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Abstract

This paper describes numerical simulation of transient flow conditions in shock
tube. A two dimensional time accurate Navier-Stokes CFD solver for shock tube
applications is developed to perform the numerical investigations. The solver was
developed based on the dimensions of a newly built short-duration high speed flow test
facility at Universiti Tenaga Nasional “UNITEN” in Malaysia. The facility has been
designed, built, and commissioned in such a way so that it can be used as a free piston
compressor, shock tube, shock tunnel and gun tunnel interchangeably. Different values of
diaphragm pressure ratios P4/P; are applicable in order to get wide range of Mach number.
In this paper, in order to obtain better understanding of the processes involved, CFD
simulations were performed for selected cases and the results are analyzed in details. The
shock wave motion was traced and in order to investigate the flow stability, details two
dimensional effects were investigated. It was observed that the flow becomes unstable due
to shock wave-boundary layer-contact surface interactions after shock reflected off the tube
end.
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1.0. Introduction

It is becoming increasingly difficult to ignore the role of short duration high speed flow test facilities.
Recent developments in the field of supersonic and hypersonic applications have led to a renewed
interest in this kind of test facilities. Recently, researchers have shown an increased interest in high
speed flow conditions which can be used to simulate the real conditions encountered by aerospace
vehicles [1]. So far, however, there has been little discussion about the characteristics of the flow
process inside these test facilities. Furthermore, far too little attention has been paid to discuss the
parameters which affect the velocity profile inside these test facility. Consequently, this has heightened
the need for a comprehensive and an integral study which is aided by computer capabilities such as
CFD technique. Part of the aim of this paper is to perform a CFD simulation that is able to reveal what
is happening for the shock wave generated by high speed flow test facility. The main purpose of this
study is to develop deeper understanding of all parameters which affect the shock wave velocity profile
and pressure history inside the facility. The short duration hypersonic test facility has been developed
recently at the College of Engineering, Universiti Tenaga Nasional (UNITEN). The facility is the first
of its kind in Malaysia [2]. It allows various researches to be done in the field of high speed supersonic
and hypersonic flows. The maximum Mach number obtainable depends on the type of the driver and
driven gases. It is shown that a mach number of 4 can be achieved if CO, is used as the driven gas and
Helium is used as the driver gas with diaphragm pressure ratio of 75.

2.0. Historical Background

It is informative to trace the history of the shock tube and to note how its use has varied. In the 19"
century, interest in the propagation speeds of flame fronts and detonation waves led to the construction
of the first shock tube by Vieille in France in 1899 [3]. Experimental work on shock tube has been
carried out in the 1940s in the United States and Canada, where initial experiments were made to find a
method of blast pressure measurement. It was later realized that shock tubes can be used to investigate
compressible flow phenomena and extensive experiments on interactions of shocks, rarefactions and
contact surfaces were made in Toronto [3]. Since 1949, the possibilities of using the regions of quasi
steady flow to investigate sub and supersonic flow about models, that is, using the shock tube as a very
short duration aerodynamic tunnel, have been considered theoretically and practically. It will be noted
that the shock tube, which was invented at the same time as the wind tunnel has now developed as a
rival to its contemporary. Griffith (1952) [3] at Princeton University has obtained steady flow
conditions about a 15° wedge for a range of Mach numbers from 0.86 to 1.16 using conventional wind
tunnels. By producing very intense shock waves, relaxation time, ionization and dissociation effects on
gas behavior at high temperatures may be studied. Perry and Kantrowwitz (1951) [3], in some
preliminary experiments, have observed ionization in argon caused by a converging cylindrical shock,
produced by placing “teardrop” in a shock tube of circular cross section. Condensation phenomena in
high speed flow have been observed in a shock tube by Wegener and Lundquits (1951) [3], who used
air of known humidity in the high pressure compartment and electronically detected the presence of
water drops in the flow following the bursting of the diaphragm by the amount of light scatter from the
droplets.

3.0. Overview of the Test Facility

The UNITEN’s short duration high speed flow test facility has been designed and fabricated in such a
way that it can be used in four different arrangements in order to obtain wide range of Mach number.
The components of the facility are shown in Figure 1. Further details of the facility components and
operating procedure are available in Ref. [4]. The detail components of the facility are described briefly
and shown in Figure 1.
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Figure 1: Diagram of the test facility
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1. Driver section:- A high-pressure section (driver) which will contain the high pressure driver
gas, the driver gas can be either Air, Helium, Hydrogen or other light gases.

2. Discharge valve:- To discharge the driver section after each run.

3. Pressure gauge:- To read the pressure inside the driver section, this section is also provided
with a static pressure transducer to record the exact value of the driver pressure P4 at which the
diaphragm ruptures.

4. Vacuum pump:- When the driver gas is not Air (e.g. Helium or Hydrogen) then the driver
section should be evacuated and refilled with the required driver gas.

5. The primary diaphragm:- This is a thin aluminum membrane to isolate the low-pressure test gas
from the high-pressure driver gas until the compression process is initiated.

6. Piston compression section:- A piston is placed in the (driven tube) adjacent to the primary
diaphragm so that when the diaphragm ruptures, the piston is propelled through the driven tube,
compressing the gas ahead of it. This piston is used in free-piston compressor and gun tunnel
tests.

7. Discharge valve:- To discharge the driven section after each run.

8. Vacuum gauge:- To set the pressure inside the driven section to low values (vacuum values)
less than atmospheric value.

9. Driven section:- A shock tube section (smooth bore), to be filled with the required test gas (Air,
nitrogen or carbon dioxide).

10. Driven section extension:- The last half meter of the driven section on which the pressure
transducers and thermocouples are to be mounted.

11. The secondary diaphragm:- A light plastic diaphragm to separate the low pressure test gas
inside the driven section from the test section and dump tank which are initially at a vacuum
prior to the run.

12. Test section:- This section will expand the high temperature test gas through a nozzle to the
correct high enthalpy conditions needed to simulate hypersonic flow. A range of Mach numbers
is available by changing the diameter of the throat insert.

13. Vacuum vessel (dump tank):- To be evacuated to about 0.1 mm Hg pressure before running.
Prior to a run, the driven section, test section and dump tank are to be evacuated to a low-
pressure value.

4.0. Inviscid Transient Flow in Shock Tube

Two dimensional time accurate Navier-Stokes solver for shock tube applications was developed to
simulate the flow process inside the shock tube. The numerical scheme was based on an earlier work
by Zamri [5,6]. The earlier solver was developed for two-dimensional transient flow of two-phase
condensing steam in low pressure turbine. To ensure the ability of the CFD code to capture shocks,
rarefaction waves and contact discontinuity and to produce the correct pressure, temperature, density



Flow Instability in Shock Tube Due to Shock Wave-Boundary Layer-Contact
Surface Interactions, a Numerical Study 167
and speed profiles, the code has been validated using two verification approaches. Firstly, the code
results have been compared to the Sod’s tube problem (exact solution). Secondly, the code solution is
compared with selected experimental measurements for a certain diaphragm pressure ratio. The Sod’s
problem [7] is an essentially one-dimensional flow discontinuity problem which provides a good test of
a compressible code's ability to capture shocks and contact discontinuities with a small number of
zones and to produce the correct density profile in a rarefaction. Further details about the solver can be
found in Ref. [8]. CFD solution for inviscid simulation for a diaphragm pressure ratio P4/P1 of 10 has
been chosen for a detail investigation. The simulation has been conducted using the actual dimensions
of the test facility shown in Figure 1. The pressure, temperature, density and Mach number of the flow
were stored in two stations at the end of the driven section with an axial separation of 342 mm as
shown in Figure 2.

Figure 2: The two stations at the end of the facility
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The pressure history for the above mentioned shot is depicted in Figure 3 from which the
physics of the flow inside the shock tube can be traced. The first jump represents the shock wave, for
which the pressure inside the driven section increases from 100 kPa to around 220 kPa. As the shock
wave proceeds to the end of the tube it will reflect and move in the opposite direction increasing the
pressure to about 450 kPa. The shock wave will then interact with the contact surface which is
following the shock wave and due to this interaction between the shock wave and the contact surface
the pressure will be increased until it reaches its peak pressure value of 530 kPa.

Figure 3: Pressure history for inviscid flow (Air-Air, P,/P=10)
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The shock wave speed can be determined from the CFD data obtained from this simulation. As
the distance between the two stations is known (0.342 m) and the time of shock travels from station 1
to station 2 can be obtained from the pressure history graph, as shown in Figure 4, the shock wave
speed is determined for this shot is 518 m/s. Comparing to the theoretical value for this pressure ratio
(558 m/s) the percentage difference is around 7%. The difference is probably due to the two-
dimensional effect which is not modeled by the theoretical solution. From experimental measurements
the shock speed for the same pressure ratio is 450 m/s, which indicate percentage difference of about
13% from CFD results. More details about the shock speed measurements can be found in Ref. [9].

Figure 4: Shock wave speed (inviscid flow)
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Using the same procedure, the reflected shock wave speed can be determined. As the wave
reflects from the tube end and moves in the opposite direction (left direction), due to impact with the
end wall the wave will lose some of its kinetic energy and consequently its speed decreases to about
342 m/s. The same trend can be noted when the temperature history is investigated as shown in Figure
5. The first jump in the temperature profile represents the shock wave and the second jump is due to
the reflected shock wave. The temperature is increased from the initial value 300 K to about 380 K due
to shock wave effect and when the shock reflects from the tube end, the temperature rises to 475 K and
after interaction between reflected shock wave and the contact surface; the flow temperature becomes
about 490 K.
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Figure 5: Temperature history inside the shock tube (inviscid flow)
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5.0. x-t Diagrams

In order to have overall view of what is happening inside the tube after diaphragm rupture, the X-t
diagram for both pressure and density are depicted in Figures 6 and 7 respectively. From these two
figures, the inviscid flow process inside the tube is fully described. After diaphragm ruptures a shock
wave travels along the driven section followed by a contact surface compressing the test gas inside the
driven section causing high pressure and temperature. In the same time a rarefaction waves travel in the
opposite direction along the driver section decreasing the driver pressure and temperature. Both shock
and expansion waves will be reflected after getting to the end of the tube and the shock wave interacts
with the contact surface. It is interesting to note that after interaction with the reflected shock wave, the
contact surface remains at about the same position, indicating achievement of the tailored condition.
The presence of the bush is also seen to have prevented the rarefaction wave and the shock wave from

passing to the other section. The rarefaction wave and the shock wave are reflected when they reach
the bush.

Figure 6: x-t diagram for pressure profile (inviscid flow)
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Figure 7: x-t diagram for density profile (inviscid flow)
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6.0. Viscous Transient Flow in Shock Tube

In order to investigate the effect of viscosity on the transient flow in shock tube and how it affects the
performance of the facility, a viscous simulation has been accomplished for the same boundary
conditions as in inviscid simulation presented in the previous section. The pressure history for the
above mentioned shot is depicted in Figure 8. The Figure shows similar trend as for the inviscid flow.
The first jump represents the pressure rise due to shock wave, for which the pressure inside the driven
section increases from 100 kPa to around 220 kPa. The shock wave then reflects as it hits the end of
the tube and moves in the opposite direction subsequently the pressure increases to about 450 kPa.

Figure 8: Pressure history for viscous flow (Air-Air, P,/P;=10)
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The shock wave will then interact with the contact surface which is following the shock wave
and due to this interaction between the shock wave and the contact surface the pressure will be
increased until it reaches its peak pressure value which is in this case equal to around 530 kPa.

Knowing the distance between the two pressure stations, the shock wave speed can be
determined from this CFD simulation. The time of shock travels from station 1 to station 2 can be
obtained, as show in Figure 9, the shock wave speed determined for this shot is 456 m/s. Comparing to
inviscid value for the same pressure ratio (518 m/s) the effect of viscosity becomes obvious. It can be
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seen that viscosity decreases the shock wave speed to about 11% due to the boundary layer effects.
From experimental measurements the shock speed for the same pressure ratio is 450 m/s, which

indicate percentage difference of about 1.3% from CFD results.

Figure 9: Shock wave speed (viscous flow)
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After it hits the tube end, shock wave will be reflected and it will move to the left with a slower
velocity which can be determined using the same procedure. The wave speed decreases to about 311
m/s. Comparing with respect to the reflected shock wave speed for inviscid flow which is 342 m/s, it is
apparent that viscosity resists the fluid motion causing slower speed of the shock wave by 9.1%.

Analyzing the temperature history for this simulation, it can be seen that the trend is quite
similar to pressure history. The temperature results for this run have been displayed in Figure 10. The
first jump represents the shock wave and the second jump is due to the reflected shock wave. The
temperature is increased from the initial value of 300 K to about 500 K.

Figure 10: Temperature history inside the shock tube (viscous flow)
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Figure 11 and 12 shows X-t diagram for pressure and density profiles respectively. It can be
noted from Figure 12 that the intersection point between the reflected shock wave and the contact
surface occurred at 5.35 m as compared to inviscid flow at 5.15 m (as shown in Figure 7); this
indicates slower shock speed for the viscous flow and hence confirm the above calculation of shock
speed.

Figure 11: x-t diagram for pressure profile (viscous flow)
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Figure 12: x-t diagram for density profile (viscous flow)
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Figure 12 shows the so-called tailored interface, where no disturbance is reflected from the
contact surface back towards the rear wall of the shock tube. The “tailored” contact surface
configuration offers a number of advantages when applied to the operations of shock tubes, it increases
the testing-time and it improves the homogeneity of the working gas parameters (i.e. it decreases
possible contamination effects in the test section caused by the driver gas).

As shown in Figure 12, the maximum useful duration time that can be obtained when the
prescribed pressure ratio P4/P; =10, is about 10 ms, which is quite comparable to other facilities. The
procedure of calculating the useful duration time (t) has already been explained in Ref [10].

7.0. Shock Wave - Boundary Layer Interaction

Ideally, the reflection of a shock wave from the closed end of a shock tube provides, for laboratory
study, a quantity of stationary gas at extremely high temperature. Because of the action of viscosity,
however, the flow in the real case is not one-dimensional and a boundary layer grows in the fluid
following the initial shock wave. In the flow following the initial shock wave, there is a boundary layer
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generated near the walls of the shock tube, across which the velocity of the flow decreases from that in
the main stream to zero at the walls.

Figure 13 shows the velocity profiles at X = 279 mm from the diaphragm after shock wave
passes through it. It can be seen that the boundary layer thickness grows rapidly causing more blockage
to the flow. It can be seen from Figure 5.29 that the shock wave speed remains constant as it moves
towards the end of the tube. The shock wave speed reduces after reflection but it remains constant until
it interacts with the contact surface. After that, there is evidence showing that the shock wave is
attenuated and speed reduces. This is due to the effect of the boundary layer on the shock wave which
cause additional blockage to the motion. The attenuation of shock wave due to interaction with
boundary layer has been reported by McKenzie [11].

Figure 13: Velocity profile after diaphragm rupture (viscous flow) at X =279 mm from diaphragm section
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At time t = 0.0011 sec the profile is perfectly symmetrical. However, the velocity profile
contains inflexion part, which according to Drazin and Reid [12] is unstable and susceptible to
disturbances. The asymmetry becomes more apparent as the process continues. The upper half of the
tube has mainly positive velocity whereas the bottom half has negative velocity.

In order to investigate the effect of viscosity to this performance, Figure 14 to 16 shows the
evolution of the velocity profiles for viscous flow case. It can be seen in Figure 5.33 that before shock
wave reflected, after 0.0005 sec from diaphragm rupture, the boundary layer separation has occurred
close to the tube wall and the separated region grows.



174 Al-Falahi Amir, Yusoff M. Z, N. H. Shuaib and Yusaf T

Figure 14: Velocity profile at different times (viscous flow) at X = 279 mm from diaphragm section

0.05 B
0.04
P |
e |
u =
C |
g 0.03F
i) | ——=— t=0.0011 sec
% | —o— t=0.0054 sec
™ F —<— t=0.0076 sec
O 0.02F
o i
Q =
=
= |
0.01F

N N\ L1 L1
100 200 300 400

Velocity [m/s]

Figure 15: Flow after shock reflection at X =279 mm from diaphragm section
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Figure 16: Velocity profile after waves interaction at X = 279 mm from diaphragm section
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After the shock wave reflected and subsequent interaction with the contact surface, the
separated flow region evolves into a full re-circulating region rotating in the anticlockwise direction.
Then the flow returns back to the small separated flow region close to the tube walls.

The formation of the recirculating region in this simulation is surprising especially considering
that the tube is symmetrical. However, it has been reported by Xu Fu et al. [13] that high speed flow
tends to become unstable when shock wave interacts with contact discontinuity.

8.0. Conclusion

The paper described the flow process inside a short duration high speed flow test facility built at the
college of engineering- Universiti Tenaga Nasional in Malaysia. 2D-CFD solver designed to simulate
the flow process inside shock tube. The solver has been applied to a standard case of inviscid flow and
it has been validated against standard Sod’s problem and experimental measurements in shock tube.
The agreement with the analyzed solution is very good which proved the validity of the basic
numerical scheme developed.

CFD data achieved from the above runs showed the effects of shock wave propagation through
the driven section. As the shock wave travels from the burst diaphragm, it increases pressure and
temperature of the driven gas. The shock reflects off the closed end of the driven section and passes
back through the driven gas, further processing the gas causing further increase of the pressure and
temperature. The shock strength of the analytical and that of CFD results are very much comparable.
Results presented in this paper show that after diaphragm rapture and when the shock did not reflect
yet, the flow is stable. As the shock wave reflects from the tube end it will move towards the
diaphragm section and interact with the contact surface and the boundary layer, consequently the flow
becomes unstable and it is no longer symmetry. Results also show that two-dimensional modeling of
the high speed flow test facility is an effective way to obtain facility performance data. The present
code showed good capability to provide the x-t diagram successfully. From this diagram the useful
duration or test tme can be determined.
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