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A novel, stochastic, hybrid binomial Langevin-multiple mapping conditioning �MMC� model—that
utilizes the strengths of each component—has been developed for inhomogeneous flows. The
implementation has the advantage of naturally incorporating velocity-scalar interactions through the
binomial Langevin model and using this joint probability density function �PDF� to define a
reference variable for the MMC part of the model. The approach has the advantage that the
difficulties encountered with the binomial Langevin model in modeling scalars with nonelementary
bounds are removed. The formulation of the closure leads to locality in scalar space and permits the
use of simple approaches �e.g., the modified Curl’s model� for transport in the reference space. The
overall closure was evaluated through application to a chemically reacting mixing layer. The results
show encouraging comparisons with experimental data for the first two moments of the PDF and
plausible results for higher moments at a relatively modest computational cost. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3041716�

I. INTRODUCTION

The challenge of modeling flows with substantial finite-
rate chemistry effects �e.g., extinction/reignition phenomena�
has attracted recent attention1,2 because modern combustion
systems tend to operate closer to combustion limits to reduce
emissions. The complex behavior that results from the pres-
ence of such effects cannot be accounted for by using simple
models and, typically, transported probability density func-
tion �PDF�-based models are required.3 Sensitivities to dif-
ferent closure elements, including molecular mixing,4 in-
crease during extinction and reignition processes and in the
present work the prospects of combining a stochastic mul-
tiple mapping conditioning5 �MMC� approach with a bino-
mial Langevin model6 for joint velocity-scalar statistics is
evaluated. The current hybrid approach has the advantages of
removing implementation difficulties associated with
bounded scalars in the context of the binomial Langevin
model, and providing simple closures for MMC coefficients
�which are averages containing reference space and scalar
quantities�. The potential of the approach is here evaluated in
the context of a chemically reacting mixing layer.

The conditional MMC approach �Ref. 5� presumes that
the reference space has sufficient dimensions to completely
describe the scalar fluctuations so that there are no fluctua-
tions around the conditional means. Deterministic closures
have been evaluated for homogeneous cases with multiple
reference variables7–9 and for inhomogeneous cases with a
single reference variable.7,10 However, the probabilistic
MMC approach has only been implemented for homoge-
neous cases.7,11

In the current work, past efforts are extended by the
development of a hybrid binomial Langevin-MMC model

applicable to the study of inhomogeneous flows. The bino-
mial Langevin model6 is used to solve the one-point, one-
time, joint velocity-scalar PDF for the velocity and a pseudo
mixture-fraction. The approach has the benefit of closing the
velocity PDF and also allows velocity-scalar interactions to
be incorporated naturally. Conventionally for MMC, it is
necessary to calculate various coefficients �using iteration� to
obtain the transport of the reference variables and then use a
model to obtain the velocity conditioned on these reference
variables. The inverse of this approach is used here to obtain
the �single� reference variable directly from the velocity cal-
culated by the binomial Langevin model. For the mixing of
the scalars in MMC, iteration has also previously been used;
by minimizing the difference between the mixture fractions
obtained from the binomial Langevin model and MMC, it-
eration is again unnecessary and consistency between the
elements of the hybrid model is sustained. The approach is
evaluated by application to a mixing layer with finite-rate
chemistry effects in order to assess the ability of the tech-
nique to reproduce the influence of varying Damköhler num-
bers �Da�.

II. THEORY

In this section, the theoretical bases for the model will be
discussed in three subsections. The two component models—
the binomial Langevin and MMC models—will be intro-
duced separately and their pertinent formulae presented; fi-
nally, the procedure for constructing the hybrid model will be
discussed.

A. Binomial Langevin model

Hůlek and Lindstedt12 developed a generalized form of
the binomial Langevin model6 for the joint-PDF of velocity
and multiple scalars. The formulation of the model for ve-
locity transport �which for the current case includes the tur-
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bulent kinetic energy dissipation rate �, the return to isotropy
of the Reynolds stresses and the dispersion in velocity space�
is given below for a stochastic particle p. The stochastic
differential equation for the velocity ui is thus

dui
�p =

1

�u
��1�ij + �2�ij��uj

�p − �uj��dt + �C0����1/2dwi,

�1�

where superscript “�” represents a stochastic trajectory, k is
the turbulent kinetic energy, �u= �k� / ��� is based on the ratio
of the ensemble mean quantities, dwi is an isotropic Wiener
process and the Reynolds stress anisotropy tensor is

�ij =
�ui�uj��
�uk�uk��

−
�ij

3
. �2�

The modeling coefficients are C0=2.1, �2=3.7, and
�1=−� 1

2 + 3
4C0�−�2�ll

2. The modeled stochastic differential
equation for any scalar � is

d��p =
G�

2��

���p − ����dt + �B������1/2dwbin, �3�

where dwbin is a binomial Wiener process6 and the mean
scalar dissipation is modeled as ��������2� /��, with the
scalar time scale modeled as ��= 1

2�u. This time scale ap-
proximation is likely to require modification due to the in-
fluence of chemical reaction on the time scale ratio.13,14

However, extended models are currently at the tentative
stage and the standard approach has been preferred. The drift
and diffusion coefficients are

G� = − �K�	1 − 
�����p�

���
�2� + 1� , �4�

B� = K�	1 − �����p�

���
�2� , �5�

where

K� = K0�1 −
��

���� + 1
� , �6�

�� = CK

����p − �����ui
�p − �ui�� − ���ui������ui��

2
3 �k����2�

, �7�

with the introduced coefficients K0=2.1 and CK=0.76. The
additional definitions are

����p� = ��p − ����p, �8�

��� = ��max���p�, ����p� 	 0

�min���p�, ����p� 
 0,
� �9�

����p = �min�c=c�p + ���� − �min�c=c�p�

�
�max�c=c�p − �min�c=c�p

�max�c=�c� − �min�c=�c�
, �10�

where c is some basis scalar, generally the mixture fraction.

The above approach appears to account reasonably well
for many of the physical processes that occur,12 although
difficulties arise in determining the limiting values in Eqs.
�9� and �10� for reacting scalars. Hůlek and Lindstedt12 ad-
dressed the issue by ensuring transport along a scalar bound-
ary. However, if the implementation is restricted to the mix-
ture fraction alone—where the bounds are simple—then no
difficulties arise.

B. MMC model

In the MMC framework, ns reactive scalars are solved,
where ns−1 scalars are species mass fractions YI, while the
last is the specific enthalpy h. The deterministic form of the
conditional MMC transport equation is5

�Z̄I

�t
+ U · �Z̄I + Ak

�Z̄I

��k
− Bkl

�2Z̄I

��k � �l
= WI�Z� , �11�

where summation over repeated indices is intended, ZI rep-

resents each scalar, �k each reference variable, Z̄I��ZI ���,
Z� �Z0 ,Z1 , . . . ,Zns

�, Z0 is the mixture fraction, U��v ��� is
the conditional velocity, v is the physical velocity, Ak is the
drift coefficient, Bkl is the diffusion coefficient, and WI is the
source term. An advantage of MMC, as for PDF models in
general, is that the source term is closed.

From the observation that the PDF of velocity is often
close to Gaussian and the conventional assumption that the
PDF of the reference variable is also Gaussian, the usual
model for U follows:5

U = ṽ +
v�Z0�
˜

��k
�Z0

��
�k, �12�

where ṽ is the Favre mean and v�=v− ṽ. For U to satisfy the
variance of v, the correlation coefficient of velocity and sca-
lar must equal the correlation coefficient of the reference
variable and scalar,

v�Z0�
˜

�v�2̃ · Z0�
2̃�1/2

=
��k�Z0��

���k�
2��Z0�

2��1/2 , �13�

where the fact that ���=0 has been used in defining the vari-
ances.

The stochastic form of the transport of the reference
variable is5

d�k
�p = Ak

0dt + bkldwl, �14�

where

Ak
0 = −

�Bkl

��l
+ Bkl�l +

1

��
� · ���

v�Z0�
˜

��k
�Z0

��
� +

2

P�

�BklP�

��l
,

�15�

2Bkl = bkibli �16�

and dwl is a Wiener process. The specification of the terms in
Eq. �15�, particularly the third term �the inhomogeneous drift
term�, requires care. The formula for Bkl will be presented
later.
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With the velocity modeled using Eq. �12�, it becomes a
stochastic variable by virtue of �k being a stochastic variable
�Eq. �14��. The physical position is then transported by the
following equation:

dx�p = Udt . �17�

The flow considered here is defined by a single reactive
scalar Y =Y1 and a mixture fraction Z=Z0. Accordingly, the
remaining transport equations to be solved are

dZ�p = Sdt , �18�

dY�p = �S + W�dt , �19�

where the mixing process is modeled by S. The mixing pro-
cess obeys5

S̄��,x,t� � �S�p���p = �,x�p = x� �20�

=0 �21�

so that it does not influence the �conditional� mean develop-
ment of the solution.

Any model that satisfies Eq. �21� may be used for S. Due
to the enforced locality of Eq. �21�, models should produce
improved results akin to the large eddy simulation �LES�
approach by Mitarai et al.15 In that study, results obtained
with PDF models for a homogeneous domain were compared
to DNS results.16 The domain was then subdivided so that
each cell contained a number of DNS volumes and inhomo-
geneous PDF modeling was performed between the LES
cells. Results over the whole domain for all models tested
showed a marked improvement and some models �modified
Curl’s and Euclidean minimal spanning tree17 �EMST�� pro-
duced quantitatively similar results to the DNS. Klimenko18

also discussed the effect and suggested time scales appropri-
ate to the process and stochastic modeling approaches. Be-
cause of the improved model performance when restricted to
small volumes, there is probably minimal benefit in utilizing
overly complex models for S.

In LES, locality is solely defined in physical space,
whereas the locality implied by Eq. �21� is partially in both
physical and scalar spaces by conditioning on both. This is a
feature of some turbulent combustion models—to also im-
pose some locality in scalar space—since �after localizing
the physical space� the scalar distribution is continuous in
physical space �except for an initial exposure to a new stream
or in the presence of shockwaves�. So applying a condition
such as Eq. �21� is effectively applying a refined locality in
physical space—without the requirement of refining the
computational grid. Refining a computational grid generally
requires increasing the number of nodes in all three spatial
dimensions, while Eq. �21� requires resolution of �-space.
For a deterministic method, this generally implies at least 20
nodes per reference variable. For a fully stochastic method, if
the number of reference variables is low, then no additional
stochastic particles are required since sufficient numbers
should be chosen to resolve the velocity PDF, although the
sensitivity of scalar space and velocity space to the number
of particles may be different.

In light of the above comments, the modified Curl’s
model19,20 was applied for S and pairs of particles selected so
that they are close in reference space according to

����pq� � �B�t�1/2, �22�

where ���pq represents the difference in � between particles
p and q. This process mimics the diffusive term of a stochas-
tic differential equation �e.g., Eq. �3��, where the average
distance particles diffuse is of the order of �B�t�1/2 and the
particles interact at the new location. To reduce the chances
of Eq. �22� being violated, p is selected so that ���p� is in
descending order. If no q can be found to satisfy Eq. �22�,
then q is selected to minimize ����pq�; any violation will
occur for outliers, which are in the low-probability region. If
�t or the number of particles is insufficient, then the model
fails �which will be obvious when eventually �Z�2� does not
decay in the mixing substep�. The conventional model for B
is used,

B =
����

2

� �Z

��
�2−1

, �23�

and the derivative may require modeling. If the conditional
fluctuations Z�p− �Z ���p� are large, then �Z /�� is undefined
and instead ��Z ��� /�� should be used in Eq. �23�. This has
been successfully used11 in a homogeneous case where �Z ���
was calculated using the mapping closure results;21 however,
the mapping closure22,21 is not consistent with inhomoge-
neous flows and some correction is generally needed in that
case.

C. Hybrid model

Following the description of the two component models,
their combination into the hybrid model will now be pre-
sented. The construction of this stochastic model is such that
each particle contains the information required for both bi-
nomial Langevin and MMC transport—the approach does
not require two sets of particles. All equations presented up
to this point are used for the transport of the particles—with
the exception of Eq. �11� �which is the deterministic form of
Eqs. �17�–�19�� and Eqs. �14�–�16� �since the transport of ��p

is not directly simulated in this hybrid model�. The remain-
ing modeling, described in this section, provides values of
��p �Eqs. �24�–�27��, models B �Eqs. �28� and �29�� and
closes the model for S �see Eq. �30��. As is the usual practice,
since the modified Curl’s model was used for S, the transport
for Z�p and Y�p was not directly via stochastic differential
equations. Meanwhile, Wdt was directly integrated implic-
itly. The binomial Langevin component directly provides the
modeling for ��p, the MMC component directly provides the
modeling for B and the closure for S is provided by interac-
tion between the two components.

In the current work, the binomial Langevin model, given
in Eqs. �1�–�10�, is used to obtain the velocity and a pseudo
mixture-fraction �. The velocity is used to define the refer-
ence variable, while the pseudo mixture-fraction is used in
specifying the mixing of the reactive scalars. For the flow
considered here, the scalar distribution is parabolic in one
dimension, homogeneous in another and inhomogeneous in
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the third, so one physical coordinate is dominant. As a con-
sequence, only one component of the velocity �in the inho-
mogeneous direction: u2� needs to be considered. In addition,
a single reference variable is considered that corresponds to
the mixture fraction for a two-stream mixing problem. In-
stead of following the conventional modeling by solving a
stochastic differential equation for � and then defining U
from �, the opposite is preferred. That is, a distribution for ui

has been determined via a stochastic differential equation,
Eq. �1�, and the reference variable is calculated based on this
velocity distribution. Formally, the conditional velocity de-
fined in Eq. �12� is set to the velocity from the solution of the
binomial Langevin velocity, Eq. �1�,

U2 = u2
�p. �24�

Equation �24� is a necessary condition for the consistency of
the hybrid method because U2 is used in Eq. �17� to transport
the stochastic particles in physical space. Since a similar
transport equation in physical space is implied for the bino-
mial Langevin velocity, i.e.,

dxi
�p = ui

�pdt , �25�

the results for Eq. �1� would be inconsistent unless Eqs. �17�
and �25� are identical—the distance moved in physical space
is what is implied by the velocity determined from Eq. �1�. A
direct consequence of this is Eq. �24�.

Equations �13� and �24� are substituted into Eq. �12�:

u2
�p = ũ2 + �u2�

2̃�1/2��p. �26�

Finally, this formula is rearranged to produce a model for the
reference variable,

��p =
u2

�p − ũ2

�u2�
2̃�1/2

. �27�

Note that u2
�p varies via a stochastic differential equation, so

Eq. �27� is consistent with directly solving a stochastic dif-
ferential equation for ��p �Ref. 11� and then defining U from
Eq. �12�. The advantage of this indirect model for ��p, in-
stead of directly solving its transport equation, Eq. �14�, is
that the quantities required for Eq. �27� are readily available,
and normally calculated as part of the solution process. By
contrast, the evaluation of the coefficients in Eq. �14� is not
trivial and particularly the third term on the right-hand side
of Eq. �15� requires careful attention.

Models which explicitly use the physical velocity as a
basis for controlling the mixing of scalars have been ex-
plored in the past. One example is that by Song,23 which
used a function of the velocity to determine the amount of
mixing for paired particles in a modified Curl’s model.19,20

By contrast, in the current model the amount of mixing is
controlled by another passive scalar and the velocity is ef-
fectively used to determine which particles are paired. A fur-
ther example is explicit conditioning on the velocity in the
interaction by exchange with the conditional mean �IECM�
model.24 A principal difference with the current approach is
that the modified Curl’s model is used for the micromixing
term.

In MMC, as in the conditional moment closure �CMC�,25

the link between the physical velocity and the conditioning
variable is explicitly included in the model �the second term
of Eq. �11��. The usual method of obtaining values for the
conditional physical velocity is to define the value of the
conditioning variable and use a model for the velocity �such
as Eq. �12��. In MMC, unlike CMC, the conditioning vari-
able is not a real quantity, hence provides greater flexibility
in its definition. But an implementation of MMC must satisfy
the fundamental criterion that the conditional mean of a sca-
lar with respect to its reference variable monotonically varies
with the reference variable. In the current approach, a value
for physical velocity is already obtained for each particle via
a stochastic differential equation �using the binomial Lange-
vin model�. As a consequence, the reference variable is trans-
ported so that a specific, valid solution of its stochastic dif-
ferential equation is chosen. This solution is such that the
value of U �from Eq. �12�� for each particle’s value of ��p is
exactly the value of u2

�p �from Eq. �1�� for that particle.
In the discussion following Eq. �23�, it was stated that

�Z /�� was undefined when Z�p− �Z ���p� is large and that
��Z ��� /�� may be an appropriate substitution if calculated
with care. Here, this approximation is formally substituted,

�Z

��
�

��Z���
��

, �28�

that is,

B �
����

2

� ��Z���

��
�2−1

. �29�

In practice, the derivatives were determined by subdividing
the reference space and applying linear least-squares curve
fits over the particles in each cell. If there are substantial
conditional fluctuations Z�p− �Z ���p�, then the approximation
of Eq. �28� is inaccurate. However, for the current model, B
is only used for the purposes of Eq. �22� �it is not required to
solve ��p in Eq. �14��. Accordingly, any error caused by us-
ing Eq. �28� should be relatively small since the diffusion
length on the right-hand side of Eq. �22� is only required to
be of the order of �B�t�1/2 in practice. This is evidenced by
analysis of sample distributions �Fig. 11�. The relatively
large scatter of Z�p around �Z ���p� means that altering the
size of ����pq� by a substantial amount ��0.5� does not sig-
nificantly change the distribution of Z�q inside ����pq�.

The remaining task is to close the model for S by deter-
mining the degree of mixing required. This was done by
requiring all particles to mix and using a least-squares analy-
sis to set the amount of mixing so that the following is mini-
mized:

�Z�p − ��p� + �Z�q − ��q� . �30�

The criterion was chosen since both Z and � represent the
same physical quantity—the mixture fraction—so the corre-
spondence should be almost exact. However, a perfect cor-
relation is not possible: for example, if Z�p	��p, while
Z�p
Z�q, then Eq. �30� will diverge or remain constant since
Z�p can only increase �towards Z�q�, but Eq. �30� requires it
to decrease �towards ��p�.
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Taking the Fokker–Planck pdf for the MMC model to be
the expected value of the fine-grained pdf �see Appendix
H26�,

PFP
M �Z,Y,�,x;t� = ���Z − Z�p�t����Y − Y�p�t��

� ��� − ��p�t����x − x�p�t��� , �31�

it is possible to formulate the Fokker–Planck �direct
Kolmogorov� transport equation for MMC based on Eqs.
�14� and �17�–�19�:

�PFP
M

�t
+ � · �UPFP

M � +
�A0PFP

M

��
−

�2BPFP
M

��2 +
�SPFP

M

�Z

+
��W + S�PFP

M

�Y
= 0. �32�

Using the model

��p = u2
�p − ũ2, �33�

which produces an overall model that is mathematically
equivalent to the overall model implied by Eq. �27�, it is
possible to obtain the Fokker–Planck pdf for the hybrid
model:

PFP
H �Z,Y,u2,x;t� = ���Z − Z�p�t����Y − Y�p�t��

� ��u2 − u2
�p�t����x − x�p�t��� . �34�

The Fokker–Planck equation for the hybrid model is then

�PFP
H

�t
+

�uiPFP
H

�xi
+

�A2
uPFP

H

�u2
−

1

2

�2C0���PFP
H

�u2
2 +

�SPFP
H

�Z

+
��W + S�PFP

H

�Y
= 0, �35�

where

A2
u =

1

�u
��1�2j + �2�2j��uj

�p − �uj�� . �36�

The mixing model S used in the implementation is not easily
represented in this formulation.

III. RESULTS

The above approach was applied to model the chemi-
cally reacting scalar mixing layer behind a turbulence-
generating grid investigated experimentally by Saetran
et al.27 and Bilger and co-workers.28,29 In the discussion be-
low, the streamwise direction is denoted by x1, while the
direction across the mixing layer is x2 and the origin is set as
the location where the splitter plate terminates at the
turbulence-generating mesh. The parameters of the flow are
such that the grid spacing is M =320 mm, while the mean
flow velocity is 0.55 m/s �accounting for the �2
correction29�. The mixtures were dilute and featured approxi-
mately 1 ppm of the reactants with O3 in the lower and NO
in the upper stream. The species have similar diffusivities
and are assumed to react according to the single-step reaction

NO + O3 → NO2 + O2, �37�

with negligible heat release due to the low concentrations.
Owing to the chemistry having a single step, it can be com-
pletely described by the mixture fraction Z and a reaction
progress variable

Y = 1 −
XNO

XNO
�1� −

XO3

XO3

�2� . �38�

Here, X is the mole fraction of the appropriate specie and
superscript numbers denote the value in the corresponding
inlet stream.

The chemical time scale was of the same order as the
flow time and finite-rate chemistry effect were present. The
chemical source terms are

WNO = WO3
= − kXNOXO3

, �39�

where the rate constant is28 k=0.388 87�106 s−1. Two cases
with Damköhler numbers of 0.42 and 2.56 �Ref. 28� were
computed as summarized in Table I. Rearranging Eq. �38�,
the mole fractions of the reactants can be obtained from the
conserved mixture fraction �Z� and the reaction progress
variable �Y� using Eqs. �13�–�19�,12

XNO

XNO
�1� = Z − YZs, �40�

XO3

XO3

�2� = �1 − Z� − Y�1 − Zs� . �41�

Here Zs is the stoichiometric mixture fraction and the formu-
las for the first two central moments were recorded in Eqs.
�20�–�24�.12 The results were reported at two locations
�x1 /M =16 and 21� downstream of the turbulence-generating
mesh.

A. Comparison of results

The first parameter of the mixing layer to be examined
was the rate of spread defined by the 80% width,

�80�x1� = x2��Z� = 0.9� − x2��Z� = 0.1� . �42�

The results were essentially identical for both cases and
within the experimental scatter as shown in Fig. 1. The bi-
nomial Langevin model12 predicts a slightly slower spread-
ing rate.

The results for the mean mixture fraction are shown in
Fig. 2, where it can be seen that the computed results are
within the experimental scatter. The results for the binomial
Langevin model12 were essentially the same and are not

TABLE I. Parameters of the simulated cases. The superscripts for the spe-
cies’ mole fractions are ordered by upper then lower stream.

XNO
�1�

�ppm�
XO3

�2�

�ppm� Da

4.08 3.85 2.56

0.68 0.70 0.42
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shown for clarity. The standard deviation for the mixture
fraction is shown in Fig. 3 and it can be seen that the hybrid
model approximately reproduced the experimental trends.
The dip in the center of the flow did not appear in the mod-
eled results and the hybrid model underpredicted the experi-
ment and was generally lower than for the binomial Lange-
vin model. However, the trend for the standard deviation to
increase with Damköhler number is reproduced. Bilger
et al.28 noted that all measurements were made in the initial
region x /M 
100, hence the potential for variability in the
statistics due to the Reynolds number and initial conditions.

The skewness �Fig. 4� and kurtosis �Fig. 5� also repro-
duce the overall experimental trends. The reasons for the
discrepancies at the center of the flow are not clear and a
more detailed analysis12 suggested that experimental difficul-
ties may be the cause. The overall trends suggest that results
improved with downstream distance and as the Damköhler
number was reduced. The underprediction of the standard
deviation by the hybrid model is likely to be a major con-
tributing factor to the overprediction of these higher mo-
ments. The binomial Langevin model performed well for the
skewness and also predicted the kurtosis quite well for much
of the range of x2, but slightly underpredicted these moments
for large x2.
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The mean mole fractions of the reactants are shown for
x1 /M =21 in Fig. 6, where it can be seen that the mean val-
ues were generally predicted quite accurately for each
reactant. For the hybrid model, the large values of O3 were
overpredicted; for the large values of NO, the results for
Da=2.56 were underpredicted and the results for Da=0.42
were overpredicted. It is worth noting that where the mean
mixture is stoichiometric �at x2=0� and the maximum reac-
tion rate occurs, the modeled predictions were close to the
experimental results. The results for the binomial Langevin
model were almost identical to those for the hybrid model
except for having higher values towards the freestreams.

The relative fidelity of predictions was similar for the
standard deviations of the reactants �Fig. 7�. Where the mean
of a specie was low, the hybrid model predicted the standard
deviation well, but the hybrid model underpredicted the ex-
periment where the mean was high, although the shape was
reproduced. The binomial Langevin model performed a little
better than the hybrid model for Da=0.42, but was clearly
worse for Da=2.56, with the peaks too narrow. The values
for both models and the experiment increased with increas-
ing Damköhler number.

The values of the covariance of the reactants are re-
ported in Fig. 8, where it can be seen that the hybrid model
results reproduced the experimental data quite well. The re-
sults for Da=2.56 were narrower than those for Da=0.42 in
the x2-direction for both model and experiment. The trend for
the magnitude to decay with downstream distance continued,
with the model producing greater maxima for Da=2.56. In-
deed, the values at the center of the flow were generally well
predicted, allowing for the variability of the experimental
results for Da=0.42 at the farthest downstream station. How-
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ever, the hybrid model consistently predicted that the cova-
riance became negligible closer to the centerline than the
experiment suggests. The results from the binomial Langevin
model were narrower than the hybrid model, with the peaks
for Da=2.56 approximately the same for both models, but
the binomial Langevin model produced a higher peak for
Da=0.42.

The mean reaction rate across the flow is shown in Fig.
9 and it is evident that the hybrid model overpredicted the
value for both Damköhler numbers. This can be contrasted
with the results for the binomial Langevin model, where the
mean reaction rate is consistently underpredicted. The hybrid
model for Da=2.56 had asymmetry to the same side as the
experiment, although with a different shape; this was due to
the lower mean value of NO for large x2. The scalar PDFs for
the hybrid model are shown in Fig. 10 at three cross-stream
locations and a comparison with the experimental PDFs
�Ref. 28� provides more information on some of the inaccu-
racies reported above. While the modes of the PDFs were
generally correctly located �so the means were quite accu-
rately determined�—except for the O3 side of the flow for
Da=2.56 �Fig. 10�d��—the modeled PDFs were generally
narrower. This caused the smaller standard deviations and
larger skewness and kurtosis, discussed above.

B. Analysis of hybrid model performance

To study the mixing process, the mixture fraction Z is
plotted against its reference variable � and the pseudo
mixture-fraction � in Figs. 11 and 12 respectively, while � is
plotted against � in Fig. 13. Note that the last is effectively

showing the binomial Langevin model’s scalar-velocity dis-
tribution. There is significant scatter evident in all figures,
although both �Z ��� and �Z ��� show distinct trends which
are generally consistent. The plots of Z��� demonstrate good
fidelity in probabilistic MMC modeling, while Z��� show
that Eq. �30� is successful in keeping Z and � close to each
other.

Note that there were no strong correlations between �
and �. Simulations which used � instead of u2 as the basis
for � �using transformations in Ref. 30� produced poor re-
sults and the reasons are as follows:

• The poor correlation between � and u2 means that

U2= �u2�+ �u2���˜ /��2̃�� �which is a commonly used
model in CMC� is not a very representative model of
u2���.

• The method used to determine the degree of mixing
minimizes the difference between Z and �. If � is used
as the basis for �, then only particles with similar Z
would be allowed to mix because only particles with
similar � would be allowed to mix �cf. Eq. �22��. This
has physical merit, reflecting the prescription of local-
ity in MMC, and is the basis for EMST.17 However, it
produces “preferential mixing,” which limits the inter-
action of fresh mixture through turbulent fluctuations.
In MMC approaches, preferential mixing limits the de-
cay of the variance as particles repeatedly mix with the
same partner. This artifact can generally be avoided by
ensuring that there are sufficient particles so that �on
average� more than one particle can be selected. The
problem was overcome in EMST through the use of an
age bias.17

• Consistency between the two components of the hy-
brid model is maintained by using u2 as the basis for �.
The convective term for MMC in Eq. �11� specifies
that the physical velocity is U, as used in Eq. �17�. By
definition in the binomial Langevin model, in specify-
ing the transport equation for the velocity ui �Eq. �1��,
this provides the physical velocity for convection �cf.
Eq. �7��. If U�ui, then the convection of quantities for
either or both models is inconsistently represented. It
is therefore necessary to use Eq. �24�.
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A comparison of the covariance of the mixture fraction
with its reference variable is shown in Fig. 14. The values
were essentially the same for both cases, which is encourag-
ing as the quantity appears as a parameter in the stochastic
differential equation for � �it appears in the model for U, Eq.
�12�� and requires determination for a full MMC implemen-
tation. A Gaussian curve fit to the data is also shown in Fig.
14: cN�� ,��=−0.076N�0,0.414�, although the Gaussian
shape is not necessarily universal.

The fact that ���Z�� is negative indicates that the profiles
�Z ��� resemble the complementary error function. Indeed,
this can be seen in Fig. 11, where least-squares fits in the

form of the complementary error function are shown. Previ-
ous work on the mapping closure and MMC indicated that
�Z ��� should resemble the error function. Pope21 showed that
for the mapping closure the profiles are exactly the error
function. We note that, mathematically, the complementary
error function is a valid solution of the mapping closure and
MMC equations because of the linearity of the equations.

Previous results for a mixing layer7 produced profiles
that resembled an error function. In that case, the mixture
fraction in the lower stream was unity, while in the upper
stream it was zero. The current situation is reversed and the
effect of U= �v ���, �U /��	0, is to entrain material from the
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unmixed streams and transport it across the flow. For the
lower free stream, the mean velocity is positive, so immedi-
ately inside the mixing layer for �� ��� �and for some of the
range �
 ����, Z= �Z ��� takes the value of the neighboring
freestream. Based on the turbulent transport alone �consider-
ing the converse analysis of the upper freestream�, the range
�
 ��� is directly influenced by the upper freestream, where
here Z is greater than in the lower freestream. Accordingly,
the profiles of �Z ��� ought to resemble the complementary
error function. By reversing the coordinate direction across
this mixing layer �which is possible because of the invari-
ance of MMC to coordinate transforms�, the situation would
naturally be reversed and �Z ��� would again resemble the

error function without any change in the statistics of the sca-
lars. Alternatively, � could be defined as the negative of Eq.
�27� for the same result.

The computational requirements for the hybrid model
are substantially larger than for the binomial Langevin model
alone, taking an order of magnitude longer on a single pro-
cessor. This is due to the search for particle pairs in Eq. �22�,
which is not as trivial an exercise as it is for the conventional
modified Curl’s model, and requires approximately 90% of
the computational time for the mixing substep. With the ref-
erence space being one dimensional, the particles that are
physically close to each other may be sorted in reference
space—a relatively fast operation—to improve the search al-
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FIG. 11. Scatter plots of Z vs � for the same locations as Fig. 10. �—� Mapping closure solution.
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gorithm, but even then the process is not trivial since adja-
cent particles are rarely paired. A simulation with a multidi-
mensional reference space would be markedly slower since
such a sorting procedure would be impossible. The other
commonly used micromixing model which should be ex-
pected to require substantially greater computational effort
than most other models is EMST. A direct comparison of
computational effort between EMST and the current hybrid
model has not been performed, however, it is expected that
the two would require similar orders of computational effort.
This is because the two models are similar in terms of find-
ing particles that are local to other particles in composition/

reference space. For systems with a small number of vari-
ables, EMST should be quicker since the construction of the
tree would be relatively straightforward and only a fraction
of the particles are involved for any given computational
time step. As the dimensionality of the composition space
becomes large, however, and maintaining a single reference
dimension for the hybrid model, EMST may become slower.
Nonetheless, the single-step chemistry used for the current
test case requires minimal computational effort. So when
more detailed chemistry is used, which could require at least
90% of the computational effort, then the computational pen-
alty for the particle-pairing algorithm becomes small.
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FIG. 12. Scatter plots of Z vs � for the same locations as Fig. 10.
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It is pertinent to compare MMC with PDF models since
when the reference space has the dimensionality of the com-
position space, MMC becomes a PDF model, with the map-
ping closure concept used to close the diffusion/micromixing
term. MMC has never been applied in such a way, however,
since it is possible to define the system with a lower
dimensionality.31 When a single dimension has been used for
the reference space, and this is not sufficient, a second-order
closure has been used previously.7,11 The two simplest PDF
models, the modified Curl’s model and interaction by ex-
change with the mean32,33 are easily applied and may pro-
duce good results for simple cases, but have significant limi-
tations in predicting higher-order moments.26 There is a
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FIG. 13. Scatter plots of � vs � for the same locations as Fig. 10.
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similarity between MMC and EMST in that they both at-
tempt to apply locality in composition space, however,
EMST is not completely linear �it does not treat each scalar
independently of all others� and it was recognized that
matching particles by the smallest distance in composition
space was problematic.17 The relaxation of this distance was
achieved in EMST via an age bias, which results in the near-
est particle often being rejected �the selection chosen in Ref.
17 is that, on average, only half the particles mix in a given
time step�, while this relaxation is achieved in MMC via Eq.
�22�. Because Eq. �22� increases with ��t�1/2, a larger set of
particles becomes available for mixing with any given par-
ticle, which is consistent with the diffusion concept. Clearly,
as �B�t�1/2 becomes small, results will become similar to
EMST, while as �B�t�1/2 becomes large, the modified Curl’s
model will be attained.

The major limitation for MMC is in specifying the coef-
ficients ��k

�Z0
�� and Bkl. Since these quantities involve the

reference variables, standard models �such as gradient diffu-
sion� cannot be used, since the transport coefficients are
comprised of quantities which are in a mathematical space,
not a physical space. The current hybrid model obtains these
coefficients by relying on the one-dimensionality of the sca-
lar field, which is clearly applicable in a free-shear flow. The
broader applicability to more complex flows is yet to be
determined.

IV. CONCLUSIONS

A hybrid binomial Langevin-MMC model has been de-
veloped and evaluated for an inhomogeneous case with
finite-rate chemistry effects. This is the first effort to imple-
ment an MMC model inhomogeneously using a stochastic
approach. The model is of a hybrid nature because it uses the
binomial Langevin model to solve the joint velocity-scalar
PDF for the velocity field and a pseudo mixture-fraction. The
reference variable for the MMC model is determined directly
from the velocity field to serve as a basis for the mixing of
the mixture fraction and the reactive scalar. Once the mixing
and chemical reaction equations have been solved, the den-
sity change is returned to the binomial Langevin model.

The simple modified Curl’s model is used for the MMC
mixing and was shown to work effectively when combined
with the current method, which ensures proximity in scalar
space of pairs of particles selected for mixing. The more
complex particle-selection method is consistent with the
MMC framework and does not involve much more compu-
tational expense than normally required by the modified
Curl’s model. An advantage of the MMC approach for the
mixing process, as compared to using the binomial Langevin
model for all quantities, is that the definition of scalar bounds
is readily achieved within the MMC framework. The advan-
tage of using a hybrid model for MMC is that the determi-
nation of the parameters for the transport of the reference
variable are not required and that a simple approximation for
the diffusion coefficient could be used as a parameter for the
scalar mixing process.

The results for the mean values of the mixture fraction
and mole fractions of the reactants were within experimental

error, while the general trends for the higher moments were
well reproduced. The mixture fraction statistics were gener-
ally predicted better by the binomial Langevin model
alone,12 while some of the mole fraction statistics were pre-
dicted better by the hybrid model. The shapes of the experi-
mental results were generally reproduced quite well by both
models, although many of the second-order statistics were
underpredicted.

The second-order moments are typically used as a basis
for general modeling and while reasonable modeling of
higher moments is naturally preferred, a lower level of accu-
racy is typically required. It may be concluded that the hy-
brid binomial Langevin-MMC model provides a reasonable
level of accuracy at relatively modest computational expense
and these results provide a solid basis for further testing.
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