globally, during the last decade, satellite imagery has been extensively used in 

various studies to determine the spatial and temporal dimensions of agricultural 

characteristics like net primary production (Markon et al. 2002; Prince 1991; Prince 

et al. 1995), vegetation cover (Fensholt 2004; Gitelson et al. 2002; Rondeaux 1995; 

Zhang et al. 2003), land use patterns (Muchoney et al. 2000; Price 2003; Xiao et al. 

2005; Zhan et al. 2002) and the impact of climate variability on vegetation dynamics 

at the earth’s surface (Roerink et al. 2003). Furthermore, the estimation of crop yield 

through the correlation of composite normalised difference vegetation index (NDVI) 

values and observed average district/state yield (Boken et al. 2002; Doraiswamy et al. 

1995; Fuller 1998; Granados-Ramirez et al. 2004; Groten 1993; Labus et al. 2002; 

Stephens 1995), and the integration of the Food and Agriculture Organisation’s 

(FAO) crop specific water balance with NDVI at the state level (Reynolds et al. 2000) 

have shown appreciable promise. However, none of these studies have focussed on 
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determining crop area of more than one crop (e.g. wheat and barley) within the same 

growing period when calculating the NDVI value for a specific region. Instead, they 

used the total aggregated NDVI value within the cropping land use mask for a 

specific shire to monitor crop condition or biomass. The use of multi-temporal ―peak’ 

NDVI to determine three different land use cover percentages (Defries et al. 2000) 

and to discriminate between irrigated rice and non-irrigated rice in an invariant 

climate environment (Kamthonkiat et al. 2005) showed reasonable accuracy (i.e. 69% 

to 89%).  However, by using the point of maximum canopy growth, such an approach 

ignores likely additional information about crop canopy vigour intrinsic to the entire 

crop growth profile.  

 

The Large Area Crop Inventory Experiment (LACIE), which is a joint project 

between NASA, the United States Department of Agriculture and National 

Oceanographic and Atmospheric Administration (NOAA) commenced in 1974 and is 

probably one of the first frameworks to integrate low-resolution Landsat imagery, a 

weather monitoring system and crop yield models to monitor global wheat production 

(MacDonald et al. 1980). Although LACIE had appreciable accuracy in determining 

global wheat production, it was very labour intensive and expensive to implement.  

 

Another example of near real-time crop area and yield estimates is the Monitoring 

Agriculture through Remote Sensing techniques (MARS) project, which is a crop 

forecasting project operated and developed by the Directorate General Joint Research 

Centre (JRC) of the European Commission in Ispra (Italy) (http://www.marsop.info/). 

This project generates advance and timely production statistics for all the main 

European crops published in monthly MARS bulletin. Although very expensive (~ 

1000,000 Euro), it is an excellent example of collaboration between governments (i.e. 

policy makers) and independent R&D institutions. 

 

Other studies have shown that satellite-based vegetation indices could 

successfully be used in the monitoring of crop yield, production and crop condition 

over large areas (Dabrowska-Zielinska et al. 2002; Doraiswamy et al. 2004; 

Granados-Ramirez et al. 2004; Wannebo et al. 2000; Weisssteiner et al. 2005; Zang et 

al. 2005). Particularly, the development of indices measuring leaf canopy structure, 
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i.e. leaf area index (LAI), which was incorporated into a climate-variability impact 

index (Zang et al. 2005; Zhang et al. 2006) to monitor corn production across wide 

areas in the USA corn-belt showed satisfactory predictions (R
2
 = 60%).  

 

Other sensors like SPOT (Satellite Pour I’Observation de la Terre), ASTER 

(Advanced Spaceborn Thermal Emmision and Reflection Radiometer), high-

resolution commercial satellites (e.g. IKONOS and Quickbird), microwave imaging 

sensors like RADARSAT, to name a few, and recently the hyper spectral image 

spectrometer, Hyperion, on NASA’s observing-1 platform have all contributed to the 

advance in application of remotely sensed technology within the agricultural, 

ecological and oceanographic research community (Mather 1999). Relaxation in the 

remote sensing copy right specifically, with Landsat TM (and maybe others to follow 

later on) will further enhance the uptake of such technology (USGS 2009). 

 

Since the launch of MODIS, data outputs from it were extensively used in the 

monitoring of biophysical aspects of vegetation and crop canopy conditions (e.g. 

biomass, leaf area index). Although it has a relatively low spatial resolution (i.e. 250 

m x 250 m pixel size), it has the advantage of a high temporal resolution. The success 

of agricultural applications using MODIS approaches can be partly attributed to the 

high temporal and moderately low spatial resolution, as well as availability of the 

needed MODIS products (Chen et al. 2008). 

 

 

2.4 Spatial Resolution of Satellite Imagery 

Up to now, the most common satellite system used in broad-scale agricultural 

applications is the Advanced Very High Resolution Radiometer (AVHRR) carried by 

NOAA’s Polar Orbiting Environmental Satellites. This satellite platform has been 

used in global impact studies (Prince 1991; Prince et al. 1995) because of its coarse 

spatial resolution of 1.1 km (~121 ha pixel size) and near-daily repeat cycle, which 

counteracts the likeliness of cloud cover at a global scale. Remarkably the difference 

in spatial resolution had little effect on the final area estimates for large areas as 

elucidated by an earlier study (Price 2003). Another study showed overall accuracies 

of 74% and 83% using the Landsat TM (30 m) and the Landsat MSS (80 m) products, 
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respectively, to classify vegetation cover (Toll 1985). Although both studies found no 

significant decrease in accuracy in using lower resolution satellite-based systems, 

results might differ from region to region and further research is necessary to 

determine the value of coarse resolution satellite imagery in discriminating among 

different crops (e.g. wheat and barley) within a growing season.  

 

The interplay between scale and pixel size is an important issue, particularly in 

heterogeneous cropping areas. For example, large pixel size gives an increased 

chance of recording mixed brightness values. This mixed spectral response is further 

confounded by established local crop management practices, such as found in some 

areas of southern Queensland, where crops are planted in 50 m to 250 m strips 

(Figure 2.1) and alternated with an uncropped band (e.g. bare soil or stubble) of 

similar size to the cropped strip. Thus, pixels that are not completely within a single 

homogeneous feature (e.g. forest, vegetation, wheat crop etc.) have average 

brightness values as a consequence of more than one feature within the pixel area. 

Such pixels are know as mixels and are ubiquitous in cropland mapping (Chen et al. 

2008).  

 

 

Figure 2.1: Zoomed view within the study area of a Landsat 

image acquired on 16
th

 September 2003. The range in strip 

sizes (width and length) is noticeable.   
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Mixels have a composite spectral response or signature, which does not match the 

pure signature ideal for determining the total cultivated area of a specific crop (e.g. 

wheat). Mixed pixel responses add an additional source of error or confusion to the 

classification process and reduce the discriminating power (i.e. between crops) of 

such an analysis. 

 

The selection of pixels, which consist completely of homogeneous crop canopies, 

will have average brightness values very similar to the object of interest and 

consequently a high signal to noise ratio (i.e. higher classification accuracy). 

Furthermore, contrasting mixel reflectance from the AVHRR satellite system to 

actual observed values of biomass, LAI or yield at that specific pixel location, is a 

major impediment to the usefulness of such an operational system (Prince 1991). 

There is a direct positive relationship between pixel purity and accuracy (Badhwar et 

al. 1982b). 

 

 

2.5 Temporal Resolution of Satellite Imagery 

Agricultural production has specific crop characteristics and capturing of all 

possible reflectance data throughout the growth of the crop is vital in determining 

accurate crop biomass, acreage or LAI. Any satellite-based platform needs to be able 

to cover most of the key phenological stages of cropping systems in order to be 

efficient (Thenkabail et al. 2000).  

 

Although Landsat TM can be regarded as a suitable satellite imaging system for 

regional crop forecasting (mainly due to its swath width and spatial resolution), its 

major drawback is the relatively low temporal resolution (repeat cycle) of 16 days. 

Clouds and other atmospheric factors (e.g. pollution through large fires and volcanic 

eruptions) confound the use of such a system even further. Furthermore, the accuracy 

of a single date Landsat image to map crop area planted was found to be lower than 

that of multi-date approaches (Lobell et al. 2003; Van Niel et al. 2004). Although 

multi-date imagery can improve the mapping accuracy, such an approach will result 
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in a rapid increase in costs when extrapolated over time and across very large areas 

when using Landsat TM imagery. 

 

AVHRR data has often been used to assess the impact of climate variability on 

vegetation vigour at seasonal and intra-seasonal time scales. However, because 

AVHRR was never designed for land applications, its data are not well suited for 

vegetation monitoring studies (Zhang et al. 2003). Specifically, the lack of precise 

calibration, poor geometric registration, and difficulties involved in cloud screening 

resulted in AVHRR having high levels of noise. The recently launched MODIS 

system, onboard NASA’s Terra spacecraft, has improved atmospheric and cloud 

screening algorithms and provides a substantially improved basis for biophysical 

studies at the earth’s surface (Zhang et al. 2003). 

 

 

2.6 MODIS – The New Kid on the Block 

The advent of MODIS is expected to enhance the application of remote sensing in 

targeted agricultural systems, such as crop forecasting. This relatively new satellite 

system, with its 36-spectral bands between 405 and 14385 nanometres (nm) (Table 

2.1), provides global datasets that were previously unavailable (Justice et al. 2002). It 

has combined characteristics from both the AVHRR and Landsat TM platforms and 

provides new and improved capability for terrestrial satellite remote sensing research 

in agricultural systems. With a repeat cycle of 1-2 days, a pixel resolution of 250-m 

(~6.25 ha), 500-m (~25 ha) and 1-km (~100 ha), and a swath width of 2330 km, it 

also has readily available products such as NDVI, Enhance Vegetation Index (EVI) 

and LAI (Justice et al. 2002; Justice et al. 1998). MODIS satellite products are 

available through the ordering or downloading from the NASA’s Earth Observing 

System (EOS) (http://edcimswww.cr.usgs.gov) website. MODIS data are captured 

through instruments onboard two spacecrafts (Terra and Aqua), which then send data 

through to the ground stations in the USA and other countries. Many data products 

are derived from MODIS observations which describe features of the land, oceans 

and the atmosphere that can be used for studies of processes and trends on local to 

global scales (TBRS 2007). 
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The range of spectral bands available, as well as the spatial and temporal 

resolution, makes MODIS imagery ideal for integration in a multi-temporal 

classification approach for determining not only crop area planted and yield per unit 

area. With a swath width of 2330 km, it is ideal for identifying crop types over large 

areas. Furthermore, given the potential integration of such a system with a rigorous 

regional agro-climatic crop forecasting system, the use of MODIS imagery is 

expected to lead to rapid, objective and sound production estimates that have the 

potential to underpin better-informed production risk decisions at a regional level. 

 

Table 2.1: Spectral bands of the MODIS satellite platform (TBRS 2007). 

BAND Range (nm) Range (nm) Key Application

reflected emitted

1 620-670 Absolute Land Cover Transformation, Vegetation, Chlorophyll

2 841-876 Cloud Amount, Transformation, Vegetation, Transformation

3 459-479 Soil/Vegetation  Differences

4 545-565 Green Vegetation

5 1230-1250 Leaf/Canopy Differences

6 1628-1652 Snow/Cloud Differences

7 2105-2155 Cloud Properties, Land Properties

8 405-420 Chlorophyll

9 438-448 Chlorophyll

10 483-493 Chlorophyll

11 526-536 Chlorophyll

12 546-556 Sediments

13h 662-672 Atmosphere, Sediments

13l 662-672 Atmosphere, Sediments

14h 673-683 Chlorophyll Fluorescence

14l 673-683 Chlorophyll Fluorescence

15 743-753 Aerosol Properties

16 862-877 Aerosol Properties, Atmospheric Properties

17 890-920 Atmospheric Properties, Cloud Properties

18 931-941 Atmospheric Properties, Cloud Properties

19 915-965 Atmospheric Properties, Cloud Properties

20 3.660-3.840 Sea Surface Temperature

21 3.929-3.989 Forest Fires & Volcanoes

22 3.929-3.989 Temperature, Surface Temperature

23 4.020-4.080 Temperature, Surface Temperature

24 4.433-4.498 Cloud Troposphere Temperature

25 4.482-4.549 Cloud Troposphere Temperature

26 1360-1390 Cloud Fraction (Thin Cirrus), Troposphere Temperature

27 6.535-6.895 Mid Troposphere Humidity

28 7.175-7.475 Upper Troposphere Humidity

29 8.400-8.700 Surface Temperature

30 9.580-9.880 Total Ozone

31 10.780-11.280 Cloud Temperature, Forest, Fires & Volcanoes, Surface Temperature

32 11.770-12.270 Cloud Height, Forest, Fires & Volcanoes, Surface Temperature

33 13.185-13.485 Cloud Fraction, Cloud Height

34 13.485-13.785 Cloud Fraction, Cloud Height

35 13.785-14.085 Cloud Fraction, Cloud Height

36 14.085-14.385 Cloud Fraction, Cloud Height  
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2.7 Remotely Sensed Vegetation Indices  

In biophysical land cover studies, plant growth responses are traditionally 

measured through a variety of vegetation indices (VI) that attempt to measure 

biomass or vegetative vigour. Spectral response of crop and vegetation canopies are 

mainly determined by five physical attributes (i) leaf optical properties, (ii) canopy 

geometry (e.g. LAI and leaf angle distribution), (iii) soil reflectance, (iv) solar 

illumination and view angles, and (v) atmospheric transmittance. The effects of the 

last three factors are traditionally corrected by remotely sensed algorithms, and thus 

leaving the first two attributes to directly describe reflectance of final crop parameters 

or crop status (Bauer 1985; Dadhwal et al. 2000).  

 

Different canopy types have different reflectance responses across the wavelength 

spectrum. Variability in leaf optical properties is wavelength dependent with green 

leaves having the smallest variation in the visible wavelength region (VIS), while the 

largest variation is in the near-infrared region (NIR). Woody stem material showed 

opposite trends to that of green leaves. Canopy reflectance data is predominantly 

controlled by LAI and leaf angle within and across different landscapes. Leaf visual 

properties are mainly expressed at the canopy level within the NIR wavelength region 

(Asner 1998). The ability to capture canopy reflectance properties have been tried 

through a range of vegetation indices. 

 

The typical pattern for a healthy vegetation cover shows high absorption due to 

chlorophyll at 650 nm (Red (R) region), and high reflection due to leaf internal 

structure at the 750 nm (NIR region). The simplest form of a VI is a ratio between 

two digital values from separate spectral bands, i.e. near-infrared and red bands. VI 

indices give an indication of broadband greenness derived from the amount and 

quality of photosynthetic material in vegetation canopy (Campbell 2002; Dadhwal et 

al. 1991; Lillesand et al. 2004). Another index is the AVHHR NDVI, which is one of 

the oldest and most commonly used VI in remote sensing studies. Green vegetation 

areas will generally yield high because of the high reflectance in NIR band and low 

reflectance in the R or visible region. NDVI is computed from the following equation: 

 

)(

)(

RNIR

RNIR
NDVI




                                                             [2.1] 



Literature Review  Chapter 2 

 

 

47 

 

This index is mainly used to determine biomass or vegetative canopy vigour over 

large areas (Campbell 2002). Conventional remote sensing approaches use multi-

temporal composite NDVI images through the crop growth period and are typically 

derived from AVHRR imagery (Boken et al. 2002; Doraiswamy et al. 1995; 

Granados-Ramirez et al. 2004; Kalubarme et al. 2003; Labus et al. 2002).  

 

Other forms of VIs exist such as greenness (GVI), perpendicular (PVI), 

transformed soil adjusted (TSAVI), soil adjusted (SAVI), atmospheric resistant 

(ARVI), soil and atmospheric adjusted (SARVI) and modified normalised difference 

(MNDVI) vegetation indices (Huete et al. 1997; Wiegand et al. 1991). Other simpler 

spectral band ratios were investigated for their ability to discriminate between 

vegetative growth profiles as a result of water stress with limited success (Jackson 

1983).  

 

The main constraint for VI metrics is the effect of the atmosphere and soil 

background on reflectance values in the red, near infrared, blue and green wavelength 

regions. The reduction in ambient contamination of measured reflectance has induced 

the variety of VIs noted above (Huete et al. 1997). A further effort to reduce the 

background ―noise‖ (i.e. soil, atmosphere) has lead to the development of the 

Enhanced Vegetation Index (EVI) (Liu et al. 1995). This was done by including the 

blue reflectance band to correct for soil background and atmospheric perturbations. 

Not only does it minimise canopy background and atmospheric influences, it also 

optimises the vegetation signal with improved sensitivity in the high biomass regions, 

which is a major improvement on the traditional NDVI measure (Huete et al. 2002; 

Huete et al. 1997).  

 

Another valuable metric that are produced on the MODIS platform is the satellite-

based leaf area index (LAI). This measure responds rapidly to abiotic and biotic 

influences and can therefore integrate a range of conditions affecting plant growth 

through the various phenological stages (Holben et al. 1980). LAI is also highly 

correlated to crop yield since it captures both magnitude and duration of 

photosynthetic activity (Tucker et al. 1980). In recent studies, MODIS LAI product 
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showed reasonable success in measuring the impact of climate variability on crop 

production across large regions (Zhang et al. 2005; Zhang et al. 2006). However, the 

MODIS LAI product has a much lower spatial resolution (~ 1 km) than the MODIS 

EVI and NDVI products. In addition, some calibration is needed, either through 

ground experiments or broad scale land cover maps, in order to relate different 

magnitudes of satellite-based LAI measures to specific vegetation canopy types on 

the ground.   

 

 

2.8 Crop Discrimination from Satellite-based Images 

The simplest form of crop discrimination is the classification of imagery into 

broad-scale classification categories into which all agricultural land is grouped 

together. This is also known as level-1 land use cover classification (Campbell 2002). 

From this level of classification, classes can be grouped into cropping and non-

cropping regions. Creation of level-1 classification maps is usually done by creating 

land use maps of specific regions through the concurrent use of Landsat TM and 

NOAA AVHRR imagery assisted by detail land use identification strategies (e.g. 

expansive field trips). This makes it a highly expensive exercise when large regions 

are covered. These classification types are very informative regarding longer-term 

cropping/vegetation patterns within a region.  

 

The aim of this study, however, was to discriminate among small grain crops 

(wheat – Triticum aestivum, and barley – Hordeum vulgrae) and a winter grain 

legume (chickpea – Cicer arietinum) within a single cropping season. Discrimination 

between different crop canopies is a challenge, especially, separating wheat from 

barley since they have similar canopy architecture and phenology. The life cycle in 

crop plants consists mainly of three main phases i.e. (i) a vegetative stage, (ii) 

reproductive phase and (iii) a grain-filling stage. The overall length of the life cycle 

and the relative length of each phenological stage in it depend mainly on the 

daylength or temperature during the crop growth period (Evans et al. 1976). Wheat, 

barley and chickpea are known as temperate species and are largely dependent on 

sufficient moisture availability throughout the growing period but especially around 

specific phenological phases such as flowering and grain filling. Barley and wheat 
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were first domesticated in the Fertile Crescent (Figure 2.2) around 10,000 BC. Barley 

is closely related to wheat, but despite the similarities barley is generally regarded as 

the inferior staple to wheat, and thus the poor man‟s bread. However, barley is the 

hardier of the two species, which ensured its continued cultivation throughout history 

and specifically, in drier highly variable climate environments like north-eastern 

Australia (Langridge et al. 2003).  

 

 

Figure 2.2: The Fertile Crescent is a region in the 

Middle East incorporating Ancient Egypt, the Levant, 

and Mesopotamia (Wikipedia 2008). 

 

Figure 2.2 shows a map of the broad winter cropping region, the broad crop 

calendar for winter crops, and the breakdown of the percentage contribution of each 

state to the total national wheat production for Australia. Planting of temperate crops 

in Australia occurs during April to June (and can be extended into July and August 

for chickpea) followed by tillering and vegetative stages through June to August up to 

early September after which flowering, grain filling and maturity is reached during 

the late September to October period. Crops are generally harvested during late 

November to end of December depending on sowing times (Kelleher 2003).  
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The ability to discriminate between crops is directly related to the amount of 

reflectance, specifically in the NIR bandwidth, by the leaf and canopy structures 

(Campbell 2002). The main factor contributing to differences in canopy growth and, 

thus, canopy reflectance, between wheat and barley relates to canopy architecture and 

density (usually referred to as leaf area index), which is a function of the number of 

tillers and rate of growth (Kelleher 2003). 
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Figure 2.3: The broad winter cropping region, crop calendar for winter crops and the 

breakdown of the percentage contribution of each state to the total national wheat production 

for Australia.  Wheat and barley is traditionally produced in the green coloured area while the 

cross hatched area indicates the location of chickpea production (Kelleher 2003). 

 

For barley, early tillering and growth rate are nearly double that of wheat, causing 

crop canopy closure much quicker than in the case of wheat (Meinke 1996; Yunasa et 

al. 1993). This is a significant feature and it is likely that any discriminating ability 

would be derived from differences in reflectance values relating to rate of canopy 

closure mainly before the grain filling stage of crop development.  
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The different crop physiology and phenology of chickpea causes its leaf and 

canopy structure development to be quite different from wheat and barley (Figure 

2.4) (Thomas et al. 1995). Discrimination of chickpea from wheat and barley is thus 

likely. The use of a vegetation index (which is highly sensitive to leaf and canopy 

architecture) and density, is thus imperative to the ability to discriminate between 

wheat and barley crops.  

 

 

 

Figure 2.4: Showing the difference in canopy structure between (a) 

chickpea, and (b) barley (bottom left) and wheat (bottom right). Note the 
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difference in canopy structure with barley having large-awned ears and 

ears horizontal and a little more advance than wheat.  The canopy 

differences between chickpea and wheat and barley are more prominent. 

 

 

2.9 Traditional Classification Procedures in Remote Sensing 

The main aim of classification procedures is to group pixels into a similar region 

of land use/cover classes or themes. This can be done by either supervised or 

unsupervised classification approaches (Lillesand et al. 2004). These approaches use 

algorithms that examine the unknown pixels in an image and aggregate them into a 

number of themes based on natural groupings or clusters present in the image. These 

classes are then related to a training or reference set after classification and categories 

are labelled with the name of the category it resembles. On the other hand, the pixel 

categorisation is supervised by specifying to the algorithm the spectral characteristics 

of specific themes based on reference data or ground truth data. Each image pixel is 

then compared numerically (through an algorithm) to the reference theme attributes 

and classified accordingly.  

 

Unsupervised classification procedures are based on non-parametric statistical 

approaches such as ISODATA (Tou et al. 1974) and K-means (Johnson et al. 1988) 

algorithms and are the two most commonly used. Supervised classification is derived 

from parametric statistical approaches and the most commonly used are the 

parallelepiped classifier, the maximum likelihood classifier (MLC) and the 

Malhalanobis classifier (Johnson et al. 1988). The MLC approach forms the 

backbone of most multi-spectral remote sensing analyses today (Wessel et al. 2004).  

 

A combination between unsupervised and supervised classification procedures is 

known as hybrid classification and is generally applied where complex variability in 

the spectral response of specific cover types exists. Furthermore, the classification of 

mixels (i.e. pixels with mixed spectral response) are made possible by more complex 

approaches such as spectral mixture analysis (SMA), which is based on the unmixing 

of spectral values within a pixel. This approach showed moderate to high accuracy in 

classifying heterogeneous cropland systems into land classes (Lobell et al. 2004).  
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Another approach is the neural network or artificial neural network (ANN), 

which are algorithms designed to simulate human learning processes through 

establishment and reinforcement of pathways between input data and output data. 

ANN has been found to be accurate in classification of remotely sensed data, 

although accuracy gain has been minimal or slightly worse than the traditional MLC. 

This was exemplified when determining soil moisture and agricultural variables by 

microwave radiometry using neural networks (Del Frate et al. 2003).  

 

In recent years, object-orientated methods have become more popular in 

classification of satellite-based imagery mainly because of the availability of the 

software called E-Cognition. This approach refers to analysing the image in object 

space (i.e. groupings of pixels with similar spectral and spatial properties) rather than 

pixel space. Objects are used as primitives for image classification rather than pixels 

(Navulur 2007). This software uses a region-growing approach at different scale 

levels from coarse to fine, using both spectral properties and geometric attributes of 

the regions, such as shape (Campbell 2002). Although this approach showed slightly 

higher accuracy (~ 8%) than the MLC, the MLC approach still had a surprisingly 

high accuracy of 85% (Mather 1999).  

 

Various other approaches to image classification exist, too many to discuss here, 

which are often adapted from existing approaches. The different classification 

methods should be seen as complementary rather than an alternative. Therefore, no 

single classification method should be seen as the ultimate classification approach, or 

panacea, when it comes to analysing remotely sensed imagery.  

 

 

2.10 Concluding Remarks 

Applications of remotely sensed data in agriculture have rapidly evolved since the 

end of the 20
th

 century.  Most recently (start of the 21
st
 century), the advent of the 

MODIS satellite platform has enhanced the potential application of remotely sensed 

data to determine and monitor vegetation vigour at a regional level with appreciable 

success. Although MODIS has a relatively coarse spatial resolution, the imagery has 

been shown to be as accurate (at regional scale) as the finer resolution and the more 
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expensive Landsat TM. Furthermore, the near diurnal repeat cycle (~1 to 2 days) and 

its swath width of 2330 km makes the MODIS imagery ideal for application in 

determining regional crop area estimates. The evolution of vegetation indices has 

been reviewed, and it is evident that the recently developed enhanced vegetation 

index (EVI) has a significantly better ability to deal with ambient contamination such 

as soil background and atmospheric noise. In addition, EVI has an improved 

capability in discriminating reflectance values at higher biomass level. This makes 

EVI an ideal vegetation index metric in determining total, as well as specific winter 

crop, area estimates at a shire scale. The ability of multi-temporal MODIS imagery to 

determine total winter crop area estimates and discriminate between specific crops at 

the end of the cropping season is investigated in Chapter 4. 
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Chapter 3 

Overview of Study Design and Protocols 

 

“No good workman without good tools.” 

Thomas Fuller (1608 AD - 1661 AD) 

 

 

3.1 Introduction 

This chapter outlines the general research design, including description of the 

shire study area, data acquisition and pre-processing, the enhanced vegetation index, 

feature classification approaches and validation statistics. Specific methods are 

detailed in ensuing chapters. The frameworks and methods developed for crop area 

estimation in this thesis were targeted at shire, state and national levels. However, the 

methodology was firstly derived, applied and tested for two contiguous shires in the 

Darling Downs region in southeast Queensland (Chapters 4 and 5). Those 

methodologies were then applied and evaluated for different regions and seasons 

(Chapter 6).  

 

 

3.2 Overview of Study Design 

One of the main challenges in determining crop growth vigour or biomass from 

remotely-sensed images is the alignment of the acquisition date of the image with the 

optimal crop growth period. As discussed in section 2.5, this makes the single date 

approach, which is still often used, analogous to a hit and miss approach. Increasing 

the temporal frequency of image acquisition addresses this problem but can be costly, 

especially, in the case of fine resolution (i.e. high spatial resolution) platforms. 

However, with MODIS being available at a relatively small cost (usually free), 

composite 16-day EVI MODIS data (~250 m x 250 m pixel size) throughout the 

entire crop growth period was used for this research. This ensured a continuous 

vegetation index profile, which captured land use patterns (e.g. fallow, cropping) 

before and during the growing period of winter crops.  
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The measured 16-day aggregated MODIS EVI was used as temporal input for 

quantifying and understanding the crop growth trajectory at each pixel. Standard and 

advanced image processing techniques were applied to the multi-date EVI imagery. 

These methods included geometric corrections, image enhancement and 

transformation, re-projection, supervised and unsupervised classification, and 

classification accuracy assessment (Figure 3.1). Temporal classification methodology 

and multi-temporal algorithms were adapted, developed and tested at the shire level 

in order to determine crop area planted for different crop types (e.g. wheat, barley and 

chickpea) at the end of the crop growing season (Chapter 4) as well as for early-

season estimates (Chapter 6). 

 

The accuracy of four analytical approaches used to analyse the multi-temporal 

datasets was examined in Chapter 4. These approaches were: (i) clustering of multi-

date MODIS EVI (MEVI) image values between day of year (DOY) 97 (i.e. early 

April) and DOY 305 (i.e. end of October); (ii) Harmonic Analysis of the Time-series 

(HANTS) (Jakubauskas et al. 2001, 2002) of EVI data; (iii) principal component 

analysis (PCA) (Richards et al. 1999) of the time series of EVI data; and (iv) fitting of 

curves to the multi-date MODIS imagery (CF) (Badhwar 1980; Crist et al. 1980). 

Images were trained and classified into specific land cover types/features (i.e. wheat, 

barley, chickpea, fallow, etc.) using the ground truth pixel data (also known as region 

of interest). The methods were assessed based on their ability to correctly classify 

independently selected pixels (training pixels) for each crop feature. Figure 3.1 

depicts the steps involved in determining which approach had the highest accuracy in 

determining total area planted, as well as the best discriminative ability among crop 

species within a specific season. 

 

 

These training pixels were collated during various field trips over a period of two 

years (2003 and 2004). Data collection started in the 2003 winter cropping season, 

which coincided with the start of the research study. Validation of aggregated crop 

area estimates was determined based on the degree of association with surveyed 

shire-scale crop area data (ABARE 2005b; ABS 2008). In addition, these approaches 
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were contrasted with the results obtained for the single-date EVI MODIS 

classifications (i.e. benchmark) to determine the best multi-temporal approach 

(Chapter 4). Further development and analysis were undertaken to derive predictive 

capability within a specific season (Chapter 5).  

 

 

 

Figure 3.1: Diagram depicting the processes involved in determining the best 

approach for predicting shire scale winter crop area estimates. 

 

The EVI spectral vegetation index was used to perform supervised classifications. 

The final classified image was subjected to rigorous accuracy assessment using the 

error matrix through the use of the independent selected reference pixels collated 
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during field trips. Aggregated shire level area estimates, derived from each approach, 

were contrasted with observed shire data obtained from ABARE. The process was 

repeated for a second crop-growing season to validate the analytical methodology 

determined during the first winter crop season. Determining early-season predictive 

capability of the multi-date approaches were undertaken for both seasons. 

 

 

3.3 Study Area  

The study area is located in the central Darling Downs region, ~150 km west of 

Brisbane, Queensland, Australia (Figure 3.2 and 3.3). The Jondaryan and Pittsworth 

shires (ca. 200 000 ha) were selected for this study. The typical crop area planted in a 

single season in both shires equates to nearly half of the total potential cropping area 

for winter and summer cropping seasons combined. Crop management practices are 

variable, and paddock sizes can range from small (~20 ha) to very large (>400 ha). 

Some larger paddocks might be divided into cropping strips. These strips can vary in 

width from 50 m to 180 m in some areas and are usually used in crop rotation 

practices (Figure 3.3). The practice of strip cropping was introduced as a preventative 

measure to counteract the potential loss of topsoil via water runoff and erosion during 

wet seasons.  

 

Soils in this region are generally deep and high in clay content and therefore have 

very high potential soil water-holding capacities. In addition, the high variability in 

in-crop (i.e. May–October period) rainfall
1
, combined with the advantage of deep 

soils and high soil moisture-storing capacity, has shaped crop-management practices 

in the northern region to be more dependent on starting soil moisture at sowing, than 

regions further south in the more winter-dominant rainfall areas (Nix 1975). The 

summer-dominant rainfall makes the region highly suited to summer cropping and the 

soil storage capacity makes it favourable for winter cropping (e.g. wheat, barley and 

chickpea). 

 

The sowing of winter crops occurs between middle of April and the end of June. 

Rotations traditionally incorporate both winter and summer crops.  

                                                 
1
 Coefficients of variation for in-crop (i.e. May to October period) shire rainfall was > 46% for the 

period 1977 – 2004, with rainfall station data weighted within a shire based on area represented. 
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Figure 3.2: The geographical location of the Jondaryan and Pittsworth shires within the north-eastern region of Australia. 
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Figure 3.3: Image acquired by the Landsat 5 satellite sensor on the 14
th

 September 2004. The 

image shows the land use patterns for the 2004 winter crop season for the Jondaryan and 

Pittsworth shires (centre of the map). Boundaries are delineated in solid white lines while 

healthy vegetation and forest are depicted in shades of green. Fallow and bare soils are 

depicted in shades of magenta (ACRES 2004). 

 

In these shires, the land-use patterns over the last decade have been dominated by 

cropping (78% of total shire area in both shires), with total winter crop area planted 

(including wheat and barley) very similar to summer crop area planted (including 

sorghum and cotton) as noted in Table 2.1 (Gutteridge et al. 2002). 
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The spatial variability of crop yield within a specific season can be caused by 

either variability in rainfall amount, soil type, crop management practices, timing of 

rainfall, or any combination of these factors. Although variability in rainfall amount 

might be small across the study area in some years (e.g. 2004), there is significant 

variability in other factors, generating a spatially heterogeneous cropped landscape. 

 

Table 3.1: The 10-year (1990 to 2000) average area planted for principal crops for the Pittsworth 

and Jondaryan shires (Gutteridge et al. 2002). 

        Jondaryan          Pittsworth

Crop group Hectares % All crops Hectares % All crops

Wheat grain 11,943 14.05 8,724 15.51

Barley grain 15,244 17.94 8,948 15.91

Fed-off, silage, hay, lucerne 8,565 10.08 4,240 7.54

Cotton irrigated & dry land 8,888 10.45 8,557 15.22

Sorghum grain 23,777 27.98 14,755 26.24

Legume grain 3,295 3.88 3,057 5.44

Oilseed 4,263 5.02 2,197 3.91

Other 187 0.23 115 0.21  

 

This was evident in the differences in aggregated shire wheat and barley yields of 

2.96 t/ha and 2.69 t/ha for the 2003 season for the Jondaryan and Pittsworth shires, 

respectively. Differences in aggregated shire wheat and barley yields were less during 

drier seasons such as 2004, with 2.52 and 2.50 t/ha for the Jondaryan and Pittsworth 

shires, respectively (Table 3.1) (ABARE 2005b). 

 

 

3.4 Data Acquisition and Pre-processing 

3.4.1 Imagery Used and Re-projection 

The ―MOD13Q1‖ MODIS satellite product, which includes the 16-day 250 m VI 

data, was downloaded from NASA’s Earth Observing System (EOS) 

(http://edcims.cr.usgs.gov) website for the period 2003 to 2004. This resulted in 46 

images (i.e. 23 images x 2-years) each of which had a file size of 500 megabytes. The 

23 images within each season covered the period from January to December (in 16-

day intervals). The NDVI and EVI MODIS products were geometrically, 

atmospherically and bidirectional reflectance distribution fraction (BRDF) corrected, 

validated and quality assured through the EOS program (Huete et al. 2002; Justice et 
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al. 2002). The MODIS re-projection tool (http://edcdaac.usgs.gov /datatools.asp) was 

used to sub-sample the granule to an area covering the study area. An image was 

created by stacking the 23 images for each season, with a GDA94 projection in ENVI 

software (RSI, 2005), thus creating a single image file with 23 layers. This resulted in 

a continuous sequence of EVI temporal values for each pixel for each cropping 

season. 

 

Landsat TM 5 images (14 Sept 2004 and 16 Sept 2004), in combination with farm 

boundaries and the 1999 land use map (Department of Natural Resources and Water 

2006) of the study area, were used to assure that selected ground truth points were 

pure, i.e. each selected pixel was near the centre of a paddock and that the pixels were 

mainly from large paddocks. This avoided erroneous EVI values being selected due 

to mixed crop canopy reflectance within a 6.25 ha pixel.  

 

3.4.2 Vegetation Indices 

The MODIS vegetation indices (VI), including NDVI and EVI, are robust spectral 

measures of the amount of vegetation present at the earth’s surface. These indices 

involve transformations of the red band (R, 620-670 nanometres), near infra-red band 

(NIR, 841-876 nanometres) and the blue band (B, 459-479 nanometres), which were 

designed to enhance the vegetation signal and thus allow for more accurate contrasts 

of spatial and temporal variations in terrestrial photosynthetic activity (Huete et al. 

2002). This index was specifically developed to optimise the vegetation signal with 

improved sensitivity in high biomass regions and improved vegetation monitoring 

through the decoupling of the canopy background signal and reduction in atmosphere 

influences (Figure 3.4). Given the spatial variability in land use patterns across the 

study area and future extrapolation of this methodology to other regions within 

Australia, the EVI index was utilised. 

http://edcdaac.usgs.gov/
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Figure 3.4: The evolution of EVI. The NDVI was adapted to address the issue of canopy 

background and atmospheric noise. 

 

The EVI equation is computed as, 
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21                                                     [3.1] 

 

 

where,  is the atmospherically corrected or partially atmospherically corrected 

(Rayleigh and ozone absorption) surface reflectance, L is the canopy background 

adjustment that addresses non-linear, differential NIR and red radiant transfer through 

a canopy, and C1 and C2 are the coefficients of the aerosol resistance term, which uses 

the blue band to correct for aerosol influences in the red band. The global validated 

coefficients are L = 1, C1 = 6, C2 = 7.5 and G = 2.5, which represents a gain factor 

(Huete et al. 1994; Huete et al. 1997).  
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The EVI values thus have an extended sensitivity, which makes them more likely 

to discriminate between canopy structure differences, such as LAI differences (Justice 

et al. 1998). The EVI is MODIS-specific and is based on high quality EVI values 

during the 16-day cycle. A filter to the data is applied, which is based on quality, 

cloud cover and viewing angle in order to create the high quality EVI values (Huete 

et al. 2002). The MODIS EVI values range from –2000 to 10000, with a scale factor 

of 10000, and have a fill value for missing data of -3000. On this scale, water bodies 

have a negative EVI value or close to zero while canopy cover has positive EVI 

values up to a maximum of 10000 (dense forest canopy). 

 

3.4.3 Ground Truth and Survey Data 

In order to determine the accuracy of image classification at a pixel level, it was 

necessary to assimilate ground truth data at various locations throughout the study 

region. This was done by doing 2-3 field trips during the crop-growing season for 

each year of interest using a handheld global positioning system (GPS) to capture 

data (Figures 3.5 to 3.11). The sampling strategy consisted of (i) driving on the main 

and secondary roads of a region as well as in some cases on farm roads, (ii) select 

large enough paddocks (circa >100ha) to avoid mixed canopy reflectance. 

 

Because of the coarse pixel resolution of MODIS (i.e. 250 m x 250 m) only very 

large paddocks with homogenous crop canopy cover were captured. This formed the 

basis of the region of interest (ROI) within this study. 

 

To determine the accuracy of the proposed methods (as described below) at shire 

scale level, it was necessary to have observed shire-scale area planted data. Since no 

ABS data exist for the period of the study (2003 and 2004), actual data was obtained 

from ABARE through their farm survey framework for each shire. However, for 

increased accuracy (as required in this study), a higher sampling rate was undertaken 

than that traditionally used in ABARE’s general farm surveys (ABARE 2005b). 
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Figure 3.5: Inspection of a barley and wheat crop in full flowering in the Darling Downs 

region by A Potgieter and A Apan. 

 

 

Figure 3.6: Showing different fallow practices i.e. zero till (left) and conventional tillage 

practice (right) for the Darling Down region during 2006. 
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Figure 3.7: Poor wheat crop paddock during the 2006 drought in south-east 

Queensland. 

 

 

Figure 3.8: Winter wheat crop (left) and summer sorghum (right), both ready for 

harvest at the end of September 2006 north of Emerald in central Queensland. The 

coincidence of both a summer and a winter crop ready to be harvested is likely a 

result of farmers adapting to global changes e.g. warmer temperatures and less 

chance for frost risk (Hammer 1987; Stone et al. 1996a) 
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Figure 3.9: Well established chickpea crop in central Queensland during 2006. 

 

 

Figure 3.10: Canopies for a barley crop (left) and a wheat crop (right) both planted at 

the same time in the Darling Downs region. 
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Figure 3.11: Irrigated chickpea crop in the Darling Downs region during 2008. 

 

3.4.4 Crop/Feature Classification  

The multi-date imagery was trained on selected ground truth data pixels for 

specific feature classes, while the accuracy was determined using an independent 

sample set of ground truth data. Ground truth data were collated during field trips 

undertaken in each year. Locations sampled within the study area were classified 

according to crop/feature classes (e.g. wheat planted early, wheat planted late, barley, 

fallow, etc.). All features were identified from ground truth data gathered during field 

trips except for the vegetation and forest classes, which were identified from the 1999 

land use map. The accuracy of the feature classes acquired from the land use layer 

was high with a minimum mapping unit of 4 hectares (e.g. 200 m x 200 m pixel size) 

and a minimum attribute accuracy of 80% (Department of Natural Resources and 

Water 2006). The feature class selections encompass classes of main interest, i.e. 

wheat, barley, and chickpea. 

 

The ability to discriminate between crops is directly related to the amount of 

reflectance, specifically in the NIR bandwidth, by the leaf and canopy structures 

(Campbell 2002). For wheat and barley, these features are very similar. The main 
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factor contributing to differences in canopy reflectance between wheat and barley 

relates to canopy architecture and density, which is a function of the number of tillers 

and rate of growth. Under similar environmental and climatic conditions, early 

tillering and growth, of barley, are nearly double that of wheat, causing more rapid 

crop canopy closure (Meinke et al. 1998). This is a significant feature because 

discriminatory ability is likely to be associated with this attribute. The different crop 

architecture and phenology of chickpea causes its leaf and canopy structure 

development to be quite different from wheat and barley (Thomas et al. 1995), thus 

enabling its discrimination. 

 

Supervised classification on multiple layer inputs (i.e. multiple imagery) was 

performed via the traditional maximum likelihood classification (MLC) algorithm 

(Richards et al. 1999), which is available as part of the ENVI software. For 

classification of only one layer or band, as in the case of the PEVI approach, the more 

appropriate minimum distance classifier (MDC) method was used (Richards et al. 

1999). The classifiers (i.e. MLC and MDC) were trained using pure pixels from the 

ground truth data sample set, i.e. those pixels that fall completely within a large and 

homogeneous paddock for a specific feature type.  

 

3.4.5 Assessment and Validation 

3.4.5.1 Separability of Crop Feature Classes 

The inclusion of crop feature classes or merging of specific classes was 

determined using separability metrics, such as the Jeffries-Matusita (JM) and the 

Transformed Divergence measures. This metric constitutes the separability between 

two feature classes and is a function of the average distance between the spectral 

means of two classes. Output values range from 0 to 2.0 and indicate how well the 

selected feature class pairs are statistically separate. Values greater than 1.9 indicate 

that the feature class pairs have good separability (Richards et al. 1999).  

 

3.4.5.2 Pixel Scale Accuracy 

Pixel accuracy is derived through the calculation of the error/confusion matrix. 

This matrix is made up of rows and columns with the number of observed pixels for 

each of the corresponding feature classes or categories (e.g. wheat, fallow) in each 
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cell. The row labels or feature class names (categories) are those given by the 

operator, while the column names are a result of the classification procedure (Mather 

1999). The diagonal cells represent the agreement between ground truth data and the 

classified image, while the off-diagonal cells represent the disagreement between the 

classified image and the ground truth data (Mather 1999; Sim et al. 2005).  

 

Overall accuracy is calculated as the ratio of the sum of the diagonal observations 

to the total number of all observations included in the error matrix. Accuracy for each 

individual feature class is given as the ratio of the observations from a specific 

diagonal feature class divided by the corresponding column total for the specific class 

(Mather 1999). Multiplying these ratios by 100 constituted the percent correctly 

classified (PCC) metric used in this study.  

 

The second statistic used is the kappa coefficient (KC). The KC is generally 

known as a reliability measure since it is expressed as a measure of agreement in the 

absence of chance (Cohen 1960; Lillesand et al. 2004). Conceptually it can be defined 

as 

 

agreementchance

agreementchanceaccuracyobserved
KC






1
                                      [3.2], 

 and is calculated as 




















r

i

ii

r

i

ii

i

r

i

ii

xxN

xxxN

KC

1

2

11

)(

)(

                                                        [3.3], 

where 

r    = number of rows in the error matrix 

iix  = number of observations in row i  and column i  (on the major diagonal) 

ix = total observations in row i  

ix = total observations in column i   

N = total number of observations included in matrix 
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In addition, classification results from the approaches in this thesis were tested 

using the t-test statistic of significance (Cohen 1960) and is expressed as follows:  
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where, 
iKCvar is the approximate large sample variance of KC, i represents the KC 

values from any two approaches tested, and Z  is the standard normal deviate. 

 

3.4.5.3 Shire-scale Accuracy 

The accuracy at the aggregated shire and regional scales was determined by 

comparing derived estimates of total and specific winter crop area with results of 

extended surveys conducted in the study region for the 2003 and 2004 seasons 

(ABARE 2005b). The degree of correspondence within a specific season at a shire-

scale was measured by calculating the percent error (PE), which is defined as 

follows: 
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PE is computed as the percent ratio of the difference between the remotely sensed 

area estimate (predicted) and the surveyed area estimate (observed) to that of the 

surveyed area estimate (observed) for each method for each year within a shire. 

 



Crop Area Estimates Using Multi-Date MODIS Imagery                                                          Chapter 4 

 

 

72 

Chapter 4 

Crop Area Estimates Using Multi-Date MODIS Imagery 

 

“By a small sample we may judge of the whole piece” 

Don Quixote (1605-15) 

 

 

4.1 Introduction 

The major constraints in the use of medium to high resolution satellite imagery 

for estimating crop area or yield are aligning the image date with maximum crop 

canopy-cover, during the crop growth period, and the high costs involved in acquiring 

such imagery (Section 2.2). This is further confounded by variability in climate, soil 

and crop practices within a specific region, making crop yield and area estimates less 

accurate and more tedious to compute. The use of multiple consecutive images 

spanning the whole calendar year (i.e. January to December) provides a means to 

overcome this problem. It would allow the capture of crop canopy information before, 

during, and after the crop growth period.  

 

With a repeat cycle of ~2-days and a spatial resolution of 250 m x 250 m pixel 

size, MODIS is an ideal platform for capturing crop canopy trajectories throughout 

the growing season (Justice et al. 2002). This enables measurement of plant canopy 

response to climate, soil and management practices at a high temporal resolution 

resulting in a series aligned with the biophysical crop growth profile at pixel scale. 

Using such high temporal resolution, MODIS imagery would furthermore facilitate 

measuring the impact (magnitude and timing) that extreme events (e.g. heat waves, 

frost spells) might have on plant health and ensuing plant canopy architecture. As 

discussed earlier in Sections 2.2 and 2.3, multi-date low resolution MODIS imagery 

have been shown to have similar or better accuracy than that of a single-date high 

resolution Landsat TM when used in determining shire or regional scale crop canopy 

attributes (Lobell et al. 2003; Price 2003).  

 

The main objective of this chapter was to determine the utility of multi-temporal 

MODIS satellite imagery in estimating the area of specific and total winter crops at 
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the end of the cropping season. This was achieved by utilising and comparing four 

multivariate approaches to analyse time series of enhanced vegetation index (EVI) 

temporal profiles throughout the cropping period.  

 

 

4.2 Methods 

4.2.1 Overview 

The accuracy of four analytical approaches to the multi-temporal data was 

examined: (i) clustering of multi-date MODIS EVI (MEVI) image values, (ii) 

Harmonic Analysis of the Time-series (HANTS) of EVI data, (iii) principal 

component analysis (PCA) of the time series of EVI data, and (iv) fitting of curves to 

the multi-date MODIS imagery (CF). The methods were assessed based on their 

ability to correctly classify image pixels based on field observations over a period of 

2-years (2003 and 2004) and the degree of association with surveyed shire-scale crop 

area data (ABARE 2005b). 

 

The first multi-temporal approach involves classifying EVI values from the 

consecutive MODIS imagery during the main winter crop growth period, which spans 

from early April to late October in this region (see next section for detail). This 

constitutes the MEVI approach. 

 

The second approach, HANTS, is based on decomposing the time series of EVI 

data from the imagery into harmonic components or terms. In this study, for each 

pixel within the study area, the full annual time series encompassing 23 x 16-day 

MODIS EVI composites in each year was decomposed using a discrete Fast Fourier 

Transform algorithm (DFFT) (Bloomfield 2000) into a set of amplitude and phase 

terms at different temporal frequencies. This technique was applied through the use of 

the Harmonic Analysis of Time Series (HANTS) software (Verhoef et al. 1996). 

 

The third approach, used a traditional multivariate analysis - the principal 

component analysis (PCA) - to reduce the multidimensional complexity in the 

temporal EVI profile. In this study, principal component analysis (Campbell 2002; 

Davis 2002; Richards et al. 1999) was used to reduce the EVI time series at each 
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pixel from the full annual 23-image sequence into a smaller set of transformed 

variables or principal components (PC), which explained 90% or more of the 

temporal variability in the series.  

 

Fourthly, two curve fitting (CF) methods were used to decompose the full annual 

EVI time series into a vector of distribution attributes, that related to crop phenology 

characteristics such as the green-up, flowering, and crop senescence periods, and are 

intrinsic parameters in defining the shape of the EVI curve. Two different curve 

fitting procedures were investigated to determine their ability to discriminate between 

winter crops. 

 

Finally, a benchmark (or control) classification approach was included. This was 

derived from a single date EVI MODIS image acquired around the peak of the 

average EVI profile. In the analysis, peak EVI (PEVI) was selected at day-of-year 

(DOY) 225. The EVI image from this date captures crop canopy growth during the 

last 2-weeks of September, which usually coincides with flowering and thus peak 

green-up of the winter crop planted in Queensland. Vegetation index values from this 

period is known to be highly correlated to final crop yield or total crop biomass 

(Boken et al. 2002; Smith et al. 1995).  

 

Pixel and shire-scale accuracies were assessed using data for two selected shires 

in the Darling Downs region, Queensland, Australia (Figure 4.1). For each analysis 

method, pixel classification was trained based on ground truth data and its accuracy 

tested on an independent set of ground truth data and on survey data at aggregated 

shire scale as discussed in Chapter 3. 

 

4.2.2 Decomposition of a Multi-temporal Crop Profile into a Vector of Crop 
Specific Variables 

4.2.2.1 Single-date EVI Value – The Benchmark 

For any new multi-temporal approach to be useful, it has to perform better than 

the classification derived from a single-date image. This constitutes efficacy as 

referred to later on in this study.  
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Figure 4.1: Location of the Jondaryan and Pittsworth shires (orange colour) within the southern Queensland, Australia. Shire 

boundaries are given by black solid lines. 
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Remote sensing-deduced vegetation index values before or around flowering 

(usually the period of maximum greenness) have been shown to be highly correlated 

with end-of-season crop biomass (Aase et al. 1981) and crop yield (Badhwar et al. 

1982a). Hence in this study, the image at the date of average peak EVI for wheat and 

barley within a specific season was used. This method, from here on, is referred to as 

peak EVI (PEVI) and is the benchmark, against which all other multi-temporal 

approaches are contrasted. The image date chosen (around DOY 225) was close to the 

time of maximum LAI (thus peak green-up) and flowering dates of wheat and barley 

as shown in Figure 4.2. Associations derived from this single-date approach 

constituted the benchmark accuracy.  

 

4.2.2.2 Multi-date EVI Approach 

Traditionally, winter crop is grown from April to October in the north eastern 

shires of Australia (Figure 4.2).  
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Figure 4.2: Leaf area index (LAI) growth curves for wheat and barley planted on the same 

day.  LAI was simulated using APSIM (Keating et al. 2003) with the same initial soil, plant 

density parameters and medium growing cultivars. The crop growth period is traditionally 

from April (DOY 91) to end of October (DOY 304). 

 



 Crop Area Estimates Using Multi-Date MODIS Imagery Chapter 4 

 

 

77 

It is therefore apt to select imagery during this period to assess the ability of multi-

date MODIS imagery to discriminate among winter crops within the crop growth 

period. This approach uses the EVI values from each 16-day MODIS image between 

day of year (DOY) 97 (early April) and DOY 305 (end of October) and is abbreviated 

as MEVI from here onward. 

 

4.2.2.3 Harmonic Analysis of EVI Time-series 

Harmonic analysis is based on decomposing a complex sequence of equivalently 

distributed imagery data through time into harmonic components or terms. In this 

study, the time series for a single year encompassing 23 x 16-day MODIS EVI 

composites was decomposed using a discrete Fast Fourier Transform algorithm 

(DFFT) (Bloomfield 2000) into a set of amplitude and phase components at different 

temporal frequencies for each pixel within the study area. This technique was applied 

through the use of the Harmonic Analysis of Time Series (HANTS) software 

(Verhoef et al. 1996). The Harmonic (Fourier) analysis allows a complex curve to be 

expressed as the sum of a series of cosine waves (terms) and an additive term, and is 

given as follows:  

 

 







 nn

L

nx
ccxf 

2
cos)( 0                                                  [4.1] 

 

where, 0c  is the additive term or 0
th

 harmonic term and represents the average of the 

time series, nc  is the amplitude of the n
th

 harmonic term, n  is the phase or peak of 

the n
th

 harmonic term, and L represents the number of 16-day images within the 

analysis period (Davis 2002). 

 

Each wave is defined by a unique amplitude and phase angle (Figure 3.3a), where 

the amplitude is half the height of a wave and the phase angle (or simply phase) 

defines the offset between the origin and the peak of the wave over the range 0 to 2 . 

The number of complete cycles completed by a wave is represented by a harmonic 

term (e.g. second term completes 2-cycles, third term completes 3-cycles etc.) (Figure 

4.3b). Adding successive harmonic terms will reproduce the original complex time 

series (Figure 4.3c) and each component term accounts for a percentage of the total 
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variance in the original time series data set (similar to principal component analysis) 

(Jakubauskas et al. 2002).  

 

  

  
  

  

  

 

 

Figure 4.3: (a) Simple cosine curve depicting the amplitude and phase, (b) Curves for harmonic 

terms 1, 2 and 3 (including the additive term), and (c) Aggregated curve (blue stippled line) 

produced from addition of first 3 harmonics in Figure 3(b).  Black solid line depicts the original 

EVI time series data. 

 

Fourier analysis has been used previously in digital remote sensing in filtering 

single date imagery (Richards et al. 1999) for spatial analysis, and more recently it 

has been used in characterising crop phenology using multi-temporal AVHRR 

imagery (Jakubauskas et al. 2001, 2002). Although a recent study has contrasted 

Fourier analysis versus wavelet transforms using MODIS to determine crop 

phenology of rice in Japan (Sakamoto et al. 2005), no specific studies could be found 

on the use of multi-temporal MODIS imagery for determining winter crop area 

estimates for Australia. The development of the HANTS methodology resulted in a 

more reliable and rigorous way of deriving frequency, amplitude and phase values 
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than using the traditional Fourier analysis approach (Verhoef et al. 1996). HANTS 

outputs, such as the additive term, amplitude and phase for each wave up to the 5
th

 

harmonic, were extracted on a per pixel basis for the MODIS EVI temporal profile 

for each year.  

 

4.2.2.4 Principal Component Analysis of EVI Time-series 

The third method utilised traditional multivariate analysis to reduce the 

multidimensional complexity in the temporal EVI profile. In this study, the principal 

component analysis (PCA) (Campbell 2002; Davis 2002; Richards et al. 1999) was 

used to reduce the sequence of data from the 23-image stack into new transformed 

variables or principal components (PC). Each PC contributes to the total temporal 

variance at each pixel, and the final number of PCs selected was based on the 

variance level at which the contribution of consecutive PC variances was negligible. 

The linear transformed combination is of the form (Campbell 2002): 

 

nn XcXcXcXcY .....332211                                                     [2] 

 

where nXX ,...1 represents the original EVI pixel values measured at each of the n -

image acquisition dates, ic  are the associated coefficients or component loadings 

applied individually to the respective EVI values, that combine to generate Y , which 

represents the transformed value for the pixel. 

 

A forward rotational PCA algorithm within the ENVI remote sensing software 

(ITT 2008) was conducted on the EVI data to determine the major underlying 

orthogonal factors representing the temporal variability within the sequence of 

imagery of each pixel. The incremental proportion of total variance explained was 

used to determine the number of orthogonal factors to be retained as subsequent PCs 

contributed less to the overall variance of the original imagery (Richards et al. 1999). 

Although most of the total variation is explained by the first few principal 

components, the discriminative ability was further enhanced by omitting PCs that did 

not significantly increase class separability between winter crops within ENVI 

(Richards et al. 1999). The final selected rotated principal components contributed 

significantly to discriminating between crop types and represented the main 
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determinants (including crop type, canopy health, crop phenology etc.) of spatial 

variability among the stacked image pixels. The time series of PC scores, which are 

the transformed image values, represent the temporal variation associated with each 

principal component.  

 

4.2.2.5 Curve Fitting to EVI Time-series 

The final method employed was the fitting of a curve shape function to the 

temporal profile of EVI values for each pixel. Firstly, an approach, which proved to 

be successful in predicting the growth stages of small grains (Badhwar 1984; Sharma 

et al. 1989) and the feature classification of corn and soybeans (Badhwar et al. 1982a) 

was applied. The aim of applying such a curve fitting approach for the purposes of 

this study was to reduce the multi-dimensional complexity of the multi-date EVI 

values, which captures the crop growth features like green-up rate (e.g. vegetative 

stage) and greenness decline (e.g. ripening stage). Such features are intrinsic to the 

shape of the growth curve and have proved to be significant in discriminating 

between the crop profile shapes of wheat or barley (Crist et al. 1980) and corn or 

soybean (Badhwar et al. 1982a) using Landsat imagery at a 30 m x 30 m pixel 

resolution. The success of this approach is dependent on ability of the greenness 

measure to discriminate between soil greenness and canopy greenness. From here 

onward, this approach will be referred to as CF1. 

 

MODIS EVI is an ideal candidate for the application of such a curve fitting 

approach because of its (i) high temporal acquisition cycle and (ii) EVI’s improved 

capability in capturing canopy structure and vigour, while being less sensitive to soil 

background noise and atmospheric contamination. A model, which is a function of 

crop and condition specific parameters (  , ) and timing of crop emergence ( t ) was 

fitted. The model form of CF1 is given as follows: 
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where )(t  is the greenness value (measured through the EVI value) at any time t  

during the growing cycle of the crop, )( 0ts is the soil greenness value at and before 
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emergence date 0t , which can be estimated from the original data for each pixel, 

while  and   are crop specific constants (Badhwar 1980; Badhwar et al. 1981; 

Sharma et al. 1989).  

 

The crop emergence date 0t  was determined as the time at which crop greenness 

values were greater than soil greenness values. It was derived as the point at which 

the first derivative of the EVI curve changed from negative to positive. Or if this 

condition was not met, the point at which the second derivative changed from 

negative to positive was used to identify the start of the crop green-up period. The 

timing of crop emergence was limited to not earlier than 15
th

 March and not later than 

30 days before maxt . This will account for late planted crops (e.g. double cropping 

after a summer crop) and fluctuation, in EVI values around anthesis (maximum 

canopy growth), caused by factors such as water-induced stress. If none of the above 

criteria was met, crop emergence was assumed to be during the last week in March 

(Sakamoto et al. 2005). 

 

The end of the growing cycle usually coincides with the harvest date but can also 

be due to crop failure (e.g. caused by terminal stress) or when haying occurs due to 

management practices. The end of the crop cycle was determined by estimating the 

time at which the first derivative changed from positive to negative, or if this criterion 

was not met, the time at which the second derivative of the EVI curve changed from 

negative to positive (adapted from (Sakamoto et al. 2005). The first incident 

occurring before peak greenness in both criteria was used. The end of the crop cycle 

could not be earlier than 30-days after the maximum greenness (i.e. anthesis). If none 

of these criteria were met, the cessation time was set as the last week in November. 

The use of two discriminative points (first and second derivatives) for determining the 

start and end of the crop cycle will enable the detection of small changes in crop 

growth, especially during these periods when crop reflectance is known to be small in 

comparison with reflectance during other phenological periods. Furthermore, limiting 

the beginning and end of the growing period to ±30 days around peak greenness 

ensures a crop growth length of at least 5 images (including time of peak greenness). 
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This approach captures the period in which there is a significant increase in 

canopy cover, which reflects the start of the growing season; and the period when 

crop growth has completely stopped, which reflects the end of the growing period. 

The soil greenness value is the EVI value at time 0t . The starting values for the shape 

parameters  and   were calculated through differentiation and assuming that peak 

greenness (or maximum canopy cover) occurred at the point where the first 

derivative 0
dt

d
. Solving this differential equation resulted in an estimate of the 

time at which maximum ground cover was reached ( maxt ), and is given by the 

equation (see Appendix A for detail): 

 





2
max t                                                                       [4.4]. 

 

Substituting equation 4.4 back into equation 3 for maxtt   , initial estimates for 

 [5] and   [6] were defined as: 
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where max represents the maximum greenness at time maxt  (Figure 4.4).  

 

The second curve fitting approach (CF2), was a piece-wise sigmoidal curve fitting 

procedure, which is forced through the peak of the EVI profile and is a function of the 

vegetative rate (i.e. green-up) and the senescence rate (i.e. greenness decline) around 

this maximum greenness point (Figure 4.4). This is calculated as follows (Crist et al. 

1980): 
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Peak greenness is a prominent feature of all crop growth profiles and is therefore 

much easier to calculate than time of crop emergence. In this model, a  represents the 

peak or maximum greenness value, at time maxt , which ensures continuity between the 

two segments in Equation [4.7]. The model has two crop specific parameters 1b  and 

2b , which quantify the green-up and greenness decline or senescence rates (Crist et 

al. 1980). 
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Figure 4.4: Curve depicting the profile features of rate of green-up and rate of senescence rate 

for EVI values during a crop growth cycle (adapted from Crist and Malila, 1980). 

 

Rate of 

Green-up 

Senescence 

Rate 

max  

max  

maxt  



 Crop Area Estimates Using Multi-Date MODIS Imagery Chapter 4 

 

 

84 

4.2.2.6 Crop/image Feature Classes and Pixel Classification 

For each analysis method, the multi-date image classification was trained on 

selected ground truth data and its accuracy validated using an independent set of 

ground truth data. Ground truth data was collated during field trips undertaken in each 

year. In total, 1,302 (wheat = 252; barley = 96; chickpea = 36; other = 918) and 1,365 

(wheat = 243; barley = 45; chickpea = 9; other = 1,068) sampling points were 

selected from the ground truth data for the 2003 and 2004 season, respectively. These 

points were used to train the classification on. Locations sampled within the study 

area were classified according to crop/feature classes (i.e. wheat planted early, wheat 

planted late, barley, etc.) given in Table 4.1. The multi-date image was classified 

using supervised classification via the maximum likelihood classification algorithm, 

while the single-date image was classified using the minimum distance classifier 

(MDC) algorithm (as discussed in Section 3.9).  

   

Table 4.1: Feature classes and data collating method used in the first level of classification for 

2003 and 2004 seasons.  (Double cropped represents cropping in consecutive summer and winter 

seasons; fed off is traditionally hayed or grazed; late plantings are usually plantings occurring at the 

end or after the close of the traditional wheat planting window; na -  represents no available data.) 

Feature Class 2003 2004

Barley Field trip Field trip

Barley double cropped Field trip na

Barley fed off Field trip na

Chickpeas Field trip Field trip

Grazing & natural vegetation Field trip & Land use map Field trip & Land use map

Natural forest Land use map Land use map

Production forest Land use map Land use map

Stubble & soil Field trip Field trip

Wheat Field trip Field trip

Wheat late plantings Field trip na  

  

4.2.2.7 Independent Validation and Accuracy Assessment 

The accuracy of classification was assessed by contrasting the classified image (as 

described in the previous section) with independent randomly selected sub-samples 

from the ground truthing collated through field trips. This was done to reduce 

artificial accuracy, i.e. minimise classification bias. In total, 316 and 344 random 

ground truth pixels were selected. These points were independent from the training 

sampling points and used to calculate the image classification accuracy for the 2003 

and 2004 seasons, respectively. This represented approximately 25% of the total 
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ground truth samples in each year. The statistic percent correctly classified (PCC) 

was used (Section 3.4.5) to determine the overall and between-crop accuracies for 

each classification approach (Richards and Jia 1999). Statistical significance was 

tested using the z-values as derived in Section 3.4.5. The results allowed inferences 

about the comparative discriminatory ability of the multi-temporal decomposition 

approaches used in this study.  

 

The accuracy at the aggregate shire-scale was determined by comparing the 

derived estimates of total and specific winter crop area with the results of extended 

farm surveys conducted in the study region for the 2003 and 2004 seasons (ABARE 

2005). The degree of correspondence within a specific season at a shire-scale was 

measured by calculating the percent error (PE). The average of the absolute PE was 

calculated to determine the accuracy across seasons and shires (MAPE). 

 

4.3 Results and Discussion 

4.3.1 Feature Class Selection 

Feature class selection was determined by calculating the separability between 

feature classes using the layer stacked imagery data from May to October. The 

separability between class means of wheat and wheat late plantings was only 

moderate (JM = 1.6, Section 3.4.5 for detail on the JM measure) when the distance 

measures were compared (see Appendix B, Table B1 for detail). Hence, all wheat 

samples were merged into one feature class with 252 and 243 sampling points in 2003 

and 2004, respectively. Although good separability was evident between barley and 

barley double cropped (JM = 1.99) and barley and barley fed off (JM = 1.99), both 

barley double cropped and barley fed-off were excluded from the final classification. 

Both these classes represent less common practice and resulted in few sampling 

points for ground truthing. This resulted in 96 and 45 sampling points for barley in 

2003 and 2004, respectively. Very few chickpea sites were observed and selected in 

either season, mainly because very little area was sown to chickpea, especially in the 

2004 season. Although, this is likely to result in unrealistically high PCC (e.g. 100%), 

and therefore should be interpreted with caution when applied to a real world 

scenario, such crop types (e.g. very small sample sizes) where kept as a separate 
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category to determine its separability from the other crop types rather than specific 

accuracy. 

 

The average EVI crop profiles measured at 16-day intervals through the calendar 

year for each of the feature class ground truth samples for the 2003 and 2004 (Figure 

4.5a and b) seasons showed a range of distinctive features. Overall, all classes had 

much higher average EVI crop values for the 2003 season than for the 2004 season. 

This was expected as the 2004 season was classified as an El Niño year (Potgieter et 

al. 2005a), which resulted in below average rainfall within the study area for that 

season (Figure 4.6).  

 

The winter crop temporal EVI profiles for wheat (filled and open square 

symbols), barley (filled and open triangles) and chickpea (open circle) are uni-modal 

with a peak around DOY 225 (image 15) for both seasons. Barley double cropped 

(solid line) and barley fed-off (triangle) have bi-modal EVI profile trajectories 

showing a peak in early summer (e.g. before image 1) and a peak at DOY 225. This 

suggested that pixels belonging to those classes had been cropped during the 

preceding summer. The stubble-and-soil (x – symbol, Figure 4.5) temporal EVI 

profile shows a uni-modal trajectory with the peak at DOY 33 (image 3, early 

February) and low values during the winter period. Natural forest (filled diamond), 

production forest (open diamond) and grazing (brown circle) have flat average EVI 

crop profiles throughout the calendar year. 

 

Although there are few sampling points for chickpea (36 in 2003 and 9 in 2004) it 

was retained as a separate class to assess the discriminatory ability of the proposed 

methods between the two main winter crops (i.e. wheat and barley), and the less 

important winter crop (i.e. chickpea). The separability between barley and chickpea is 

larger than that between wheat and chickpea. For simplicity, all other features (e.g. 

vegetation, natural forest, bare fallow etc.) are combined to form one feature class 

with 918 and 1068 sampling points for both seasons. In total, four main feature 

classes (i.e. wheat, barley, chickpea and non-cropping) were formed for further 

analysis and classification. 

 



 Crop Area Estimates Using Multi-Date MODIS Imagery Chapter 4 

 

 

87 

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time

E
V

I

Wheat Stubble&Soil Barley Fed off Barley

Chickpea Late Wheat Barley Double Crop Natural Forest

Grazing Production Forestry
 

(b)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time

E
V

I

Wheat Stubble & Soil Barley Chickpeas

Natural Forest Grazing Production Forestry
 

Figure 4.5:  Average EVI crop profiles of all feature classes for the (a) 2003 and (b) 2004 

seasons. 
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Figure 4.6: Average aggregated monthly rainfall for Jondaryan (solid triangle) and 

Pittsworth (open circle) for the 2003 (blue) and 2004 (red) seasons. Note the much lower 

rainfall during the planting months of May to July for 2004 compared to the higher values 

specifically during June for 2003. This resulted in much less planting opportunities and 

therefore small sampling numbers for 2004 than that of 2003. 

 

4.3.2 Temporal Crop EVI Profiles 

The average temporal EVI profiles throughout each growing season showed 

distinct differences for wheat, barley and chickpea (Figure 4.7a and b). The profiles 

represent the temporal plant canopy responses to soil, plant and water regime 

combinations within the study area for each season. The differences among crops in 

slope of the spectral profiles from emergence (i.e. EVI >2000 after image 9) to 

anthesis (i.e. flowering around peak EVI at image 15) are more evident during 2003 

than in 2004. The period from crop emergence to anthesis is known as the green-up 

period while the period after anthesis to crop harvest is known as the senescence 

period. The temporal profiles for barley and wheat suggest a very similar planting 

date as crop emergence is around the same time in both seasons for both shires 

(Figure 4.7a and b). The average crop emergence date of chickpea is at least 2 months 

after that of wheat and barley, which suggests a later average planting date in both 

seasons within the study area and/or a slower rate of green-up, which is what happens 
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with chickpea. This result concurs with ABARE statistics, which indicate an average 

planting period of May to June during both years for the two shires (ABARE 2005b). 

 

The average EVI temporal profile for barley was higher than that of wheat in both 

seasons. In addition, the green-up rate for barley was quicker than that of wheat in 

both seasons, which is mainly a consequence of the greater (i.e. nearly double) 

tillering and early leaf area growth rate of barley (Meinke et al. 1998). There are, 

however, some instances where the green-up rate of wheat is similar to that of barley. 

This can possibly be ascribed to differences in soil temperatures, increased nitrogen 

levels or no water limitations (e.g. irrigated) (Meinke et al. 1997). Conversely, 

chickpea has much lower average EVI values than that of wheat and barley in both 

seasons. Chickpea has very small leaves and a much slower rate of canopy 

development than the cereal crops (Thomas et al. 1995).  

 

The differences in average peak EVI values were not as great in the 2004 season. 

Although there is some overlap in the temporal profile distributions between crops, 

the differences in the shapes of the profiles for wheat, barley and chickpea were 

apparent in both seasons. The much lower EVI peaks for wheat and barley during the 

2004 season were mainly caused by the significantly below average rainfall recorded 

during 2004 (http://www.bom.gov.au) that resulted in a reduction in biomass and crop 

growth.  

 

During periods of severe moisture stress such as in 2004, the reflectance of crops 

in the visible (blue, green and red) bands increases (due to less absorption by 

chlorophyll), while reflectance in the near-infrared band decreases, resulting in 

smaller band ratio values and ensuing EVI values. The presumed overlaps in EVI 

temporal profile distributions for wheat, barley and chickpea indicate that there will 

be some confusion in separating these crops. Consequently, some pixels will likely be 

wrongly classified. 



 Crop Area Estimates Using Multi-Date MODIS Imagery Chapter 4 

 

 

90 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

3
3

6
5

9
7

1
2
9

1
6
1

1
9
3

2
2
5

2
5
7

2
8
9

3
2
1

3
5
3

Day of Year

E
V

I

(a)

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

3
3

6
5

9
7

1
2
9

1
6
1

1
9
3

2
2
5

2
5
7

2
8
9

3
2
1

3
5
3

Day of Year

E
V

I

Wheat

Chickpea

Barley

(b)

 

Figure 4.7: Average temporal EVI  profile of the main winter crops 

throughout the growing season for wheat (green, square), barley (brown, 

triangle) and chickpea (yellow, diamond) for the 2003 winter crop season (a) 

and the 2004 winter crop season (b). 
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4.3.3 Image Classification 

Once each method was trained on ground truth data, the classification of all pixels 

on the image was done by applying the standard maximum likelihood classifier for 

the multi date EVI data (from DOY 97 to 305) and the derived PCA and HANTS 

data. The minimum distance classifier was used to classify the benchmark peak EVI 

approach at DOY 225 (PEVI). For the PCA approach, 11 principal components were 

retained, which explained more than 90% of the total temporal variability in the time 

series derived from the 23-images (Figure 4.8). The factor scores (reconstructed from 

the derived principal components) for wheat, barley and chickpea showed 

diminishing differences beyond the first few PCs, while the scores were very similar 

for the last few PCs. The retention of 11 PCs resulted in explaining 90% of the total 

temporal variability of the 23-image series, and a reduction of more than 50% in input 

data.  

 

For the HANTS approach, three harmonic terms (each term consists of a phase 

and amplitude value) and the zero amplitude were used in the final classification. This 

included the EVI average (0
th

 harmonic), first, second and third harmonics (amplitude 

and phase for each harmonic). The three harmonics, including the average, explained 

more than 90% of the temporal variability, similar to the results obtained for the PCA 

approach. Figure 4.9 shows the classified images using the PEVI (a, b) and HANTS 

(c, d) approaches for the 2003 and the 2004 seasons, respectively. In general, the two 

seasons differ significantly in the amount of total winter crops planted. Independent 

of the classification approach, more winter crop is evident in 2003 than in 2004.  

 

This relates mainly to the poor rainfall recorded during 2004 and the lack of 

sowing opportunities during the winter crop planting window (i.e. May to June) as 

mentioned earlier. The PEVI approach overestimated the chickpea occurrence in both 

seasons with much of the non-cropping pixels classified as chickpea in both 2003 and 

2004 (a, b). The HANTS approach shows substantially better discriminatory ability 

between wheat, barley, chickpea and non-cropping than the PEVI approach in both 

seasons. 
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Figure 4.8: Factor scores of the first 11 principal components on the time-series of EVI data. 

 

This is due to the ability of the HANTS method to capture measured differences 

in the temporal EVI trajectories throughout the growing period, while the single-date 

approach captures likely crop canopy differences at a single point in time, making it 

less accurate at a pixel scale (Table 4.2). Similar results to that for the HANTS 

approach were found for the MEVI, PCA and CF data reduction methods (see 

Appendix C, Figures C1(a, b), C2(a, b), C3(a, b), C4(a, b)). However, the CF 

approaches had less discriminatory ability between non-crop and chickpea and non-

crop and wheat, resulting in an overclassification of chickpea and an 

underclassification of non-cropping areas (see Appendix C, Figures C3 (a, b) and C4 

(a, b)).  
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(c) (d) 

 

 

(b) (a) 

 

Figure 4.9: Classified images using the PEVI classification for the 2003 and 2004 seasons (a, b) 

and classified images using the HANTS approach for 2003 and 2004 seasons (c, d).  Wheat is 

coloured in green, barley in yellow, chickpea in cyan and non crop (e.g. natural and production 

forest, vegetation, stubble, bare soil, etc.) in brown.  

 

4.3.4 Independent Validation and Accuracy Assessment 

The percent of pixels correctly classified (PCC) for each of the four methods is 

given in Table 4.2. The overall accuracy among the methods ranged from only 56% 

to 98%. The single date approach (PEVI) had most pixels incorrectly classified with 

an overall accuracy of 56% and 61% for 2003 and 2004 seasons, respectively. Most 

of this error came from misclassifying wheat and non-cropping classes during both 

seasons.  

 

The overall PCC values for the multi-temporal approaches are all very high with 

the highest accuracies produced in 2004. All multi-temporal approaches classified the 
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non-cropping pixels correctly (100%). This is significant because it means that such 

approaches can be effectively used to discriminate crops from non-cropping land use 

areas in future studies. All multi-temporal approaches achieved much higher overall 

accuracy compared with the single date method for both the 2003 and 2004 seasons. 

This is mainly a result of the better ability in discriminating between wheat, barley, 

chickpea and non-cropping in both seasons by utilising the temporal canopy 

signatures derived from the entire crop growth period. Although, the CF approaches 

have the highest ability to discriminate wheat from the other two winter crops for the 

2004 season, their ability to separate non-cropping areas from cropping areas was the 

lowest of the multi-temporal methods. This will probably limit the use of such CF 

approaches when determining winter crop area estimates at a regional scale.  

 

Table 4.2: Accuracy (%) across all classes (i.e. wheat, barley, chickpea and non-

cropping) for each image classification method for the 2003 and 2004 seasons. Kappa 

coefficients of overall accuracies are in closed brackets. 

Percent Correctly Classified (%)

2003 Overall Wheat Barley Chickpea Non-cropping

Single-date 56 57 90 80 51

Multi-date 94 76 76 93 100

PCA 93 60 86 93 100

HANTS 93 56 95 86 100

CF1 87 58 90 100 92

CF2 85 58 86 100 89

2004

Single-date 61 (0.36) 74 85 100 56

Multi-date 97 (0.93) 89 100 25 100

PCA 98 (0.96) 92 93 0 100

HANTS 95 (0.86) 85 71 0 100

CF1 95 (0.86) 92 71 50 97

CF2 92 (0.80) 89 100 25 93  

 

When comparing the kappa coefficients (KC) of each approach with one another 

in both seasons (Table 4.3), the PEVI approach was significantly different from all 

multi-temporal approaches while the time-series approaches in general showed no 

significant differences in their KC values from each other. This strengthens the 

superior ability of multi-date approaches to that of a single image approach in 

estimating crop area. 
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Table 4.3: Z statistic for testing the hypothesis that the kappa coefficient (KC) values of 

one classification approach differs from another. Values of Z   1.96 are significant at 

the 95% level (highlighted in bold). 

2003 PEVI MEVI PCA HANTS CF1 CF2

Single date (PEVI) 10.27 9.16 8.92 6.72 5.95

Multi date (MEVI) 0.81 0.97 2.78 3.46

PCA 0.16 1.96 2.63

HANTS 1.79 2.46

CF1 0.66

CF2

2004 PEVI MEVI PCA HANTS CF1 CF2

Single date (PEVI) 11.39 12.60 9.27 9.30 7.69

Multi date (MEVI) 0.99 1.49 1.55 2.79

PCA 2.40 2.48 3.68

HANTS 0.04 1.27

CF1 1.25

CF2  

 

Table 4.4 shows the comparison of total winter crop area estimates (i.e. wheat, 

barley and chickpea) to surveyed shire-scale area estimates as collated by ABARE 

through their annual farm surveys (Section 3.). It should be noted that the ABARE 

farm survey data showed root mean square errors of between 20 to 60% during these 

two years for the study area (ABARE 2005b). So any estimates within this range 

should be regarded as ―correct‖. This emphasises the imperativeness of investigating 

the ability of remote sensing approaches in determining crop area estimates that are 

near-real time, objective, accurate and cost effective.  

 

 The HANTS method produced the smallest error (i.e. highest accuracy) for total 

winter crop estimates within the Jondaryan shire for both seasons (Table 4.4). It has 

an average mean absolute percent error (MAPE) of 26% (PE of 18% and -35% for 

each season, respectively). The MAPE across both shires was 27%. All other methods 

showed MAPE greater than 63% for the Jondaryan shire and 97% across both shires 

for both seasons (data not shown). The single-date method had the smallest PE for 

total wheat area, estimated at 5% and 9% for the Jondaryan shire for 2003 and 2004, 

respectively (Table 4.4). This result, however, is fortuitous because of the very poor 

overall and within-class pixel accuracies (Table 4.2). This artificial accuracy of the 

single-date approach is further confirmed by the very poor total winter crop shire-

scale accuracy within 2003 (182%), 2004 (268%) and overall (225%) (Table 4.5). It 
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is likely that most of the error for the PEVI approach came from the misclassification 

of non-cropping areas as crops, and vice versa, explained by the low pixel scale 

accuracy of non-cropping and particularly wheat. This caused a fortuitous bias 

correction, which resulted in small PE values by classifying non-cropping areas as 

mainly chickpea for Jondaryan shire in both seasons. The high accuracy for the 

single-date wheat classification at an aggregated shire scale is therefore spurious 

because of compensating errors when aggregating. Further, the single-date approach 

must confront the issue of the best date to use, which cannot be readily determined 

until after the season. Therefore the single date approach cannot be recommended as 

an acceptable method in determining winter crop area at a regional scale. 

 

The CF mutli-temporal approaches, i.e. CF1 and CF2, show MAPE of 129% and 

159%, respectively for the Jondaryan shire across both seasons. The MAPE for the 

CF1 and CF2 methods are 197% and 233%, respectively for total winter crop 

estimates across shires and seasons (Table 4.5). This low accuracy is likely related to 

the poorer ability such approaches have in discriminating between non-crop and other 

crops (specifically wheat and chickpea) (Table 4.2). This misclassification of non-

cropping areas as either wheat or chickpea can be addressed by introducing another 

layer of information, which delineates the cropping from the non-cropping areas. This 

can be done using either the latest land use map showing non-cropping classes or the 

broad non-cropping class derived from the multi-temporal approaches i.e. HANTS, 

MEVI or PCA. Employing an approach of masking the cropped area when using the 

CF methods, could improve the accuracy of winter crop area estimates at a regional 

scale.  

 

The HANTS approach showed moderate to high within-season accuracy for total 

winter crop area estimates, with MAPE values of 33% and 21% for the 2003 and 

2004 seasons, respectively (Table 4.5). All multi-temporal approaches showed 

significantly higher accuracy at the aggregated shire-scale level within and across 

seasons compared to the accuracy of the single-date approach. The HANTS method 

had the highest overall accuracy (27%) when determining total winter crop area 

estimates across seasons within the study area. 
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Table 4.4: Total shire-scale area estimates for each classification method and ABARE 

surveyed (actual) data for all feature classes (i.e. wheat, barley, chickpea and other) for 

the 2003 and 2004 seasons within the Jondaryan shire.  The accuracy is given in the 

percentage error (PE (%)) column as the difference between the estimated and actual. 

(Estimate and Actual values to the nearest 100) 

Jondaryan 2003 Season 2004 Season

Single Date Estimate Actual PE (%) Estimate Actual PE (%)

Wheat 28,500 27,300 5 5,900 5,400 9

Barley 4,500 10,700 -58 1,800 2,700 -32

Chickpea 87,100 7,700 1023 18,000 1,600 993

Winter Crop 120,200 45,900 162 25,800 9,800 163

Multi-date Estimate Actual PE (%) Estimate Actual PE (%)

Wheat 74,500 27,300 172 12,400 5,400 128

Barley 2,800 10,700 -73 7,200 2,700 167

Chickpea 14,300 7,700 85 0 1,600 -100

Winter Crop 91,600 45,900 100 19,600 9,800 101

PCA Estimate Actual PE (%) Estimate Actual PE (%)

Wheat 72,500 27,300 165 8,900 5,400 65

Barley 2,800 10,700 -73 5,500 2,700 103

Chickpea 6,800 7,700 -11 0 1,600 -100

Winter Crop 82,300 45,900 79 14,400 9,800 48

HANTS Estimate Actual PE (%) Estimate Actual PE (%)

Wheat 37,800 27,300 38 4,900 5,400 -10

Barley 2,600 10,700 -75 1,500 2,700 -44

Chickpea 13,800 7,700 78 0 1,600 -100

Winter Crop 54,300 45,900 18 6,400 9,800 -35

CF1 Estimate Actual PE (%) Estimate Actual PE (%)

Wheat 48,100 27,300 76 16,400 5,400 202

Barley 4,500 10,700 -58 6,600 2,700 146

Chickpea 49,600 7,700 540 100 1,600 -94

Winter Crop 102,400 45,900 123 23,200 9,800 137

CF2 Estimate Actual PE (%) Estimate Actual PE (%)

Wheat 35,300 27,300 29 21,300 5,400 293

Barley 5,200 10,700 -51 5,900 2,700 118

Chickpea 64,100 7,700 727 1,200 1,600 -25

Winter Crop 104,700 45,900 128 28,500 9,800 191  
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Table 4.5: Aggregate mean absolute percent error (MAPE%) for each 

of the remote sensing analysis approaches for both shires in the study 

area for each of the two years (2003 and 2004) and over both years 

(All). 

2003 2004 All

                    Single Date 

Wheat 4 37 20

Barley 63 21 42

Chickpea 2645 1971 2308

Winter Crop 182 268 225

                     Multi Date

Wheat 175 201 188

Barley 76 240 158

Chickpea 509 100 304

Winter Crop 128 172 150

                      PCA

Wheat 165 116 140

Barley 68 145 106

Chickpea 171 100 135

Winter Crop 99 95 97

HANTS                       HANTS

Wheat 43 15 29

Barley 81 33 57

Chickpea 366 100 233

Winter Crop 33 21 27

                                                                 CF1

Wheat 78 329 203

Barley 64 187 126

Chickpea 1941 86 1013

Winter Crop 168 226 197

                                                                 CF2

Wheat 31 454 242

Barley 55 159 107

Chickpea 2250 47 1149

Winter Crop 166 300 233  

 

Although the HANTS approach showed overall pixel accuracy similar to that of 

the other multi-temporal approaches, it had the smallest error across both seasons for 

determining total winter crop area and is thus likely to be more reliable than any of 

the other analysis approaches. The shire-scale accuracy of HANTS can be further 

increased by including ground truth data on areas that have been double cropped with 

barley (i.e. cropping barley immediately after a summer crop). The degree of 

discrimination between wheat and barley relates to how similar/dissimilar the 

temporal profile trajectories are within the cropping window (Figure 4.2). The 
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discriminatory ability of the HANTS approach, at shire scale, seemed to be weaker 

during the wetter seasons of 2003 and stronger during the drier season of 2004 

(Figure 4.6). This weaker discriminatory ability in the more heavily cropped wet year 

is likely to be related to an increase in spatial variability of rainfall and soil types, as 

well as more spatially variable crop management practices, such as plant density 

rates, fertilizer application rates or a combination of these. During 2004, which was 

classified as an El Niño year, there was less classification error (at pixel scale) 

between wheat and barley crops, resulting in more accurate area estimates at the 

shire-scale. In addition, almost all of the area that could be planted was planted to 

wheat and barley, which resulted in very few ground truth fields for chickpea during 

the 2004 season. This restricted the capacity to develop good discriminatory ability 

for chickpea. Thus, future studies will need more or stratified ground truth sampling 

points to enable rigorous discriminatory ability of chickpea from other winter crops. 

 

Discrepancies between the error determined at pixel scale (PCC) and the error 

determined at shire/regional scale (PE) are mainly due to the ability or lack thereof of 

the sampling data at pixel and surveyed data at shire scale to be representative of all 

likely temporal EVI crop canopy profile possibilities when extrapolated across a large 

area. If such complete enumeration can be assumed at pixel scale, then a likely way 

forward is to revise the total area estimates for crop types using the output from the 

confusion matrix (Congalton et al. 2009). However, this was not within the scope of 

this study. 

 

The temporal profile trajectory represents the crop life cycle (e.g. emergence, 

anthesis, maturity, etc.) at a specific location and incorporates canopy reflectance 

responses to immediate environmental conditions (i.e. temperature, soil, moisture, 

light, etc.). Thus, applying these multi-temporal approaches to other geographical 

regions with soils and climate regimes not captured within the study area needs 

further investigation.  
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4.4 Conclusion 

Using the temporal profile of EVI data throughout the growing period has shown 

enhanced efficacy over the traditional single image approach in classifying crops at 

the pixel as well as the shire scale. Although the single date approach showed poor 

accuracy at the pixel scale, it showed high accuracy at the shire scale for determining 

wheat and barley area estimates. This occurred due to a fortuitous compensation of 

misclassification errors when aggregating from pixel to shire-scale for the single-date 

approach. Most of the contradiction in accuracy of the single date approach can likely 

be attributed to the pass-over date of the satellite image, which highly depends on 

how close the acquisition date of the image is to the flowering date of the crop. The 

closer these two dates are to each other, the better the discriminative ability between 

crops might be. This, however, was not always the case for the single-date 

classification as suggested by the contradicting accuracies at the different spatial 

scales.  

  

All multi-temporal classification approaches showed high accuracy during both 

seasons, when comparing the classified imagery with independent ground truth 

samples at pixel scale. The overall discriminative ability of these methods was higher 

during the drier season of 2004, than during the wetter season of 2003. This year 

effect was also evident for discrimination between wheat and barley. The 

discrimination of chickpea was moderate during the 2003 season, while the 2004 

season showed poor classification of chickpea crops at a pixel scale. This was mainly 

a result of the small sample size for chickpea during the 2004 season. The HANTS, 

MEVI and PCA methods showed high accuracy in classifying non-cropped.  

 

Extrapolating these methods to a shire/regional-scale showed high accuracy in 

estimating crop area, with the HANTS method being most accurate across regions 

and seasons. In contrast, the curve fitting procedures (CF1 and CF2) had the lowest 

accuracy for shire scale winter crop estimates. This could be mainly attributed to their 

inability to correctly classify non-cropped areas, resulting in an overestimation of 

wheat and chickpea crops across regions and seasons. 

 

The multi-temporal approaches showed significant ability to discriminate between 

winter crops and estimate their area at a shire scale at the end of the cropping season. 
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This is well in advance of any estimates disseminated by ABS or ABARE through 

their surveys, which traditionally are published 1 to 2 years after the cropping season. 

This multi-temporal remote sensing (MTRS) approach also improves the spatial detail 

with which crop statistics are captured. End-of-season crop area estimates for wheat 

and barley are important to industry for generating accurate production estimates to 

aid transport logistics and marketing decisions. The value of this multi-temporal 

remote sensing approach would be enhanced if accurate crop area estimates could be 

produced earlier in the season. This issue was addressed in Chapter 5.  
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Chapter 5 

Early-season Crop Area Estimates for Winter Crops in NE 

Australia using MODIS Satellite Imagery 

 

 

“Prediction is very difficult, especially about the future“ 

Niels Bohr (1885 - 1962) 

 

 

5.1 Introduction 

In Chapter 4, the efficacy of using different multi-temporal approaches to estimate 

end-of-season crop area was investigated. Appreciably high accuracy was found at 

pixel and shire-scales. However, there remains a need within the grains industry (e.g. 

feed grain, fertilizer companies etc.) to have crop production estimates well in 

advance of harvest. Although end-of-season area estimates are used to balance final 

supply and demand figures, such information lacks the ability to assist industry in 

tactical decision-making processes (e.g. forward buying or selling). This is mainly a 

result of the lateness of the end-of-season crop area estimates.  

 

Accuracy and timing of the forecast are important aspects in assisting decision-

makers to adjust their management decisions accordingly. Forecasts are valuable 

when a change in decision (e.g. forward buying) leads to a desirable change in the 

outcome (e.g. increased profitability), which can allow the decision-maker to move 

from a point of passive acceptance of the forecast, to a point of active response, to the 

forecast (Hammer et al. 2001). The earlier the forecast is issued, even with less 

accuracy than end-of-season estimates (Potgieter et al. 2003), the more time the 

decision-maker has to respond to the likely impact of the forecast. The issue of ―how 

early and with what accuracy‖ crop area estimates can be determined using the multi-

temporal approach derived in Chapter 4 is investigated in this chapter. 

 

Various studies have investigated the relationships between accumulated monthly 

vegetation indices (e.g. NDVI), biomass/LAI through the growing period, and 

ensuing final end-of-season crop yield or production (Dubey et al. 1991; Labus et al. 
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2002; Tucker et al. 1980, 1981; Zang et al. 2005). These studies found that the period 

around peak anthesis was highly correlated with final production figures at different 

spatial scales, thus enabling the prediction of crop yield/production between 

flowering and harvest with varying degrees of accuracy. These approaches mainly 

applied complex multiple regression metrics between accumulated NDVI over 

various crop growth stages, crop growth curve parameters and final yield figures. 

Such approaches can only be used at the end of the crop growth season to determine 

crop area. They did not focus specifically on early-season crop area estimates. Thus, 

the purpose of this study was to develop and evaluate a relatively simple but accurate 

method for estimating crop area well before harvest for winter crops in north-eastern 

(NE) Australia.  

 

 

5.2 Methods 

5.2.1 Overview 

The contiguous Pittsworth and Jondaryan shires, as described in Sections 3.3 and 

4.2.1 (Figure 4.2), were selected as the study region for deriving and validating an 

approach to early-season crop area estimation. A simple metric was developed and 

used to determine the rate of crop green-up before flowering. This metric is a 

surrogate for measuring winter crop canopy vigour or growth. The pixel classification 

image was trained, based on ground truth data, and its accuracy tested on an 

independent set of ground truth data and on survey data at aggregated shire scale as 

discussed in Chapter 3. This was done for both the 2003 and 2004 seasons. In this 

chapter, the temporal extrapolability of the methodology was tested by comparing 

estimates for the 2000, 2001 and 2002 winter cropping seasons with actual shire crop 

area information. The percent correctly classified (PCC) and kappa coefficients (KC) 

(Section 3.4.5) were used to assess the accuracy at pixel scale, while shire scale 

accuracy was assessed through linear regression. 

 

5.2.2 Early-season Metric 

Crop canopy vigour was estimated using a relatively simple measure based on the 

summation of the differential EVI between three consecutive MODIS images, 

acquired at 16-day intervals, and derived at monthly periods from April (DOY 97) to 

September (DOY 257). The summation of the EVI differences is referred to here as 
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EVI . The green-up period (crop emergence to peak EVI) of all main feature 

classes (Chapter 4, Figure 4.5 & 4.6) occurred over at least five (~80 to 90 days) 

consecutive 16-day images, which makes three images a suitable number in capturing 

the crop growth vigour during green-up. Three different EVI  thresholds, ranging 

from 250 to 750 at increments of 250 (i.e. >250, >500 and >750) were examined for 

discriminatory ability. These thresholds were selected because values smaller than 

250 indicate a relatively flat profile and are likely to be classified as non-cropping, 

while large values ( i.e. >1000) are likely to exclude crop types like chickpea and 

water stressed wheat crops, especially during drier seasons like 2004 (Chapter 4, 

Figure 4.5 a & b). The screening of the thresholds was done using the band math 

functionality in ENVI and applying the following equation: 

 

(b1-b2) + (b2-b3) > T                                                   [5.1] 

 

where, T represent the threshold cut-off and b(1), b(2) and b(3) represent the appropriate 

MODIS images. These differential EVI threshold cut-offs are abbreviated as 

T250EVI , 
T500EVI  and 

T750EVI  from here on. This resulted in six images 

(at monthly periods from April to September) for each threshold for 2003 and 2004 

seasons (Figure 5.1).  

 

The ability to discriminate among wheat, barley and chickpea crops increases 

through the growing season, with the poorest ability around sowing and crop 

emergence (April to June) and the best ability at the end of the crop growth period 

(November/December) (Figure 5.2). The discriminative ability improves significantly 

from around the time of flowering (August/September). A similar result occurred for 

the 2004 season (data not shown). Because of the poor ability to discriminate crops 

(i.e. separating wheat from barley) before flowering, only early-season estimates for 

combined total winter crop area were attempted. 
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Figure 5.1: Diagram showing the steps involved in determining the early-season crop 

area estimates for the 2003 and 2004 seasons. 

 



Early-season crop area estimates for winter crops in NE Australia Chapter 5 

 

 

106 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

A
p

ri
l

M
a

y

J
u

n
e

J
u

ly

A
u

g
u

s
t

S
e

p
te

m
b

e
r

O
c
to

b
e

r

N
o

v
e

m
b

e
r

D
e

c
e

m
b

e
r

Month

J
M

 m
e

tr
ic Other

Barley

Chickpeas

 

Figure 5.2: Temporal EVI separability of wheat from other (dotted line), barley (broken 

line) and chickpea (solid line) crops throughout the 2003 season, as measured using the JM-

metric as defined in Section 3.4.4. 

 

5.2.3 Feature Classification and Validation 

Each specific EVI  image (i.e. year, threshold value, months) was classified 

into two classes, crops and non-crops, by applying the unsupervised K-means 

clustering algorithm in ENVI limited to two clusters/groupings. Ground truth data 

from all crop and non-crop types was merged into 384 and 297 crop sampling points 

for 2003 and 2004, respectively. Sampling points for non-cropping land use areas 

equated to 918 and 1365 for 2003 and 2004, respectively. This data was used to 

determine the accuracy at pixel scale by calculating the PCC and KC metrics (Section 

3.4.5). This constituted the pixel scale accuracy. 

 

The accuracy of area estimates at shire scale was only calculated for the EVI  

approach with the highest pixel-scale accuracy, each month through the season, by 

contrasting area estimates with the actual shire-scale data (ABARE 2005a; ABS 

2004). A simple root means square error (RMSE) was calculated between predicted 

area and actual area for the period 2000 to 2004 (excluding 2002, which was not 

available at shire level from ABS) for both shires combined. Combining data of all 
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years (2000, 2001, 2003, and 2004) for both shires (4-years x 2-shires) had enough 

degrees of freedom to ensure statistical rigour when calculating the RMSE.  

 

 

5.3 Results and Discussion 

5.3.1 Efficacy of Early-season Metrics 

The threshold images (EVI ) were generated for each set of three consecutive 

images from DOY 97 (i.e. early April) through to DOY 257 (i.e. early October) for 

each of the 2003 and 2004 seasons. Figure 5.3 and 5.4 depict the threshold image of 

T500 for early July for 2003 and 2004, respectively. The red to green pixels represent 

high values while the blue pixels represent low values. White represents no green-up. 

To predict crop area, each threshold image was classified into two classes i.e. green-

up (i.e. crops) or no green-up (i.e. non-crops). Figures 5.5 and 5.6 show the 

classifications of the 
500T

EVI  images in figures 5.3 and 5.4.  

 

 

Figure 5.3: The 
500T

EVI  image for early July for 2003.  The 

blue colour represents low differential EVI values while the red to 

green represents higher values. 
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Figure 5.4: The 
500T

EVI  image for early July for 2004. The 

blue colour represents low differential EVI values while the red to 

green represents higher values. 

 

 

Figure 5.5: Classified image for the 2003 season, derived from the 

500T
EVI  image using unsupervised K-means classification.  

Green = crops and white = non-crops. 
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Figure 5.6: Classified image for the 2004 season, derived from the 

500T
EVI  image using unsupervised K-means classification.  

Green = crops and white = non-crops. 

 

More pixels were classified as crop in 2003 than 2004. The reduced winter crop 

area for 2004 was due to the very dry conditions experienced during that season due 

to an El Niño, as discussed in Chapter 4. 

 

Discriminatory ability at pixel scale was high and peaked in July for all EVI  

approaches both seasons (Figure 5.7 & 5.8). The 
250T

EVI  and 
500T

EVI  

approaches had slightly better PCC values than the 
750T

EVI  throughout the 

growing season during both years. Although there was little difference in the PPC 

values of the 
250T

EVI  and the 
500T

EVI  approaches, the 
750T

EVI  

approach showed less accuracy in general. In order to avoid small fluctuations in 

green-up, which can be caused by crop regrowth or spurts in weed growth (Pratley 

2003), being misclassified as winter crop, it was decided to use the 
500T

EVI  

approach as the most suitable threshold cut-off for estimating total winter crop area. 



Early-season crop area estimates for winter crops in NE Australia Chapter 5 

 

 

110 

 

0

10

20

30

40

50

60

70

80

90

100

April May June July August September

Month

P
C

C
 (

%
) T250

T500

T750

 

Figure 5.7: Percent correctly classified (%) for the T250, T500 and T750 

thresholds for each month during the 2003 season. 
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Figure 5.8: Percent correctly classified (%) for the T250, T500 and T750 

thresholds for each month during the 2004 season. 

 

The kappa coefficient for the 
500T

EVI  approach for July was significantly 

different from June and August (Table 5.1) at the 95% level with statistical Z-values 
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of 9.58 and 8.30, respectively (see Section.3.4.5 for detail on statistic). As expected, 

KC values of June, August and September did not significantly differ from one 

another. Similar results were found for comparing the other approaches among 

months and years (data not shown). This confirms the accuracy of the 
500T

EVI  

approach for July to be significantly different from other threshold approaches used at 

other months. The period of maximum accuracy (i.e. July) might however change 

when this methodology is extrapolated to other regions and season mainly because of 

the variability in planting dates across large areas within a specific season. 

 

Table 5.1: Kappa coefficients (KC) for each threshold approach for June to 

September for 2003 and 2004. 

2003

Threshold June July August September

T250 0.51 0.83 0.60 0.16

T500 0.51 0.83 0.57 0.13

T750 0.45 0.82 0.53 0.08

2004

Threshold June July August September

T250 0.74 0.94 0.76 0.20

T500 0.74 0.94 0.61 0.66

T750 0.67 0.85 0.48 0.11  

 

5.3.2 Accurate Shire Scale Crop Area Estimates based on In-season Metrics 

The aggregated shire scale area estimates peaked in early August for both seasons 

and shires (Table 5.1). The July and August estimates of 40,078 ha and 45,102 ha, 

respectively, for the Jondaryan shire, were the closest to the actual estimate of 46,359 

ha. This suggested a peak in green-up during August associated with a planting period 

in May, which takes into account that maximum canopy cover is reached at around 65 

to 75 days after crop emergence (Chapter 4, Figure 4.2). This concurs with an average 

observed sowing date in May for 2003 for Jondaryan shire. Similar results were found 

for the 2004 season for Jondaryan.  

 

For the Pittsworth shire, August (31,398 ha) and September (18,736 ha) were the 

closest to the actual area estimate of 21,951 ha for 2003, whereas the estimate in July 

(9907 ha) was considerably below the actual. This suggested a planting time around 

middle May, which concurred with the actual observed average planting time of May 
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for the 2003 season (ABARE 2005a). The poor estimate in July was likely related to 

the delay in green-up associated with this later planting. During 2004, maximum peak 

green-up was in September, which suggested a likely shift to an even later (one 

month) planting time for the Pittsworth shire in that year. This one-month shift in 

peak estimates for Pittsworth can be partly explained by the fact that 94% of the 

wheat plantings (i.e. main winter crop) occurred at the end of June during the 2004 

season (ABARE 2005a). July and August area estimates of 6,336 ha and 8,481 ha, 

respectively, were the closest to the actual area estimate of 6,822 ha. 

 

Thus, to capture peak EVI as early as possible, while accounting for effects 

associated with the spread of planting times, the average of July and August was used 

to calculate the early-season prediction for total winter crop area in both shires. The 

actual and predicted (in brackets) total winter crop area sown for Jondaryan and 

Pittsworth (in closed brackets) were 46,359 ha (42,590 ha), 21,951 ha (20,652 ha) for 

2003, respectively, and 12,336 ha (10,020 ha) and 6,822 ha (7,409 ha) for 2004, 

respectively (Table 5.2). This resulted in percent differences (%Diff column in Table 

5.2), which ranged from -19% to 9% across seasons and shires. The 2003 season 

estimates had the smallest average difference from the actual, while the 2004 season 

estimates were the largest for both shires. This suggested a larger percentage error in 

crop area estimates during the dryer 2004 year, when crop area planted was reduced, 

than the wetter 2003 season. However, this inference needs to be tested in other 

regions and seasons to determine its general applicability. Furthermore, it should be 

noted that the actual data figures in Table 5.2 include surveyed values for areas sown 

to wheat, barley and chickpea (ABARE 2005a). The actual harvested area for these 

crops is always likely to be equal to or less than the sown area and will differ from 

region to region and season to season due to climate (failed crops due to water stress) 

and crop management practices (hayed or fed off). If crop emergence rates are poor, 

the predicted area will be closer to the area harvested than the area planted. 
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Table 5.2: Predicted area estimates using the T500 approach throughout the growing season for 

each year and each shire. “Actual” is the ABARE surveyed and census figures, while “Average” 

represents the mean of July and August. 

Year Area June July August September Actual Average % Diff

2003 % 5.42 20.98 23.61 11.38

Jondaryan ha 10354 40078 45102 21739 46359 42590 -8

2004 % 3.28 4.48 6.01 4.99

ha 6266 8558 11481 9532 12336 10020 -19

2003 % 2.91 9.1 28.84 17.21

Pittsworth ha 3168 9907 31398 18736 21951 20652 -6

2004 % 4.22 5.82 7.79 8.157

ha 4594 6336 8481 8880 6822 7409 9  

 

To test extrapolability, total winter crop area estimates were calculated for the 

2000 and 2001 seasons for both shires by applying the 
500T

EVI  approach to 

derive the average for July and August predictions. The 2002 season was omitted 

since no actual shire scale ABS data was available for this year. Further, the area 

estimates for these additional years (i.e. 2000, 2001) from ABS only included wheat 

and barley values (i.e. not chickpea). Figure 5.9 shows the total winter crop area 

estimates of the predicted (dotted line) and the observed (solid line) for the 2000 to 

2004 period for both shires. The predicted area estimates were slightly higher than the 

actual data especially in the Jondaryan shire. This slight over prediction of area can 

mainly be attributed to the fact that area sown to chickpea was not included in the 

ABS crop area estimates. The average area sown to chickpea was 15% and 6% of the 

total area sown to winter crop during the 2003 and 2004 seasons for Jondaryan and 

Pittsworth shires, respectively. The average over-prediction in 2000 and 2001 was 

24% and 3% for Jondaryan and Pittsworth shires, respectively, which approximates 

the average observed area shown for these shires. The 2002 prediction for both shires 

was the lowest during the 5-year period. Although no estimates of actual area were 

available, anecdotal evidence supports this estimate as 2002 was classified as an El 

Niño year (as was 2004) and very little winter crop was planted during that season.  
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Figure 5.9: Total winter crop (excluding chickpea) area figures of predicted and actual for 

the 2000 to 2004 period for the Jondaryan and Pittsworth shires. 

 

The total winter crop area (excluding chickpea) averaged 18,149 ha each year 

(over both Jondaryan and Pittsworth shires) during the 4-year period. At a regional 

scale (i.e. combining data from both shires) the error in the prediction of wheat and 

barley area equated to 3,157 ha (RMSE) on average over the 4-year period. Given the 

inclusion of chickpea in the predicted values and some error in the ABS and ABARE 

survey estimates, this is an acceptable level of error. Overall, the predicted area was 

highly correlated with the actual area and is significantly different from a 1:1 

relationship (p=0.00002) (Figure 5.10). This was mainly caused by the significance in 

the slope (p=0.00001) rather than the intercept, which did not differ from zero 

(p=0.48). The significance in slope was a result of the over-prediction of actual 

production for years that have productions above 20,000 tons (i.e. 2003 for Jondaryan 

and 2000 for Pittsworth, Figure 5.9). 
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Figure 5.10: Scatter plot of predicted (using 
500T

EVI ) actual total winter crop area 

(excluding chickpea) values for the 2000, 2001, 2003 and 2004 seasons for the Jondaryan and 

Pittsworth shires. The portion of variance explained is given as the r-square. Lower (ll) and 

upper (ul) 95% confidence intervals (CI) are included in brackets for each coefficient in the 

equation: Y = a (llCI, ulCI) + b*X (llCI, ulCI). The 1:1 line is shown as a stippled line, while the 

solid black line is the fitted regression line.  

 

5.3.3 Early Season Area Estimates are Critical in Bridging the ‘Information 

Gap’ 

Advance knowledge of crop yield and production has become increasingly sought 

by industry and government agencies over the last decade (Hammer et al. 2001). 

While effective systems have been developed to deliver advance knowledge of yield 

likelihood (Potgieter et al. 2005a; Potgieter et al. 2006) it has not been possible to 

derive associated production estimates due to the absence of accurate and timely 

estimates of crop area. Such estimates have been available only at the end of the 

cropping season or even later depending on the source. In-house sources, such as 

agronomists and agents within the specific agri-businesses or government agencies, 

generate qualitative estimates during the season. Official agency sources like ABS 

generate estimates via survey and data collating exercises, but they only become 
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available long after harvest. The availability of precise crop area estimates was 

seriously diminished by the cessation of the annual ABS census. In addition, the scale 

at which such information is available is limited to region or state level due to the 

lack in accuracy at the shire scale. All of this contributes to the widening of the 

information gap, which currently exists in Australia. There is no accurate, objective, 

and near-real time crop area and ensuing crop production estimates available at shire 

scale to support industry decisions. 

 

Internationally, specifically in the U.S., through the USDA and World 

Agricultural Outlook Board (WAOB), crop forecasts are issued every month for 

nearly every country-crop pair in the world (Crutchfield 2008). Final estimates are 

discussed in a round table exercise including all agricultural forecasting agencies 

within the USDA. For the U.S., remote sensing derived information from Landsat is 

used with relatively high accuracies (Mueller 2008), compared to detailed ground 

truth data from farm surveys (NASS 2006; Vogel et al. 1999), at the end-of the 

growing season. The dissemination of remotely sensed data for crop area only 

became operational during the 2008 season in the U.S. (Mueller 2008). It is 

anticipated that the application of early-season crop estimates, as derived in this 

Chapter, if available in other countries, will increase the accuracy and objectivity of 

crop information utilised in the WAOB round table crop forecasting discussions. 

Furthermore, it is likely that such remotely sensed derived crop area estimates, well 

before harvest, will have similar accuracies to that of a survey/census, as found in this 

chapter, but at much lower anticipated cost than in the U.S.. 

 

The availability of early-season (as discussed in this chapter) and ensuing end-of-

season crop (Chapter 4) area estimates at shire scale, when combined with similar 

yield estimates (Potgieter 2008), provides the means to bridge this information gap. 

Reliable, timely and detailed production estimates underpin industry decisions on 

commodity handling logistics and commodity marketing. Furthermore, they provide a 

transparent basis for government decisions in relation to exceptional circumstances 

policy associated with extreme events or potential supply shortfalls to industry. 

However, further research is necessary to determine the applicability of the approach 

to other regions and states with Australia. 
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5.4 Conclusion 

This study shows that accurate, early-season estimates of crop area can be 

generated using change in MODIS EVI values through the season associated with 

crop green-up. Area estimates can be obtained as early as the 1
st
 week in July with a 

relatively high accuracy. However, the issue of spatial variability in sowing dates 

(early or late plantings) from region to region may delay availability of accurate 

estimates by requiring averaging of values from early July and early August. The 

approach requires further investigation to test its applicability in other regions. 

Nonetheless, for the study area, this research has shown that accurate early-season 

winter crop area estimates are possible at least two months before harvest. Such 

advance knowledge of crop area and production is of high value to agri-industry and 

government in supporting business and policy decisions. In addition, government 

agencies like ABARE acquire such information to update their quarterly commodity 

estimates. 



Estimating winter crop area across seasons and regions in Queensland                           Chapter 6 

 

 

118 

Chapter 6 

Estimating Winter Crop Area across Seasons and Regions 

Using Time Series MODIS Imagery 

 

“One swallow does not make a summer” 

Aristotle, Nichomachean Ethics (384 BC - 322 BC) 

 

 

6.1 Introduction 

Wheat is the second largest agricultural export commodity after beef, in Australia, 

with a total value of $3.5 billion per annum. Of the total 23 Mt of wheat production 

on average, Western Australia and New South Wales contribute 39% and 36% to the 

national total, respectively (ABARE 2007) South Australia, Victoria and Queensland 

contribute 12%, 9% and 6%, respectively. Although Queensland has the lowest 

production, it usually produces high quality grain, which is highly sought in 

international markets. Furthermore, the close proximity of Queensland to the fast 

growing economies of Asia, which have an increasing demand for food, adds impetus 

to Queensland grain industries. World demand for feed grains (including barley and 

wheat) is expected to continue to rise, providing opportunity for an increase in 

Australian grain exports (Anthony et al. 2007; Penm 2006). There is also an 

increasing domestic demand for feed grain from the feedlot industry, a heightened 

importance of grains for industrial purposes, such as ethanol and biodiesel 

production. All of these influences indicate a strong future demand for grain, resulting 

in an increased need for timely production estimates.  

 

Chapters 4 and 5 focussed on the development and application of multi-temporal 

remote sensing approaches for early-season, as well as end-of-season, winter crop 

area estimation using two contiguous shires in southeast Queensland. It was shown 

that such technology could be utilised to estimate shire-scale total and specific winter 

crop area with acceptable accuracy. In this chapter, the ability of these multi-temporal 

approaches in estimating winter crop area over large areas was investigated. Such 

estimates are necessary to generate accurate, objective and near-real time production 
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estimates for winter crops across large regions. Information on the spatial distribution 

of production estimates is sought by agri-industry to support critical resource 

management and financial decisions (e.g. shifting of resources, bulk handling crops, 

forward buying or selling, etc.), particularly in the background of a highly variable 

climate. 

 

Deriving large scale crop area estimates usually involves the use of exhaustive 

sampling approaches (e.g. area frame sampling) or sampling approaches combined 

with moderate resolution imagery (e.g. Landsat TM) (Cotter et al. 1994; Dadhwal et 

al. 1991; Fecso et al. 1986; MacDonald et al. 1980). However, those approaches are 

labour-intensive and expensive. The advent of MODIS satellite imagery has enhanced 

the capability of remote sensing to estimate crop area over large areas with acceptable 

accuracy and cost. This is mainly due to the high temporal resolution (~2 days) of the 

imagery, as well as the use of suitable spectral bands, which target specific 

biophysical attributes of crop canopies at relatively fine spatial resolution (i.e. 250 m 

x 250 m pixel scale).  

 

The main objective of this chapter was to test the temporal and spatial 

extrapolability of the remote sensing approaches derived in chapters 4 and 5. 

Specifically, the study aimed to assess the ability of multi-temporal remote sensing 

approaches (as derived in previous chapters) for (i) early-season total winter crop area 

estimation for Queensland and (ii) end-of-season crop area estimation for total and 

specific winter crops (i.e. wheat, barley and chickpea) for Queensland.  

 

 

6.2 Methods 

6.2.1 Study Area 

The study area encompasses the broad cropping region of Queensland and lies 

between latitudes 21
o
 South and 29.5

 o
 South on the north-eastern side of the 

Australian continent (Figure 6.1). The total broad agricultural production zone is 

approximately 15.88 million ha, of which 18% is specifically used for dryland and 

irrigated agricultural or plantation production (DNR&W 2006).  
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Figure 6.1: Map of the broad cropping area within Queensland (shaded). The sub-regions are 

shown in shades of grey. Specific areas with agricultural land use (i.e. dry land and irrigated 

cropping), as derived in 1999, are indicated in green. 

 

Land use cropping 
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Traditionally, and also for the purposes of this study, the Queensland cropping 

region was divided into sub regions. These regions are central Queensland (CQ), 

southwest Queensland (SWQ) and southeast Queensland (SEQ) (Figure 6.1). The 

average wheat area and total production for CQ, SEQ and SWQ for the period 1975 

to 2000 were 162,000 ha and 246,000 tons, 162,000 ha and 295,000 tons and 453,000 

ha and 585,000 tons, respectively. Although SWQ had the highest production on 

average, it had the lowest crop yield per unit area of the three regions at 1.22 tons/ha. 

SEQ had the highest average wheat yield of 1.75 tons/ha with CQ intermediate at 

1.37 tons/ha (ABS 2004). 

 

6.2.2 Early-season Prediction of Crop Area 

Prediction of crop area early in the season was done using the T500 measure 

detailed earlier in Chapter 5. In this simple measure, the summation of the differential 

in EVI between three consecutive MODIS images ( 500TEVI ) for two specific 

monthly periods was calculated. This captured the green-up rate before and around 

flowering preceding and including DOY 193 (July) and DOY 225 (August). The 

accuracy of the derived 500TEVI  image for end of July, August, Average (i.e. 

average area estimates of July and August) as well as the combined (union) image of 

the 500TEVI  images from both periods (i.e. July & August) were tested at a pixel 

scale using ground truth data. These procedures were applied to the 2005 and 2006 

winter cropping seasons across the entire Queensland cropping region. The land use 

polygon boundaries determined in 1999 (DNR&W 2006) were used as primary mask 

for land use areas when calculating the preliminary (or early-season) total winter crop 

area estimates. Figure 6.2 sets out an overview of the procedures involved in deriving 

crop area estimates before flowering and at the end of the season. 

 

6.2.3 End-of-season Prediction of Crop Area 

Prediction of the end-of-season crop areas was done using the HANTS approach 

as derived in Chapter 4 of this study. The HANTS method was applied to 

discriminate between crop areas for wheat, barley, chickpea and non-crop across all 

sub-regions for the 2005 and 2006 seasons. 
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Figure 6.2: Procedures involved in assessing the ability of MODIS multi-temporal approaches for early-season and end-of season crop area estimates. 

Accuracy was assessed at pixel as well as regional scales and with and without land use masking. 
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6.2.4 Ground Truth Data 

Ground truth data was collected via targeted field trips and from paddock 

identification information received from public and/or private agronomists and 

industry agents for both the 2005 and 2006 seasons across the three sub-regions (i.e. 

CQ, SWQ and SEQ) within the entire QLD cropping region.  

 

Table 6.1: Ground truth sampling points collated at pixel scale 

for each sub-region and entire Queensland region for each 

feature class for 2005 and 2006. This was used to classify the 

images. R denotes the independent sampling points used to test 

the classification approach. “na” was assigned to feature classes 

when no data for that class was observed. 

Region Feature 2005 2006

SWQ Wheat 294 252

SWQ Barley 76 25

SWQ Chickpea 43 33

SWQ R Wheat 73 60

SWQ R Barley 18 7

SWQ R Chickpea 8 13

CQ Wheat 315 626

CQ Barley na na

CQ Chickpea 19 48

CQ R Wheat 65 115

CQ R Barley na na

CQ R Chickpea 6 14

SEQ Wheat 21 37

SEQ Barley 24 na

SEQ Chickpea na na

SEQ R Wheat 6 12

SEQ R Barley 6 na
SEQ R Chickpea na na

QLD Non-crop 33179 38632

QLD R non-crop 6131 7281

QLD Crop 792 1021

QLD R Crop 182 221
 

 

This specific crop type information for both seasons, was assimilated at pixel 

scale for each crop feature class (e.g. wheat, barley, chickpea, fallowed) for each sub-

region (i.e. CQ, SWQ, SEQ) using the region of interest (ROI) functionality in the 
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ENVI software (ITT 2008) (Table 6.1). Fallowed area classes (i.e. areas not cropped 

during winter) were season-specific while other classes like forest and pasture were 

kept the same in both seasons. 

 

6.2.5 Feature Classification and Validation 

6.2.5.1 Pixel-scale Accuracy 

The accuracy at pixel scale was measured using the percent correctly classified 

(PCC, Section 3.4.5.1) metric calculated between crop and non-crop for early-season 

prediction. For end-of-season area estimates, the discriminatory ability for specific 

crop classes (wheat, barley, chickpea and the non-crop class) was also determined 

using the PCC. In addition, the Kappa coefficient (Section 3.4.5.1), which is also 

known as a measure of reliability (Cohen 1960; Sim et al. 2005) was calculated and 

used in assessing comparative accuracy in this study.  

 

These statistics were created from the error/confusion matrix contrasting 

independent randomly selected ground truth points (i.e. class labels preceded by R in 

Table 6.1) against the classified image trained on main feature classes (i.e. wheat, 

barley, chickpea, non-crop) using the end-of-season HANTS classification. For early-

season prediction accuracy was determined using the statistics generated from the 

error matrix for the each merged feature class level, i.e. dividing the image into areas 

that are winter cropped (crop feature class including mainly wheat, barley and 

chickpea) and those that are not cropped (non-crop class including fallow, vegetation, 

forest etc.) (Figure 6.2). 

 

6.2.5.2 Regional Scale Accuracy 

Regional scale accuracy was determined by contrasting total state level area 

estimates for wheat, barley and chickpea with actual ABARE statistics (Lawrance 

2007) for 2005 and 2006. Actual shire-scale data was only available for the 2005 

season. This was contrasted against the predicted shire scale area estimates to create 

spatial regressions of total winter crop, wheat, barley and chickpea. Thus, accuracy 

across all shires was assessed through the R
2
 metric, calculated from the simple linear 

regression of actual data (ABS 2008) and estimated area data (using HANTS) for 

2005. 
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The rigorousness of the 1999 land use data (DNR&W 2006) was assessed using 

the pixel accuracy of the HANTS approach with and without land use mask.  

 

 

6.3 Results and Discussion 

6.3.1 Observed Field Training Sampling Paddocks 

Collating of ground truth data resulted in 792 and 1021 sampling points within the 

cropped area and 33,179 and 38,632 non-crop sampling pixels for the 2005 and 2006 

seasons, respectively (Table 6.1). More non-crop sampling points were collated 

(based on randomly selected field data points) during the 2006 season mainly because 

of the drier conditions in SEQ, which resulted in large fallowed areas observed for 

that region within the feature class. The increase in crop training samples for the 2006 

season, compared to 2005, mainly came from the improved wheat conditions in CQ 

for that season (increase from 315 to 621 for 2005 to 2006 season). In addition, 

paddock sizes in CQ tend to be much larger than southern Queensland, thus resulting 

in more pixels per paddock selected. No barley paddocks were observed during the 

field trips for CQ in both seasons, while no chickpea paddocks were observed in SEQ 

during both seasons. In addition, no barley crops could be located during the field 

trips in SEQ for 2006.  

 

The low number of independent training pixels is of some concern, particularly in 

the case of the R Chickpea classes of all sub-regions and seasons, and the R Wheat 

and R Barley classes for SEQ during both seasons. Such crop classes were however 

included (and not merged) in order to get a more accurate indication of the ability to 

discriminate wheat areas from barley areas within each sub-region. The collating of 

data through field work for 2005 and 2006 seasons represented what was practically 

possible. However, to address the issue of artificial accuracy due to low number of 

independent training samples for some crop classes, more emphasis needs to be 

placed on accuracy in the absence of chance calculated using the KC. The KC serves 

as an indicator of the extent to which the PCC values of an error matrix are due to 

true agreement versus chance agreement (Lillesand et al. 2004). 
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6.3.2 Crop Classification at Pixel Scale 

6.3.2.1 Early-season Prediction of Crop Area 

The early-season 500TEVI  approach showed good ability to capture crop 

canopy vigour across the entire QLD cropping region. In addition, spatial (i.e. 

between sub-regions) as well as temporal (i.e. July and August) differences in green-

up extent between July and August for 2005 and 2006 were well captured using this 

approach. 

 

Figures 6.3 and 6.4 show areas (at each pixel) where the 500TEVI values are 

greater or equal than 500, while Figures 6.5 and 6.6 depict the classified maps (crop 

vs. non-crop) for July and August, respectively, for the 2005 season.  

 

The red pixels indicate higher 500TEVI  values (Figure 6.3 and 6.4), while 

blue represents lower values. In both seasons, the derived images indicate low 

500TEVI  values (blue) outside the cropping region (grey boundary lines). Most of 

these pixels get classified with non-crop (white) when applying the unsupervised k-

means classifier (Figures 6.5 and 6.6). The classified image for July 2005 (Figure 6.5) 

indicates more areas classified as winter crop than what was evident during August 

2005 (Figure 6.6), specifically in CQ. This was likely due to an earlier planting 

regime for that area (Routley 2006).  

 

The unsupervised classification approach used here seems to be able to handle 

spurious low EVI pixel values reasonably well. For example, an area of low 

500TEVI  values (blue colour) for August was clearly visible in the centre of the 

image (Figure 6.4 and Figure 6.8), and when applying the classifier to this image, the 

feature mostly disappears as it is classified as non-crop (Figure 6.6 and Figure 6.10). 

This feature was likely a result of the composition process, which involves selecting 

pixels with the highest quality vegetation index after filtering on view zenith angles 

and cloud cover during the 16-day period (TBRS 2007). However, this artificial 

feature was mainly outside the 1999 agricultural land use region and the classifier 

corrected it to some degree, thus allowing further analysis. 
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Comparison of the 500TEVI  imagery for July (Figures 6.7 and 6.8) with 

August (Figure 6.9 and 6.10) of 2006 showed an increase in the likely winter crop 

area in CQ over that for southern Queensland during July. For August however, the 

green-up areas were more evident in the Far South West Queensland’s cropping  

 

 

Figure 6.3: Image as derived from 500TEVI  approach for July for 2005 season. No 

land use mask overlayed. 
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Figure 6.4: Image as derived from 500TEVI  approach for August for 2005. No land 

use mask overlayed. 
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Figure 6.5: The classified image for the 500TEVI  image for July for 2005 season. No 

land use mask overlayed. 
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Figure 6.6: The classified image for the 500TEVI  image for August for 2005 season. No 

land use mask overlayed. 
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Figure 6.7: Image as derived from 500TEVI  approach for July for 2006 season. No 

land use mask overlayed. 

 

 

 

 



Estimating winter crop area across seasons and regions in Queensland                             Chapter 6 

 

 

132 

 

Figure 6.8: Image as derived from 500TEVI  approach for August for 2006 season. No 

land use mask overlayed. 
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Figure 6.9: Classified image as derived from 500TEVI  image for July for 2006 season. 

No land use mask overlayed. 

 

region than areas of CQ. This suggested an early start to the winter cropping season in 

CQ due to earlier plantings in that region, while most of the winter crop in southern 

Queensland was planted later than in CQ. This concurred with findings in QDPI&F’s 

crop outlook report for that season, which concluded an earlier start to the crop  
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Figure 6.10: The classified image for the 500TEVI  image for August for 2006 season. 

No land use mask overlayed. 

 

growing season that was mainly triggered by good planting rainfall 

(www.dpi.qld.gov.au/fieldcrops).  

http://www.dpi.qld.gov.au/fieldcrops
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6.3.2.2 Accuracy of Predicting Total Winter Crop at Pixel Scale 

High accuracies were evident in predicting total winter crop area for July and 

August for both seasons. However, the highest accuracy was measured when 

combining/merging the classified crop area maps of July and August for each season. 

The PCC and the KC values are shown in Table 6.2. These statistics were derived 

after classification of the 500TEVI  imagery into classified images encompassing 

only two classes i.e. crop and non-crop. Although the PCC was high across all 

periods (July and August), the merged classified 500TEVI  image of July and 

August had the highest accuracy, with PCC values equal to 99.96% and 99.76% for 

2005 and 2006, respectively. This was also the case when calculating the KC with the 

highest values of 0.99 and 0.78 found for the combined approach in 2005 and 2006 

seasons, respectively. 

 

The lower accuracy during the 2006 season is likely attributed to the fact that it 

was a much drier season in southern Queensland, which resulted in fewer training 

pixels (Table 6.1) for SEQ and SWQ (i.e. southern Queensland) than in CQ. This 

created heterogeneous cropping condition between sub-regions, which resulted in 

different temporal EVI crop profiles between CQ and southern Queensland for 2006. 

In addition, it suggested likely erroneous classification of crop and non-crop when 

applying training pixels grouped together from all sub-regions within the Queensland 

cropping region  

 

Table 6.2: Pixel accuracy and kappa coefficient for the T500 classified 

imagery for July, August, Average of July and August, and the combined 

image of July and August for both the 2005 and 2006 seasons. 

           PCC%

July August Avg Combined

2005 99.72 98.85 99.29 99.96

2006 98.26 98.47 98.37 98.74

          Kappa

2005 0.93 0.67 0.80 0.99

2006 0.66 0.59 0.63 0.78
 

 

Kappa coefficients (KC) for July, August and the combined approach (Table 6.2.) 

differed significantly at the 95% level (data not shown). Although the PPC values 



Estimating winter crop area across seasons and regions in Queensland                             Chapter 6 

 

 

136 

were high and very similar for all periods and approaches, the real accuracy measured 

through the KC value (in the absence of chance) was the highest for the combined 

approach in both seasons. Hence, the combined approach was the most appropriate in 

determining early-season crop area estimates across regions and seasons. 

 

6.3.3 End-of-season Area Estimates 

6.3.3.1 Reconstructing the MODIS EVI Time Series Using the HANTS 

Approach 

The multi-temporal HANTS approach showed good ability in mimicking the 

original EVI data profiles at pixel scale for the 2005 and 2006 seasons. The first three 

harmonics and the additive or average term (harmonic 0) were used to determine the 

ability of this approach to discriminate between different winter crops. Figures 6.11 (a 

& b) show the reconstructed (stippled line, through the HANTS approach) and the 

original time (solid line, observed 16-day EVI) series for a randomly selected wheat 

pixel for the 2005 and 2006 season, respectively. It is evident that the reduction in 

data from 23-images to 7-images (by applying the HANTS approach) numerically 

mimics the original data time series. Reconstruction of the original time series using 

the HANTS approach with the first four harmonics resulted in a relatively smooth 

EVI curve profile. However, the recreated temporal EVI profile had attributes of peak 

greenness, time of peak greenness and variance similar to that of the original profile. 

Therefore, this was not regarded as a constraint in this study since (i) 95% of the 

information of the original time series is accounted for using these three attributes 

(Lillesand et al. 2004) and (ii) the aim of this study was to discriminate between 

different crop canopy EVI trajectories/profiles rather than focus on differences in 

troughs or peaks at certain time periods during the crop growth period.  

 

Figures 6.12 (a & b) show the average temporal EVI profile of each crop type for 

each sub-region for 2005 and 2006, respectively. No training samples were observed 

for barley in CQ and chickpea in SEQ for 2005 season, while barley for CQ and SEQ 

and chickpea for SEQ were not observed during fieldtrips for the 2006 season (Table 

6.1). The temporal EVI profiles for barley in SWQ and SEQ were very similar for 

2005 season. In addition, chickpea growth, for the training paddocks, was very 

similar in CQ and SWQ. Conversely, wheat canopy vigour was remarkably different 

from CQ, SWQ and SEQ for the 2005 season (Figure 6.12a).  
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Figure 6.11: Time series of actual EVI (solid line) and reconstructed EVI (stippled line) using the 

HANTS multi-temporal approach for one wheat pixel for 2005 (a) and 2006 (b) seasons, 

respectively. 
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Figure 6.12: Mean temporal EVI profiles for training samples collated for SWQ (solid lines), CQ 

(square symbol) and SEQ (triangular symbol) for the main winter crops for 2005 (a) and 2006 

(b) seasons, respectively. Wheat is displayed in green, barley in brown and chickpea in blue. 

 

Temporal EVI profiles for the crop types for the 2006 season (Figure 6.12b) differ 

from the EVI crop profiles in the 2005 season (Figure 6.12b), mainly in timing and 

magnitude of maximum crop canopy growth. In general, crop (wheat and chickpea) 

emergence was at least one month earlier (DOY 161) in CQ than in SWQ (DOY 193) 

(Figure 6.11b). Barley was only observed in SWQ, while only wheat was observed 

for the SEQ region during that season. The mixed crop canopy patterns were mainly 
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due to the spatial variability in rainfall amount and timing within each sub-region. It 

also emphasises the importance of capturing sufficiently large samples of training 

points within each sub-region. 

 

6.3.3.2 Pixel-scale Accuracy at the End-of-season 

6.3.3.2.1 Accuracy at the Whole of Queensland Level 

The accuracy when using all training samples to discriminate between pixels 

classified as wheat, barley, chickpea or non-crop for the entire cropping region was 

substantially high with PCC values of 99% and 98% for 2005 and 2006 seasons, 

respectively (Table 6.3). Although these PCC values were relatively high, the kappa 

coefficients were moderately lower with values of 0.87 and 0.79 for 2005 and 2006 

seasons, respectively. The KC values suggested a slight chance of misclassification of 

some crop types, which is to be expected. The reduction in accuracy is likely to 

mainly come from the misclassification of wheat, which showed lower PCC values of 

70% and 62% for 2005 and 2006, respectively. Conversely, the accuracies (PPC) for 

barley and chickpea were 96% and 93% for 2005 and 85% and 93% for 2006.  

 

6.3.3.2.2 Accuracy at Sub-regional Level 

Limiting the use of ground truth training data to within sub-region, substantially 

improved the accuracy levels across sub-regions, and within seasons. Specifically, the 

accuracy for correctly classifying observed wheat pixels, using the maximum 

likelihood classifier on the HANTS derived data, improved from 70% to 95% for the 

2005 season and from 62% to 82%, for the 2006 season.  

 

PCC values close to 100% (Table 6.3) are likely to be an over estimation of the 

real accuracy for these crop categories. Although all the random independent 

observed samples were correctly classified this was largely a result of the small 

sample size (~ 6) (Table 6.1). The true classification accuracy for these crops is closer 

to 85% given that the ground truth sample sizes for training the classifier (i.e. 

HANTS) was greater than 20 samples (Mather 1999; Van Genderen et al. 1978).  
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Table 6.3: PCC for all winter crops and non-crop (Other) for Queensland, 

SWQ, CQ and SEQ regions. The kappa coefficient is given in closed brackets. 

2005

QLD SWQ CQ SEQ

Wheat 70 88 97 100

Barley 96 94 na 100

Chickpea 93 100 83 na

Other 100

Overall 99 (0.87)

2006

Wheat 62 74 71 100

Barley 85 86 na na

Chickpea 93 92 86 na

Other 100

Overall 98 (0.79)
 

 

6.3.3.3 Merging of Sub-region Classified Images to Create Whole of 

Queensland Image 

Merging the classified images for each sub-region resulted in improved crop 

discrimination at the sub-region level. Figures 6.13a and 6.13b show the final 

classified areas for wheat, barley, chickpea and non-crop when merging the final 

classified images for each sub-region for 2005 (Figure 6.13a) and 2006 (Figure 

6.13b), respectively. More pixels were classified as winter crop during the 2005 

season than the 2006 season. This was mainly because the 2006 recorded below 

average rainfall, especially in the southern parts of Queensland’s cropping region. 

This season was classified as an El Niño year by the Bureau of Meteorology 

(www.bom.gov.au) early in the 2006 season. El Niño years usually coincide with 

below average rainfall in most of eastern parts of Australia (Allan 2000), and thus 

poor winter cropping seasons (Potgieter et al. 2002; Potgieter et al. 2005b). Overall, 

more barley was evident during the 2005 season in the southern region of Queensland 

than in CQ. During the 2006 season, more pixels were classified as chickpea in CQ 

than was evident in the southern parts of Queensland. 

 

http://www.bom.gov.au/


Estimating winter crop area across seasons and regions in Queensland                             Chapter 6 

 

 

141 

 

Figure 6.13: Final classified areas for wheat, barley, chickpea and non-crop (grey) when merging 

the final classified images for each sub-region (SEQ – light grey, SWQ – medium grey and CQ – 

dark grey) for 2005 (a) and 2006 (b), respectively.   

 

6.3.4 Feature Classification and Validation at Regional Scales 

6.3.4.1 Early-season method 

6.3.4.1.1 Total Crop Area Prediction 

State level area estimate data for wheat, barley and chickpea for the 2005 and 

2006 seasons were published by ABARE in their quarterly commodity forecast 

reports (Table 6.4). Predictions derived from the 500TEVI  early season approach 

were contrasted against the ABARE data for the 2005 and 2006 seasons. The ABARE 

data was generated from surveyed values from industry as well as expert knowledge 

for areas harvested to wheat, barley and chickpea and total winter area. The total 

winter crop area estimated by ABARE equates to ~1 million hectares for the 2005 

season and ~0.7 million hectares (Ha) for the 2006 season with an error of between 

20% to 50% (Lawrance 2007).  
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Table 6.4: Total winter crop and specific winter crop area figures for 

Queensland as published by ABARE for the 2000 to 2006 seasons (Lawrance 

2007).  

Year Wheat (000 Ha) Chickpea (000 Ha) Barley (000 Ha) Total (mHa)

2000 885 71 112 1.1

2001 604 46 96 0.8

2002 514 111 108 0.7

2003 790 76 151 1.0

2004 711 41 97 0.9

2005 799 36 146 1.0

2006 550 41 90 0.7  

 

Early-season prediction of total winter crop area estimates from MODIS imagery 

are given in Table 6.5. These predictions were summed within the land use mask of 

1999. This was done to limit the green-up areas to only those areas known to be used 

for cropping, since some pastures/fodder or forest areas are also likely to show green-

up in canopy vigour during winter. This partially avoids an over-estimation of crop 

area planted.  

 

The estimates for total winter crop area ranged from 715,000 ha to as high as 1.28 

million ha for the 2005 season (Table 6.5). Although the average area of July and 

August was the closest to the ABARE figure of 1 mHa, it is likely to be spurious, 

since the pixel accuracy (i.e. kappa coefficient) was the highest for the combined 

early-season approach (Table 6.2).  

 

Table 6.5: Total winter crop predictions using the early-season 500TEVI  

approach as described in Chapter 5. These estimates were accumulated within 

the land use polygons of 1999. 

Season July August Average Combined

2005 1284345 715113 999729 913962

2006 319234 278773 299003 515483  

 

The prediction using the combined approach was 8.6% below the total winter 

crop area estimate of ABARE for 2005 (Figure 6.14). Early-season predictions for the 

2006 season ranged from 278,000 ha to 515,000 ha. The combined approach 

prediction of 515,000 ha had the smallest error of 184,000 ha (i.e. 26%), below the 

ABARE figure of 700,000 ha, of all early-season approaches, which was consistent 
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with the higher pixel accuracy of this approach (Table 6.2). The use of the combined 

approach showed high overall accuracy both at pixel (reference data) as well as 

regional (ABARE estimates) scales. A bias towards under estimating the ABARE 

data was noticeable for almost all early-season approaches (Figure 6.14). This was 

likely a result of the 1999 land use mask overlay, which had less area that could be 

cropped than what is currently classified as dryland cropping. This is discussed later 

in more detail (Section 6.3.4.2.2). Finally, it is envisaged that the derived early-season 

approach could also be applied to improve on total winter crop area estimates or fill-

in the gaps for years when ABS agricultural census data was not available as was 

elucidated in Chapter 5.  
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Figure 6.14: Percent deviation of total winter crop predictions from the actual ABARE data for 

both seasons. The early-season 500TEVI  approach (for July, August, Average and 

Combined) as described in Chapter 5 was used. These estimates were accumulated within the 

land use polygons of 1999. 

 

6.3.4.2 End-of-season Method 

6.3.4.2.1 Total Crop Area Estimates 

Crop area estimates from the HANTS approach were also compared with ABARE 

survey data. Total winter crop area estimates were calculated merging data from each 

sub-region, which were classified using only training samples from within that sub-
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region (i.e. sub-regional approach), with no land use mask (Table 6.6c and 6.7c). 

This resulted in total winter crop area estimates of 1057,000 ha (+5.7%) and 621,000 

ha (-11%) compared to the ABARE figures of 1 mHa and 0.7 mHa for Queensland 

for 2005 and 2006, respectively. Using all ground truth observations to classify the 

entire Queensland cropping area with no land use mask generated discrepancies of 

43% and 29% for 2005 and 2006, respectively (Table 6.6a and 6.7a). While part of 

this error can be attributed to error in the ABARE data as mentioned in the previous 

section. The result highlights the need for classification at the subregion level.  

 

Tables 6.6 and 6.7 (a) and (b) give the crop area estimates derived by training the 

HANTS images on observed sampling points across the entire Queensland region, 

while (c) and (d) are the estimates derived when the HANTS imagery was classified 

at sub-region level (i.e. sub-regional approach). The results derived when no land use 

mask was applied is given in (a) and (c), while the results when the land use mask 

was applied are shown in (b) and (d). Detail aggregated shire level area estimates are 

given in Appendix B, in Tables 5 to 12.  

 

 

6.3.4.2.2 Crop Area Estimates Using Land Use as Primary Mask 

Large discrepancies from ABARE estimates were evident in the final total 

Queensland area estimates when the end-of-season HANTS approach area estimate 

was derived either with or without a land use mask. The difference was 635,070 ha in 

2005 when no land use mask was used (Table 6.6 and 6.7) and training of pixel 

classification was based on all Queensland (QLD) ground truth sampling points 

(QLD method in Table 6.6a and b, region = Queensland). When the sub-regional 

approach to pixel classification was used, this difference was reduced to 411,000 ha 

(Table 6.6c and d, region = QLD). For the 2006 season, these differences between 

using no land use mask and using the land use mask were 317,000 ha (for the all QLD 

training method) (Table 6.7a and b, region = QLD) and 182,000 ha (for the sub-

regional training method) (Table 6.7c and d, region = QLD). Thus, the land use mask 

introduces a bias towards under estimating the total and specific winter crop area 

within a specific season. These differences in area estimates can mainly be attributed 

to a change in land use patterns since 1999, specifically in the south western parts of 

the QLD cropping region (Figure 6.15a and b).  
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Figure 6.15: The likely difference in land use for winter cropping between 1999 (blue) and either 

2005 (a) or 2006 (b). Red areas show the areas likely to be currently cropped and not cropped in 

1999. 

 

Closer investigation of the red areas showed temporal EVI trajectories similar to 

that of winter cropping for both seasons (data not shown). This illustrates the 

importance of using accurate up-to-date land use maps when determining early-

season winter crop area estimates, whereas by the end-of-season, classification of 

non-cropping areas had high accuracy at pixel scale (Table 6.2). The end-of-season 

HANTS approach showed high accuracy in correctly classifying non-crops (i.e. Other 

in Table 6.1) generated from a very large number of sampling points across QLD 

during both seasons. This suggests that the multi-temporal HANTS approach could be 

used in detecting changes in land use patterns related to cropping. This concurs with 

earlier research elucidating the success in the use of time series analysis (e.g. 

HANTS) in determining broad land use patterns (Hall-Beyer 2007; Menenti et al. 

1993; Verhoef et al. 1996; Wannebo et al. 2000).  
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Table 6.6: End-of-season area estimates (Ha) for each sub-region and at state 

level for 2005 based on whole of Queensland (a and b) regional training of 

pixels (c and d). The area estimates were derived either without (a and c) or 

with (b and d) the 1999 land use overlay.  

(a) Method Region Total Wheat Barley Chickpea

CQ 204579 181539 17178 5863

QLD SWQ 1109216 787018 234712 87486

no land use SEQ 122827 95371 17056 10400

QLD 1436622 1063928 268946 103748

(b) Method Region Total Wheat Barley Chickpea

CQ 160961 142827 12627 5507

QLD SWQ 543692 364722 128769 50201

land use SEQ 96899 76264 13164 7472

QLD 801552 583812 154560 63180

(c) Method Region Total Wheat Barley Chickpea

CQ 173736 171633 0 2103

Sub-region SWQ 778037 655830 84368 37840

no land use SEQ 105382 51368 54014 0

QLD 1057155 878830 138382 39943

(d) Method Region Total Wheat Barley Chickpea

CQ 141641 139645 0 1996

Sub-region SWQ 422262 351292 46621 24349

land use SEQ 81819 47222 33789 808

QLD 645722 538159 80410 27154  

 

6.3.4.2.3 Specific Crop Area Estimates 

Specific crop area estimates, using the HANTS sub-regional approach and with 

no land use mask, showed high accuracy for wheat, barley and chickpea for 2005 and 

for wheat in 2006, but poor accuracy for barley and chickpea in 2006, when 

compared to the surveyed ABARE data. The deviations in area estimates for wheat, 

barley and chickpea were 9.9%, -5.2% and 10.9% and -2.8%, -78% and 64% for 2005 

and 2006, respectively (Figure 6.16).  

 

The large error in area estimates for barley and chickpea in 2006 can mostly be 

attributed to the imperfect ABARE estimates, which showed large relative survey 

errors as discussed earlier. This was further confirmed through anecdotal statistics 

from experts in the field. An extension officer in CQ (Lynch 2007) and the 

development officer of pulses Australia’s northern region (Cumming 2007), estimated 

the chickpea area planted during 2006 in CQ to be close to 50,000 ha, which makes 

the HANTS estimate of 67,000 ha a much more realistic estimate of what could have 
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occurred during that season across QLD. The ABARE estimate was 41,000 ha for 

chickpea for the entire QLD cropping region suggesting a large under estimation for 

chickpea in 2006.  
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Figure 6.16: Percent deviation (%) of end-of-season area estimates from ABARE estimates fro 

each crop and total winter crop, using the sub-regional HANTS approach with no land use 

overlay for both the 2005 and 2006 seasons. 

 

For barley during the 2006 season, the error was likely a result of barley being 

misclassified as wheat (therefore the over estimation of wheat area). However, some 

barley crops traditionally get fed-off or could have failed, specifically during the 2006 

season when very little rain was recorded in most of the southern Queensland 

cropping region. Furthermore, no barley paddocks were included in the training 

samples for CQ and SEQ, which also resulted in no area been classified to barley for 

the 2006 season for those regions, thus an underestimation of the area planted to 

barley.  
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Table 6.7: End-of-season area estimates (Ha) for each sub-region and at 

state level for 2006 based on whole of Queensland (a and b) regional 

training of pixels (c and d). The area estimates were derived without (a and 

c) or with (b and d) the 1999 land use overlay. 

(a) Method Region Total Wheat Barley Chickpea

CQ 390517 320998 23470 46049

QLD SWQ 423223 313151 16038 94034

no land useSEQ 88820 86438 924 1458

QLD 902559 720587 40432 141540

(b) Method Region Total Wheat Barley Chickpea

CQ 296713 235551 17656 43506

QLD SWQ 234444 169334 9729 55381

land use SEQ 54387 52699 485 1203

QLD 585545 457584 27871 100090

(c) Method Region Total Wheat Barley Chickpea

CQ 288929 248841 0 40089

Sub-region SWQ 282122 235774 19100 27248

no land useSEQ 49923 49820 0 104

QLD 620975 534434 19100 67440

(d) Method Region Total Wheat Barley Chickpea

CQ 246183 208111 0 38072

Sub-region SWQ 162513 134173 11532 16809

land use SEQ 29967 29572 301 95

QLD 438664 371856 11832 54975  

 

6.3.5 Shire-scale Accuracy for the 2005 Season 

High accuracy was evident when contrasting predicted shire-scale crop area 

estimates against actual shire scale area estimates for total and specific crops in 2005. 

The predicted area estimate was highly correlated with the actual total winter crop 

area estimates and not significantly different from the 1:1 relationship (Figure 6.17a 

and b) for the 2005 season across Queensland. The accuracy of early-season 

500TEVI  combined and end-of-season (HANTS no land use) time-series 

approaches to determine area estimates across all main winter crop producing shires 

for QLD was assessed by contrasting actual area figures (ABS 2008) against 

predicted area estimates for wheat, barley and chickpea at both periods for the 2005 

season. The percentages of variance in observed area explained by end-of-season area 

estimates using HANTS (with no land use overlay) were 89% (R
2
 = 0.89), 82% (R

2
 = 

0.82) and 52% (R
2
 = 0.52) for wheat, barley and chickpea, respectively for that 

season. This indicated high accuracy for final predictions for wheat and barley across 
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shires for 2005. The accuracy for determining the final chickpea area was not as 

good. This suggested a much weaker ability of this approach to discriminate chickpea 

from the other two crops for 2005 season, which was likely caused by the small 

training sample size (43 samples in total (SWQ), Table 6.1) collated and subsequently 

used to classify the image. The low training sample number could mainly be 

attributed to the small area planted to chickpea for the 2005 season compared to the 

2006 season (Lawrance 2007), thus making it even more difficult to capture enough 

ground truth observations across the region for that season. The early-season 

approach (combined T500) explained 87% (Figure 6.11a) and the end-of-season 

explained 92% (Figure 6.17b) of the total variation of the actual observed ABS winter 

crop area estimate across all shires for 2005. Both the early-season and end-of season 

approaches had relatively small but similar standard errors (se) of 16,380 ha and 

12,850 ha, respectively. 

 

The discrepancies between actual and predicted for the early-season estimate are 

likely a result of very early or very late planted crops, as well as canopy vigour 

measured from other crops, such as fodder and/or lucerne, which are traditional 

winter crops for cattle. The likely error in the land use map of 1999 used as a mask-

out, as discussed earlier, is also contributing to the variability in the predictions, 

especially in shires having planted areas of greater than 50,000 ha (Figure 6.17a). 

Using the early-season approach to predict total winter crop area showed a useful 

ability to predict actual crop area across all shires for 2005. The fitted regression was 

very close (slope (b) = 1.02) to the 1:1 relationship.  

 

Predicted end-of-season crop area estimate was highly correlated with actual area 

and significantly different from a 1:1 relationship (Figure 6.11b). Differences in the 

final estimate for total winter crop area and the actual data across all Queensland 

shires are likely a result of the error associated with the reduction in the temporal 

information (i.e. from 23 to 7-images) using the HANTS approach. Another likely 

source of error could be the insufficient collating of crop canopy spectral profiles 

sampled through the ground truthing process.  
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Figure 6.17: Scatter plot of the (a) predicted early-season total winter crop area estimate 

for each shire (Combined 500TEVI  approach) and the (b) end-of-season total 

winter crop area estimate for each shire (HANTS). The portion of variance explained is 

given as the r-square on each graph. Lower (ll) and upper (ul) 95% confidence intervals 

(CI) are included in brackets for each coefficient in the equation: Y = a (llCI, ulCI) + 

b*X (llCI, ulCI). The 1:1 line is shown as a stippled line, while the solid black line is the 

fitted regression line. Where a is the intercept and b is the slope. 
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Conversely, the predicted area estimates could also be closer to the true estimate 

of total cropping area than the census data, since the actual observed ABS census 

shire data had relative accuracies of between 10% to 25% for wheat and barley and 

up to 50% for chickpea depending on the sampling numbers within each shire (ABS 

2008). Hence, the predictions are within the bounds of the ABS estimates. 

 

Overall, the early-season approach showed significant correlation and comparable 

accuracy to predict actual total winter crop area across QLD during the 2005 season. 

This was comparable to that achieved by using the end-of-season approach, which 

suggests appreciable value in application for industry.  

 

 

6.3.6 Value to Industry 

The combined 500TEVI  approach for early-season estimates of total winter 

crop area as well as the end-of-season HANTS approach to discriminate between 

wheat, barley and chickpea showed appreciable accuracy. The land use map of 1999 

seems to be outdated and the time series analysis approach (e.g. HANTS) could be 

used to accurately discriminate between cropping and non-cropping areas as 

illustrated here. This study successfully applied the multi-temporal approaches, 

derived in Chapters 4 and 5, across different regions and seasons.  

 

This study found that the multi-temporal 500TEVI  and the HANTS approach 

can be used to determine the missing link in crop forecasting, i.e. planted area. 

Further, this could be achieved before flowering as well as after maturity. Such 

estimates can now be readily integrated with the commodity forecasting system of 

QDPI&F to create production estimates for winter crops at shire scale across large 

regions.  

 

It as expected that this technology will be transferable, though with sufficient 

resource allocation, to different cropping seasons (i.e. summer crops) and other 

regions across Australia. The utility of this technology will mainly depend on the 

trade-offs between risk (depending on accuracy) and value (determined by the 

timeliness of the information) of such information to the grains industry decision-

making processes. It is envisaged that the main value of this proposed predictive area 
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estimate methodology will come from the ability of the system to predict firstly, total 

winter crop area estimates before harvest, secondly, the ability to transform the area 

and yield estimates into a production estimate, and finally, the ability to accurately 

discriminate between specific crops within a growing season.  

 

 

6.4 Conclusion 

Multi-temporal approaches that used MODIS imagery during the season and at 

end-of-season showed appreciable prediction accuracy for total (1 to 2 months before 

flowering) as well as specific winter crop area estimates (after harvest) across 

different seasons and regions. Accurate area estimates were mainly evident using no 

land use overlay when determining end-of-season area estimates as new areas had 

likely come into cropping. Early-season crop area estimates showed high accuracy 

and had a lead time of up to four months before harvest. Higher accuracy in area 

estimates was achieved when pixel training for crop classification was done at sub-

regional level. 

 

It is anticipated that this forecast, which will be integrated with the shire yield 

prediction of QDPI&F, will be of significant value to agri-business in their decision-

making processes, such as bulk handling of grain and hedging of financial risk by 

forward buying or selling of crops within a current season. Successful implementation 

will require a systemised approach to ground truthing for pixel classification for each 

season and sub-region. Further research is necessary to update the land use change 

patterns, from the 1999 land use overlay. This research contributes to the body of 

production knowledge within the agricultural industry and is innovative, original and 

transparent, in determining early-season total winter crop area estimates and crop 

specific end-of-season area estimates. 



Summary, Concluding Remarks and Recommendations Chapter 7 

 

 

153 

Chapter 7 

Summary, Concluding Remarks and Recommendations 

 

“To know that you know, and to know that you don‟t know - that is real wisdom.” 

Confucious (551-479 BC) 

 

 

7.1 Summary 

Since early settlement, the existence of most rural communities in Australia has 

depended on agriculture. Dryland cropping has been one of the main activities 

contributing towards the long-term viability and sustainability of these communities. 

This is still true today. However, the operating environment of producers has become 

more challenging. Food producers are increasingly exposed to variability and change 

in world markets, commodity prices and climate, thus increasing their vulnerability 

and threatening their livelihoods. Advance knowledge of the associated risk in crop 

production, however, can mitigate some of the impact of such factors. Hence, easily 

accessible, near real-time, objective and accurate crop production information is 

becoming increasingly valuable in decision-making for agricultural industry and 

government agencies. To date, industry and crop forecasters have had a good idea of 

the potential crop yield for a specific season, but accurate, timely and objective 

information on crop area for a shire or region has been mostly unavailable. The main 

aim of this thesis was to develop approaches to estimate crop area, i.e. the missing 

link, across different regions and seasons using remotely sensed information available 

in near real-time. 

  

This issue was addressed by developing and applying mutli-temporal remote 

sensing techniques to determine winter crop area estimates at regional scale. 

Particularly, this study set out to:  

 Assess the ability of a range of approaches to using multi-temporal 

MODIS imagery to estimate total end-of-season winter crop area; 

  Determine the discriminative ability of such remote sensing approaches in 

estimating area totals for wheat, barley and chickpea within a specific 

cropping season; 
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 Develop and evaluate the methodology for determining the predictability 

of crop area estimates well before harvest for wheat, barley and chickpea; 

and 

 Validate the ability of multi-temporal MODIS approaches, as derived in 

the study region, to determine the pre-harvest and end-of-season winter 

crop area estimates for different seasons and regions. 

 

Chapter 4 illustrated the ability of multi-temporal EVI MODIS trajectories to 

determine total as well as specific winter crop area estimates after harvest (i.e. the 

first two objectives) for the Jondaryan and Pittsworth shires for 2003 and 2004 winter 

crop seasons. The multi-temporal HANTS, MEVI, Curve fitting functions (i.e. CF1, 

CF2) and PCA methods showed high accuracy in discriminating between crops and 

non-crops as well as non-crops from specific crops like wheat, barley and chickpea at 

pixel and shire scales. The use of multi-temporal approaches performed significantly 

better than the traditional single-date approach at maximum canopy growth (around 

flowering), which is likely to produce spurious crop area estimates at shire scale. This 

is mainly due to the fact that the timing or acquisition date of the image is usually out 

of sync with maximum canopy growth, which coincides with flowering, as a result of 

variable planting dates within a shire. The increased capability, as demonstrated here, 

of the derived multi-temporal approaches to discriminate total and specific shire scale 

winter crops is mainly attributed to the use of all available canopy vigour information 

measured through the crop growth EVI profile of the entire cropping season. This 

allowed the capturing of all phenological stages and subsequent interactions between 

soils, climate, crop management practices and pest and diseases at a pixel scale. 

 

The research question of ―how early and with what accuracy?‖ area estimates can 

be determined using multi-temporal MODIS EVI imagery was investigated in 

Chapter 5. This was done for two study shires (i.e. Jondaryan and Pittsworth) for the 

2003 and 2004 seasons. Since discrimination between specific crops was most 

accurate after harvest (Chapter 4), the focus in this chapter was on deriving total 

winter crop area estimates (including wheat, barley, chickpea and other minor crops 

like forage). A simple metric, which measures the green-up rate of the crop canopy, 

was derived. This was done by calculating the accumulated difference of three 
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consecutive images for three consecutive 16-day EVI threshold cut-offs ( iEVI , 

where i = 250, 500 and 750) at monthly intervals from April to October. July showed 

the highest pixel accuracy with percent correctly classified for all thresholds of 93.7% 

and 97.9% for 2003 and 2004, respectively. The differences in accuracy between the 

three cut-offs were minimal and the T500 threshold was selected as the preferred cut-

off to avoid measuring too small or too large fluctuations in the differential EVI 

values. 

 

When compared to the ABS survey data on crop area across shires and seasons, 

average percent differences for the 500TEVI  for July and August ranged from -

19% to 9%. To capture most of the variability in green-up within a region, the 

average 500TEVI  of July and August was used for the early-season prediction of 

total winter crop area estimates. This resulted in high accuracy (R
2
 = 0.96; RMSE = 

3,157 ha) for predicting the total winter crop from 2000 to 2004 across both shires. 

This result indicated that this simple multi-temporal approach could be used with 

confidence in early-season crop area predictions at least one to two months ahead of 

anthesis. 

 

The rigorousness of the multi-temporal HANTS and 500TEVI  approaches 

were investigated when applied across different regions and seasons (Chapter 6). 

Thus, extrapolability of these approaches to predict early-season, and determine end-

of-season, winter crop area estimates was validated across the entire Queensland 

cropping region for 2005 and 2006 seasons. Early-season prediction for total winter 

crop area estimates was done by applying the 500TEVI  for July, August, Average 

(July and August) as well as the Combined area estimate of July and August. The 

combined approach showed the highest pixel scale accuracy with kappa coefficients 

of 0.99 and 0.78 for 2005 and 2006, respectively. Total winter crop estimates at shire 

scale were contrasted against ABARE data. The combined approach of July and 

August had deviations of 8.6% and 26% below the industry estimate of 1 mHA and 

700,000 ha for 2005 and 2006, respectively. These estimates were derived using the 

land use mask. 
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For end-of-season crop area estimates, the pixel classification of specific winter 

crops was done using all ground truth data points across Queensland. In addition, 

classification was done for each sub-region using only ground truth points within that 

sub-region. In both cases the multi-temporal HANTS was used. Pixel accuracies in 

the absence of chance (measured through the kappa coefficient) were the highest 

when the sub-region pixel classification approach was used for both seasons. The 

HANTS approach was used to classify crops within each sub-region without using the 

land use mask overlay. When results were aggregated only relatively small deviations 

from the ABARE data for 2005 and 2006 were found. Total winter crop percentage 

deviations were 5.7% and -11% for the 2005 and 2006 seasons, respectively, while 

deviations for specific area estimates for wheat, barley and chickpea were 9.9%, -

5.2% and 10.9% for 2005 and -2.8%, -78% and 64% for 2006, respectively. Closer 

investigation suggested a degree of error in the ABARE estimates specifically for 

chickpea when compared to industry figures.  

 

Accuracy at shire scale was tested by comparing ABS shire scale survey data with 

predicted area estimates using these multi-temporal approaches for the 2005 season. 

End-of-season predictions, using HANTS, explained 92%, 89%, 82% and 52% of the 

observed variability for total winter crop, wheat, barley and chickpea cross all shires. 

Early-season estimates, using the 500TEVI  combined method, had R
2
 of 0.87. 

Importantly, not only did the HANTS approach show high accuracy in discriminating 

crops from non-crops, it also highlighted the importance of using a contemporary 

land use pattern mask. 

 

 

7.2 Concluding Remarks 

This study has shown that multi-temporal approaches (i.e. HANTS, MEVI and 

PCA) can be applied successfully to estimate total winter crop area at harvest and 

well before harvest. Further, high discriminative ability was achieved in determining 

crop area for specific crops. This discriminative ability, although after harvest, is not 

only well in advance of any census or survey estimates disseminated by ABS, but 

also adds objectiveness and transparency to crop information produced by agencies 

like ABARE that provide crop statistics on a quarterly basis. Such statistics are 

usually generated from previous ABS statistics combined with local industry and 
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government agency input. The results of this study showed that accurate estimates of 

crop area can be calculated through the application of multi-temporal approaches like 

HANTS. Accurate, objective and near real-time crop area estimates for specific crops 

(i.e. wheat, barley, chickpea) are invaluable to bulk grain handlers and agri-industry 

to aid in logistics of resources and marketing decisions. 

  

In addition, this showed enhanced efficacy in determining total winter crop area 

as early as July, which is before flowering and at least four months before harvest. 

This early-season crop area estimates not only assist in bridging the information gap, 

through integration of crop yield predictions, generating accurate, objective crop 

production estimates, but also aid government and industry in decision making 

processes, well before harvest. This will enable decision makers to move from a point 

of passive acceptance to a point of active response to the forecast, well before harvest. 

Although the end-of-season HANTS approach using regional training data for pixel 

classification showed total winter crop area predictions similar to what was observed 

by industry, the early-season approach showed value since it had a forecast lag of up 

to four months over the end-of season approach. This earlier forecast, however, 

comes at a price of lower accuracy. 

 

The advent of MODIS satellite platform has augmented the capability of satellite 

based applications to capture reflectance over large areas at acceptable pixel scale, 

cost and accuracy. Integrating such information with shire yield forecast will lead to 

crop production predictions over large areas as early as July. This information is 

objective and accurate and will assist business and government bodies in marketing, 

resource management and policy decisions well before harvest. Further, the 

application of multi-temporal MODIS approaches, as derived and analysed in this 

thesis, adds transparent production knowledge to the wheat grain industry. This is 

particularly true in a time in which the industry is increasingly being exposed, not 

only to fluctuations in domestic and international commodity markets but also climate 

variability and change at national and global scales.  

 

This thesis exemplified the novel use of a time series of MODIS EVI imagery 

methods, which can be incorporated into an easy accessible and cost effective remote 
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sensing framework for Queensland. The ability to determine early-season and end-of-

season total and specific winter crop area at pixel, shire and regional scales showed 

high accuracy and thus suggest uptake of outputs from such a system by industry 

highly likely. However, utility of such an approach to agri-industry will depend on 

the risk and accuracy industry operates at within their decision and operating regimes.  

 

 

7.3 Recommendations 

A number of implications arose from this study and some recommendations were 

raised for further investigation:  

 Pixel, as well as shire-scale, accuracies for discriminating between crops 

depend partially on the number of ground truth points collated during a 

cropping season. Accuracy can be improved by an increase in sampling 

intensity within a specific region or sub-region. Thus, in the future, more 

effort should be spent in collating sufficient sampling points by either more 

extensive field trips or by extending the network of co-workers collating the 

ground truth data across each region; 

 Extending this multi-temporal remote sensing approach to larger regions 

outside Queensland (i.e. other states or entire Australian cropping region) is 

plausible but needs to be tested. This will require resources and commitment 

from multi-agencies at state level and national level. The collaborative 

arrangement between QDPI&F and federal agencies like ABARE could be the 

ideal vehicle for extrapolate and test the derived techniques at a national level; 

 Further attention should be given to determine sensible error bounds around 

the area estimates at shire scale. This will increase the robustness of the 

approach; 

 Given the reality of global climate change and the temporal as well as spatial 

gaps within the ABS census data, especially over the last decade, it is 

envisaged that this technology could be adapted and linked to biophysical 

modelling frameworks to determine pixel and shire-scale yield estimates over 

large regions. This will result in real-time yield predictions,  which are less 

dependent on the impact of technology trends that are intrinsic in the design of 

highly calibrated agro-climatic shire scale models; 
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 The application of this methodology to the prediction of grain quality (rather 

than quantity) across regional scales could be investigated. Deregulation of 

the wheat market from a single desk to multiple exporters has enhanced the 

need for quality data. New research would be needed, however, to seek causal 

relationships between grain quality, crop phenology and multi-temporal 

spectral indices at regional scales; 

 This technology can play a vital role in adding spatial and temporal resolution 

to ABS agricultural census data by filling the ―gaps‖ for total winter crop area 

estimates. This would be of more value in years when survey responses in 

certain regions are very low; for example 2002 season when some agricultural 

statistics were published at statistical divisions (i.e. cluster of shires) only; 

 Measuring changes in land use pattern through the use of the HANTS multi-

temporal approach would be possible by extrapolating back to the 1980s via 

NDVI AVHRR images. This would result in a detailed up-to-date natural 

resource inventory and additional information on change in land use patterns 

for cropping; and 

 The total area of the shires investigated in this study was relatively small in 

comparison with other shires in Queensland or Australia. However, the 

technology derived is not restricted to the MODIS sensor only, but could also 

be applied to Landsat TM or any other high-resolution platform. Acquisition 

cost of satellite data from these higher resolution sensors will however be a 

huge factor in implementation of such and approach in smaller study areas. 

 Finally, the issue of a replacement of the MODIS satellite platform needs to 

be considered. Currently, MODIS is commissioned until 2010 but will likely 

go beyond that date. The National Polar-orbiting Operational Environmental 

Satellite System (NPOESS) is scheduled to replace MODIS 

(http://www.ipo.noaa.gov/). NPOESS is a satellite system similar to MODIS, 

which is used to monitor global environmental conditions, and collect and 

disseminate data related to weather, atmosphere, oceans, land and near-space 

environment. 

 

None of these issues impedes the potential for operational application of multi-

temporal remote sensing approaches to crop area estimation, as derived in this thesis, 
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within the QDPI&F’s regional commodity forecasting systems framework. QDPI&F 

has a strong commitment towards predictive modelling systems such as their regional 

commodity forecasting system, and the technology derived in this thesis is being 

integrated into regional production estimate outlook reports delivered on a monthly 

basis at state level (Potgieter et al. 2007). Any application beyond this will need 

additional collaboration, resources and long-term commitment from government 

agencies (state and national) and industry. 
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Appendices 

Appendix A: Mathematical equations and program scripts, for 

the determining the maximum peak EVI. 

A.1 Determining maxt  

 

A maximum or minimum occurs where 0
dt

d
.  The maximum or peak occurs at 

point ),( maxmax t .  Setting Ats )( 0  and applying the product rule of differentiation 

(i.e. )](exp[,)/(, 22

00 ttvttAu
dt

du
v

dt

dv
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dt

duv
  ) equation  4.4 becomes: 
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Simplifying this equation for 0
dt

d
 is equivalent to finding what t  is at the peak 

(i.e. maxt ): 

 





2
max t  
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A.2 R-script for determining the curve fitting parameter outputs for 

curve fitting procedure (CF1) and curve fitting procedure 2 (CF2) as 

described in Chapter 4. 

 

#filters: 

#min.EVI.crop <- 2700 #lowest possible value for max (EVI) in crop 

rm(list = ls()) 

fileName<-"data\\evi2004stackENVI.txt" 

nrows <- 865 

ncols <- 967 

nbands <- 23 

tot.pix <- nrows*ncols #numbers of pixels 

img <- array(scan(fileName, skip=5), dim=c(nrows,ncols,nbands)) 

 

#init some output matrices 

t.range <- b1 <- b2 <- peak <- peak.t <- A.e <- alpha <- beta <- g1 <- g2 <- D.pos <- 

D.neg <- matrix(NA, nrows, ncols) 

#splined <- s.t.range <- s.b1 <- s.b2 <- s.peak <- s.A.e <- s.alpha <- s.beta <- 

s.multipeak <- s.g1 <- s.g2 <- s.D.pos <- s.D.neg <- matrix(NA, nrows, ncols) 

n <- 1 

 

#1:nrows 

#1:ncols 

for (k in 1:nrows ) { 

   for (j in 1:ncols) { 

      #j <- 363 #rows in ENVI 

      #k <- 412  #cols in ENVI 

 

      #a counter 

      if(n %% 1000 == 0) print(n) 

      n <- n+1 

      EVI <- img[k,j,] 

      #EVI.l <- loess.smooth(1:length(EVI),EVI) #loess fit 
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      #EVI.p <- lm(EVI ~ poly(1:length(EVI),3)) 

      #EVI.p <- lm(EVI ~ poly(1:length(EVI),3)) 

      #lines(ht, predict(EVI.p, c(1:length(EVI))) 

 

      EVI.s <- smooth.spline(EVI) 

      EVI.s0 <- predict(EVI.s,deriv = 0)$y #0th derivative 

      EVI.s1 <- predict(EVI.s,deriv = 1)$y #1st derivative 

      EVI.s2 <- predict(EVI.s,deriv = 2)$y #2st derivative 

      EVI.s3 <- predict(EVI.s,deriv = 3)$y #3d derivative 

      EVI.max <- max(EVI[10:21]) 

      EVI.maxt <-  c(10:21)[match(EVI.max,EVI[10:21])] # t at which max EVI occurs 

      if (EVI.max <= 2700) next 

 

      #Green up 

            #only consider n.b bands before maxt 

      n.b <- 10 

      t1 <- ifelse(EVI.maxt - n.b <= 6, 7, EVI.maxt-10) #start not before middle March 

       

      #the position of last negative value between 1st and 2nd derivative (see Sakamoto 

3.2) 

      d.1 <- which(diff(sign(EVI.s1[t1:(EVI.maxt-3)]))==2) 

      d.2 <- which(diff(sign(EVI.s2[t1:(EVI.maxt-3)]))==2) 

 

    if (length(d.1) == 0) { 

      t.0 <- c(t1:(EVI.maxt-2))[max(d.2)]+1 #green up start time 

    } else { 

      t.0 <- c(t1:(EVI.maxt-2))[max(d.1)]+1 #green up start time 

      } 

    if ( (length(d.1) == 0) & (length(d.2) == 0)) { 

      t.0 <- t1 + 1 

      } 

   

 



Appendices 

 

 

182 

      #Green down 

      #position between 1st second and third derivative 

      #exclude n.b bands after maxt 

       n.b <- 2 

       t2 <- ifelse((EVI.maxt+n.b) > length(EVI),length(EVI),(EVI.maxt+n.b)) 

       d.1 <- which(diff(sign(EVI.s1[(t2):length(EVI)])) == 2) 

       d.2 <- which(diff(sign(EVI.s2[(t2):length(EVI)])) == -2)  

       

      if (length(d.1) == 0){ 

       t.end <- c(t2:length(EVI))[min(d.2)]  

      } else { 

       t.end <- c(t2:length(EVI))[min(d.1)] 

      }  

    if ((length(d.1) == 0) & (length(d.2) == 0)) { 

     t.end <- length(EVI)-1 

     } 

      t.end <- ifelse(t.end > length(EVI),length(EVI)-2,t.end) 

 

      #plot(EVI, ylim=c(-4000,10000)) 

      #lines(EVI.s1, col=3)#green 

      #lines(EVI.s2, col=4)#blue 

      #lines(EVI.s3, col=5)# cyan 

      #lines(c(0,23), c(0,0)) 

      #lines(c(t.0,t.0), c(0,10000), col=5) 

      #lines(c(t.end,t.end), c(0,10000), col=6) 

      #print(t.0) 

      #print(t.end) 

      #print(EVI.maxt) 

      if (any(is.na(c(t.0,t.end)))) next 

      if (all(EVI.s1[t.0:t.end] < 250) | all(EVI.s1[t.0:t.end] > 250)) next 

     

   #peak 

      peak[k,j] <- EVI.max 
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      peak.t[k,j] <- EVI.maxt 

        

      #range       

      t.range[k,j] <- t.end - t.0 

      if (t.range[k,j] <= 4) next 

                                                                        

      #---------------------------------- 

      #In crop EVI cycles 

       

      inCrop <- data.frame(EVI=EVI[t.0:t.end],t=t.0:t.end) 

      inCrop.1 <- data.frame(EVI=EVI[t.0:EVI.maxt],t=t.0:EVI.maxt) 

      inCrop.2 <- data.frame(EVI=EVI[EVI.maxt:t.end],t=EVI.maxt:t.end) 

 

      #------------------------------------ 

      #Skewness & Kurtosis  

      N <- length(inCrop$EVI) 

      X <- inCrop$EVI 

       

      k3 <- (N*sum(X^3)-3*sum(X)*sum(X^2)+2*sum(X)^3*N^-1)/((N-1)*(N-2)) 

      g1[k,j] <- round(k3/sd(X)^3,2) 

       

      k4 <- ((N^3+N^2)*sum(X^4)-4*(N^2+N)*sum(X^3)*sum(X)-3*(N^2-

N)*sum(X^2)^2+12*N*sum(X^2)*sum(X)^2-6*sum(X)^4)/ 

              (N*(N-1)*(N-2)*(N-3)) 

      g2[k,j] <- round(k4/sd(X)^4,2) 

            

      #------------------------------------ 

      #avg rate of change, D.pos and D.neg 

      D.pos[k,j] <- (EVI[EVI.maxt]-EVI[t.0])/(EVI.maxt-t.0) 

      D.neg[k,j] <- (EVI[t.end]-EVI[EVI.maxt])/(t.end-EVI.maxt) 

        

      #Crist and Malila 1980 equation2 

      #---------------------------------------- 
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      nls.1 <- try(nls(EVI ~ EVI.max*exp(b1*(t - EVI.maxt)^2),data=inCrop.1, 

start=list(b1=-0.005),trace=F),silent = TRUE) 

 

      nls.2 <- try(nls(EVI ~ EVI.max*exp(b2*(t - EVI.maxt)^2),data=inCrop.2, 

start=list(b2=-0.1),trace=F),silent = TRUE) 

       

      if (class(nls.1) == "nls")  

         b1[k,j] <- round(coef(nls.1),4) 

          

      if (class(nls.2) == "nls")           

         b2[k,j] <- round(coef(nls.2),4) 

  

      #-------------------------------------------------- 

      # Badhwar & Henderson  1981 - equation 1 page 749 

      #--------------------------------------------------       

      #estimate for rhozero: EVI.0 

      #estimate for time zero: t.0 

      EVI.0 <- inCrop$EVI[1] 

      alpha.e <- log(EVI.max/EVI.0)/(log(EVI.maxt/t.0)+(t.0^2-

EVI.maxt^2)/(2*EVI.maxt^2)) 

      beta.e <- alpha.e/(2*EVI.maxt^2) 

       

      nls.3 <- try(nls(EVI ~ A.e*(t/t.0)^alpha*exp(beta*(t.0^2-

t^2)),start=list(A.e=EVI.0,alpha=alpha.e,beta=beta.e),trace=F,data=inCrop),silent = 

TRUE) 

      if (class(nls.3) == "nls") {                         

         c3 <- coef(nls.3) 

         A.e[k,j] <- round(c3[1],4) 

         alpha[k,j] <- round(c3[2],4) 

         beta[k,j] <- round(c3[3],4) 

      } 

   } 

}     
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write.table(t(t.range),"output\\2004\\derivative\\trange.dat",quote = F,na = "-999", dec 

= ".", row.names = F,col.names = F) 

write.table(t(b1),"output\\2004\\derivative\\b1.dat",quote = F,na = "-999", dec = ".", 

row.names = F,col.names = F) 

write.table(t(b2),"output\\2004\\derivative\\b2.dat",quote = F,na = "-999", dec = ".", 

row.names = F,col.names = F) 

write.table(t(peak),"output\\2004\\derivative\\peak.dat",quote = F,na = "-999", dec = 

".", row.names = F,col.names = F) 

write.table(t(A.e),"output\\2004\\derivative\\Ae.dat",quote = F,na = "-999", dec = ".", 

row.names = F,col.names = F) 

write.table(t(alpha),"output\\2004\\derivative\\alpha.dat",quote = F,na = "-999", dec = 

".", row.names = F,col.names = F) 

write.table(t(beta),"output\\2004\\derivative\\beta.dat",quote = F,na = "-999", dec = ".", 

row.names = F,col.names = F) 

write.table(t(g1),"output\\2004\\derivative\\g1.dat",quote = F,na = "-999", dec = ".", 

row.names = F,col.names = F) 

write.table(t(g2),"output\\2004\\derivative\\g2.dat",quote = F,na = "-999", dec = ".", 

row.names = F,col.names = F) 

write.table(t(D.pos),"output\\2004\\derivative\\Dpos.dat",quote = F,na = "-999", dec = 

".", row.names = F,col.names = F) 

write.table(t(D.neg),"output\\2004\\derivative\\Dneg.dat",quote = F,na = "-9999", dec = 

".", row.names = F,col.names = F) 

 

#Write combined tables 

write.table(rbind(t(b1),t(b2),t(peak),t(t.range)),"output\\2004\\derivative\\b1b2peaktran

ge.txt",sep=" ",quote = F,na = "-999", dec = ".", row.names = F,col.names = F) 

write.table(rbind(t(alpha),t(beta),t(A.e)),"output\\2004\\derivative\\alphabetaAe.txt",sep

=" ", quote = F,na = "-999", dec = ".", row.names = F,col.names = F) 

write.table(rbind(t(g1),t(g2),t(D.pos), 

t(D.neg),t(peak)),"output\\2004\\derivative\\g1g2DposDnegpeak.txt",sep=" ",  quote 

= F,na = "-9999", dec = ".", row.names = F,col.names = F) 
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write.table(rbind(t(alpha),t(beta),t(peak), t(t.range), 

t(A.e)),"output\\2004\\derivative\\alphabetapeaktrangeAe.txt",sep=" ", quote = F,na = 

"-999", dec = ".", row.names = F,col.names = F) 
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Appendix B: Extension of Tables 

Table B.1: Separability measures (Jeffries-Matusita (JM) & 

Transformed Divergence (TD)) calculated on the EVI trajectories of 

each feature class for May to October for 2003. 

Feature Classes JM TD

Wheat 214 points

    Stubble & Soil 255 points 2.00 2.00

    Barley fed off   12 points 2.00 2.00

    Barley   100 points 1.41 1.62

    Chickpeas  36 points 1.99 2.00

    Wheat late  39 points 1.65 1.97

    Barley double cropping  70 points 1.87 2.00

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 2.00 2.00

    Production forestry   315 points 2.00 2.00

Stubble & Soil 255 points

    Wheat  214 points 2.00 2.00

    Barley fed off   12 points 2.00 2.00

    Barley   100 points 2.00 2.00

    Chickpeas  36 points 2.00 2.00

    Wheat late  39 points 2.00 2.00

    Barley double cropping  70 points 2.00 2.00

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 1.99 2.00

    Production forestry   315 points 2.00 2.00

Barley fed off   12 points

    Wheat  214 points 2.00 2.00

    Stubble & Soil 255 points 2.00 2.00

    Barley   100 points 2.00 2.00

    Chickpeas  36 points 2.00 2.00

    Wheat late  39 points 2.00 2.00

    Barley double cropping  70 points 2.00 2.00

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 2.00 2.00

    Production forestry   315 points 2.00 2.00

Barley   100 points

    Wheat  214 points 1.41 1.62

    Stubble & Soil 255 points 2.00 2.00

    Barley fed off   12 points 2.00 2.00

    Chickpeas  36 points 2.00 2.00

    Wheat late  39 points 1.94 2.00

    Barley double cropping  70 points 2.00 2.00

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 2.00 2.00

    Production forestry   315 points 2.00 2.00

Chickpeas  36 points

    Wheat  214 points 1.99 2.00

    Stubble & Soil 255 points 2.00 2.00

    Barley fed off   12 points 2.00 2.00

    Barley   100 points 2.00 2.00

    Wheat late  39 points 1.97 2.00

    Barley double cropping  70 points 1.99 2.00

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 1.99 2.00

    Production forestry   315 points 2.00 2.00  
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Feature Classes JM TD

Wheat late  39 points

    Wheat  214 points 1.65 1.97

    Stubble & Soil 255 points 2.00 2.00

    Barley fed off   12 points 2.00 2.00

    Barley   100 points 1.94 2.00

    Chickpeas  36 points 1.97 2.00

    Barley double cropping  70 points 1.89 2.00

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 2.00 2.00

    Production forestry   315 points 2.00 2.00

Barley double cropping  70 points

    Wheat  214 points 1.87 2.00

    Stubble & Soil 255 points 2.00 2.00

    Barley fed off   12 points 2.00 2.00

    Barley   100 points 2.00 2.00

    Chickpeas  36 points 1.99 2.00

    Wheat late  39 points 1.89 2.00

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 2.00 2.00

    Production forestry   315 points 2.00 2.00

Natural Forest 56 points

    Wheat  214 points 2.00 2.00

    Stubble & Soil 255 points 2.00 2.00

    Barley fed off   12 points 2.00 2.00

    Barley   100 points 2.00 2.00

    Chickpeas  36 points 2.00 2.00

    Wheat late  39 points 2.00 2.00

    Barley double cropping  70 points 2.00 2.00

    Grazing 292 points 1.92 2.00

    Production forestry   315 points 1.96 2.00

Grazing 292 points

    Wheat  214 points 2.00 2.00

    Stubble & Soil 255 points 1.99 2.00

    Barley fed off   12 points 2.00 2.00

    Barley   100 points 2.00 2.00

    Chickpeas  36 points 1.99 2.00

    Wheat late  39 points 2.00 2.00

    Barley double cropping  70 points 2.00 2.00

    Natural Forest 56 points 1.92 2.00

    Production forestry   315 points 1.78 1.94

Production forestry   315 points

    Wheat  214 points 2.00 2.00

    Stubble & Soil 255 points 2.00 2.00

    Barley fed off   12 points 2.00 2.00

    Barley   100 points 2.00 2.00

    Chickpeas  36 points 2.00 2.00

    Wheat late  39 points 2.00 2.00

    Barley double cropping  70 points 2.00 2.00

    Natural Forest 56 points 1.96 2.00

    Grazing 292 points 1.78 1.94  
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Table B.2: Separability measures (Jeffries-Matusita (JM) & 

Transformed Divergence (TD)) calculated on the EVI trajectories of 

each feature class for May to October for 2004. 

Feature Classes JM TD

Natural Forest 56 points

    Grazing  292 points 1.99 2.00

    Production forestry 315 points 1.96 2.00

    Wheat 245 points 2.00 2.00

    Stubble & Soil 405 points 2.00 2.00

    Barley 46 points 2.00 2.00

Grazing 292 points

    Natural Forest 56 points 1.99 2.00

    Production forestry 315 points 1.83 1.94

    Wheat 245 points 2.00 2.00

    Stubble & Soil 405 points 1.94 1.99

    Barley  46 points 2.00 2.00

Production forestry 315 points

    Natural Forest 56 points 1.96 2.00

    Grazing 292 points 1.83 1.94

    Wheat 245 points 2.00 2.00

    Stubble & Soil 405 points 2.00 2.00

    Barley 46 points 2.00 2.00

Wheat 245 points

    Natural Forest56 points 2.00 2.00

    Grazing292 points 2.00 2.00

    Production forestry 315 points 2.00 2.00

    Stubble & Soil 405 points 2.00 2.00

    Barley 46 points 1.85 1.96

Stubble & Soil 405 points

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 1.94 1.99

    Production forestry 315 points 2.00 2.00

    Wheat 245 points 2.00 2.00

    Barley 46 points 2.00 2.00

Barley 46 points

    Natural Forest 56 points 2.00 2.00

    Grazing 292 points 2.00 2.00

    Production forestry 315 points 2.00 2.00

    Wheat 245 points 1.85 1.96

    Stubble & Soil 405 points 2.00 2.00  
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Table B.3: Area estimates and ABARE surveyed data (actual) across all features 

(i.e. wheat, barley, chickpea and other) for each method for the 2003 and 2004 

seasons for the Jondaryan shire.  The accuracy is depicted in the Dev% column, 

which is calculated as [Estimate-Actual]/Estimate. 

Jondaryan 2003 Season 2004 Season

Single Date Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 28597 27358 5 5922 5443 9

Barley 4566 10796 -58 1853 2714 -32

Chickpea 87110 7760 1023 18033 1650 993

Winter Crop 120272 45914 162 25808 9807 163

Multi-date Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 74502 27358 172 12417 5443 128

Barley 2865 10796 -73 7259 2714 167

Chickpea 14327 7760 85 0 1650 -100

Winter Crop 91694 45914 100 19676 9807 101

PCA Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 72591 27358 165 8978 5443 65

Barley 2865 10796 -73 5521 2714 103

Chickpea 6877 7760 -11 0 1650 -100

Winter Crop 82334 45914 79 14499 9807 48

HANTS Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 37824 27358 38 4909 5443 -10

Barley 2674 10796 -75 1509 2714 -44

Chickpea 13850 7760 78 0 1650 -100

Winter Crop 54348 45914 18 6419 9807 -35

CF1 Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 48178 27358 76 16429 5443 202

Barley 4566 10796 -58 6686 2714 146

Chickpea 49668 7760 540 96 1650 -94

Winter Crop 102411 45914 123 23210 9807 137

CF2 Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 35341 27358 29 21395 5443 293

Barley 5272 10796 -51 5922 2714 118

Chickpea 64186 7760 727 1242 1650 -25

Winter Crop 104799 45914 128 28559 9807 191  
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Table B.4: Table 3: Area estimates and ABARE surveyed data (actual) across all 

features (i.e. wheat, barley, chickpea and other) for each method for the 2003 and 

2004 seasons for the Pittsworth shire.  The accuracy is depicted in the Dev% 

column, which is calculated as [Estimate-Actual]/Estimate. 

Pittsworth 2003 Season 2004 Season

Single Date Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 13478 13990 -4 4028 2447 65

Barley 1448 4611 -69 1415 1560 -9

Chickpea 44201 1012 4268 16004 525 2948

Winter Crop 59127 19613 201 21447 4532 373

Multi-date Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 38757 13990 177 9145 2447 274

Barley 1034 4611 -78 6423 1560 312

Chickpea 10451 1012 933 0 525 -100

Winter Crop 50243 19613 156 15568 4532 244

PCA Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 36907 13990 164 6532 2447 167

Barley 1742 4611 -62 4464 1560 186

Chickpea 4355 1012 330 0 525 -100

Winter Crop 43003 19613 119 10996 4532 143

HANTS Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 20576 13990 47 2939 2447 20

Barley 653 4611 -86 1219 1560 -22

Chickpea 7621 1012 653 0 525 -100

Winter Crop 28850 19613 47 4159 4532 -8

CF1 Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 25040 13990 79 13609 2447 456

Barley 1372 4611 -70 5117 1560 228

Chickpea 34838 1012 3342 120 525 -77

Winter Crop 61250 19613 212 18845 4532 316

CF2 Estimate Actual Dev(%) Estimate Actual Dev(%)

Wheat 18508 13990 32 17473 2447 614

Barley 1905 4611 -59 4681 1560 200

Chickpea 39193 1012 3773 893 525 70

Winter Crop 59606 19613 204 23048 4532 409  
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Table B.5: Early-season and end-of-season area estimates (Ha) for 2005 based on whole of QLD MODIS EVI pixels, applying all of QLD sampling points 

to create a classified image of entire QLD cropping region. The July, August, Average and combined columns (i.e. early-season estimates approach) 

estimates were accumulated only within the 1999 land use areas. The end-of-season (i.e. HANTS approach) column is the sum of the Wheat, Barley and 

Chickpea columns and had no land use mask overlay. 

Region Shire July August Average Combined End-of-Season Wheat Barley Chickpea

SWQ Balonne (S) 94047 54722 74384 81228 191943 142664 33689 15589

CQ Banana (S) 37416 18018 27717 23196 14883 11640 3035 209

CQ Bauhinia (S) 93192 35532 64362 80762 98693 85174 9582 3937

CQ Belyando (S) 8303 2581 5442 6094 10559 9985 0 574

SWQ Bendemere (S) 29291 8854 19073 26018 34678 27153 4511 3015

SWQ Booringa (S) 9846 7368 8607 7367 33479 27813 2282 3384

CQ Broadsound (S) 3029 1635 2332 1696 2378 2083 72 224

SWQ Bungil (S) 68781 34109 51445 63618 119123 94312 18628 6183

SEQ Cambooya (S) - Pt A 6260 4877 5568 1893 1487 1368 32 86

SEQ Chinchilla (S) 43232 29891 36562 22423 25670 19204 4738 1728

SEQ Clifton (S) 15170 12057 13614 4219 3011 2744 173 93

CQ Duaringa (S) 16705 6360 11532 13379 13279 11580 1675 24

CQ Emerald (S) 41869 15600 28735 33689 43650 41101 2226 324

SEQ Gayndah (S) 1818 462 1140 1470 415 385 30 0

SEQ Inglewood (S) 14204 6957 10580 11571 10801 6186 3009 1607

SEQ Jondaryan (S) - Pt B 35725 32107 33916 6028 8904 7731 779 394

SEQ Kilkivan (S) 2129 714 1422 1574 323 223 100 0

SEQ Kingaroy (S) 8623 4820 6722 4648 1699 1271 217 211

SEQ Millmerran (S) 31848 21356 26602 17189 15581 10347 4255 979

CQ Monto (S) 5392 3477 4434 2670 1028 814 184 30

SEQ Mundubbera (S) 1563 455 1009 1189 283 171 106 6

SEQ Murgon (S) 2330 999 1664 1595 226 144 75 6

SWQ Murilla (S) 72306 44362 58334 51062 65548 47933 8972 8644

CQ Peak Downs (S) 19986 6579 13282 15705 20107 19163 403 542

SEQ Pittsworth (S) 20893 18818 19856 3724 5825 5053 503 268

SEQ Rosalie (S) - Pt B 21940 18039 19989 5134 5763 4839 230 693

SWQ Tara (S) 129420 58997 94209 114954 184824 128347 44703 11774

SWQ Taroom (S) 41195 21240 31218 25594 25556 18584 3193 3779

SWQ Waggamba (S) 227548 123922 175735 199210 337818 201310 104770 31738

SEQ Wambo (S) 93918 85830 89874 14538 35644 29645 2145 3854

SWQ Warroo (S) 47737 17490 32613 44508 116245 98902 13964 3379

SEQ Warwick (S) - East 18426 6630 12528 14294 3486 2892 242 352

SEQ Warwick (S) - North 10205 6060 8133 4899 1658 1519 70 69

SEQ Warwick (S) - West 3315 1212 2264 2450 585 499 75 12

SEQ Wondai (S) 6682 2982 4832 4374 1466 1147 277 41

Total 1284345 715113 999729 913962 1436622 1063928 268946 103748
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Table B.6: Early-season and end-of-season area estimates (Ha) for 2005 based on whole of QLD MODIS EVI pixels, applying all of QLD sampling points 

to create a classified image for entire QLD cropping region. All column estimates were accumulated within the 1999 land use area overlay. 

Region Shire July August Average Combined End-of-Season Wheat Barley Chickpea

SWQ Balonne (S) 94047 54722 74384 81228 77314 53041 15395 8878

CQ Banana (S) 37416 18018 27717 23196 11445 8854 2447 145

CQ Bauhinia (S) 93192 35532 64362 80762 77324 66984 6534 3806

CQ Belyando (S) 8303 2581 5442 6094 9973 9404 0 569

SWQ Bendemere (S) 29291 8854 19073 26018 20736 16069 2923 1744

SWQ Booringa (S) 9846 7368 8607 7367 9833 7171 1288 1374

CQ Broadsound (S) 3029 1635 2332 1696 1729 1450 61 219

SWQ Bungil (S) 68781 34109 51445 63618 57173 42460 12008 2705

SEQ Cambooya (S) - Pt A 6260 4877 5568 1893 1306 1216 28 62

SEQ Chinchilla (S) 43232 29891 36562 22423 20599 15365 3971 1263

SEQ Clifton (S) 15170 12057 13614 4219 2661 2439 152 70

CQ Duaringa (S) 16705 6360 11532 13379 10248 8880 1345 24

CQ Emerald (S) 41869 15600 28735 33689 32636 30653 1726 257

SEQ Gayndah (S) 1818 462 1140 1470 364 339 26 0

SEQ Inglewood (S) 14204 6957 10580 11571 6169 3199 1987 982

SEQ Jondaryan (S) - Pt B 35725 32107 33916 6028 7611 6585 724 302

SEQ Kilkivan (S) 2129 714 1422 1574 209 126 83 0

SEQ Kingaroy (S) 8623 4820 6722 4648 1199 904 138 156

SEQ Millmerran (S) 31848 21356 26602 17189 11905 8124 2980 801

CQ Monto (S) 5392 3477 4434 2670 796 608 171 17

SEQ Mundubbera (S) 1563 455 1009 1189 120 61 53 6

SEQ Murgon (S) 2330 999 1664 1595 173 103 65 5

SWQ Murilla (S) 72306 44362 58334 51062 49292 35335 6719 7238

CQ Peak Downs (S) 19986 6579 13282 15705 16810 15995 344 471

SEQ Pittsworth (S) 20893 18818 19856 3724 4933 4306 446 181

SEQ Rosalie (S) - Pt B 21940 18039 19989 5134 3950 3357 126 468

SWQ Tara (S) 129420 58997 94209 114954 96823 63491 26641 6690

SWQ Taroom (S) 41195 21240 31218 25594 16335 12166 1750 2418

SWQ Waggamba (S) 227548 123922 175735 199210 175167 100604 56689 17873

SEQ Wambo (S) 93918 85830 89874 14538 30114 25383 1926 2805

SWQ Warroo (S) 47737 17490 32613 44508 41019 34384 5356 1279

SEQ Warwick (S) - East 18426 6630 12528 14294 2741 2293 160 289

SEQ Warwick (S) - North 10205 6060 8133 4899 1482 1359 68 54

SEQ Warwick (S) - West 3315 1212 2264 2450 398 354 38 5

SEQ Wondai (S) 6682 2982 4832 4374 966 752 192 22

Total 1284345 715113 999729 913962 801552 583812 154560 63180
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Table B.7: Early-season and end-of-season area estimates (Ha) for 2005 based on regional training of MODIS EVI pixels, applying sub-regional sampling 

points to create endogenous classified sub-regional imagery. The July, August, Average and combined columns (i.e. early-season estimates approach) 

estimates were accumulated only within the 1999 land use areas. The end-of-season (i.e. HANTS approach) column is the sum of the Wheat, Barley and 

Chickpea columns and had no land use mask overlay. 

Region Shire July August Average Combined End-of-Season Wheat Barley Chickpea

SWQ Balonne (S) 94047 54722 74384 81228 146032 117294 21800 6939

CQ Banana (S) 37416 18018 27717 23196 12371 12359 0 12

CQ Bauhinia (S) 93192 35532 64362 80762 87361 85533 0 1827

CQ Belyando (S) 8303 2581 5442 6094 7073 7073 0

SWQ Bendemere (S) 29291 8854 19073 26018 23724 22114 496 1113

SWQ Booringa (S) 9846 7368 8607 7367 2217 0 2000 217

CQ Broadsound (S) 3029 1635 2332 1696 2049 2030 0 18

SWQ Bungil (S) 68781 34109 51445 63618 91476 86212 4714 550

SEQ Cambooya (S) - Pt A 6260 4877 5568 1893 1022 622 400 0

SEQ Chinchilla (S) 43232 29891 36562 22423 22117 9888 12229 0

SEQ Clifton (S) 15170 12057 13614 4219 13888 1659 12229 0

CQ Duaringa (S) 16705 6360 11532 13379 10813 10813 0 0

CQ Emerald (S) 41869 15600 28735 33689 37434 37314 0 120

SEQ Gayndah (S) 1818 462 1140 1470 142 24 118 0

SEQ Inglewood (S) 14204 6957 10580 11571 0 0 0 0

SEQ Jondaryan (S) - Pt B 35725 32107 33916 6028 7723 5031 2692 0

SEQ Kilkivan (S) 2129 714 1422 1574 218 0 218 0

SEQ Kingaroy (S) 8623 4820 6722 4648 834 178 656 0

SEQ Millmerran (S) 31848 21356 26602 17189 12511 3742 8769 0

CQ Monto (S) 5392 3477 4434 2670 362 362 0 0

SEQ Mundubbera (S) 1563 455 1009 1189 254 18 236 0

SEQ Murgon (S) 2330 999 1664 1595 132 0 132 0

SWQ Murilla (S) 72306 44362 58334 51062 43771 34963 4133 4675

CQ Peak Downs (S) 19986 6579 13282 15705 16274 16148 0 126

SEQ Pittsworth (S) 20893 18818 19856 3724 4538 2749 1789 0

SEQ Rosalie (S) - Pt B 21940 18039 19989 5134 4579 3241 1339 0

SWQ Tara (S) 129420 58997 94209 114954 127840 111557 11386 4898

SWQ Taroom (S) 41195 21240 31218 25594 11449 9194 825 1431

SWQ Waggamba (S) 227548 123922 175735 199210 242382 191047 34435 16901

SEQ Wambo (S) 93918 85830 89874 14538 32710 22296 10414 0

SWQ Warroo (S) 47737 17490 32613 44508 89146 83451 4580 1115

SEQ Warwick (S) - East 18426 6630 12528 14294 2199 739 1460 0

SEQ Warwick (S) - North 10205 6060 8133 4899 1294 972 323 0

SEQ Warwick (S) - West 3315 1212 2264 2450 313 69 244 0

SEQ Wondai (S) 6682 2982 4832 4374 908 141 767 0

Total 1284345 715113 999729 913962 1057155 878830 138382 39943
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Table B.8: Early-season and end-of-season area estimates (Ha) for 2005 based on regional training of MODIS EVI pixels, applying sub-regional sampling 

points to create endogenous classified sub-regional imagery. All column estimates were accumulated within the 1999 land use area overlay. 

Region Shire July August Average Combined End-of-Season Wheat Barley Chickpea

SWQ Balonne (S) 94047 54722 74384 81228 61859 48735 9473 3651

CQ Banana (S) 37416 18018 27717 23196 9746 9743 0 3

CQ Bauhinia (S) 93192 35532 64362 80762 71033 69318 0 1714

CQ Belyando (S) 8303 2581 5442 6094 6690 6690 0 0

SWQ Bendemere (S) 29291 8854 19073 26018 15681 14544 365 773

SWQ Booringa (S) 9846 7368 8607 7367 8225 6541 1527 158

CQ Broadsound (S) 3029 1635 2332 1696 1513 1495 0 18

SWQ Bungil (S) 68781 34109 51445 63618 48994 45408 3182 405

SEQ Cambooya (S) - Pt A 6260 4877 5568 1893 928 562 366 0

SEQ Chinchilla (S) 43232 29891 36562 22423 18643 8766 9877 0

SEQ Clifton (S) 15170 12057 13614 4219 2292 1590 702 0

CQ Duaringa (S) 16705 6360 11532 13379 8600 8571 0 28

CQ Emerald (S) 41869 15600 28735 33689 30075 29965 0 110

SEQ Gayndah (S) 1818 462 1140 1470 126 24 102 0

SEQ Inglewood (S) 14204 6957 10580 11571 2833 2025 0 808

SEQ Jondaryan (S) - Pt B 35725 32107 33916 6028 6761 4333 2428 0

SEQ Kilkivan (S) 2129 714 1422 1574 161 0 161 0

SEQ Kingaroy (S) 8623 4820 6722 4648 596 144 452 0

SEQ Millmerran (S) 31848 21356 26602 17189 9748 3457 6291 0

CQ Monto (S) 5392 3477 4434 2670 289 289 0 0

SEQ Mundubbera (S) 1563 455 1009 1189 97 0 97 0

SEQ Murgon (S) 2330 999 1664 1595 110 13 96 0

SWQ Murilla (S) 72306 44362 58334 51062 35048 27520 3506 4022

CQ Peak Downs (S) 19986 6579 13282 15705 13694 13572 0 122

SEQ Pittsworth (S) 20893 18818 19856 3724 3971 2427 1545 0

SEQ Rosalie (S) - Pt B 21940 18039 19989 5134 3345 2560 785 0

SWQ Tara (S) 129420 58997 94209 114954 76736 65923 7525 3288

SWQ Taroom (S) 41195 21240 31218 25594 7428 5948 480 1001

SWQ Waggamba (S) 227548 123922 175735 199210 134946 105284 19033 10630

SEQ Wambo (S) 93918 85830 89874 14538 28513 19706 8807 0

SWQ Warroo (S) 47737 17490 32613 44508 33344 31390 1532 422

SEQ Warwick (S) - East 18426 6630 12528 14294 1783 596 1187 0

SEQ Warwick (S) - North 10205 6060 8133 4899 1168 872 295 0

SEQ Warwick (S) - West 3315 1212 2264 2450 185 68 116 0

SEQ Wondai (S) 6682 2982 4832 4374 561 79 481 0

Total 1284345 715113 999729 913962 645722 538159 80410 27154
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Table B.9: : Early-season and end-of-season area estimates (Ha) for 2006 based on whole of QLD MODIS EVI pixels, applying all of QLD sampling points 

to create a classified image of entire QLD cropping region. The July, August, Average and combined columns (i.e. early-season estimates approach) 

estimates were accumulated only within the 1999 land use areas. The end-of-season (i.e. HANTS approach) column is the sum of the Wheat, Barley and 

Chickpea columns and had no land use mask overlay. 

Region Shire July August Average Combined End-of-Season Wheat Barley Chickpea

SWQ Balonne (S) 11608 32320 21964 38866 114476 82738 1441 30297

CQ Banana (S) 21315 17618 19466 32957 45236 39679 5379 179

CQ Bauhinia (S) 49677 13190 31434 54440 79507 61315 7933 10260

CQ Belyando (S) 85735 26804 56270 93031 106734 84589 1762 20383

SWQ Bendemere (S) 2957 978 1968 3408 5128 3876 726 527

SWQ Booringa (S) 166 80 123 207 872 854 0 18

CQ Broadsound (S) 17967 3009 10488 19425 25932 23685 1608 640

SWQ Bungil (S) 1334 190 762 1487 7525 7202 146 177

SEQ Cambooya (S) - Pt A 166 1128 647 1278 5535 5512 0 23

SEQ Chinchilla (S) 285 454 369 630 1251 1245 0 6

SEQ Clifton (S) 566 2079 1323 2518 3390 3378 12 0

CQ Duaringa (S) 17732 9594 13663 24609 36803 30974 5505 324

CQ Emerald (S) 19126 9204 14165 24289 36413 33008 865 2540

SEQ Gayndah (S) 61 133 97 175 253 253 0 0

SEQ Inglewood (S) 1799 7160 4480 7681 12043 10602 669 772

SEQ Jondaryan (S) - Pt B 1528 4919 3224 5884 10812 10621 110 81

SEQ Kilkivan (S) 460 618 539 1011 651 651 0 0

SEQ Kingaroy (S) 178 593 385 719 2390 2390 0 0

SEQ Millmerran (S) 116 3819 1968 3916 13655 13273 46 336

CQ Monto (S) 3932 2450 3191 5167 2465 2435 30 0

SEQ Mundubbera (S) 349 468 408 771 685 685 0 0

SEQ Murgon (S) 429 705 567 1022 1225 1225 0 0

SWQ Murilla (S) 5299 4358 4829 8161 16160 13334 467 2359

CQ Peak Downs (S) 39913 20575 30244 50336 57426 45313 389 11724

SEQ Pittsworth (S) 253 1470 862 1630 4114 4085 12 17

SEQ Rosalie (S) - Pt B 464 1487 976 1804 8733 8651 29 54

SWQ Tara (S) 4428 7987 6208 10681 34598 25432 435 8732

SWQ Taroom (S) 447 478 463 834 5153 5135 18 0

SWQ Waggamba (S) 21786 91140 56463 96905 217887 159834 12303 45750

SEQ Wambo (S) 552 2619 1585 3015 8246 8106 18 122

SWQ Warroo (S) 6862 1620 4241 7759 21423 14747 502 6175

SEQ Warwick (S) - East 917 5231 3074 5943 6363 6334 6 23

SEQ Warwick (S) - North 281 1794 1038 2025 3167 3138 23 6

SEQ Warwick (S) - West 195 1630 912 1763 2029 2017 0 12

SEQ Wondai (S) 349 871 610 1136 4279 4273 0 6

Total 319234 278773 299003 515483 902559 720587 40432 141540  
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Table B.10: Early-season and end-of-season area estimates (Ha) for 2006 based on whole of QLD MODIS EVI pixels, applying all of QLD sampling points 

to create a classified image for entire QLD cropping region. All column estimates were accumulated within the 1999 land use area overlay. 

Region Shire July August Average Combined End-of-Season Wheat Barley Chickpea

SWQ Balonne (S) 11608 32320 21964 38866 54659 38909 1116 14633

CQ Banana (S) 21315 17618 19466 32957 23507 19217 4128 162

CQ Bauhinia (S) 49677 13190 31434 54440 65640 49976 5716 9948

CQ Belyando (S) 85735 26804 56270 93031 92411 71417 1646 19348

SWQ Bendemere (S) 2957 978 1968 3408 3222 2645 244 333

SWQ Booringa (S) 166 80 123 207 300 286 0 14

CQ Broadsound (S) 17967 3009 10488 19425 16063 14577 1010 477

SWQ Bungil (S) 1334 190 762 1487 1576 1368 57 151

SEQ Cambooya (S) - Pt A 166 1128 647 1278 3342 3336 0 6

SEQ Chinchilla (S) 285 454 369 630 849 849 0 0

SEQ Clifton (S) 566 2079 1323 2518 2822 2811 12 0

CQ Duaringa (S) 17732 9594 13663 24609 21075 16627 4191 258

CQ Emerald (S) 19126 9204 14165 24289 30935 27797 716 2422

SEQ Gayndah (S) 61 133 97 175 115 115 0 0

SEQ Inglewood (S) 1799 7160 4480 7681 5976 5003 277 696

SEQ Jondaryan (S) - Pt B 1528 4919 3224 5884 7478 7322 90 66

SEQ Kilkivan (S) 460 618 539 1011 230 230 0 0

SEQ Kingaroy (S) 178 593 385 719 1467 1467 0 0

SEQ Millmerran (S) 116 3819 1968 3916 8557 8263 40 254

CQ Monto (S) 3932 2450 3191 5167 1349 1336 13 0

SEQ Mundubbera (S) 349 468 408 771 104 104 0 0

SEQ Murgon (S) 429 705 567 1022 314 314 0 0

SWQ Murilla (S) 5299 4358 4829 8161 13411 10920 299 2192

CQ Peak Downs (S) 39913 20575 30244 50336 45732 34604 236 10892

SEQ Pittsworth (S) 253 1470 862 1630 3111 3082 12 17

SEQ Rosalie (S) - Pt B 464 1487 976 1804 3983 3937 25 20

SWQ Tara (S) 4428 7987 6208 10681 25252 17341 348 7563

SWQ Taroom (S) 447 478 463 834 841 829 12 0

SWQ Waggamba (S) 21786 91140 56463 96905 123941 89351 7280 27310

SEQ Wambo (S) 552 2619 1585 3015 5861 5738 18 104

SWQ Warroo (S) 6862 1620 4241 7759 11244 7685 373 3186

SEQ Warwick (S) - East 917 5231 3074 5943 4770 4742 5 23

SEQ Warwick (S) - North 281 1794 1038 2025 2225 2213 6 6

SEQ Warwick (S) - West 195 1630 912 1763 1290 1282 0 8

SEQ Wondai (S) 349 871 610 1136 1894 1891 0 3

Total 319234 278773 299003 515483 585545 457584 27871 100090  
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Table B.11: Early-season and end-of-season area estimates (Ha) for 2006 based on regional training of MODIS EVI pixels, applying sub-regional 

sampling points to create endogenous classified sub-regional imagery. The July, August, Average and combined columns (i.e. early-season estimates 

approach) estimates were accumulated only within the 1999 land use areas. The end-of-season (i.e. HANTS approach) column is the sum of the 

Wheat, Barley and Chickpea columns and had no land use mask overlay. 

Region Shire July August Average Combined End-of-Season Wheat Barley Chickpea

SWQ Balonne (S) 11608 32320 21964 38866 65136 55954 2414 6768

CQ Banana (S) 21315 17618 19466 32957 11320 11249 0 71

CQ Bauhinia (S) 49677 13190 31434 54440 67460 60846 0 6614

CQ Belyando (S) 85735 26804 56270 93031 100009 76624 0 23385

SWQ Bendemere (S) 2957 978 1968 3408 2777 1261 1293 222

SWQ Booringa (S) 166 80 123 207 141 141 0 0

CQ Broadsound (S) 17967 3009 10488 19425 16987 16812 0 175

SWQ Bungil (S) 1334 190 762 1487 718 473 211 35

SEQ Cambooya (S) - Pt A 166 1128 647 1278 2615 2615 0 0

SEQ Chinchilla (S) 285 454 369 630 824 824 0 0

SEQ Clifton (S) 566 2079 1323 2518 1961 1961 0 0

CQ Duaringa (S) 17732 9594 13663 24609 15877 15877 0 0

CQ Emerald (S) 19126 9204 14165 24289 27108 25015 0 2093

SEQ Gayndah (S) 61 133 97 175 151 151 0 0

SEQ Inglewood (S) 1799 7160 4480 7681 5083 4979 0 104

SEQ Jondaryan (S) - Pt B 1528 4919 3224 5884 6851 6851 0 0

SEQ Kilkivan (S) 460 618 539 1011 558 558 0 0

SEQ Kingaroy (S) 178 593 385 719 1192 1192 0 0

SEQ Millmerran (S) 116 3819 1968 3916 8119 8119 0 0

CQ Monto (S) 3932 2450 3191 5167 77 77 0 0

SEQ Mundubbera (S) 349 468 408 771 407 407 0 0

SEQ Murgon (S) 429 705 567 1022 425 425 0 0

SWQ Murilla (S) 5299 4358 4829 8161 6301 4813 1256 233

CQ Peak Downs (S) 39913 20575 30244 50336 50091 42341 0 7750

SEQ Pittsworth (S) 253 1470 862 1630 2237 2237 0 0

SEQ Rosalie (S) - Pt B 464 1487 976 1804 4782 4782 0 0

SWQ Tara (S) 4428 7987 6208 10681 26385 22896 1094 2395

SWQ Taroom (S) 447 478 463 834 401 330 71 0

SWQ Waggamba (S) 21786 91140 56463 96905 174755 146481 11159 17116

SEQ Wambo (S) 552 2619 1585 3015 4662 4662 0 0

SWQ Warroo (S) 6862 1620 4241 7759 5508 3426 1604 478

SEQ Warwick (S) - East 917 5231 3074 5943 4823 4823 0 0

SEQ Warwick (S) - North 281 1794 1038 2025 1923 1923 0 0

SEQ Warwick (S) - West 195 1630 912 1763 1461 1461 0 0

SEQ Wondai (S) 349 871 610 1136 1850 1850 0 0

Total 319234 278773 299003 515483 620975 534434 19100 67440  
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Table B.12: Early-season and end-of-season area estimates (Ha) for 2006 based on regional training of MODIS EVI pixels, applying sub-regional sampling 

points to create endogenous classified sub-regional imagery. All column estimates were accumulated within the 1999 land use area overlay. 

Region Shire July August Average Combined End-of-Season Wheat Barley Chickpea

SWQ Balonne (S) 11608 32320 21964 38866 31082 27018 1488 2575

CQ Banana (S) 21315 17618 19466 32957 9193 9122 0 71

CQ Bauhinia (S) 49677 13190 31434 54440 58459 52011 0 6448

CQ Belyando (S) 85735 26804 56270 93031 87338 65223 0 22115

SWQ Bendemere (S) 2957 978 1968 3408 1364 784 479 101

SWQ Booringa (S) 166 80 123 207 75 75 0 0

CQ Broadsound (S) 17967 3009 10488 19425 11976 11874 0 102

SWQ Bungil (S) 1334 190 762 1487 436 336 100 0

SEQ Cambooya (S) - Pt A 166 1128 647 1278 1871 1871 0 0

SEQ Chinchilla (S) 285 454 369 630 587 587 0 0

SEQ Clifton (S) 566 2079 1323 2518 1674 1674 0 0

CQ Duaringa (S) 17732 9594 13663 24609 15181 13144 0 2036

CQ Emerald (S) 19126 9204 14165 24289 23089 23089 0 0

SEQ Gayndah (S) 61 133 97 175 55 55 0 0

SEQ Inglewood (S) 1799 7160 4480 7681 3622 3227 301 95

SEQ Jondaryan (S) - Pt B 1528 4919 3224 5884 5077 5077 0 0

SEQ Kilkivan (S) 460 618 539 1011 228 228 0 0

SEQ Kingaroy (S) 178 593 385 719 750 750 0 0

SEQ Millmerran (S) 116 3819 1968 3916 5256 5256 0 0

CQ Monto (S) 3932 2450 3191 5167 70 70 0 0

SEQ Mundubbera (S) 349 468 408 771 72 72 0 0

SEQ Murgon (S) 429 705 567 1022 103 103 0 0

SWQ Murilla (S) 5299 4358 4829 8161 4975 3774 999 203

CQ Peak Downs (S) 39913 20575 30244 50336 40880 33579 0 7300

SEQ Pittsworth (S) 253 1470 862 1630 1839 1839 0 0

SEQ Rosalie (S) - Pt B 464 1487 976 1804 2350 2350 0 0

SWQ Tara (S) 4428 7987 6208 10681 19524 16481 914 2129

SWQ Taroom (S) 447 478 463 834 226 165 61 0

SWQ Waggamba (S) 21786 91140 56463 96905 100144 81881 6660 11603

SEQ Wambo (S) 552 2619 1585 3015 3181 3181 0 0

SWQ Warroo (S) 6862 1620 4241 7759 4687 3659 829 198

SEQ Warwick (S) - East 917 5231 3074 5943 1296 1296 0 0

SEQ Warwick (S) - North 281 1794 1038 2025 996 996 0 0

SEQ Warwick (S) - West 195 1630 912 1763 1009 1009 0 0

SEQ Wondai (S) 349 871 610 1136 0 0 0 0

Total 319234 278773 299003 515483 438664 371856 11832 54975  
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Appendix C: Extension of Figures 

 

 

Figure C.1: Multi date EVI classification for the (a) 2003 and (b) 2004 seasons for the study area.  

The black line delineates the Jondaryan and Pittsworth shire boundaries.  Only 3 classes were 

used during the 2004 season due to insufficient ground truth samples for chickpea for that 

season. 

(a) 

(b) 
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Figure C.2: PCA EVI classification for the (a) 2003 and (b) 2004 seasons for the study area.  The 

black line delineates the Jondaryan and Pittsworth shire boundaries.  Only 3 classes were used 

during the 2004 season due to insufficient ground truth samples for chickpea for that season. 

 

(a) 

(b) 
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Figure C.3: Curve fitting EVI classifications for the 2003 season for the (a) CF1 and (b) CF2 

approaches for the study area.  The black line delineates the Jondaryan and Pittsworth shire 

boundaries. 

(a) 

(b) 
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Figure C.4: Curve fitting EVI classifications for the 2004 season for the (a) CF1 and (b) CF2 

approaches for the study area.  The black line delineates the Jondaryan and Pittsworth shire 

boundaries. 

(a) 

(b) 


