
Building XML Data Warehouse Based on Frequent
Patterns in User Queries

Ji Zhang1, Tok Wang Ling1, Robert M. Bruckner2, A Min Tjoa2

 1Department of Computer Science 2Institute of Software Technology
 National University of Singapore Vienna University of Technology
 Singapore 117543 Favoritenstr. 9/188, A-1040 Vienna, Austria
 {zhangji, lingtw}@comp.nus.edu.sg {bruckner, tjoa}@ifs.tuwien.ac.at

Abstract. With the proliferation of XML-based data sources available across the
Internet, it is increasingly important to provide users with a data warehouse of
XML data sources to facilitate decision-making processes. Due to the extremely
large amount of XML data available on web, unguided warehousing of XML
data turns out to be highly costly and usually cannot well accommodate the users’
needs in XML data acquirement. In this paper, we propose an approach to
materialize XML data warehouses based on frequent query patterns discovered
from historical queries issued by users. The schemas of integrated XML
documents in the warehouse are built using these frequent query patterns
represented as Frequent Query Pattern Trees (FreqQPTs). Using hierarchical
clustering technique, the integration approach in the data warehouse is flexible
with respect to obtaining and maintaining XML documents. Experiments show
that the overall processing of the same queries issued against the global schema
become much efficient by using the XML data warehouse built than by directly
searching the multiple data sources.

1. Introduction

A data warehouse (DWH) is a repository of data that has been extracted,
transformed, and integrated from multiple and independent data source like operational
databases and external systems [1]. A data warehouse system, together with its
associated technologies and tools, enables knowledge workers to acquire, integrate, and
analyze information from different data sources. Recently, XML has rapidly emerged
as a standardized data format to represent and exchange data on the web. The
traditional DWH has gradually given way to the XML-based DWH, which becomes the
mainstream framework.

Building a XML data warehouse is appealing since it provides users with a
collection of semantically consistent, clean, and concrete XML-based data that are
suitable for efficient query and analysis purposes. However, the major drawback of
building an enterprise wide XML data warehouse system is that it is usually extremely
time and cost consuming that is unlikely to be successful [10]. Furthermore, without
proper guidance on which information is to be stored, the resulting data warehouse
cannot really well accommodate the users’ needs in XML data acquirement.

In order to overcome this problem, we propose a novel XML data warehouse
approach by taking advantage of the underlying frequent patterns existing in the query

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11038737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

history of users. The historical user queries can ideally provide us with guidance
regarding which XML data sources are more frequently accessed by users, compared to
others. The general idea of our approach is: Given multiple distributed XML data
sources and their globally integrated schema represented as a DTD (data type
definition) tree, we will build a XML data warehouse based on the method of revealing
frequent query patterns. In doing so, the frequent query patterns, each represented as a
Frequent Query Pattern Tree (FreqQPT), are discovered by applying a rule-mining
algorithm. Then, FreqQPTs are clustered and merged to generate a specified number of
integrated XML documents.

Apparently, the schema of integrated XML documents in the warehouse is only a
subset of the global schema and the size of this warehouse is usually much smaller than
the total size of all distributed data sources. A smaller sized data warehouse can not
only save storage space but also enable query processing to be performed more
efficiently. Furthermore, this approach is more user-oriented and is better tailored to
the user’s needs and interests.

There has been some research in the field of building and managing XML data
warehouse. The authors of [2] present a semi-automated approach to building a
conceptual schema for a data mart starting from XML sources. The work in [3] uses
XML to establish an Internet-based data warehouse system to solve the defects of
client/server data warehouse systems. [4] presents a framework for supporting
interoperability among data warehouse islands for federated environments based on
XML. A change-centric method to manage versions in a web warehouse of XML data
is published in [5]. Integration strategies and their application to XML Schema
integration has been discussed in [6]. The author of [8] introduces a dynamic
warehouse, which supports evaluation, change control and data integration of XML
data.

The remainder of this paper is organized as follows. Section 2 discusses the
generation of XML data warehouses based on frequent query patterns of users’ queries.
In Sections 3, query processing using the data warehouse is discussed. Experimental
results are repoeted in Section 4. The final section conclude this paper.

2. Building a XML DWH Based on Frequent Query Patterns

2.1. Transforming Users’ Queries into Query Path Transactions

XQuery is a flexible language commonly used to query a broad spectrum of XML
information sources, including both databases and documents [7]. The following
XQuery-formatted query aims to extract the ISBN, Title, Author and Price of books
with a price over 20 dollars from a set of XML documents about book-related
information. The global DTD tree is shown in Figure 1.

FOR $a IN DOCUMENT (book XML documents)/book
 SATIFIES $a/Price/data()>20
 RETURN <QueryResult> <book>{$a/ISBN, $a/Title, $a/Author, $a/Price}</book>
</QueryResult >

Book

Author+TitleISBN Price

Para*AffiliationName Title

Publisher

Figure*

Section+ Year

Title Image

QP1: Book/ISBN
QP2: Book/Title
QP3: Book/Author/Name
QP4:Book/Author/Affiliation
QP5: Book/Price

Fig. 1. Global DTD Tree of multiple XML documents. Fig. 2. QPs of the XQuery sample.

A Query Path is a path expression of a DTD tree that starts at the root of tree. QPs
can be obtained from the query script expressed using XQuery Statements. The sample
query above can be decomposed into five QPs, as shown in Figure 2. The root of a QP
is denoted as Root(QP) and all QPs in a query have the same root.

Please note that two QPs with different roots are regarded as different QPs,
although these two paths may have some common nodes. This is because different
roots of paths often indicate dissimilar contexts of the queries. For example, two
queries Author/Name and Book/Author/Name are different because
Root(Author/Name)=Author ≠ Root(Book/Author/Name)=Book.

A query can be expressed using a set of QPs which includes all the QPs that this
query consists. For example, the above sample query, denoted as Q, can be expressed
using a QP set such as Q={QP1, QP2, QP3, QP4, QP5}.

By transforming all the queries into QP sets, we now obtain a database containing
all these QP sets of queries, denoted as DQPS. We will then apply a rule-mining
techniques to discover significant rules among the users’ query patterns.

2.2. Discovering Frequent Query Path Sets in DQPS

The aim of applying a rule mining technique in DQPS is to discover Frequent
Query Path Sets (FreqQPSs) in DQPS. A FreqQPS contains frequent QPs that jointly
occur in DQPS. Frequent Query Pattern Trees (FreqQPTs) are built from these
FreqQPSs and serve as building blocks of schemas of the integrated XML documents
in the data warehouse. Formal definition of FreqQPTs is given as follows.

Definition 1. Frequent Query Path Set (FreqQPS): From all the occurring QPs in
DQPS transformed from user’s queries, a Frequent Query Path Set (FreqQPS) is a set of
QPs: {QP1, QP2,…,QPn} that satisfies the following two requirements:

(1) Support requirement: Support ({QP1, QP2,…,QPn}) ≥ minsup;
(2) Confidence requirement: For each QPi,

Freq({QP1, QP2,…,QPn}) / Freq(QPi) ≥ minconf.
where Freq(s) counts the occurrence of set s in DQPS. In (1), Support({QP1,

QP2,…,QPn}) = freq({QP1, QP2,…,QPn}) / N(DQPS), where N(DQPS) is the total number
of QPs in DQPS. The constants minsup and minconf are the minimum support and
confidence thresholds, specified by the user. A FreqQPS that consists of n QPs is
termed as an n-itemset FreqQPS.

The definition of a FreqQPS is similar to that of association rules. The support
requirement is identical to the traditional definition of large association rules. The
confidence requirement is, however, more rigid than the traditional definition. Setting a
more rigid confidence requirement is to ensure the joint occurrence of QPs in a
FreqQPS should be significant enough with respect to an individual occurrence of any

QP. Since the number of QPs in the FreqQPS is unknown in advance, we will mine all
FreqQPSs containing various numbers of itemsets. The FreqQPS mining algorithm is
presented in Figure 3.

The n-itemset QPS candidates are generated by joining (n-1)-itemset FreqQPSs. A
pruning mechanism is devised to delete those candidates of the n-itemset QPSs that do
not have n (n-1)-itemset subsets in the (n-1)-itemset FreqQPS list. The reason is that if
one or more (n-1)-subsets of a n-itemset QPS candidate are missing in the (n-1)-itemset
FreqQPS list, this n-itemset QPS cannot become a FreqQPS. This is obviously more
rigid than pruning mechanism used in conventional association rule mining.

For example, if one or more of the 2-itemset QPSs {QP1, QP2}, {QP1, QP3} and
{QP2, QP3} are not frequent, then the 3-itemset QPS {QP1, QP2, QP3} cannot become a
frequent QPS. The proof of this pruning mechanism is given below. The pruning the n-
itemset QPS candidates are evaluated in terms of the support and confidence
requirements to decide whether or not they are a FreqQPS. The (n-1)-itemset FreqQPSs
are finally deleted if they are subsets of some n–itemset FreqQPSs. For example, the 2-
itemset FreqQPT {QP1, QP2} will be deleted from 2-itemset FreqQPT list if the 3-
itemset {QP1, QP2, QP3} exists in the 3-itemset FreqQPT list.

Algorithm MineFreqQPS
Input: DQPS, minsup, minconf.
Output: FreqQPS of varied number of itemsets.
FreqQPS1={QP in DQPS| SatisfySup(QP)=true};
i=2;
WHILE (CanFreqQPSi-1 is not empty) {

CanQPSi=CanQPSGen(FreqQPSi-1);
CanQPSi= CanQPSi―{QPSi| NoSubSet(QPS

i
, FreqQPS

i-1
)<i};

FreqQPSi={QPSi in CanQPSi | sfyS (QPS
i
)=t ue AN SatisfyCon PS

i
)= rue}; Sati up r D f(Q t

FreqQPSi-1= FreqQPSi-1―{QPSi-1| QPS
i-1

QPS
i
, QPS

i-1
 in FreqQPS

i-1
, QPS

i
 in FreqQPS

i}; ⊆
i++; }

MaxItemset=i-2;
IF (MaxItemset≠0) THEN

FOR (i=1;i≤MaxItemset; i++) Return (FreqQPSi);

Fig. 3. Algorithm for mining FreqQPSs.

Proof: Suppose a n-itemset QPS has only p (n-1)-itemset subsets QPSn-1
i|1≤i≤p,

meaning that there are (n-p) subsets of QPSn are missing in the (n-1)-itemset QPS list.
These missing (n-p) subsets of QPSn, denoted as QPSn-1

i| (p+1)≤i≤n, are definitely not
FreqQPSs and they fail to satisfy the support or the confidence requirement or both.
Specifically,
(1) If QPSn-1

i|(p+1)≤i≤n does not satisfy support requirement, then Support(QP1,
QP2,…,QPn-1) < minsup. Because Support(QP1, QP2,…,QPn) ≤ Support(QP1,
QP2 ,…,QPn-1), so Support(QP1, QP2,…,QPn) < minsup, meaning QPSn cannot
become a n-itemset FreqQPS;

(2) If QPSn-1
i|(p+1)≤i≤n does not satisfy confidence requirement, then for a certain QPi,

Freq(QP1, QP2,…,QPn-1) / Freq(QPi) < minconf. Because Support(QP1,
QP2, …,QPn) ≤ Support(QP1, QP2,…,QPn-1), so for QPi, Freq(QP1, QP2,…,QPn) /
Freq(QPi) < minconf, meaning that QPSn cannot become a n-itemset FreqQPS.

After we have obtained a number of FreqQPSs, their corresponding Frequent
Query Pattern Trees (FreqQPTs) will be built.

Definition 2. Frequent Query Pattern Tree (FreqQPT): Given a FreqQPS, its
corresponding Frequent Query Pattern Tree (FreqQPT) is a rooted tree FreqQPT=<V,
E>, where V and E denote its vertex and edge sets, which are the union of the vertices
and edges of QPs in this FreqQPS, respectively. The root of a FreqQPT, denoted as
Root(FreqQPT), is the root of its constituting QPs.

For example, suppose a FreqQPS has two QPs: Book/Title and
Book/Author/Name. The resulting FreqQPT is shown in the Figure 4.

Book

Title Author
Name

Fig. 4. Build a FreqQPT for a FreqQPS.

{Book/ Title,
Book/ Author/ Name}

2.3. Generating Schemas of Integrated XML Documents

When all FreqQPTs have been mined, the schema of the integrated XML
document will be built. We have noticed that a larger integrated XML document
usually requires larger space when it is loaded into main memory. In order to solve this
problem, we alternatively choose to build a few, rather than only one, integrated XML
documents from the FreqQPTs mined, making the integration more flexible. The exact
number of integrated XML documents to be obtained is user- specified. The basic idea
is to use a clustering technique to find a pre-specified number of clusters of FreqQPTs.
The integration of the FreqQPTs is performed within each of the clusters.

Similarity measurement of FreqQPTs
We need to measure the similarity between two FreqQPTs in order to find the

closest pair in each step of the clustering process. It is noticed that the complexity of
merging two FreqQPTs is dependant on the distance of the roots of the FreqQPTs
involved, rather than on the other nodes in the FreqQPTs. Intuitively, the closer the two
roots are to each other, the easier the merging can be done and vice versa. To measure
the similarity between the roots of two FreqQPTs, we have to first discuss the
similarity between two nodes in the hierarchy of a global schema.

In our work, the similarity computation between two nodes in the hierarchy is
based on the edge counting method. We measure the similarity of nodes by first
computing the distance between two nodes, since the distance can be easily obtained by
edge counting. Naturally, the larger the number of edges between two nodes, the
further apart the two nodes are. The distance between two nodes n1 and n2, denoted as
NodeDist(n1, n2), is computed as NodeDist(n1, n2)= Nedge(n1, n2), where Nedge() returns
the number of edges between n1 and n2. This distance can be normalized by dividing
the maximum possible distance between two nodes in the hierarchy, denoted by
LongestDist. The normalized distance between n1 and n2, denoted as NodeDistN(n1, n2),
is computed as follows:

NodeDistN(n1, n2)= Nedge(n1, n2)/LongestDist
Thus the similarity between n1 and n2 is computed as:

NodeSimN(n1, n2)=1- NodeDistN(n1, n2)
We now give an example to show how the similarity between two roots of

FreqQPTs is computed. Suppose there are two QPs, QP1: Book/ Price and QP2:

Section/ Figure/ Image as shown in Figure 5. What we should do is to compute the
similarity between the roots of these two QPs, namely Book and Section. The
maximum length between two nodes in the hierarchy as shown in Figure 1 is 5 (from
Name or Affiliation to Title or Image). Thus NodeSimN(Book, Section) = 1 –
NodeDistN(Book, Section) = 1–1/5 = 4/5 = 0.8.

Book

Section

Image
Figure

Price

Fig. 5. Similarity between two QPs.

Merging of FreqQPTs
When a nearest pair of FreqQPTs is found in each step of the clustering, merging

of these two FreqQPTs is performed. Let FreqQPT1=<V1, E1>, FreqQPT2=<V2, E2>,
Root(FreqQPT1)=root1, Root(FreqQPT2)=root2, and FreQPTM be the new FreqQPT
merged from FreqQPT1 and FreqQPT2. We will now present the definition of Nearest
Common Ancestor Node (NCAN) of two nodes in the DTD tree before we give details
of FreqQPT merging.

Definition 3. Nearest Common Ancestor Node (NCAN): The NCAN of root nodes of
two FreqQPTs root1 and root2 in the hierarchical structure of a global DTD tree H,
denoted as NCANH(root1, root2), is the common ancestor node in H that are closest to
both root1 and root2.

To merge two closest FreqQPTs, the Nearest Common Ancestor Node (NCAN) of
root1 and root2 has to be found, thereby these two FreqQPTs can be connected.

We denote the vertex and edge set of the paths between NCANH(root1, root2) and
root1 as VNCAN→root1 and ENCAN→root1, and those between NCANH(root1, root2) and root2
as VNCAN→root2 and ENCAN→root2. The FreQPTM in this case can be expressed as
FreQPTM={Union(V1, V2, VNCAN→root1,VNCAN→root2), Union (E1, E2, ENCAN→root1,
ENCAN→root2)} and Root(FreQPTM)= NCANH(root1, root2).

Specifically, there are three scenarios in merging two FreqQPTs, namely, (1) the
two FreqQPTs have the same root; (2) The root of one FreqQPT is an ancestor node of
another FreqQPT’s root; (3) case other than (a) and (b). Figure 6 (a)-(c) give examples
for each of the cases of FreqQPT merging discussed above. The dot-lined edges in the
integrated schema, if any, are the extra edges that have to be included into the
integrated schema in merging the two separate FreqQPTs.

Book
Author

Name
Title Author

Name

Book

Title Price
Price

Book

 (a) Example for Case 1.

Book Section

Image
Figure TitleTitle

Title

Book

Section

Image
Figure

Title

 (b) Example for Case 2.

ImageTitle

FigureAuthor

AffiliationName
Image

Book

Section
Figure

Title

Author

AffiliationName

 (c) Example for Case 3.

Fig. 6 (a) – (c). Examples of FreqQPT merging.

Clustering of FreqQPTs
The aim of clustering FreqQPTs is to group similar FreqQPTs together for further

integration. Merging two closer FreqQPTs is cheaper and requires less re-structuring
operations compared to merging two FreqQPTs far apart from each other. In our work,
we utilize the agglomerative hierarchical clustering paradigm. The basic idea of
agglomerative hierarchical clustering is to begin with each FreqQPT as a distinct
cluster and merge the two closest clusters in each subsequent step until a stopping
criterion is met. The stop criterion of the clustering is typically either the similarity
threshold or the number of clusters to be obtained. We choose to specify the number of
clusters since it is more intuitive and easy to specify, compared to the similarity
threshold that is typically not known before the clustering process.

Please note that k , the specified number of clusters to be obtained, should not be
larger than the number of FreqQPTs, otherwise the error message will be returned. This
is because the QPs in the same FreqQPTs are not allowed to be further split. In each
step, the two closest FreqQPT pair will be found and merged into one FreqQPT and the
number of current clusters will be decreased by 1 accordingly. This clustering process
is terminated when k clusters are obtained.

2.4. Acquire Data to Feed the Warehouse

The last step of building the XML data warehouse is to read data from XML data
sources when the schemas of the integrated XML documents are ready. Coming from
different data source across the Internet, these data may be incomplete, noisy,
inconsistent, and duplicate. Processing efforts such as standardization, data cleaning
and conflict solving need to be performed to make the data in the warehouse more
consistent, clean, and concrete.

3 Processing of Queries Using the Date Warehouse

One of the main purposes of building data warehouse is to facilitate the query
processing. When there is no data warehouse, processing of queries use the single
mediator architecture (shown in Figure 7), in which all the queries will be processed in
this mediator and directed to the multiple XML data sources. When the data warehouse
has been built, a dual-mediator architecture is adopted (shown in Figure 8). Mediator 1
processes all the incoming queries from users, and each query will be directed to either
the data warehouse or mediator 2 which is responsible for further directing the queries
to the XML data sources or both.

Specifically, let QPSdwh be QP set of the integrated XML documents in the data
warehouse. QPTra(q) be the QP transaction of the query q.

(i) If QPTra(q) QPSdwh, meaning that all the QPs of q can be found in the schemas
of integrated XML documents in the data warehouse, and this query can be
answered by using the data warehouse alone, then q will only be directed by
mediator 1 to the XML data warehouse;

⊂

(ii) if QPTra(q) QPSdwh and QPTra(q)∩QPSdwh is not empty, meaning that not all
QPs of q can be found in the schemas of integrated XML documents in the data
warehouse, and the data warehouse does not contain enough information to
answer q, then q will be directed by mediator 1 to both the data warehouse and
mediator 2;

⊄

(iii) if QPTra(q)∩QPSdwh is empty, indicating that the information needed to answer
q is not contained in the warehouse, thus q will only directed by mediator 1 to
mediator 2.

…
..
.Users

…
..
.

XML data sources

Mediator

X M L data
w arehouse

…
...

X M L data sources

M ediator 2

…
..
.U sers

M ediator 1

Fig. 7. Query processing without data
warehouse

Fig. 8. Query processing with data
warehouse

4. Experimental Results

In this section, we will conduct experiments to evaluate the efficiency of the
constructing schema of XML data integration and the speedup of query processing by
means of the data warehouse we have built. We use a set of 50 XML documents about
book information and generate their global DTD tree. Zipfian distribution is employed
to produce transaction file of queries, because web queries and surfing patterns
typically conform to the Zipf’s law [9]. In our work, the query transaction file contains
500 such synthetic queries based on which the data warehouse is built. All these
experiments are carried out on the PC of 900 MHz PC with 256 megabytes of main
memory running on Windows 2000.

4.1 Construction of the Data Warehouse Schema under Varying Number of

Queries

Fig. 9. Efficiency of constructing the data warehouse schema under varying number of queries

Fig. 10. Comparative study on query answering time

First, we will evaluate the time spent in constructing the schema of XML data

integration of the data warehouse under varying number of queries from which
frequent query patterns are extracted. The number of the queries used is varied from
100 to 1,000. As shown in Figure 9, the time increases approximately in an exponential
rate since the number of candidates of FreqQPSs generated increases exponentially as
the number of queries goes up.

4.2 Speedup of Query Processing Using Data Warehouse

The major benefits of building data warehouse system based on frequent query

patterns are to not only obtain a smaller but more concrete and clean subset of original
XML data sources but also helps speedup the query processing. In this experiment, we
measure the response time for answering queries with and without the aid of the data
warehouse, respectively. The number of queries to be answered ranges from 100 to
1,000. The results shown in Figure 10 justifies that, by using data warehouse we have
built, the query answering is faster than that the case when there is no such a data
warehouse. This is because that the potion of information contained in the data

warehouse is smaller in size than that stored in the original data sources, reducing the
volume of data needed to scanned in the query answering. In addition, the data has
been undergone the processing such as standardization, data cleaning and conflict
solving, thus the duplication of data is lower. The smaller size and lower duplication of
the data in the warehouse contribute to the higher efficiency in query answering.

5 Conclusions

In this paper, we propose a novel approach to perform XML data warehousing
based on the frequent query patterns discovered from historical user’s queries. A
specific rule mining technique is employed to discover these frequent query patterns,
based on which the schemas of integrated XML documents are built. Frequent query
patterns are represented using Frequent Pattern Trees (FreqQPTs) that are clustered
using a hierarchical clustering technique according to the integration specification to
build the schemas of integrated XML documents. Experimental results show that query
answering time is reduced when compared to the case when there is no such a data
warehouse.

References
[1] H. Garcia-Molina, W. Labio, J. L.Wiener, and Y. Zhuge: Distributed and Parallel

Computing Issues in Data Warehousing. In Proc. of ACM Principles of Distributed
Computing Conference (PODS), Puerto Vallarta, Mexico 1998.

[2] M. Golfarelli, S. Rizzi, and B. Vrdoljak: Data Warehouse Design from XML Sources. In
Proc. of ACM DOLAP’01, Atlanta, Georgia, USA, Nov. 2001.

[3] S. M. Huang and C.H. Su: The Development of an XML-based Data Warehouse System. In
Proc. of 3rd Intl. Conf. of Intelligent Data Engineering and Automated Learning
(IDEAL’02), Springer LNCS 2412, pp. 206-212, Manchester, UK, Aug. 2002.

[4] O. Mangisengi, J. Huber, C. Hawel and W. Essmayr: A Framework for Supporting
Interoperability of Data Warehouse Islands using XML. In Proc. of 3rd Intl. Conf.
DaWaK’01, Springer LNCS 2114, pp. 328-338, Munich, Germany, Sept. 2001.

[5] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet: Change-centric Management of
Versions in an XML Warehouse. In Proc. of Intl. Conf. on Very Large Data Bases
(VLDB’01), pp. 581-590, Roma, Italy, Sept. 2001.

[6] K. Passi, L. Lane, S. Madria, B.C. Sakamuri, M. Mohania and S. Bhowmick: A Model for
XML Schema Integration. In Proc. of 3rd Intl. Conf. EC-Web, Springer LNCS 2455, pp.
193-202, Aix-en-Provence, France, Sept. 2002.

[7] XQuery Language 1.0. http://www.w3.org/TR/xquery/.
[8] L. Xyleme. A Dynamic Warehouse for XML Data of the Web. IEEE Data Engineering

Bulletin, Vol. 24(2), pp. 40-47, 2001.
[9] L. H. Yang, M. L. Lee, W. Hsu, S. Acharya. Mining Frequent Query Patterns from XML

Queries. In Proc. of 8th Intl. Symp. on Database Systems for Advanced Applications
(DASFAA’03), Kyoto, Japan, March 2003.

[10] L.Garber. Michael StoneBraker on the Importance of Data Integration. IT Professional, Vol.
1, No.3, pp 80, 77-79, 1999.

