
Detecting Outlying Subspaces for High-Dimensional Data: A Heuristic Search

Approach

Ji Zhang

Department of Computer Science,

University of Toronto, Canada

jzhang@cs.toronto.edu

Abstract

In this paper, we identify a new task for studying the out-

lying degree of high-dimensional data, i.e. finding the sub-

spaces (subset of features) in which given points are out-

liers, and propose a novel detection algorithm, called High-

D Outlying subspace Detection (HighDOD). We measure

the outlying degree of the point using the sum of distances

between this point and its k nearest neighbors. Heuristic

pruning strategies are proposed to realize fast pruning in

the subspace search and an efficient dynamic subspace search

method with a sample-based learning process has been im-

plemented. Experimental results show that HighDOD is ef-

ficient and outperforms other searching alternatives such as

the naive top-down, bottom-up and random search meth-

ods.

Keywords: Outlying Subspaces, High-dimensional Data,

Heuristic Search, Sample-based Learning.

1 Introduction

Outlier detection is a classic problem in data mining
that enjoys a wide range of applications such as the
detection of credit card frauds, criminal activities and
exceptional patterns in databases. Outlier detection
problem can be formulated as follows: Given a set
of data points or objects, find a specific number of
objects that are considerably dissimilar, exceptional and
inconsistent with respect to the remaining data [5].

Numerous research works in outlier detection have
been proposed to deal with the outlier detection prob-
lem defined above. They can broadly be divided into
distance-based methods [7], [8], [11] and local density-
based methods [4], [6], [10]. However, many of these out-
lier detection algorithms are unable to deal with high-
dimensional datasets efficiently as many of them only
consider outliers in the entire space. This implies that
they will miss out the important information about the
subspaces in which these outliers exist.

A recent trend in high-dimensional outlier detection
is to use the evolutionary search method [2] where

outliers are detected by searching for sparse subspaces.
Points in these sparse subspaces are assumed to be
the outliers. While knowing which data points are the
outliers can be useful, in many applications, it is more
important to identify the subspaces in which a given
point is an outlier, which motivates the proposal of a
new technique in this paper to handle this new task.

x
x

x
x

x

x
x x
x

x

*p

x
xxx

x

x

x
xx

x

*p

x

x
x

x

x
xx

xx

x

*p

Figure 1: 2-dimensional views of the high-dimensional
data

To better demonstrate the motivation of exploring
outlying subspace detection, let us consider the example
in Figure 1, in which three 2-dimensional views of the
high-dimensional data are presented. Note that point p
exhibits different outlying degrees in these three views.
In the leftmost view, p is clearly an outlier. However,
this is not so in the other two views. Finding the correct
subspaces so that outliers can be detected is informative
and useful in many practical applications. For example,
in the case of designing a training program for an
athlete, it is critical to identify the specific subspace(s)
in which an athlete deviates from his or her teammates
in the daily training performances. Knowing the specific
weakness (subspace) allows a more targeted training
program to be designed. In a medical system, it is useful
for the Doctors to identify from voluminous medical
data the subspaces in which a particular patient is
found abnormal and therefore a corresponding medical
treatment can be provided in a timely manner.

The major contribution of this paper is the proposal
of a dynamic subspace search algorithm, called High-
DOD, that utilizes a sample-based learning process to

80

efficiently identify the subspaces in which a given point
is an outlier. Note that, instead of detecting outliers in
specific subspaces, our method searches from the space
lattice for the associated subspaces whereby the given
data points exhibit abnormal deviations. To our best
knowledge, this is the first such work in the literature
so far. The main features of HighDOD include:

1. The outlying measure, OD, is based on the sum of
distances between a data and its k nearest neigh-
bors [1]. This measure is simple and independent
of any underlying statistical and distribution char-
acteristics of the data points;

2. Heuristic pruning strategies are proposed to aid in
the search for outlying subspaces;

3. A fast dynamic subspace search algorithm with a
sample-based learning process is proposed;

4. The heuristic on the minimum sample size based
on the hypothesis testing method is also presented.

The reminder of this paper is organized as follows.
Section 2 discusses the basic notions and problem to
be solved. In Section 3, we present our outlying sub-
space detection technique, called HighDOD, for high-
dimensional data. Experimental results are reported in
Section 4. Section 5 concludes this paper.

2 Outlying Degree Measure and Problem
Formulation

Before we formally discuss our outlying subspace detec-
tion technique, we start with introduction of the outly-
ing degree measure that will be used in this paper and
formulation of the new problem of outlying subspace
detection we identify.

2.1 Outlying Degree OD. For each point, we de-
fine the degree to which the point differs from the ma-
jority of the other points in the same space, termed the
Outlying Degree (OD in short). OD is defined as the
sum of the distances between a point and its k nearest
neighbors in a data space [1]. Mathematically speaking,
the OD of a point p in space s is computed as:

ODs(p) =

k∑

i=1

Dist(p, pi)|pi ∈ KNNSet(p, s)

where KNNSet(p, s) denotes the set composed by the
k nearest neighbors of p in s. Note that the outlying
degree measure is applicable to both numeric and nom-
inal data: for numeric data we use Euclidean distance
while for nominal data we use the simple match method.

Mathematically, the Euclidean distance between two
numeric points p1 and p2 is defined as Dist(p1, p2) =
[
∑

((p1i − p2i)/(Maxi − Mini))
2]1/2, where Maxi and

Mini denote the maximum and minimum data value of
the ith dimension. The simple match method measures
the distance between two nominal points p1 and p2 as
Dist(p1, p2) =

∑
|p1i−p2i|/t, where |p1i−p2i| is 0 if p1i

equals to p2i and is 1 otherwise. t is the total number
of attributes.

2.2 Problem Formulation. We now formulate the
new problem of outlying subspace detection for high-
dimensional data as follows: given a data point or ob-
ject, find the subspaces in which this data is consider-
ably dissimilar, exceptional or inconsistent with respect
to the remaining points or objects. These points under
study are called query points, which are usually the data
that users are interested in or concerned with.

A distance threshold T is utilized to decide whether
or not a data point deviates significantly from its
neighboring points. We call a subspace s is an outlying
subspace of data point p if ODs(p) ≥ T .

2.3 Applicability of Existing High-dimensional
Outlier Detection Techniques. The existing high-
dimensional outlier detection techniques, i.e. find out-
liers in given subspaces, are theoretically applicable to
solve the new problem identified in this paper. To do
this, we have to detect outliers in all subspaces and a
searching in all these subspaces is needed to find the set
of outlying subspaces of p, which are those subspaces in
which p is in their respective set of outliers. Obviously,
the computational and space costs are both in an expo-
nential order of d, where d is the number of dimensions
of the data point. Such an exhaustive space searching
is rather expensive in high-dimensional scenario. In ad-
dition, they usually only return the top-k outliers in a
given subspace, thus it is impossible to check whether
or not p is an outlier in this subspace if p is not in this
top-k list. This analysis provides an insight into the in-
herent difficulty of using the existing high-dimensional
outlier detection techniques to solve the new outlying
subspace detection problem.

3 HighDOD

In this section, we present an overview of our High-
Dimension Outlying subspace Detection (HighDOD)
method (shown in Figure 2). It mainly consists of three
modules. The X-tree Indexing module performs X-tree
[3] indexing of the high-dimensional dataset to facilitate
kNN search in every subspace. Sample-based Learning
module randomly samples the dataset and performs
dynamic subspace search to estimate the downward and

81

 Dynamic Subspace

Searching

Detected

Subspaces
of Query Data

Users

Query Data

High-
dimensional

Dataset

Indexed High-

dimensional data

Sampled Data

Downward and

upward pruning
possibilities

X-tree

Indexing

Dynamic Subspace

Searching

Random
Sampling

Figure 2: The overview of HighDoD

upward pruning probabilities of subspaces from 1 to d
dimensions. Outlying Subspace Detection module uses
the probabilities obtained in the Learning module to
carry out a dynamic subspace search to find the outlying
subspaces of the given query data point.

3.1 Subspace Pruning. To find the outlying sub-
spaces of a query point, we make use of the heuristics we
devise to quickly detect the subspaces in which the point
is not an outlier or the subspaces in which the point is
an outlier. All these subspaces can be removed from
further consideration in the later stage of the search
process.

In our work, we utilize a distance threshold T is
used for delimiting outlying and non-outlying subspaces
in the space lattice for a query data point.

OD maintains two interesting monotonic properties
that allow the design of an efficient outlying subspace
search algorithm.

Property 1 : If a point p is not an outlier in a subspace

s, then it cannot be an outlier in any subspace that is a

subset of s.
Property 2 : If a point p is an outlier in a subspace s,

then it will be an outlier in any subspace that is a superset

of s.

The above properties are based on the fact that
the OD value of a point in a subspace cannot be less
than that in its subset spaces. Mathematically, we have
ODs1

(p) ≥ ODs2
(p) if s1 ⊇ s2.

Proof : Let ak and bk be the kth nearest neighbors of p
in the an m-dimensional subspace s1 and n-dimensional
subspaces s2, respectively (1 ≤ n ≤ m ≤ d and s1 ⊇ s2).
MaxDists2(p) is the maximum distance between p and
ai, 1 ≤ i ≤ k, in the subspace s2.

We have Dists1(p, ak) ≥ Dists1(p, ai)|1≤i≤k. Since
s1 is a superset of s2, we thus know Dists1(p, ai) ≥
Dists2(p, ai)|1≤i≤k. This implies Dists1(p, ak) ≥

Dists2(p, ai)|1≤i≤k, By definition of MaxDists2, we
have Dists1

(p, ak) ≥ MaxDists2(p) ≥ Dists2(p, bk).
In other words, Dists1(p, ak) ≥ Dists2(p, bk). Like-
wise, it is hold that Dists1(p, ai) ≥ Dists2(p, bi)|1≤i≤k,

Since ODs1(p) =
∑k

1 Dists1(p, ai) and ODs2(p) =∑k

1 Dists2(p, bi). We therefore conclude: ODs1(p) ≥
ODs2(p).

We make use of Property 1 of OD to quickly prune
away those subspaces in which the point cannot be
an outlier. This is because if ODs1(p) < T , then
ODs2(p) < T , where s1 ⊇ s2 and T is the distance
threshold. In the upward pruning strategy, Property
2 of OD is utilized to detect those subspaces in which
the point is definitely an outlier. The reason is that if
ODs2(p) ≥ T , then ODs1(p) ≥ T .

The distance threshold T is specified as follows:

T = C

√√√√
d∑

i=1

ODsi

2
,where dim(si) = 1

where ODsi
denotes the averaged OD value of points

in the 1-dimensional subspace si and C is a constant
factor (C > 1). This specification stipulates that, in
any subspace, only those points whose OD values are
significantly larger than the average level in the full
space are regarded as outliers. The average OD level

in the full space is approximated by

√∑d

i=1 ODsi

2
and

the significance of deviation is specified by the constant
factor C, normally we set C=2 or 3.

3.2 Saving Factors of Subspaces Pruning. Now,
we will compute the savings obtained by applying the
pruning strategies during the search process quantita-
tively. Before that, let us first give three definitions.

Definition 1 : Downward Saving Factor (DSF) of a
Subspace

The Downward Saving Factor of a m-dimensional
subspace s is defined as the savings obtained by pruning
all the subspaces that are subsets of s. In other words,
the Downward Saving Factor of s, denoted as DSF(s),

is computed as DSF (s) =
∑m−1

i=1 Ci
m ∗ i, where Ci

m

denotes the combinatorial number of choosing i items
out of a total of m items.

Definition 2 : Upward Saving Factor (USF) of a
Subspace

The Upward Saving Factor of an m-dimensional
subspace s, denoted as USF(s), is defined as the savings
obtained by pruning all the subspaces that are supersets
of s. It is computed as USF (s) =

∑d−m

i=1 [Ci
d−m∗(m+i)].

Definition 3 : Total Saving Factor (TSF) of a Sub-
space

82

The Total Saving Factor of a m-dimensional sub-
space, in terms of a query point p, denoted as TSF(m,
p), is defined as the combined savings obtained by ap-
plying the two pruning strategies during the search pro-
cess. It is computed as follows:

TSF (m, p) = prup(m, p) ∗ fup(m) ∗ USF (m), when m = 1;

TSF (m, p) = prdown(m, p) ∗ fdown(m) ∗ DSF (m)

+ prup(m, p) ∗ fup(m) ∗ USF (m), when 1 < m < d;

TSF (m, p) = prdown(m, p) ∗ fdown(m) ∗ DSF (m), when

m = d.

where
(1) fdown(m) and fup(m) are the percentages of the
remaining subspaces to be searched. specifically,
fdown(m) = Cdown left(m)/Cdown(m) and fup(m) =
Cup left(m)/Cup(m)

Let dim(s) denote the number of dimensions for
subspace s. Cdown left(m) and Cup left(m) are com-
puted as: Cdown left(m) =

∑
dim(s), where s is an

unpruned or unevaluated subspace and dim(s) < m.
Cup left(m) =

∑
dim(s), where s is an unpruned or

unevaluated subspace and dim(s) > m.
Cdown(m) and Cup(m) are the total subspace search

workload in the subspaces whose dimensions are lower
and higher than m, respectively. Intuitively, fdown(m)
and fup(m) approximate the fraction of DSF and USF of
an m-dimensional subspace that are potentially achiev-
able in each step of the search process.

(2) prup(m, p) and prdown(m, p) are the probabilities
that upward and downward pruning can be performed
in the m-dimensional subspace, respectively. In other
words, for a m-dimensional subspace s, prup(m, p) =
Pr(ODs(p) ≥ T) and prdown(m, p) = Pr(ODs(p) < T).
A difficulty in computing the two prior probabilities, i.e.
prup(m, p) and prdown(m, p), is that their values are un-
known if there lacks any prior knowledge of the dataset.
To overcome this difficulty, we first perform a sample-
based learning process to obtain some knowledge about
the dataset and then apply this knowledge in the later
subspace search for each query point.

3.3 Sampling-based Learning. We adopt a
sample-based learning process to obtain some knowl-
edge about the dataset before subspace search of the
query points are performed. This is desirable when
the dataset is large so that learning the whole dataset
becomes prohibitive. The task of performing this
sampling-based learning is two-fold: first, we will have
to estimate ODsi

which will be used in specifying the
distance threshold. Secondly, we will have to compute
the two priors prup(m, p) and prdown(m, p). In this
learning process, a small number of points are randomly
sampled from the dataset.

At first, the subspace searches are performed in the

d 1-dimensional subspaces si on all the sampling data
and ODsi

is computed as the average OD values of all
sampling points in subspace si, i.e.

ODsi
=

1

S

S∑

j=1

ODsi
(spj)

where S is the number of sampling points and spj

denotes the ith sampling point.
Secondly, the subspace searches are performed in

the lattice of data space on the sampling data. For
each sampling point sp, we have the following initial
specifications regarding the two priors prup(m, p) and
prdown(m, p):

prup(m, sp) = prdown(m, sp) = 0.5, 1 < m < d
prup(m, sp) = 1 andprdown(m, sp) = 0,m = 1
prup(m, sp) = 0 and prdown(m, sp) = 1,m = d

This initialization implies that we assume equal
probabilities for upward and downward pruning in the
subspaces of any dimension, except 1 and d, for each
sampling point at the beginning. After all the m
dimensional subspaces have been evaluated for sp, the
prup(m, sp) and prdown(m, sp) are computed as the
percentages of m-dimensional subspaces s in which
ODs(sp) ≥ T and ODs(sp) < T , respectively. The
average prup and prdown values of subspaces from 1 to
d dimensions can be obtained as follows:

prup(m) = 1
S

∑S

i=1 prup(m, spi)

prdown(m) = 1
S

∑S

i=1 prdown(m, spi)

where we have prdown(1) = prup(d) = 0.

For each query point p, we set prup(m, p) = prup(m)

and prdown(m, p) = prdown(m) in the computation of
TSF(m, p) of the query point p.

Remarks: There might be a misunderstanding that the
sampling technique will fail here because the outliers are
rare in the dataset. Recall that we are trying to detect
outlying subspaces of query points, not outliers. Every
point can become query point and every query point
will have its outlying subspaces, if its set of outlying
subspaces is not empty. Hence, the outlying subspaces
can be regarded as a global property for all the points
and a sample of sufficient size will make sense in the
learning process.

3.4 Dynamic Subspace Search. In HighDOD, we
use a dynamic subspace search method to find the
subspaces in which the sampling points and the query
points are outliers. The basic idea of the dynamic
subspace search method is to commence search on

83

those subspaces with the same dimension that has the
highest TSF value. As the search proceeds, the TSF
of subspaces with different dimensions will be updated
and the set of subspaces with the highest TSF values are
selected for exploration in each subsequent step. The
search process terminates when all the subspaces have
been evaluated or pruned. Note that the only difference
between the dynamic subspace search method used on
the sample points and query points lies in the decision
of values of prup(m, p) and prdown(m, p): For sample
points, we assume an equal probability of upward and
downward pruning while for query points we use the
averaged probabilities obtained in the learning process.

3.5 Minimum Sampling Size for Training
Dataset. Recall that the sampling method is utilized
to obtain a training dataset that can be used to pre-
compute the prior probabilities of upward and down-
ward pruning, namely prup(m) and prdown(m) (1 ≤
m ≤ d). As such, samples of different sizes will only
affect the pruning efficiency of the algorithm. They will
not change the number of subspaces found.

With this in mind, we now wish to determine the
minimum sample size to accurately predict prup(m) and

prdown(m) with certain degree of confidence. We denote
X as the sample point that can be expressed as an S -
dimensional vector as X = [x1, x2, . . . , xS] where S is
the size of the sample. Each data in the sample is a
d -dimensional vector as xi = [xi,1, xi,2, . . . , xi,d]

T where
xi,j denote the value of jth dimension of ith data in
the sample. Applying dynamic subspace searching on
sampling points, for each dimension m, we obtain

Ydown(m) = [prdown(m, sp1), prdown(m, sp2), . . . ,

prdown(m, spS)] (1 ≤ m ≤ d)

We use the S measurements, prdown(m, spi)(1 ≤
i ≤ S) as the training data to estimate the mean of
prdown(m). We estimate the sample size by construct-
ing the confidence interval of the mean of prdown(m).
Specifically, to obtain a (1− α)-confidence interval, the
minimum size of a random sample is given as follows [9]:

Smin(m) = [
tα/2 ∗ σ

′

m

δ∗
]2

where σ
′

m denotes the estimated standard deviation of
prdown in the mth dimension using the training points
that is defined as:

σ
′

m =

√√√√
S∑

i=1

(prdown(m, spi) − prdown(m, sp))2/(S − 1)

δ∗ denotes the half-width of the confidence interval.
Note that the value of σ

′

m varies for different m. Let
σ

′

max = max(σ
′

m)(1 ≤ m ≤ d), the minimum sample
size Smin that satisfies respective minimum sample size
requirement of each dimension is computed as:

Smin = [
tα/2 ∗ σ

′

max

δ∗
]2

Similarly reasoning applies to prup(m) since

prup(m)= 1- prdown(m).

4 Experimental Results

In this section, we will carry out extensive experiments
to test the efficiency of outlying subspace detection
and the effectiveness of outlying subspace compression
in HighDOD. Synthetic datasets are generated using
a high-dimensional dataset generator and four real-
life high-dimensional datasets from the UCI machine
learning repository, which have been used in [2] for
performance evaluation of their high-dimensional outlier
detection technique, are also used.

Since the existing high-dimensional outlier detec-
tion techniques fail to handle the new outlying sub-
space detection problem, we thus choose to compare
the efficiency of several subspace search methods, i.e.
top-down, bottom-up, random and dynamic subspace
search, instead.

These searching methods aim to find the outlying
subspaces of the given query data using various search-
ing strategies. The top-down search method only em-
ploys a downward pruning strategy while the bottom-
up search method only uses an upward pruning strat-
egy. The random search method, the ”headless chicken”
search alternative, randomly selects the layer in the lat-
tice for search without replacement in each step. The
dynamic search method, a hybrid of upward and down-
ward search, computes the TSF of all subspaces of differ-
ent dimensions and selects the best layer of subspaces for
search. To evaluate the efficiency of the sample-based
learning process , we run the dynamic search algorithm
with and without incorporating the sample-based learn-
ing process. Note that the execution times shown in this
section are the average time spent in processing each
point in the learning and query process.

Effect of Dimensionality. First, we investigate the
effect of dimensions on the average execution time of
HighDOD (see Figure 3) . We can see that the execution
time of all the five methods increase at an exponential
rate since the number of subspaces increases exponen-
tially as the number of dimension goes up, regardless of
which searching and pruning strategy is utilized. On
a closer examination, we see that (1) The execution

84

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

Number of dimensions (N=100k, Nq=200)

A
ve

ra
ge

 C
P

U
 e

xe
cu

tio
n

tim
e

(S
ec

.)

Top−down
Bottom−up
Dynamic
Sample−based dynamic

Figure 3: Execution time when varying di-
mension of data

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

Size of dataset (k) (d=50, Nq=200)

A
ve

ra
ge

 C
P

U
 e

xe
cu

tio
n

tim
e

(S
ec

.)

Top−down
Bottom−up
Dynamic
Sample−based dynamic

Figure 4: Execution time when varying size
of dataset

50 100 150 200 250 300 350 400 450 500
40

50

60

70

80

90

100

110

120

Number of query points (N=100,000, d=50)

A
ve

ra
ge

 C
P

U
 e

xe
cu

tio
n

tim
e

(S
ec

.)

Top−down
Bottom−up
Dynamic
Sample−based dynamic

Figure 5: Execution time when varying the
number of query points

20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

110

120

Number of sampling points (N=100,000, d=50, Nq=200)

A
ve

ra
ge

 C
P

U
 e

xe
cu

tio
n

tim
e

(S
ec

.)

Dynamic
Sample−based dynamic

Figure 6: Execution time when varying the
size of sample

time of top-down and bottom-up search methods in-
crease much faster than the dynamic search method; (2)
When using the sample-based learning process, the dy-
namic search method performs better than the method
without using the sample-based learning process.

Effect of Dataset Size. Second, we fix the number of
dimensions at 50 and vary the size of datasets from 100k
to 1,000k. Figure 4 shows that the average execution
times using the five methods to process each query
point are approximately linear with respect to the size
of the dataset. Similar to results of the first experiment,
the dynamic search method with sample-based learning
process gives the best performance.

Effect of Number of Query Points. Next, we vary
the number of query points Nq. Figure 5 shows the
results of the five searching methods. It is interesting
to note that when Nq is large, dynamic search method
with sample-based learning process gives the best per-

formance. However, when Nq is small, it is better to
use dynamic search without sample-based learning. The
reason is because when the number of query points is
small, the saving in computation by using the learning
process is not sufficient to justify the cost of the learning
process itself.

Effect of Sample Size. We also investigate the
effect of the number of sampling points, S, used in
the learning process. A large S gives a more accurate
estimation of the possibilities of upward and downward
pruning in subspaces, which in turn, helps to speedup
the search process. However, a large S also implies
an increase in the computation during the learning
process, which may increase the average time spent in
the whole detection process. As shown in Figure 6, the
execution time is first decreased when the number of
sampling points is small, this is because the prediction
of possibility is not accurate enough, which cannot

85

Datasets(dimensions) Top-down Bottom-up Random Dynamic Sample+ Dynamic
Machine(8) 56 49 58 41 32

Breast Cancer (14) 165 176 150 121 110
Segmentation (19) 251 237 256 222 197
Ionosphere (34) 472 477 456 414 387

Musk (160) 5203 4860 5002 4389 3904

Table 1: Results of running five methods on real-life datasets (average CPU time in seconds for each query point)

greatly speedup the later searching process. When the
sample size increases, the prediction of the possibilities
are sufficiently accurate, therefore any larger size of
sample will no longer contribute to the speedup of the
search process, but only increase the execution time as a
whole. The horizontal dot-line in Figure 6 indicates the
execution time when dynamic subspace search without
sample-based learning is employed.

Results on Real-life Datasets. Finally like [2], we
evaluate the practical relevance of HighDOD by running
experiments on five real-life high-dimensional datasets
in the UCL machine learning repository. The datasets
range from 8 to 160 dimensions. Table 1 shows the
results of the five search methods. It is obvious that
dynamic search with sampling-based learning process
works best in all the real-life datasets. Furthermore,
using dynamic subspace search alone is faster than
top-down bottom-up or random search methods by
approximately 20% while incorporating sample-based
learning process into dynamic subspace search further
reduces the execution time by about 30%.

5 Conclusions

In this paper, we propose a novel algorithm, called High-
DOD, to address the new problem of detecting outly-
ing subspaces for high-dimensional data. In HighDOD,
heuristics for fast pruning in the subspace search and a
dynamic subspace search method with a sample-based
learning process are used. Experimental results justify
the efficiency of outlying subspace searching in High-
DOD. We believe that HighDOD is useful in revealing
interesting and new knowledge in outlying analysis of
high-dimensional data and can be potentially used in
many practical applications.

References

[1] F. Angiulli and C. Pizzuti. Fast Outlier Detection
in High Dimensional Spaces. Proc. PKDD’02,Helsinki,
Finland, 2002.

[2] C. C Aggarwal and P.S. Yu. Outlier Detection in High
Dimensional Data. Proc. ACM SIGMOD’00, Santa
Barbara, California, 2001.

[3] S. Berchtold, D. A. Keim and H. Kriegel. The X-tree:
An Index Structure for High-Dimensional Data. Proc.
VLDB’96, Mumbai, India, 1996.

[4] M. Breuning, H-P, Kriegel, R. Ng, and J. Sander. LOF:
Identifying Density-Based Local Outliers. Proc. ACM

SIGMOD’00, Dallas, Texas, 2000.
[5] J. Han and M. Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufman Publishers, 2000.
[6] W. Jin, A. K. H. Tung, J. Han. Finding Top n Local

Outliers in Large Database. Proc. SIGKDD’01, San
Francisco, CA, August, 2001.

[7] E. M. Knorr and R. T. Ng. Algorithms for Min-
ing Distance-based Outliers in Large Dataset. Proc.
VLDB’98, pages 392-403, New York, NY, August 1998.

[8] E. M. Knorr and R. T. Ng. Finding Intentional Knowl-
edge of Distance-based Outliers. Proc. VLDB’99, pages
211-222, Edinburgh, Scotland, 1999.

[9] A. E. Mace. Sample-size Determination. Reinhold Pub-
lishing Corporation, New York, 1964.

[10] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and
C. Faloutsos: LOCI: Fast Outlier Detection Using the
Local Correlation Integral. Proc. ICDE’03, pages 315,
Bangalore, India, 2003.

[11] S. Ramaswamy, R. Rastogi, and S. Kyuseok. Efficient
Algorithms for Mining Outliers from Large Data Sets.
Proc. ACM SIGMOD’00, Dallas, Texas, 2000.

86

