
Discover Gene Specific Local Co-regulations Using Progressive Genetic
Algorithm

Ji Zhang, Qigang Gao
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

{jiz, qggao}@cs.dal.ca

Hai Wang
Sobey School of Business
Saint Mary’s University

Halifax, Nova Scotia, Canada
hwang@smu.ca

Abstract

The problem of gene specific co-regulation discovery is
that, for a particular gene of interest, identify its closely co-
regulated genes and the associated subsets of experimen-
tal conditions in which such co-regulations occur. The co-
regulations are local in the sense that they occur in some
subsets of full experimental conditions. In this paper, we
propose an innovative method for finding gene specific co-
regulations using genetic algorithm (GA). Two novel ad hoc
GAs, the single-stage and two-stage progressive GA, are
proposed. They are called progressive because the initial
population for the GA in a window position inherits the
top-ranked individuals obtained in the preceding window
position, enabling them to achieve better accuracy than the
non-progressive algorithm. Experimental results with real-
life gene expression data demonstrate the efficiency and ef-
fectiveness of our technique in discovering gene specific co-
regulations.

1 Introduction

DNA microarray provides us with a global view of gene
expression and has been used in a number of different ways.
One interesting research direction is to study co-regulatory
relationships among genes under different temporal condi-
tions that are the experimental time points along the course
of some biological activity when the expression of genes are
extracted. It has been known that a gene may be regulated
by multiple regulators along the full timeline and the phe-
nomenon of partial (or local) co-expression between genes
has been identified, meaning that gene profiles may simul-
taneously change in a sub-range of the time course rather
than the overall time course [16]. An interesting problem is
to find the regulators of a given gene and the associated sets
of experimental conditions in which such co-regulations oc-

cur. This is called Single Gene Approach for gene microar-
ray analysis [13]. The discovered co-regulated genes and
the associated subsets of conditions are gene specific. The
answer to this question is very helpful for human users to
better understand and characterize the given gene by means
of its co-regulations with other genes in the discovered sets
of experimental conditions during the biological activity in-
volved. As early DNA microarray experiments have shown
that genes of similar function yield similar expression pat-
terns [12], gene-specific co-regulations are therefore able to
assist in function prediction of unknown genes through in-
depth study on its correlated genes whose function has been
known. In this paper, we are interested in studying the local
co-regulations of the given gene that occur in a few neigh-
boring, but not necessarily consecutive, conditions. Those
co-regulations among conditions located far apart from each
other in the timeline are disregarded. The biological ratio-
nale behind this is that genes are more likely to display bi-
ologically meaningful co-regulations at neighboring condi-
tions. These co-regulations may experience time-lag [8],
but such lagged co-regulation still often occur within a rel-
atively short time period compared to the entire timeline in-
volved.

Even though the problem of gene co-regulation discov-
ery has been studied intensively in recent years, there is rare
research work on single-gene co-regulation discovery. In
this paper, we propose an approach for discovering local
gene-specific co-regulation using genetic algorithm. The
basic idea of our approach is to first find the subsets of
conditions in which the given gene g is most significantly
co-regulated with others and the co-regulated genes of g are
then selected from its nearest neighbors in these subsets of
conditions. Specifically, a sliding window is used to scan
all the experimental conditions sequentially and the search
of subsets of conditions are performed within each window
position. A single-stage progressive genetic algorithm is
presented, in which the top-ranked subsets of conditions

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11038713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

obtained in one window position will be used to find other
good subsets in the subsequent window position. Heuristics
of offline random sampling is proposed to remarkably boost
the efficiency of the genetic algorithm by speeding up the
fitness evaluation of individuals. A two-stage progressive
genetic algorithm is also proposed to enhance the accuracy
of the algorithm that may be adversely affected by using the
sampling technique.

2 Related Work

Clustering analysis is currently the most used technique
for gene expression data. It is able to identify genes that are
co-regulated in a similar manner, forming groups or clus-
ters, under a set of specific experimental conditions. The
commonly used clustering methods in discovering gene co-
regulations include hierarchical clustering method [9], k-
means algorithm [9], Self-Organization Maps (SOMs) [10],
SVD-based clustering algorithm [6]. Yet, most of them per-
form clustering based on the entire set of conditions (i.e.
full dimensionality), which causes them to miss out those
interesting co-regulations embedded in the lower dimen-
sional subsets of conditions. Recently, a few subspace clus-
tering methods for gene expression data, such as Coupled
Two-Way Clustering [5], bi-cluster [4] and δ-cluster [15],
are proposed. They try to find sub-matrices/blocks defined
by a subset of genes on a subset of conditions that satisfy
some user-defined clustering criterion. Since gene expres-
sion dataset is high-dimensional by nature, thus finding all
these coherent blocks is NP-hard due to the curse of dimen-
sionality. In the aspect of dealing with time-course gene
expression data whose conditions have explicit temporal
meaning, Kwon et al.[11] marks the changes of gene ex-
pression as an event [Rising (R), Constant (C) or Falling
(F)] by calculating the slope of the expression value at each
time interval, resulting in a string of events. Then a global
sequence alignment algorithm, the Needleman−Wunsch al-
gorithm, is employed to match the corresponding events of
two genes, based on which a numerical score is generated as
an indicator of the likelihood of a regulatory relationship ex-
isting between those two genes. Being a full-dimensionality
method, this method may underscore the local time-lag pat-
terns and miss them out. Ji et al.[8] recently proposed a
method for identifying local time-lagged gene clusters. In
this method, each gene will be clustered into a few so-called
q-clusters whose members share the same local change pat-
tern for q consecutive conditions. Although this method
does not suffer the problem of full dimensionality, it can
only identify co-regulations occurring in a few consecutive
conditions. The conditions in which the gene exhibit co-
regulation may not consecutive in the sense that one or a
few conditions may be skipped in practice. In addition, the
local patterns are rigidly restricted to have a fixed length q

so this method cannot find those patterns with smaller vari-
able lengths.

The most salient drawback of the abovementioned
clustering-based methods, regardless of relying on full or
partial dimensionality, lies in that they cannot provide effi-
cient support to the single gene co-regulation problem. It
will be computationally prohibitive to extract single gene
co-regulations directly from the gene clusters. Furthermore,
the clustering methods are less appropriate when only a few
genes are likely to co-regulated [13] as these co-regulated
genes may not form a strong cluster. Thus, a new method to
find gene specific co-regulations is desirable.

3 Problem Formulation

To define local gene co-regulations, we need to delimit
the allowable length of a subset of condition. To this end,
a window with a fixed size, ω, will be used. The size of
this window is specified by human users a priori. This may
require some biological knowledge to decide the maximum
possible number of conditions under which meaningful co-
regulations of the given genes are to be studied. A large
window allows for a study on gene co-regulations within
a wider span of conditions and vice versa. To examine all
the possible local subsets of conditions, this window will be
slided from the leftmost to the rightmost position, with one
condition offset each time. Therefore, for a gene expression
dataset with M dimensions, there will be M−ω+1 different
positions for the sliding window with a size of ω.

Having discussed the sliding window, we can now for-
mulate the problem to be studied in this paper mathemat-
ically. let D = N × M be the table with N genes and
M conditions, representing the given microarray data, and
C = {d1, d2, . . . , dM} be the full set of experimental con-
ditions. The set of top n subsets of conditions, denoted as
S, in which the gene g of our interest is most significantly
co-regulated with some other genes are defined as follows:

S = {s1, s2, . . . , sn}

where each element si (1 ≤ i ≤ n) of S is subject to the
following constraints:

1. si ⊆ C and |si| ≤ ω;

2. For any other subset of conditions s /∈ S, s ⊆ C and
|s| ≤ ω, we have f(g, si) ≥ f(g, s).

|s| denotes the number of conditions in subset s. f(g, s)
is the function computing the averaged similarity (absolute
value) between g and each of its k nearest neighbors in a
given subset of conditions s, i.e.

f(g, s) =
1

k

k∑

i=1

|sim(g, gi)|, gi ∈ KNNSet(g, s, D)

(1)

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

where KNNSet(g, s, D) is the set of k nearest neigh-
bors of g from dataset D in s and sim(g, gi) is the metric
used to compute the similarity between g and gi. For gene
expression data, Pearson’s Correlation Coefficient (PCC)
is often used as the similarity metric. Suppose x =
{x1, x2, . . . , x|s|} and y = {y1, y2, . . . , y|s|} are the pro-
jections of two genes x and y in s. The similarity between
x and y in s is formulated as follows:

sim(x, y, s) =
n

∑
xiyi −

∑
xi

∑
yi

√

[n
∑

x2

i − (
∑

xi)2][n
∑

y2

i − (
∑

yi)2]
(2)

By averaging the absolute values of PCC of all the k nearest
neighbors of g, f(g, s) is able to measure the overall co-
regulations of g within its neighborhood in s.

The set of co-regulated genes for the given gene g in a
subset of conditions s are simply those genes, out of the
kNNs of g in s, that are significantly co-regulated with g.

Finally, by putting together S and the co-regulated genes
of g in each member of S, we can obtain the complete an-
swer set A to the problem, which can be represented as

A ={< gi, sj > |gi ∈ KNNSet(g, sj, D) AND sj ∈ S

AND sim(g, gi) ≥ δ}
(3)

The answer to the problem is basically a set of pairs
whose first element represents a closely co-regulated gene
gi of g and the second element represents the subset of con-
ditions in which co-regulation occur between gi and g. The
threshold δ is used to specify the desired significance of co-
regulations.

4 Genetic Algorithm for Discovering Gene
Co-regulations

The evolutionary algorithm [7], such as genetic algo-
rithm, is inspired by the Darwinian theory of evolution that
a competition among the various species lead to survivals
of the only fittest after a natural selection process. The fit-
ter individuals tend to mate each other more often, resulting
in better individuals [2]. Often, typically general-purpose
black-box GA software on straightforward string encodings
does not work very well [1]. Therefore, an ad hoc ge-
netic algorithm needs to be designed to well suit the spe-
cific problem under study basing on a good understanding
of the problem. This involves choosing appropriate individ-
ual representation, fitness function, selection operators and
search operators. In the sequel, we will elaborate on the
designing details of the genetic algorithm for single gene
co-regulation discovery.

4.1 Individual Representation

To prevent the terminological ambiguity arisen from the
”gene” in the microarray dataset and the ”gene” of individ-
ual used in GA domain, we will call the the ”gene” of in-
dividual used in GA domain as ”bit” instead for the rest of
this paper. Our GA technique uses standard binary individ-
ual encoding; all individuals are represented by strings with
fixed and equal length ω, where ω is the window size. Us-
ing binary alphabet Σ = {0, 1} for gene alleles, each bit in
the individual will take on the value of ”0” and ”1”, indicat-
ing whether or not its corresponding condition is selected,
respectively (”0” indicates the corresponding condition is
absent and vice versa for ”1”). For a simple example, the in-
dividual ”100101” when ω = 6 means that the 1st, 4th and
6th conditions in the current window are selected, which is
a 3-dimensional subset.

4.2 Fitness Function

Recall that the subset search involves finding those sub-
sets of conditions s that are able to maximize the following
function (referring to Eq. (1)):

f(g, s) =
1

k

k∑

i=1

|sim(g, gi)|, gi ∈ KNNSet(g, s, D)

(4)
The fitness function of a subset s, in terms of the given

gene g, is defined as follows:

ffit(g, s) =

{
f(g, s), if f(g, s) > 0
f(g, s) + ε, if f(g, s) = 0

(5)

Because it is likely that f(g, s) = 0, so a small positive
adjusting factor ε (say 0.05) is added to f(g, s) in this case
to make it still possible for this individual to be selected into
the population for next generation. This is to help ensure
the necessary diversity of individuals in the populations. A
higher value for adjusted fitness function indicates a fitter
solution and vice versa.

4.3 Selection

In our work, fitness-proportionate selection, also known
as roulette-wheel selection, is used to select fitter solutions
in each step of the evolution. Fitness-proportionate selec-
tion is a stochastic selection method where the selection
probability of a subset of conditions, given a gene g, is
proportional to the value of its adjusted fitness function
ffit(s, g), i.e.,

Pr(s, g) =
ffit(s, g)

∑P

i=1
ffit(si, g)

(6)

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

where P is the population size. Since ffit(s, g) > 0, then
each individual stands a chance of being selected for the
next generation.

4.4 Crossover and Mutation

Crossover and mutation are two most commonly used
search operators in genetic algorithm. Following Holland’s
canonical GA specification [7], the crossover and mutation
used in this paper is single-point crossover and bit-wise mu-
tation. In single-point crossover, a crossover locus on two
parent individuals is selected and all the bits beyond that lo-
cus in the strings are swapped between the two parents, pro-
ducing two new children. The bit-wise mutation involves
flipping each bit randomly and leads to generating a new
children. In our work, all the new individuals generated
by crossover and mutation are of the same length, i.e. ω,
as their parent(s). There are two associated probabilities,
pc and pm, used to determine the frequencies for applying
crossover and mutation, respectively. Normally, we have
pc >> pm, meaning that crossover is performed in a much
higher frequency than mutation.

4.5 Single-stage Progressive Genetic Algorithm

Genetic algorithm is applied for each sliding window po-
sition independently in order to identify subsets of condi-
tions in the window. The initial population for each window
position is generated randomly. The top n subsets of condi-
tions within the window will be maintained as the candidate
individuals. Therefore, the total number of subsets of con-
ditions obtained after a window scan on all conditions will
be n ∗ (M − ω + 1), given that there are M − ω + 1 differ-
ent window positions. The top n subsets of conditions are
selected from these n ∗ (M −ω + 1) individual candidates,
together with the closely co-regulated genes in respective
subsets of conditions relative to the given gene.

Considering the fact that the windows locating at two
consecutive positions are highly overlapped with each other
and the results of the previous window position are very
useful for the subsequent one, thus a more effective method
is to adapt a progressive fashion in the search process. In
contrast to the naive GA-based method, the progressive
method includes into the initial population for each win-
dow position, except the first one, the modified individuals
produced in the previous window as part of respective ini-
tial population. In other words, the initial population comes
from two sources, the modified individuals from previous
window and some other individuals generated randomly
with a bias. Please note that the entire initial population for
the window in the first position is generated randomly with-
out any bias. Next, we will elaborate on individual modifi-
cation and biased random population generation.

Individual Modification. Let us suppose that a top-ranked
subset of conditions s is obtained in the window at the ith

position, denoted as Wi. Two cases will be considered here
in which different modification schemes will be applied:

• Case 1: The first bit of s is ”1”, meaning that s con-
tains the first condition in window Wi. An example of
such a subset s can be ”101101”;

• Case 2: The first bit of s is ”0”, suggesting that s does
not contain the first condition in window Wi. An ex-
ample of such a subset s can be ”001101”.

Two modification operations, deletion and insertion, will
be performed on s to generate new individuals for the next
window as follows:

1. The first bit of s will be deleted;

2. If the first bit of s is ”1”, then two new individuals
will be generated by inserting ”0” and ”1” respectively
into the tail position of the string obtained in the first
substep. If the first bit of s is ”0”, then only one new
individual will be generated by inserting ”1” into the
tail position.

Now, let we denote by regular expressions Ω{ω − 1}0
and Ω{ω − 1}1 the strings with the format of Ω . . . Ω

︸ ︷︷ ︸

ω−1

0 and

Ω . . .Ω
︸ ︷︷ ︸

ω−1

1, respectively. Ω is a ”don’t care” symbol that can

be instantiated by either ”0” or ”1”. Based on the above dis-
cussion, we can see that the number of modified individuals
matching Ω{ω − 1}1 is no less than the number of those
matching Ω{ω − 1}0.

The motivation for modifying the top-ranked individuals
of the preceding window is because they preserve the seg-
ment of strings that are potentially contained in the good
individuals in the current window due to the high degree of
overlap between two consecutive window positions. Thus,
these modified individuals, if properly modified, can pro-
vide useful guidance to the search process for the current
window. The reason why we do not add ”0” to those indi-
viduals in Case 2 is because the new modified individuals,
with ”0” being added at end, has been evaluated in the pre-
vious window and therefore should be excluded from the
initial population of current window.

Random Population Generation with Bias. Besides mod-
ifying the top-ranked individuals obtained from the preced-
ing window, a random population will be generated to cre-
ate the initial population for the current window. To achieve
the necessary diversity of the initial population, it is desired
to have approximately equal change for the presence and
absence of each condition in every individual of the ini-
tial population for each window. Unfortunately, random

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

population generation without any bias may not be able
to meet this need due to inclusion of modified individuals
from the preceding window. As discussed earlier, among
those individuals coming from the preceding window, there
is usually a higher number of modified individuals match-
ing Ω{ω− 1}1 than those matching Ω{ω− 1}0. Therefore,
it is necessary to have a mechanism to offset this unbalance
by means of introducing some bias in the initial population
generation for each window. Probabilistically speaking,
such bias will help generate more individuals with the for-
mat of Ω{ω−1}0 than those with the format of Ω{ω−1}1.
To this end, we first generate random binary strings with
a length of ω − 1 and then add ”0” and ”1” to the end of
these strings with a probability of p0 and p1, respectively,
p0 ≥ p1. p0 and p1 are defined in three cases as follows:

p0 = 0.5P−n0

P−n0−n1

, p1 = 0.5P−n1

P−n0−n1

, if n0 ≤ n1 < 0.5P

p0 = 1, p1 = 0 , if n0 < 0.5P ≤ n1

p0 = 0, p1 = 0 , if n0 + n1 = P
(7)

where n0 and n1 denote the number of modified individuals
from the preceding window matching Ω{ω−1}0 and Ω{ω−
1}1, respectively. n0 and n1 are subject to n0 ≤ n1 and
n0 + n1 ≤ P .

The detailed algorithm of progressive GA for single gene
co-regulation discovery is given in Figure 1. We call it
single-stage progressive GA to distinguish it from the two-
stage progressive GA we will present later in this paper.
CandidateSet is the set for storing the top n best individ-
uals obtained in all generations and it is generation-wisely
updated (Line 7-8). There are two nested while loops (Line
2 and 4). The outer while loop examines all the possible
window positions, whereas the inner loop performs GA-
based subset search within each window. The single-stage
progressive GA differs the naive GA in the initial popula-
tion generation for each different window position (Line 3),
in which individual modification and biased random popu-
lation generation are performed.

5 Speed Up Genetic Algorithm

5.1 Random Sampling

Like many other GA applications, the most computation-
ally expensive step performed in our genetic algorithm lies
in the fitness evaluation of individuals. The problem of slow
fitness evaluation in our work is because the fitness evalua-
tion for each individual (i.e. subset of conditions) involves
scanning all the genes in the dataset in order to find the k
nearest neighbors of the given gene for computing f(g, s).
This will be slow as the number of genes in the microar-
rary data is usually large. To speed up fitness evaluation,

Algorithm: Single-stage Progressive GA(the given gene
g)
1. CandidateSet← ∅;
2. WHILE (the window does not reach the last position) DO {
3. Spop ← initial population of P strings;
4. WHILE (evolution stop criterion=false) DO {
5. FOR each individual s in Spop DO
6. evaluate fitness of s using the whole dataset;
7. CandidateSet← CandidateSet∪ top n individuals in
8. this generation;
9. Spop ← selection(Spop);
10. Spop ← crossover(Spop, pc);
11. Spop ← mutation(Spop, pm); } }
12. S ← Top n individuals in CandidateSet;
13. G ← Co-regulated kNNs of g in S;
14. Return (G, S);

Figure 1. Single-stage Genetic Algorithm

we draw on the sampling technique and evaluate fitness of
individuals only based on the random samples, rather than
on the entire dataset.

We generate a moderate number of samples and adopt a
round-robin paradigm in utilizing the samples in different
generations. Specifically, suppose t different random sam-
ples are generated for a GA with Ng generations, where
t < Ng. Each random sample is assigned an index num-
ber, starting from 0 to t− 1. The ith generation will use the
sample with the index number of (i mod t), for 1 ≤ i ≤ Ng.

Using the random samples, ffit(g, s) can now be com-
puted as

ffit(g, s) =
1

k

k∑

i=1

|sim(g, gi)|, gi ∈ KNNSet(g, s, Gs)

(8)
where Gs denotes the set of genes contained in a random
sample.

5.2 Two-Stage Progressive Genetic Algorithm

Sampling enables the genetic algorithm to be performed
much faster. However, if the size of sample is small then
the fitness value may not be a reliable indicator of the qual-
ity of individuals. To address this problem, we employ a
two-stage GA technique in achieving good quality of indi-
viduals in our work. In the first stage, GA is performed
on the sampling data to find the n best individuals in each
window. The second stage, functioning as a refining step,
finds the n best individuals as the final result amongst ALL
the candidate individuals obtained in the first stage using
the whole dataset. Of course, evaluating each individual in
the second stage is more costy compared to that in the first

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

Algorithm: Two-stage Progressive GA(the given gene g)
1. CandidateSet← ∅;
2. WHILE (the window does not reach the last position) DO {
3. Spop ← initial population of P strings;
4. WHILE (evolution stop criterion=false) DO {
5. FOR each individual s in Spop DO
6. evaluate fitness of s using a sampling dataset;
7. CandidateSet← CandidateSet∪ top n individuals in
8. this generation;
9. Spop ← selection(Spop);
10. Spop ← crossover(Spop, pc);
11. Spop ← mutation(Spop, pm); } }
12. FOR each individual s in CandidateSet DO
13. evaluate fitness of s using entire dataset;
14. S ← Top n individuals in CandidateSet;
15. G ← Co-regulated kNNs of g in S;
16. Return (G, S);

Figure 2. Two-stage Genetic Algorithm

stage, but this leads to a more accurate evaluation. Our two-
stage method is advantageous as it enables the algorithm to
find the good solutions appearing before the last generation
by keeping track of the good solutions appearing along the
course of the genetic algorithm.

Figure 2 presents the detailed algorithm for the two-stage
progressive GA. It is similar to the algorithm of single-stage
progressive GA. The major differences between them are 1)
Two-stage progressive GA evaluates fitness of individuals
using sampling datasets in the first stage (Line 6), while
single-stage progressive GA uses the entire dataset to do so
(Line 6); 2) The top-ranked individuals obtained in different
generations are re-evaluated using the whole dataset in the
second stage of two-stage progressive GA (Line 12-13), but
this will not be performed in single-stage progressive GA.

6 Experimental Results and Evaluation

In our experiments, we use the CDC28 dataset for our
experiments, as did in [8] and [11]. The dataset used for
experimental purpose contains 6178 genes at 35 time points,
forming a 6178×35 matrix (this dataset can be downloaded
at http://www.comp.nus.edu.sg/ jiliping/p2/YeastData.xls).

As the experimental setup, we set the size of the sliding
window ω = 10, the nearest neighbors considered k = 10,
the number of subsets of individuals returned in the end (as
well as the number of top individuals kept as individual can-
didates in each window) n = 10, the number of generations
for the GA in each window position Ng = 20, the pop-
ulation size in each generation P = 30, the frequency of
applying crossover pc = 0.8 and the frequency of applying
mutation pm = 0.2. All the experimental evaluations are

carried out on a Pentium 4 PC with 256MB RAM.

6.1 Efficiency Study

We start the performance evaluation with the investiga-
tion of the effect of parameters such as the number of genes
and the window size on the efficiency of our method.

Effect of number of genes. The number of genes directly
affects the efficiency of evaluating fitness of individuals.
Fitness evaluation involves scanning the genes in the mi-
croarray dataset and computing the Pearson’s Correlation
Coefficient between the given gene and each other gene in
a given subset of conditions. Thus, fitness evaluation is ex-
pected to be linear with respect to the number of genes in
the dataset. The two-stage progressive GA employs ran-
dom sampling to enhance the speed. Different sampling
ratios, 0.1, 0.25 and 0.5, are tested in this experiment. Here,
the sampling ratio refers to as the ratio of the number of
genes in the sample against the total number of genes in
the whole dataset. Figure 3 shows the running time of the
single-stage and two-stage progressive GA under varying
number of genes. The results verify the linear behavior of
the running time as we expect. Moreover, this result also
demonstrates that two-stage GA, using sampling as an ef-
fective means for speedup, is more efficient than the single-
stage GA.

Effect of window size. The window size determines the
size of the search space for subsets of conditions within
each window, which is in an exponential order of the win-
dow size. This does not necessarily mean that the running
time of our algorithm will be exponential with respect to
the window size whatsoever. The actual running time is de-
pended on how the search workload within each window
is specified. More precisely, if we use the fixed number
of generations and population size for each generation in
the GA, i.e. fixed number of individuals to be evaluated in
each window, then the total search workload for each win-
dow will be the same. In this case, increase in window size
will consequently lead to a decrease, rather than an increase,
in the number of window positions and therefore a drop of
running time. A fixed ratio search scheme, in contrast, per-
forms a search workload that is proportional to the size of
search space in this window. The time complexity now be-
comes quadratic with respect to the window size. The run-
ning time of these two search schemes are presented in Fig-
ure 4. For each window position, the search workload with
a fixed number of individuals is set to be 400 and that of a
fixed ratio is 50% of the search space of the window.

6.2 Effectiveness Study

To analyze the effectiveness of our method, experiments
are performed to test fitness enhancement of progressive

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

2000 4000 6000
0

20

40

60

80

100

120

140

160

Number of genes

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

.)

Whole dataset
Sampling dataset (0.5)
Sampling dataset (0.25)
Sampling dataset (0.1)

Figure 3. Running time for
single-stage and two-stage GA
(with different sampling ratios)
under varying number of genes

5 10 15 20
0

50

100

150

200

250

300

Window size

R
un

ni
ng

 ti
m

e
(s

ec
.)

Fixed ratio
Fixed number

Figure 4. Running time under
varying window sizes

GA versus non-progressive scheme and the convergence of
our method.

Fitness enhancement by using progressive GA. We first
study the contribution of progressive GA used in our
method to enhancing the fitness of individuals, compared to
the case when non-progressive GA is used. They primarily
differ in that the progressive GA inherits the top-ranked in-
dividuals obtained from the previous window position with
appropriate modifications and bias is introduced in the ini-
tial random population generation for the current window
position, while the non-progressive GA evaluates each win-
dow independently and the entire initial population for each
window position is generated randomly. Figure 5 presents
the averaged fitness of top 10 individuals for each window
position (from No. 1 to 26). The result demonstrates that
the progressive GA outperforms non-progressive scheme in
term of fitness in up to 88% of the window positions and
fitness improvement by over 10% is observed at about 25%
of the window positions. This result indicates that progres-
sive GA is more capable of finding fitter individuals than
the non-pregressive GA.

Convergence study. GA tends to produce an increasing
number of fitter individuals as evolution proceeds, referring
to as the phenomenon of convergence. In this experiment,
we investigate the convergence of our technique. Without
losing generality, three window positions, the first, middle
and last (1st, 13th and 26th), are picked up for this study.
For each generation, the number of individuals with rela-
tive high fitness (> 0.7 in this experiment) are counted.
As we can see from Figure 6 that the number of individ-
uals with high fitness is increased as the GA evolves, which
indicates a good convergence of our method. In addition,
the good individuals do not only appear in the last gener-

ation, though the overall convergence of the GA has been
observed. A small number of good individuals have been
observed in the earlier generations of the GA. This verifies
the validity of keeping track of the top-ranked individuals in
each generation of GA in our approach to prevent the loss
of good individuals appearing in different, particularly the
early, generations of the GA.

7 Conclusions

This paper investigates the problem of gene co-
regulation discovery problem in DNA microarray data.
Unlike most of the existing methods that find gene co-
regulations utilizing clustering analysis, our approach aims
to discover co-regulations from a single gene perspective.
We are interested in finding the regulators of a given gene
and the associated sets of experimental conditions in which
such co-regulations occur. The basic idea of our approach
is to first find the subsets of conditions in which the given
gene g is most significantly co-regulated with other genes
and the co-regulated genes of g are reported by selecting
from its nearest neighbors in these subsets of conditions.

Considering the search space of subsets of conditions
is typically large for microarray dataset, genetic algorithm
(GA) is employed. Due to inapplicability of the general-
purpose black-box GA for our problem, two ad-hoc GA-
based algorithms are proposed, i.e. the single-stage and
two-single progressive GAs. Their salient feature is that
they try to make use of the top-ranked solutions found in
each window position in guiding the search process for its
subsequent window position to boost the overall accuracy of
the algorithm. Experiments are conducted for performance
evaluation. The experimental results show that our method

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

0 5 10 15 20 25
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Window positions

F
itn

es
s

Non−progressive
Progressive

Figure 5. Fitness of non-
progressive and progressive
GA

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

Generation ID

N
um

be
r

of
 in

di
vi

du
al

 h
av

in
g

hi
gh

 fi
tn

es
s

va
lu

es

window position 1
window position 13
window position 26

Figure 6. Number of individu-
als having high fitness values in
three window positions

is effcient and effective in discovering gene-specific local
co-regulations from gene expression data.

Acknowledgement

The authors would like to thank Dr. Malcolm I. Heywood and
Dr. Christian Blouin, both from Faculty of Computer Science at
Dalhousie University, for their useful suggestions on the draft of
this paper. This research work is supported in part by research
grant of Natural Sciences and Engineering Research Council of
Canada (Grant No.: 312423).

References

[1] C. C. Aggarwal, J. B Orlin and R. P Tai. Optimized
Crossover for the Independent Set Problem. Operational Re-
search 45(2):226-234, 1997.

[2] C. C. Aggarwal and P.S. Yu. An Effective and Efficient Algo-
rithm for High-dimensional Outlier Detection. VLDB Jour-
nal, 14, pp 211-221, 2005.

[3] S. Bhattcharrya. Direct Marketing response Meodels Using
Genetic Algorithms. KDD’98, pp 144-148, 1998.

[4] Y. Cheng and G.M. Church, Biclustering of Expression Data.
In Proc. International Conference on Intelligent Systems for
Molecular Biology (ISMB), vol. 8, pp. 93-103, 2000.

[5] G. Getz, E. Levine, and E. Domany, Coupled Two-Way Clus-
tering Analysis of Gene Microarray Data, in Proc. Natioal
Academy of Science, vol. 97, no. 22, pp. 12079-12084, 2000.

[6] G. H Golub and C. F. Van Loan. Matrix Computations, Johns
Hopkins University Press, 1983.

[7] J. Holland. Adaption in Natural and Artificial Systems. MIT
Press, Cambridge, 1992.

[8] L. Ji and K. L. Tan. Identifying Time-Lagged Gene Clusters
on Gene Expression Data. Bioinformatics, Vol. 21, No. 4, pp.
509-516, 2005.

[9] R. A. Johnson and D. W. Wichern. Applied Multivariate Sta-
tistical Analysis, Prentice Hall International, USA, 1998.

[10] T. Kohonen. Self-Organization Maps. Springer-Verlag,
Berlin Heidelberg, 1995.

[11] A. T. Kwon, H. H. Hoos, and R. Ng. Inference of transcrip-
tional regulation relationships from gene expression data.
Bioinformatics, 19, 905-912, 2003.

[12] C. A. Orengo, D. T. Jones and J. M. Thornton. Bioinformat-
ics. Genes, proteins and Computers. BIOS Scientific Pub-
lishers ltd, Oxford, UK, 2003.

[13] T. Speed, J. Fridlyand, Y. H. Yang and S. Dudoit. Dis-
crimination and clustering with microarray gene expression
data. 2001 Spring Meeting of International Biometric Society
Eastern North American Region (ENAR’01), Charlotte NC,
2001.

[14] R. Tibshirani, T. Hastie, M. Eisen, D. Ross, D. Bostein and
P. Brown. Clustering Methods for the Analysis of DNA Mi-
croarray Data. Technical Report, Stanford, 1999.

[15] J. Yang, W. Wang, H. Wang, and P.S. Yu, δ-Cluster: Captur-
ing Subspace Correlation in a Large Data Set. In Proc. 18th
International Conference on Data Engineering (ICDE’02),
pp. 517-528, 2002.

[16] Y. Zhang, H. Zha, J. Z. Wang, C. Chu. Gene Co-regulation
vs. Co-expression 8th Annual International Conference on
Research in Computational Molecular Biology (RECOMB
2004), poster, San Diego, CA, 2004.

Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06)
0-7695-2728-0/06 $20.00 © 2006

