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Abstract

DNA microarray experiments generating thousands of gene
expression measurements, are being used to gather infor-
mation from tissue and cell samples regarding gene expres-
sion differences that will be useful in diagnosing disease.
But one challenge of microarray studies is the fact that the
number n of samples collected is relatively small compared
to the number p of genes per sample which are usually in
thousands. In statistical terms this very large number of
predictors compared to a small number of samples or ob-
servations makes the classification problem difficult. This
is known as the ”curse of dimensionality problem”. An
efficient way to solve this problem is by using dimension-
ality reduction techniques. Principle Component Analy-
sis(PCA) is a leading method for dimensionality reduction
of gene expression data which is optimal in the sense of least
square error. In this paper we propose a new dimensional-
ity reduction technique for specific bioinformatics applica-
tions based on Independent component Analysis(ICA). Be-
ing able to exploit higher order statistics to identify a linear
model result, this ICA based dimensionality reduction tech-
nique outperforms PCA from both statistical and biologi-
cal significance aspects. We present experiments on NCI 60
dataset to show this result.

Keywords-gene expression data, dimensionality reduc-
tion, independent component analysis, latent regulatory
factors

1. Introduction
In the specific area of computational biology,ie. tumor
classification, analysis of high dimensional datasets is fre-
quently encountered. For example, DNA microarray exper-
iments generating thousands of gene expression measure-
ments, are being used to gather information from tissue and
cell samples regarding gene expression differences that will
be useful in diagnosing disease[1][2].

This high dimension presents a great challenge for mod-
eling and analysis of the data. Mathematically, when view-
ing the modeling problem in a regression framework. Some

specific applications can be modelled as follows: the re-
sponse variable (e.g. the prostrate cancer cell line) is ex-
pressed by predictor or explanatory variables (gene expres-
sion measurements) by a multiple linear regression model

yi = β0 + xi1β1 + ... + xipβp + εi, i = 1, ..., n. (1)

n is the number of observations (ie. cell lines), xi =
(1, xi1, ..., xip)> are collected as rows in a matrixX con-
taining the predictor variables,y = (y1, ..., yn)> is the
response variable,β = (β0, β1, ..., βp)> are the regres-
sion coefficients which are to be estimated, andε =
(ε1, ..., εn)> is the error term. The differencesyi − β0 −
xi1β1 − ... − xipβp express the deviation of the fit to the
observed values and are called residuals. Traditionally, the
regression coefficients are estimated by minimizing the sum
of squared residuals

∑n
i=1(yi−β0−β1xi1−...−βqxi1)2 =

(y − Xβ)>(y − Xβ). This criterion is calledleast squares
(LS) criterion[3], and the coefficient minimizing the crite-
rion turns out to be

β̂LS = (X>X)−1X>y. (2)

Since the inverse ofX>X is needed in Equation (2),
problems will occur if the rank ofX is lower thanp + 1.
This happens if the predictor variables are highly correlated
or if there are linear relationships among the variables. This
situation is calledmulticollinearity[4], and often a general-
ized inverse is then taken for estimating the regression co-
efficients. The inverse ofX>X also appears when comput-
ing the standard errors and the correlation matrix of the re-
gression coefficients estimatorβ̂LS . In a near-singular case
the standard errors can be inflated considerably and cause
doubt on the interpretability of these coefficients. Also note
that the rank ofX is always lower thanp + 1 if the number
of observations is less than or equal to the number of vari-
ables(n ≤ p). This is a frequent problem which occurs in
many applications e.g. one feature of microarray studies is
the fact that the numbern of samples collected is relatively
small compared to the numberp of genes per sample which
are usually in the thousands. In statistical terms this very
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large number of predictors or variables (genes) compared
to a small number of samples or observations (microarrays)
makes most of classical ”class prediction” methods unem-
ployable, unless a preliminary variable selection step is per-
formed[7].

The idea is to construct a limited set ofk components
z1, ..., zk which are linear combinations of the original vari-
ables. So there are existing vectorsbj such thatzj = Xbj

for 1 ≤ j ≤ k. Let Z = (z1, ..., zk) be then × k matrix
having the components in its columns. For ease of notation,
we ask these components to be centered, so1>n Z. with 1n a
column vector with all n components equal to 1. Moreover,
the well known method PCA(or Karhunen-Loeve expansion
in pattern recognition[5]) also ask these components to be
uncorrelated and to have unit variance:

Z>Z =
1

n− 1
Ik, (3)

whereIk stands for an identity matrix of rankk. These
components will then serve as now predictor variables in
the regression model. Not that, due to (3) the multicollinear-
ity problem has completely vanished when using a regres-
sion model withz1, ..., zk as predictor variables. Moreover,
whenk is small relative top, one has significantly reduced
the number of predictor variables, leading to a more parsi-
monious regression model. PCA based dimensionality re-
duction method is up to second order statistics(covariance,
correlation), However, higher order statistics contain signif-
icant complementary information. This is the case in partic-
ular when the distribution of data differs significantly from
gaussian, which turns out to happen quite often in microar-
ray expression data. Indeed, some particular genes may
happen to be significantly over-expressed(under-expressed)
in some conditions, which yields ”heavy tail” distribu-
tion[6]. Therefore, we propose an ICA based dimension-
ality reduction method to try to exploit such higher order
statistics for the analysis of expression data. Our approach
models logarithms of expression profile of a specific as lin-
ear combination of ”latent” regulatory factors which are sta-
tistically independent. Our method could not only provide
useful information in term of discrimination or clustering
of conditions, this ICA based method also provides a use-
ful mathematical framework for processing and modeling
genome-wide expression data, in which both the mathemat-
ical variables and operations could be assigned biological
meaning and could be explained easily.

The next section of this paper will introduce mathe-
matical framework of ICA based dimensionality reduction
method for gene expression profile. In section 3, a de-
tailed analysis and theoretical comparison with PCA based
method will be given out. Experiment and result analysis
are given out in section 4, conclusions and possible exten-
sions are summarized in section 5.

2. Mathematical Framework– ICA

2.1 General Framework

The relative expression levels ofp genes of a model or-
ganism, which may constitute almost the entire genome of
this organism, in a single sample, are probed simultane-
ously by a single microarray. A series ofN arrays, which
are almost identical physically, probe the genome-wide ex-
pression levels inN different samples. Let thep × N
matrix X denote the full expression profile,everyxij =
log2(Rij/Gij) represents the log ratio of red(experiment)
and green(reference) intensities .p representsp-genes while
N representsN arrays. Each elementxij for all 1 ≤ i ≤ p
and1 ≤ j ≤ N denotes the relative expression level of
theith gene in thejth sample as measured by thejth array.
The vector in theith row of the matrixX lists the relative ex-
pression of theith gene across the different samples which
correspond to the different arrays; while the vector in the
jth column of the matrixX lists the genome-wide relative
expression measured by thejth array.

By viewing the expression pattern of each gene across
different arrays as a random variable,we model the tran-
scription level of all gene expressions in a cell as a mixture
of latent regulatory factors which are statistically indepen-
dent. Mathematically, suppose that a specific gene is gov-
erned byk independent latent factors.S = (s1, ..., sk)T ,
Each of which can be viewed as a regulatory factor. ICA
is then a generative model which can be viewed as a linear
transformation of the expression data from thep-genes×
N -array space to the reducedk-”regulatory factor”× N -
array space, wherek ≤ min{p,N}. By defining a model
whereby the expression profile of each different genexi can
be expressed as linear combinations of thek latent regula-
tory factors: xi = ai1s1 + ai2s2 + ... + aiksk. We can
express this model consistently in the generative form of
ICA.

X = AS,




x1

x2

...
xp


 =




a11 ... a1k

a21 ... a2k

...
...

...
ap1 ... apk







s1

s2

...
sk


 (4)

Equation (4) corresponds to a generative model of interac-
tions between latent regulatory factors. The linear transfor-
mation matrixA can be viewed as a loading matrix of the
regulatory factors for each gene.

Since these latent regulatory factors are assumed to be
statistically independent, each of the vectors1, ..., sk can
be viewed as an independent random source. Then, ICA
can be applied to find a matrixW that provides the trans-
formationY = (y1, ..., yk)T = WX of the observed matrix
X under which the transformed random variablesy1, ..., yk

called the estimated independent components, are as inde-
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pendent as possible[8]. Under certain mathematical condi-
tions(will be discussed later), the estimated random vari-
ablesy1, ..., yk are close approximations ofs1, ..., sk up
to permutation and scaling. Denote this in matrix nota-
tion(Equation 5)

Yk×N = Wk×pXp×N (5)

From equation (5), we see that the data are mapped from a
p ×N space to a reducedk ×N space, whenk << p, the
dimension was reduced greatly. In the new space, the data
are represented the matrixY, thek rows of this matrix can
be represented ask independent latent regulatory factors.
By setting the numberk, the dimension can be reduced from
p to k, how to select such ak is important, we will give
detail discussion about this issue.

2.2 Methodology

Under the general mathematical framework, given ap×N
matrix which is a microarray ofp genes underN arrays, the
following procedures will be performed:

Step1-Data Preprocessing: The preprocessing of data
is a standard but necessary procedure for microarray ex-
pression data modeling. The first step is to apply logarith-
mic corrections to the data, the main reason for this is that
some effects under study are likely to have a multiplica-
tive behavior, which becomes linear after being log trans-
formed. Under our framework, we get everyxij in the
matrix asxij = log2(Rij/Gij), whereRij andGij rep-
resent red(experiment) and green(reference) intensities re-
spectively. Another important preprocessing step is treat-
ing the missing data, such as in NCI 60 cancer cell line
dataset, the mean percentage of missing data points per ar-
ray is 6.6%. There’re different approaches proposed for im-
putation the missing data, the reader is refereed to the work
of Troyanskaya[9], our method is described in the excre-
ment part.

Step2-Gene Standardization: The gene expression
data were standardized so that the observations(genes) have
mean 0 and variance 1 across different arrays. Standard-
izing the data in this fashion achieves a location and scale
normalization of the different gene expressions. This kind
of scale adjustment is desirable in some cases to prevent
the expression levels for one particular gene from dominat-
ing the average expression levels across different genes. In
fact, this standardization process is just the so called ”cen-
tering” and ”whitening” processes, which are two very use-
ful preprocessing steps for applying ICA estimation. By
whitening(or”sphereing”), the unmixing matrixW should
be an orthogonal one, thus reduce the parameters to be es-
timated greatly. Our method is based oneigenvalue decom-
position(EVD) as shown in [8].

Step3-ICA Based Dimensionality Reduction: We de-
note X the corrected logarithms of expression profile af-
ter standardization, and start from a model of the form
X = AS, where theS are independent sources andA is
the mixing matrix. ICA algorithm will estimate out an un-
mixing matrix W such thatY = WX and makesY as
approximateS as possible. The ICA algorithm we adopt
is calledFastICA which was developed by Hyvarinen and
Oja[10]. For a linear transformationYk×N = Wk×pXp×N ,
which search the correspondingW by minimizing the mu-
tual information as follows:

I(y1, ..., yk) =
k∑

i=1

H(yi)−H(X) + log |det(W )| (6)

where H(y) represents the entropy for random vari-
able y with density f(y) and defined asH(y) =
− ∫

f(y) log f(y)dy. After this step, the data have already
been mapped into a new feature space and whenk << p,
the dimension is reduced.

Step4-Interpretation of ICA results:As a result, the
ICA method yields latent regulatory factors which are sta-
tistically independent. There are mainly two aspects we are
of great interest: Given the modelXp×N = Ap×kSk×N ,
where X is expression profile andS is the independent
sources. The mixing matrixA is of great interest to anal-
ysis. For a specific gene, one of the elementsaij(where
1 ≤ i ≤ p and1 ≤ j ≤ k) represents the effect of thejth
regulatory factor on theith gene underN different condi-
tions(arrays). If the generative model does hold, based on
this information, we can predicate to which extent a spe-
cific latent regulatory factor regulates the expression level
of a gene under different conditions or whether this factor
is (positive or negative)”active” under the conditions. The
other aspect is when fixing a specific regulatory factor, the
distribution of the elements of matrixA could be a good in-
dication for analyzing the behavior of specific genes in dif-
ferent regulatory factors. Given a threshold, the distribution
of gene expression profile in a given regulatory factor gener-
ally features a small number of significantly over-expressed
or under-expressed genes, which kind of ”dominate” this
regulator factor.

3 Discussions and Related Work

In this section, we will focus on some specific discussions
and compare this ICA method with the PCA based method:

ICA vs. PCA: Using PCA(or SVD decomposition) in
microarray analysis was first introduced in [11]. They de-
composed a matrixX of p genes× N experiments into the
productXT = UDV T of aN × L orthogonal matrixU , a
diagonal matrixD, and ap×L orthogonal matrixV , where
L=rank(X). The columns ofU are called eigengenes, and
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the columns ofV are called eigenarrays. Both eigengenes
and eigenarrays are uncorrelated. In [11] they assume that
each eigengene represents a transcriptional regulator and
the corresponding eigenarray represents the expression pat-
tern in samples where the regulator is overactive or under-
active. By written their equation asV T X = UD and get
out the fistk columns ofV , we could get(V T )k×pXp×N =
Uk×LDL×N . Thus, reduce the dimension.

Not like PCA, ICA models thep×N matrixX as a gen-
erative modelX = AS(Equation 4), whereS is ak × N
matrix. whose rows are statistically independent regulatory
factors. The main difference between ICA and PCA is that
PCA only finds thek uncorrelated regulatory factors, while
ICA could findsk independent regulatory factors. Uncorre-
lated is only partially independent. These two mathematical
conditions are equivalent only for Gaussian random vari-
ables. But most microarray data are non-gaussian[1], Based
on Central Limited Theorem, we can conclude that the dis-
tributions of regulatory factors are also non-gaussin. We hy-
pothesized that different latent regulatory factors are highly
statistically independent, and therefore should be best sep-
arated by ICA. Our experiment based on real-world dataset
also illustrate this.

Comparison with Related Work: Some other re-
searchers also applied ICA for microarray analysis. Lieber-
meister[6] and Chiappetta[12] first proposed using linear
ICA for microarray analysis to extract expression modes,
where each mode represents a linear influence of a hidden
cellular variable. Su-In Lee[13]gave out a systematic anal-
ysis of the applicability of ICA as an analysis tool in di-
verse datasets. Given ap × N microarray expression pro-
file matrixX, not like our method, instead using the model
X = AS, they assume a generative model(XT )N×p =
AN×kSk×p, By this way, they view the expressionX =
(x1, ..., xN ) as a post-linear mixture of the underlying in-
dependent biological processes. Based on the assumption
that the independent source vectorS = (s1, ..., sk) arek in-
dependent biological processes which are expressed by the
whole p-gene wide expression profile, their method could
be used for dimensionality reduction. Thus essentially not
the same with ours.

4. Experiment and Analysis
To evaluate the performance of our method, the ICA based
method has been applied to real world dataset,we now dis-
cuss results obtained with NCI 60 dataset.

4.1 Dataset: NCI 60

In this study, cDNA were used to examine the variation in
gene expression among the 60 cell lines from the National
Cancer Institute’s anticancer drug screen known as NCI 60
daataset[14].The 60 cell lines are derived from tumors with

different sites of origin: 7 breast,6 central nervous sys-
tem(CNS), 7colon, 6 leukemia, 8 melanoma, 9 nonsmall-
cell lung carcinoma(NSCLC), 6 ovarian, 2 prostate, 8 renal,
and 1 unknown(ADR-RES). Gene expression was studied
using microarrays with 9,703 spotted cDNA sequences. In
each hybridization, fluorescent cDNA targets were prepared
from a cell line mRNA sample(fluorescent dye Cy5) and a
reference mRNA sample obtained by pooling equal mix-
tures of mRNA from 12 of the cell lines(fluorescent dye
Cy3). To investigate the reproducibility of the entire ex-
perimental procedure(e.g., cell culture, mRNA isolation, la-
beling, hybridization, scanning), a leukemia(K562) cell line
and a breast cancer(MCF7) cell line were analyzed by three
independent experiments. For our experiment, we make
classification for eight classes(the two prostate cell line ob-
servations were excluded out because of their small class
size). After screening out genes with missing data points,
the data are collected into a3, 894× 57 matrixX = (xij),
wherexij denotes the logarithmic of the Cy5/Cy3 fluores-
cence ration for genei in mRNA samplej. Also, the stan-
dardization of the data have been performed as described
above.

4.2 Experimental Result and Analysis

The Distributions of Gene Expression Profile Random
variable: To test the distributions of the gene expression
profile random variables, we randomly get some random
variables from the rows ofp × N matrix X to draw their
QQ plot as shown in figure 1: From figure one, the three
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Figure 1: QQ plot of gene expression random variables

subfigures show that some distributions of gene are belong
to the ”heavy tail” family, ”light tail” family and ”skewed
left” family. From which we could see that the distributions
of the gene expression profile random variables are typically
non-gaussian, thus,based on central limited theorem, we can
get the conclusion that the distributions of the independent
also be non-gaussian.

Analysis of the Unmixing Matrix W : We applied ICA
to reduce the dimensionality of the matrixX from 3, 894
to 5 ,8 and 12 independent regulator factor components
respectively.Given thisp × N matrix X. When we as-
sume there are5 independent sources,by the ICA generative
modelY = WX, we draw a picture of the distribution of
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wi (1 ≤ i ≤ 5) one of the rows in the unmixing matrixW
as shown in figure 2.
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Figure 2: distributions of one row of unmixing matrixW

Becauseyi = wT
i X, every estimated regulatory factor

yi is a linear combination of the observed dataX, where
wi represents the contribution of every genes to the regula-
tory factors. From figure 2, we can see that only a coher-
ent group of genes ”governing” an independent regulatory
source. Between the two lines which includes 95% genes
have contributes to the independent source less than 0.05.
while only 5% genes have relative larger domination.

Comparison with PCA for multiclasses classifica-
tion:For multiclass classification problem, we use two clas-
sifiers: logistic regression(represents parametric method)
and k-nearest neighbor(represents nonparametric method).
We use 2/3 of the original data as training cases and the
other 1/3 as testing data, because there’re altogether 8
classes and only about 4 training cases for one classes, the
classification error is very high, the box plot of these two
classifiers based on dimensionality reduction on ICA and
PCA are given in figure 3 respectively:

Figure 3: comparision with PCA and ICA for logistic re-
gression and kNN classifier

From figure 3, we can see that the performance of ICA
based method is better than PCA based method for logistic
regression, but a little weaker for k-NN classifier. From the
whole point, ICA is a promising method for dimensionality
reduction.

5. Conclusion and Future Work
We have proposed an ICA based dimensionality reduction
method in this paper, which could be viewed as an exten-
sion for PCA based method. Our method could be used to
find latent ”regulatory factors” which are statistically inde-
pendent between each other, by utilizing our method on the
real world dataset, we show that ICA based dimensionality
reduction method is promising.

Because our current ICA model is a linear generative
model which is based on the assumption that the interac-
tions between different regulatory factors are linear, in fact,
some of these processes could be unlinear. How to develop
an interesting nonlinear ICA model maybe an interesting
issue to give some further investigation, thus becomes our
future work.
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