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ABSTRACT 

Bankless Channel Irrigation Systems are being used by broadacre irrigators seeking to improve 

farm efficiencies. Evaluation of the irrigation performance of these systems has been difficult due 

to the operational nature of these systems. Using novel evaluation methods and tools an 

evaluation of the irrigation performance of a bankless system was achieved. These evaluations 

revealed the application efficiency at both the system and bay scale and will assist in the 

development of an irrigation evaluation technique and simulation model capable of simulating the 

performance of this system. 

  

INTRODUCTION 

Australian bankless channel systems are similar to ―drain back level basins‖ (DBLB) used in the 

United States (Dedrick 1989). The differentiating feature of bankless systems from DBLB is a 

positive slope away from the bankless channel (0.01-0.08 %). This feature was introduced to 

facilitate drainage during irrigations and following rainfall. Bankless systems were first developed in 

Australia in the 1990's to improve water management and production performance in rice based 

farming systems. Furrows and beds were subsequently added to the system to enable the 

production of row crops. These adjustments not only provided alternative cropping options, but 

also increased operational and labour efficiencies while decreasing occupational safety risks 

associated with siphon fed systems. Anecdotal evidence also identifies the potential for water use 

efficiency improvements over siphon fed systems (Grabham and Williams 2005; Hood and 

Carrigan 2006). This paper outlines the evaluation techniques employed to determine irrigation 

performance of a bankless system, providing the foundation from which suitable design and 

management criteria may be developed for bankless systems. 

 

Bankless systems consist of a series of terraced bays (Figure 1) which, while irrigated separately, 

are connected by a channel constructed below field level—hence, a bankless channel. Each bay is 

irrigated by holding water behind a closed check-gate in the bankless channel causing water to 

flow into the adjacent bay and advance up the positive slope. Once irrigated, the check gate in the 

bankless channel is opened allowing both supply and drainage water from the bay to irrigate the 

subsequent bay. This process continues until all bays in the series have been irrigated. The 



 

  2/9 

 

bankless channel delivers the water to each bay, distributes water across the inlet width of each 

bay and acts as a drain for each bay. 

 

Figure 1: Schematic of bankless channel irrigation system. 

 

The popularity of bankless systems is increasing as irrigators strive to improve the economic 

returns from their system. Ensuring irrigation performance compliments the desirable aspects of 

the system is important. Through gaining an understanding of the irrigation performance of 

bankless systems, optimisation methods can be developed which will improve the management 

and design of both existing and new systems.  The first step towards optimisation is evaluating a 

system’s current performance. One measure of irrigation performance is field application efficiency 

(Ea). Ea is defined as the ratio of crop water use to water delivered to the irrigation field (IAA 1998). 

To date, evaluation of bankless system irrigation performance has focussed on the comparative 
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performance of the system with other irrigation methods (e.g. Hood and Carrigan 2006). 

Evaluations to determine Ea have not been conducted. A reason for this is the complexity 

introduced by the physical and operational features of the system such as a positive grade and the 

interaction of flow between bays. However, several evaluation methods for similar systems such as 

DBLB and level basins are available (Dedrick 1983; 1984; 1989; Dedrick and Clemmens 1988; 

Martin and Eusuff 2000; Merriam and Keller 1978). While these methods have not been applied to 

bankless systems, they may be applicable for the measurement of bay and furrow discharge, 

advance and recession times, soil moisture content and cumulative infiltrated volume. This paper 

outlines the methods used to evaluate a bankless system and reports the seasonal Ea of the 

system at both the system and bay scale and identifies factors contributing to application variability 

at the furrow scale. 

 

MATERIALS AND METHODS 

Irrigation evaluations were conducted in a field near Whitton in the Murrumbidgee Irrigation Area 

(MIA) of New South Wales (-34.586 lat. 146.181 long.). Evaluations were conducted over the 

summer cropping season in 2008/09. Dimensions and features of the field are detailed in Figure 2.  

 

Figure 2: Dimensions, bay area and key features of the field selected for evaluation. Irrigation water is 

supplied to the field via the supply channel above Bay 1. Pipes connect the supply channel to the bankless 

channel which distributes the water across the inlet width of the field. A 0.15m step exists between bays, 

such that bay 3 is lower than bay 2 which is in turn lower than bay 1. 
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Soil in the field is composed exclusively of Gogilderie Clay; a deep uniform cracking-clay, 

persisting to the surface and is associated with the Dallas Clay Plain Landscape (Hornbuckle et al. 

2008; van Dijk 1961). The soil was laser-levelled prior to the irrigation season, resulting in the 

disturbance and subsequent redistribution of the topsoil. An electromagnetic survey of the field was 

conducted using a sled mounted Geonics EM38 (Geonics Limited nd) operating in the vertical 

dipole. This survey confirmed soil conductivity variation to be low (Wilding 1985) suggesting a 

relatively uniform soil texture across the field.  

 

Irrigation water is delivered to the field from surface and groundwater sources at approximately 15 

ML/d.  

 

Discharge into and out of each bay was measured using dopler flow meters mounted in all pipes 

across the system. Sensor heads were installed 1m upstream of each pipe outlet on the lower 

sidewall of the pipe to avoid inference from silt accumulation in the base of the pipe (Measuring 

and Control Equipment Pty Ltd 2002).  Depth, velocity and calculated discharge were integrated for 

5 seconds every minute and logged.  

 

One furrow in each bay was selected based on its relative elevation. Furrows with an elevation 

close to the median elevation for each bay were selected. In all cases these furrows were wheel 

track furrows. Furrow discharge was calculated from discharge velocity and flow cross-sectional 

area measurements 8 metres downstream of the furrow entrance. Discharge velocity was recorded 

using a SonTek FlowTracker (SonTek/YSI 2008) while cross sectional area was determined from 

water depth measurements in known cross-sections. Measurements were collected every second 

for 15 seconds at approximately 30 minute intervals from the furrow centreline at a depth of 0.6 the 

water depth as prescribed by standard collection methods for shallow flows (Rantz 1982). The 

volume applied to each furrow is a function of the positive discharge less the drainage component 

and was divided by the area of the furrow to determine application per square metre. 

 

Crop water use was calculated from reference evapotranspiration (ETo) weather data. Daily 

measures of the modified Penman-Monteith calculated ETo data from Griffith, NSW (Meyer 1999; 

Meyer et al. 1999) and the associated local crop factor for cotton were used to determine crop 

evapotranspiration (ETc).  

 

RESULTS AND DISCUSSION 

The seasonal Ea across the three bays was 93%. ETc for the field evaluated and water inputs to 

the system are shown for the full irrigation season ( Figure 3).  
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Figure 3: Cumulative ETo, ETc and water inputs for the evaluated field. 

 

The results show that crop water demand was met by water input at the field scale for the duration 

of the season. This finding is consistent with previous evaluation assessments of bankless systems 

(Hood and Carrigan 2006) in suggesting that, at the field scale, crop performance should be similar 

to other row-crop irrigation systems. In siphon-fed row-crop irrigation systems, the degree to which 

field scale Ea represents irrigation performance is subject to the variation in physical parameters 

across the field and the degree of consistency in irrigation management. Consequently, in uniform 

fields with consistent physical conditions and irrigation management, Ea consistency at various 

scales should be high. In bankless systems, maintaining irrigation management consistency is 

inherently difficult due to inconsistent discharge to each bay. Consequently, to understand the 

irrigation performance of bankless systems, the irrigation performance of individual bays is 

important.  

 

Seasonal Ea at the bay scale varies. Although Ea across all bays was 93%, the Ea for each of the 

bays was 77, 87 and 109% for bays 1, 2 and 3 respectively. Due to the inter-bay application 

variability, ETc for bays 1 and 2 was not met by irrigation while 9% more water was applied to field 

3 than was required by the crop. The impact of this variability can be seen in Figure 4 with bays 1 

and 2 falling below calculated ETc while bay 3 receives water in excess of requirement. The results 

show a best case scenario as data collection methods prior to the 6th December could not 

differentiate water application between bays. Consequently, an average application value is 

attributed to each of the bays. If variability in irrigation application between the bays early in the 
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season reflects the variability observed later in the season, then reported irrigation performance of 

bays 1 and 2 would be greater than reality, while the reported excessive application to bay 3 would 

be lower than reality.    
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Figure 4: ET demand and irrigations applied. Irrigation application data to the 6-Dec-2009 is estimated due 

to data collection limitations and is assumed to be consistent across all bays. 

 

Due to the propensity for errors in the calculation of Ea at the furrow scale, only applied volumes for 

furrows are reported. The difference between average bay application and average furrow 

application for four irrigation events is represented in Figure 5. The discrepancy between furrow 

and bay application values indicates considerable variability exists between furrow discharges 

across each bay. Unlike siphon fed systems, where water is delivered at a constant rate and 

constrained to a particular furrow, furrows in bankless systems are subject to preferential and 

variable discharge due to relative furrow elevation and a variable discharge into each bay. The 

extent of this variability is shown in Figure 6 which shows the discharge in every third furrow across 

a 40 furrow bay.   
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Figure 5: Bay and Furrow application rates for median elevation furrows in three bays for four irrigation 

events. 
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Figure 6: Furrow discharge from every third furrow in a 40 furrow bay during an irrigation event. 

  

Evaluation of bankless systems at the field scale masks variability at both bay and furrow scales. 

To understand the irrigation performance of bankless systems, evaluation techniques which 

capture bay and furrow scale performance are important. Furthermore, a validated hydraulic 
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simulation model for bankless systems will enable the development of design and management 

criteria, leading to improved irrigation performance of these hydraulically complex systems. 

 

CONCLUSIONS  

A variety of evaluation methods were investigated and a method developed for determining Ea of 

bankless systems. The evaluation method was then employed and used to successfully evaluate a 

system at several scales from the field, to the furrow scale. The evaluation revealed Ea at the field 

scale masks variation between bays, which in-turn masks variability between furrows. Across all 

bays the seasonal Ea was calculated at 93%. However, seasonal Ea of individual bays within the 

field ranged from 77 to 109%. Furrow discharge measurements identified extensive variability in 

application rates within bays. In siphon fed systems field Ea can be consistent between sets 

subject to the uniformity of field parameters and hydraulic supply. In bankless systems the 

preferential flow and variable discharge observed in bankless systems means application between 

bays and furrows can be substantial. This study shows that evaluation of bankless systems at the 

field scale is not representative of the performance of the system at finer scales. The ability to 

simulate the hydraulic operation of bankless systems using a validated hydraulic simulation model 

will enable optimum field design and management conditions to be identified.  
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