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Abstract We introduce fractional Nernst-Planck equations and ddractional cable equa-

tions as macroscopic models for electrodiffusion of ions@mve cells when molecular

diffusion is anomalous subdiffusion due to binding, crawgdor trapping. The anomalous
subdiffusion is modelled by replacing diffusion constawith time dependent operators pa-
rameterized by fractional order exponents. Solutions bt&iwed as functions of the scaling
parameters for infinite cables and semi-infinite cables imgtantaneous current injections.
\oltage attenuation along dendrites in response to alphetiftn synaptic inputs is com-

puted. Action potential firing rates are also derived basedimple integrate and fire ver-

sions of the models. Our results show that electrotonic gntags and firing rates of nerve
cells are altered by anomalous subdiffusion in these modlééshave suggested electro-
physiological experiments to calibrate and validate thel@s
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1 Introduction

The core conductor concept and associated cable equatwid@ra fundamental macro-
scopic basis for understanding electrophysiological iela in neuronal processes such as
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axons, dendrites, and dendritic trees [29, 30]. The cahlatémn models spatio-temporal dy-
namics of the membrane potential along the axial directficamaapproximately cylindrical
segment of a nerve cell. This equation can be motivated phenologically by representing
the electrical properties of the cell membrane as a contigmetwork of circuits composed
of passive resistors and capacitors in parallel [30]. A nforelamental motivation can be
obtained from the Nernst-Planck equation for electrodifin of ions in an axially sym-
metric cylindrical geometry [28]. Here the Nernst-Planckiation provides a macroscopic
approximation for the complicated microscopic motionsaofs in nerve cells. The random
Brownian motion of the ions, as well as the drift of ions du¢hi® electric field of the mem-
brane potential, is captured in this approximation. Howemeaddition to these motions,
ions can be trapped [32,33], buffered [10], or crowded [1MfBen diffusing in the cyto-
plasm, and obstructed by gating [18,12] or binding wherudifig through ion channels
across the membrane. On macroscopic scales these obsaglethe diffusive motion of
the ions relative to free diffusion in aqueous media (see [@4-36,50]). Retarded diffu-
sion of ions has been reported across ion channels [9] agg/albng nerve cell membranes
(through the cytoplasm) [33]. In applications of the PoisBternst-Planck theory for ionic
motion through open channels this retarded motion can lmepocated using a spatially de-
pendent diffusivity parameter that is typically one or morders of magnitude lower than
the free diffusivity [25,9].

A recent study [33] has found that the diffusion of molecule®ugh the cytoplasm
of Purkinje cell dendrites is slowed at the macroscopicesqaimarily through temporary
trapping by dendritic spines, and also to a lesser exteatutfir macromolecular crowding
or binding [38,54]. An important finding of this study was tltze diffusive spatial variance
evolves as a sub-linear power law in time. This is a key signeatf anomalous subdiffusion.
Moreover it was found that the diffusion became more anoowsleith increasing spine
density [33]. Anomalous subdiffusion has also been regdrienumerous other biological
studies [8,39-41,5, 1, 31]. The above considerations geosliear motivation for attempting
to develop new cable equation models for nerve cells thairparate the possibility of
anomalously slow electrodiffusion of ions.

Anomalous subdiffusion can be modelled at the macroscepi through a modified
diffusion equation
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in which 2(y,t) is a time dependent operator parameterized by a scalingierpg in the
range O< y < 1; the case/ = 1 corresponds to standard diffusion. Different models ffier t
time dependent operator have been proposed that resuk ipother law diffusive spatial
variance that is characteristic of anomalous subdiffusiororder to differentiate between
model dependent peculiarities and the general effectsahatous diffusion on electrotonic
properties, in the following we have considered two diffémaodels for this operator:
Model | [53,21]

Zi(y,t) =D(y)p' )

Model Il [24]
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whereD(y) is a generalized diffusion coefficient with units ofs~ and :tl—y is the
Riemann-Liouville fractional derivative operator of orde- y defined by

v vt = 1 i/t Y(t') ot @
oy T yot) )t

While both models predict the same power law diffusive spatiriance, the physical de-
velopment of the models has been different. Model | has beewedl from a Langevin

equation with a friction memory kernel and power law corntedanoise [51-53] whereas
Model Il has been derived from Continuous Time Random WalKERW) governed by

a Gaussian step length density, but a power law waiting tieresitly [24,17]. The origin

of the power law behaviours in the above is usually assatiaith trapping or molecular

crowding. For example a power law waiting time density isegenfor random walks amid

a sea of traps with an exponential distribution of trap higdénergiep(E) = Eioe*E/ Bo

and thermally activated trapping times= €5/¥8T [37]. An exponential distribution of trap
binding energies can arise as the most probable distribatfica fixed amount of energy
among a fixed number of traps. At the macroscopic level, aghenological derivation of
the fractional diffusion equation corresponding to eachieh@ possible by combining the
standard continuity equation

EZ—D'Q (5)

with a fractional Fick’s law for the flux as follows:
q=-2(y,t)tC. (6)

where%(y,t) is defined by (2) or (3).

The microscopic motion of ions in nerve cells is usually mitedkas Fickian diffusion
with drift; the latter due to the electric field of the cell mierane potential. The membrane
electrical potential is produced by a capacitive sepamatibcharge densities inside and
outside the cell membrane. The total flux of #tle ionic speciesyy, in the standard Nernst-
Planck theory is given by

F
Gk = ~DkICk — - DYV 7)

In this equationCy is the concentration of thieh ionic speciesk is the Faraday constant,

R is the universal gas constart, is the temperature and,, is the membrane potential.

A possible generalization of the flux, to incorporate anausldiffusion, is to replace the
species dependent diffusion constBrptwith a species dependent time dependent operator,
D t), i.e.,

F
b =~ Zh(Yo D D0k — 2 Zi 1) S DVin ®)

The subscripk on the scaling exponent allows the possibility of speciggeddent anoma-
lous scaling. The resultant macroscopic electrodiffugqoation found by combining the
standard continuity equation, (5) with the fractional NsfRlanck flux, (8) is then given by

aC F
%~ awncee o (2 g ocom) ©

where%(,t) is defined by (2) or (3).
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At present we do not have a derivation for the fractional Neflanck equation pro-
posed in (9) from a more fundamental basis, such as biaseithgons time random walks,
however it is worthwhile considering some of the recentrditere in this area. The frac-
tional diffusion equation defined by (1) and (3), has beeereked within the framework of
continuous time random walks CTRWSs, and a generalized megtation GME, to include
external force fields [3,24,44], reactions [17,45, 15, fiijte propagation velocities [6] and
ageing [2]. In the case of anomalous subdiffusion with tinrdependent external force fields
a fractional Fokker-Planck equation has been derived fraaM& [23] and from CTRWSs
[3,24]. In the case of anomalous subdiffusion with spaceetdent external fields a frac-
tional dispersal equation has been derived from a GME [4d}véVer these derivations do
not extend to the more general case of anomalous subdiffusian external force field
f(x,1) that varies in both time and space [14]. In this more geneasédwo models that
have been considered are [43,48]

oc_ovv . 9V _ /1

=t = gy DvIC - a0 (n_y f(x,t)C(x,t)) (10)
and [14] L 1

oc oV _ 1 oy

St = oy -1 (n_y f(x,t)mC(x,t)) (11)

wheren), is a generalized friction coefficient with dimensionss6f2. The two coefficients
Dy andny can be related through a generalized Einstein-Stokesarlg3, 24,43]. If the
force is independent of time then the two formulations in) @d (11) are equivalent. How-
ever if the force is time dependent then in (10) the force felttiven by the same time de-
pendent operator that affects variations in the time degetidnic concentrations, whereas
in (11) this is not the case. In the case of a purely externmakfdt has been argued that
the temporal subordination in (10) is not appropriate [54, $he fractional Nernst-Planck
equation, (9), has the same form as (10) but the electricfiiedd, —Vy, in this case is not
an external force, rather it arises from the membrane patemhich is itself a function of
the ionic concentrations.

In a recent letter [16] we considered the fractional Nefisiack equation, (9), as our
starting point for modelling anomalous electrodiffusionsipiny dendrites. Related frac-
tional cable equation models were derived and some moddigiiens were obtained for
postsynpatic potentials propagating along (infinite lahgendrites. In this paper we pro-
vide more complete details on the derivation of the fractiarable models and we derive
solutions for infinite and semi-infinite fractional cable&hwno current injections and with
instantaneous current injections. Different boundaryditions have been considered in the
semi-infinite cables. Solutions for infinite cables with kpfunction synaptic inputs are
also derived and used to infer voltage attenuation alongrites with anomalous electrod-
iffusion. Results for firing rates are obtained using siniptegrate and fire versions of the
models for a membrane patch with constant current input.

The remainder of this paper is organized as follows. In ea@iwe derive fractional ca-
ble equations from the generalized fractional Nernst-€kaquation, (9) . In section 3 we
compare infinite domain fundamental solutions for each efrttodels. In section 4 we de-
rive results for the postsynaptic potential in responsefferént input functions. In section
5 we describe semi-infinite domain solutions for differeatibdary conditions. In section
6 we derive and compare results for firing rates based on simfggrate and fire versions
of the models. In section 7 we describe voltage attenuatieamsurements and voltage patch
recordings that could be used to calibrate and validate tigeia. We conclude with a short
discussion in section 8.
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2 Fractional Cable Equation Models

Our approach for deriving fractional cable equations freattional Nernst-Planck equa-
tions follows that of Qian and Sejnowski [28] for the startleable equation. We consider
a nerve cell segment with diametémuch smaller than lengthand integrate (9) in axially
symmetric cylindrical coordinates over the circular cresstion of the neuron, with zero
flux of ions at the centre. This results in

0Ck _ o 0%y zF 9 Vi 4
W_@k(y‘(’t){Dk(W)W+ﬁa—x Dk(W)CkW —aJk

wherex is the longitudinal coordinate, is the radial coordinately denotes the radial flux
of ionic speciek across the membrane and

r=

g (12)

Zx (o t) = Zi(We, 1) /Di(y)- (13)
In standard cable theory for nerve cells the membrane patésitaken to be [49]
Fd
Vi(X,t) = Vrest + acn sz (Ck(X,t) *Ck,rest) (14)

whereViegt is the resting membrane potentigl, is the membrane capacitance per unit area
of membrane an@ rest is the resting concentration of th& ionic species. We also follow
the standard assumption that the axial ionic concentratiadients are smalbCy /dx ~ 0),

but the prefactor‘%"n is large @Vim/0dx 2 0) [28]. In addition we assume that the trapping
effects due to the geometry of spines are similar for diffespecies of mobile iongy = y).
Using these results in (12) we obtain

N, d oWVy\ .
me =7*(y,t) (T&W) —Im+le (15)
where
1P s 2y (16)
o RTZ kY0

defines a modified longitudinal resistivity(y) with units of @mg' 1, i, is the total ionic
transmembrane current per unit area defined by

im= szFJk, (17)

andie has been included as an external current per unit surfaee [dote that even though
the concentration gradients have been assumed to be drealtsidual effects of ionic diffu-
sion are still manifest in the electrophysiological prdjgear of the fractional cable equation
through the dependence of longitudinal resistivityy), on the diffusivity parametengand
Dk(y), as in (16). The dependencergfon ionic diffusivity also occurs in the standard ca-
ble equation, but in the fractional cable equation the @it dependence on the scaling
parameter allows for greater impact of the diffusion.

As an alternative to the physical derivation from the fracéil Nernst-Planck equation,
the fractional cable equation, (15), can be obtained phenofogically by combining the
standard current continuity equation

0V doi_

CmW——4W—Im+Ie (18)
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with the longitudinal current densitly,, described by a fractional variant of Ohm'’s Law,

. N 1 0Vn
IL= 79 (y7t) I'L(V) 0)( . (19)
Allowing for a similar fractional flux for the ionic transmdarane current we write
imza(K)@*(K.,t)\LvreSt (20)

'm

wherek is the exponent characterizing the anomalous flux acrosadnebrane and (k) is
an additional parameter with units & ¥. In steady state conditions it is to be expected that
the two exponenty andk are equal. It is possible to absoetik) into a modified specific
membrane resistaneg,(k) = rm/a(K), identifying a (k) as the effect of anomalous flux
across the channels on the specific membrane resistance(&ne 1. The fractional order
operator?*(k,t) would also apply to any external currdatcarried by ions traversing the
membrane. ations (19) and (20) can be interpreted as eitteged linear response [42] or a
retarded linear response [43],9f*(K,t) is the renormalized form of (2) or (3) respectively.
A similar generalization of Fick’s Law has been proposed finenomenological derivation
of the fractional diffusion equation [56] and a retarde@éinstress-strain response involving
fractional derivatives has been proposed for viscoelastiterials [19].

Equations (15) and (20) can be combined to arrive at thedifiaational cable equa-
tions:

Model | q \
oV 'm _1 {9V 1 .
o5 = I (y) ' ( 0x2 ) ~ (R0 = Ime). &0
Model 11 q Ly 2 L
oV . m 0 Vi 0 .
T 4r (y) oti-v ( X2 ) — oK) Gx (M1~ ile), (22)

whereV =V, — Viest and the subscriptsandll are used to differentiate the two anomalous
diffusion models. There is no loss of generality in having same fractional temporal op-

erator acting on both the potential and the external cuteents since the external current
could be defined to compensate this. In the gasek = 1 both cable equations reduce to
the standard cable equation

- ov _dry o

Mot 4r 0x2
It is interesting to note that the linear fractional cableaipn for Model | can be obtained
by starting with a different fractional Nernst-Planck etioia of the form

0GC F
%% _ Ak TG+ D (% Dvm@km,t)ck) (23)

—V +rpie.

but with Zi(,t) given by Model II. Thus the linear fractional cable equatioriModel |
can be obtained from the fractional fokker-planck equat{@f), with f(x;t) = 7‘9‘;’;" and
Zk(¥,t) = D(y)yt¥—1 or from the fractional dispersal equation , (11), witfx,t) = —‘%f(“
and Zi(y.t) = D(y) 2

aLy:
In a recent letter [16] we presented fundamental solutidrieolinear fractional cable
equations, (21), (22) on an infinite domain in the specia¢ eeserey = k. In Model | these

solutions are time retarded solutions of the standard ocadpleation and in Model Il the
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solutions are subordinated to solutions of the standarlt eafuation through a Levy stable
law as shown in Appendix A. Here we present more general isokit(includingy # K)
for both infinite and semi-infinite domains. The analysisasilitated by considering the
dimensionless forms, of (21) and (22):

Model | N
oV _ yfla Vi 2, T7K-1 H
dT - y axz Il KT (Vl |erm)a (24)
Model Il Ly a2 L
oM _ o7V oW 5,0 .
a1 ~arivaxe M grrx Vi Zlefm), (23)
where ¢
T= ™ (26)
is the dimensionless time variable,
1y
X =Xtn? / drm (27)
4r

is the dimensionless space variable, and
pw=a(k)mnt (28)

is a dimensionless function af.

It is important to note that solutions to the (fractionalpleaequations may change in
sign whereas solutions of (fractional) diffusion equagiciefine probability densities which
must remain positive. Physically, the solution of the cauaation is a membrane potential
whereas the solution of a diffusion equation is a concentrafhe two are related through
(14) which shows how the potential can change sign whilsttmeentrations remain posi-
tive.

3 Infinite Domain Solutions

3.1 Infinite Domain — Model |

In this section we derive the fundamental Green’s solul@iX, T), for (24) in the infinite
domain, with initial conditionv (X,0) = &(X) and no external current. This solution can
be found readily by multiplying (24) by the integrating face*’T* and then introducing a
change of variables

W(X,9) = e’ TV(X,T) (29)
with
S=TY. (30)
The equation describing the evolutionWf X, S) is the standard diffusion equation
oW W
35~ oxe (1)
with fundamental solution
1 X2
G'(X,9) = ——exp| ——= 32
9 = —exp( - 55 @)
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and hence
1 X2 21k
— —zry HT
G(X,T) 47ﬂ_ye ar . (33)

Plots of the infinite domain solution for the fractional aalelquation in Model | are
shown in Fig 1 for different values gfandk. The solution is smooth at the origin, similar
to the standard diffusion equation, but the rate of decafféstd by the scaling exponents.
The decay is faster for short times but slower over long timlesn diffusion is anomalous.

0.8‘7\‘
() (b)
ob] |
G(X.T) G(X,T) 03]
d-4’ |
| | 0.2
ha] |
] \‘\
,,,/7——/)*\%7\‘,
4 32 A0 12 3 4
X
© i
057 |
[ 025
GX.T) oal | G(X.T)

Fig. 1 Plot of the Green'’s solution for the fractional cable equati(24) at timesl = 0.1 (red),T = 1.0
(blue), andl = 2.0 (black) for: (a)y=1.0,k = 1.0, (b)y=0.5,k =1.0(c)y=1.0,k =05 (d)y=0.5,k =
0.5 The parameten = 1 in each case.

3.2 Infinite Domain — Model Il

In this section we derive the Green’s solution for (25) in afinite cable with no external
current and with initial conditiorv (X,0) = 6(X). The Green’s solution for linear partial
differential equations can generally be found using Fowe Laplace transform methods.
The transformed solution is obtained as the solution to getahic problem in Fourier-
Laplace space and then the Green'’s solution in the origengbles is obtained by carrying
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out the inverse transforms. We have followed this approacthé following for the lin-
ear fractional cable equation, using the known Laplacesfoam of the Riemann-Liouville
fractional derivative, and using Fd% functions and their properties to facilitate the inverse
Laplace transforms. The advantage of using Adxinctions is that derivatives of Fox func-
tions and (inverse) Laplace transforms of Fox functionstEaevaluated using index shifting
properties (Appendix B).

First we take the Fourier-Laplace transform of (25) using itbsult that the Laplace
transform of the Riemann-Liouville derivative{'y(t) of ordera, 0 < a < 1, is given by
(26]

Z{Dfy(t)} = s"Y(s) — (Df *y(t)) o (34)
to obtain the Green’s solution of the fractional cable eiquaih Fourier-Laplace space, i.e.,
= 1
G(g.9) (35)

T Sstsl VR stk

In this equationg ands are the Fourier and Laplace variables and the tilde and hredtele
Fourier and Laplace transformed functions respectivalyhé following (Dt"’ly(t)) t=0 =
0in all cases. In the next step we invert the Fourier transfiar obtain

st 1
G — —0\VZ
G(X,9) 57 e (36)
where
p=|X|s? (37)
and
z=1+pu%sx. (38)

In order to evaluate the inverse Laplace transform we firgaed the Laplace transform as
a series expansion in Fox H functions and then we invert tpamsion term by term. First

we consider the function 1
— — @ PVZ
h(z) ﬁe (39)

which can be written in terms of Fox functions as follows [46]

(40)

_oolo| A —
v =prsd ozt |-
The Taylor series expansion fb(z) aboutz= 1 can readily be found using index shifting
properties of the Fox functions. Theh derivative ofh(z), which follows from the identity
(163), is given by;

- 0,3)
h®(z) = pz *Hi2 [pz% 03 } (41)
2 (-11) (k3)
This can readily be evaluatedat 1 to yield
1 k 2
K1) — pyll (0,3) _2(=D* 20[P° —

where the second expression is obtained using: (165) ewth2; (166) witha = 1 and
r =k; (167) witho = 1/2; and the Legendre duplication formula for the Gamma famgti
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2/mr (2r) = 22'I (1)l (r + 3). The Taylor series expansion fotz) aboutz = 1 is thus
given by

_ 2 (z-D* 20[P? —
o= S T S 0y ey | @

and then using (36)-(39) and (43) we obtain the series eigaf the Laplace transform

(0,1) (3 +k1)

R w (_,2\K 2oy
G(X,s) = 1 Z)( 1) kaxfl%Hé’g [X_S : (44)
K=

T VAT n! 4

In order to facilitate the inverse Laplace transform we firs the reduction formula, (168)
withd = 1— ¥+ kkandA =y, to write

A _ 1 - (7“2)k —kk+¥—1
G(X,S)f\/TTnZO i s 2
3,0 X2sY (1*%+Kk,y)
13 {T (1-¥1kky) 0.1) (2+ka) | @D

The inverse Laplace transform can then be evaluated terrerhy wsing (169) withw =
kk — %’ o =y, andz = x?/4. We finally obtain the solution of the fractional cable etipra
in the infinite domain

K
1 2 (—u2TR)" o0 X?
G(X.T)= 4nTVk;) K! Hi2 4TY

In the limit of largeX and larg€eT, asymptotic expressions for the Fox functions [4] can
be used to find the asymptotic behaviour of the Green’s fandti (46);

(1-%+kk,y)
0.1 (3+k1) } B

Ly

— 1y
1 1 [/2\7v \X|)*2——v

G(X,T) ~ - (= 2]

*T) 47TTV\/2*V(V) (T¥

v 2 K 2w
o220 (2)7 (%) o (_ (;;_X%)ﬁ). -

The Green’s solution for the fractional cable equation (85n infinite domain is plot-
ted in Fig. 2 (withu = 1) for timesT = 0.1, 10, and 100 and with different values of
andk. Note in the case of standard diffusign= k = 1 the Green'’s solution is essentially
zero atT = 10.0 and cannot be distinguished from the axis in Fig. 2(a). dtalao be seen
that the Green'’s solution decays to zero for lagpand is an even function of. In each
case, the solution decays to zero for lafigelt is interesting to note that in Fig. 2(a) and
Fig.2(c), where the diffusion along the axial direction loé tcable is standard/ & 1), the
derivative of the solution is continuous>t= 0. This contrasts with the anomalous diffusion
case | = 1/2) where the derivative is discontinuousXat 0 (see Fig. 2(b) and Fig. 2(d)).
The fractional derivative effectively “remembers” theabstinuity of the second derivative
in the initial condition. An interesting finding, in the cage= 1/2 andk = 1 (Fig. 2(b))
is that the solution becomes negative n&ae 0. The negative solution is not unphysical
(G(X,T) is not a probability density) and it does not contradict thgnaptotic largeX and
T behaviour, (47), where the solution is predicted to remasitjve for sufficiently largex.
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G(X,T) ‘J‘ \ G(X,T) owsip
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Fig. 2 The Green’s solution of the fractional cable equation (83n infinite domain at timeg = 0.1 (red),
T = 1.0 (blue), andT = 10.0 (black) for: (a)y = 1.0,k = 1.0, (b)y=0.5,k = 1.0 (c) y= 1.0,k = 0.5 (d)
y=0.5,k = 0.5 The parametes = 1 in each case.

A further comparison of the Green’s solutions at correspapdmesT but different
values ofy andk are shown in Fig. 3. At short times, as shown in Fig. 3(a), tekheight
decreases faster when the diffusion is anomalous (eitbegahe neurory < 1 or across
the membrane < 1). This trend reverses on longer times, Figs. 3(b), 3(ck fmégative
potential in the casg= 0.5,k = 1.0 can clearly be seen on this magnified scale in Fig. 3(d)

The rate of spreading of the Green'’s solution can also belsenestigating the second
moment(Xz(t)> where the angular bracket denotes the ‘average’ with réspéee Green’s
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X X
(c) I (d) 0.025
0.08])
G(X,10) i G(X,10)
Ml | 0.02
[T\ M="=3
0.061 /
[ 1) 0.015[

0.014

0.00% 1

Fig. 3 Green’s solution of the fractional cable equation (25) inrdimite cable at ()l = 0.1, (b) T =1,
and (c)T = 10 for different values off = y1 andk = y, as indicated. The Green’s solutionTat= 10 with
y=y =0.5andk = y» = 1.0 is shown in (d).

solution, i.e.,
<X2(T)>:/ G(X,T)X2dX.

Note that the second moment is not necessarily positive 8%, T ) is not strictly positive.
The second moment can be evaluated using the Fourier-leaptpcesentation

2 o
o) =27 (im - 5609
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<XX> - —

1.2 —

A
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0.6
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Fig. 4 A comparison of the second moment for different valueg ef 3 andk = y, as indicated.

Using the expression fd%(q,s) in (35) we have

2k —(1+y—K)

XMy =21 ——F%F

and then evaluating the inverse Laplace transform in tefrtteecgeneralized Mittag-Leffler
function [26] we have

(X¥(T)) =2TYEX,, , (—H2TX). (48)
A plot of the second moment as a function of timés shown in Fig. 4 for different values
of y andk. In the case wherg = 0.5 andk = 1.0 the second moment becomes negative,
which is a result of the Green’s solution becoming negafive physical interpretation of
this (see e.qg., (14)) is that the current switches direstfonthese parameter values.

The possible negativity ofX?) makes it difficult to relate the behaviour 6X2) /T to
an apparent diffusion coefficient. However it is clear froig.F that (X?)/T exhibits a
time dependent crossover in scaling behaviour (increasingpnstant at short times but
decreasing at long times) and this is broadly similar to wosr scaling behaviour in the
apparent diffusion coefficient for ageing continuous tirmedom walks (constant at short
times and decreasing at long times [2]).

4 Input Current Response

The infinite domain Green'’s solutions, (33) and (46), cqroesling to Model I, (24), and
Model 11, (25), respectively were obtained for initial catioh V (X,0) = 6(X) and no ex-
ternal current. It follows from the linearity of the fractial cable equations that general so-
lutions for non-zero external current densities and géimaitaal conditionV (X, 0) = Vp(X)
can be obtained from the Green’s solutions. Explicitly, gemeral solutions for (24) and
(25) can be expressed as,

VX.T) = [ W(X,006 (X~ X', T)dX

o T
o [ @ X T =TT gt (X, T AT X, (49)
—00J0
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and

Vi T) = [ Vi (X006 (X - X, T')dx’

"0 T alfK .
+“2/7°o/0 Gi(X—X,T —T’)W fierm] (X', T)dT'dX,  (50)
respectively, where the subscriptandll are used to label the different models. The general

solution for Model | can also be obtained from
Vi(X,T) =e HT'W(X,9) (51)
where

W(X,S) = /:W(X’,O)G*(Xfx’,S)dX’
o0 S
+u26/ /OG*(x—x',s—S)s"*le“ZSe lier] (X', S7)dT'dS, (52)

G*(X,9) is the Green’s solution, (32), for the standard diffusionaipn, andd =k /y.

In theoretical studies of the standard linear cable egmatommon inputs that have
been considered include [49]; a spike functiofX — Xp)d(T), a step functiond(X —
Xo0) (1—H(T — 1)), and an alpha functiod(X — Xo)Te ?T. Here we consider similar in-
puts for the fractional linear cable equations, (24) and,(B% first defining an input func-
tion f(T) with one of the functional forms (spike, step or alpha fumg}iand then defining
associated external current densifie one of two ways;

f(X,T) =lelm (53)
or
f(X,T)=2"(k,T) (iefm) (54)
where
2*(k,T)=kT<1  Model |
and
alfK

In the following we describe results for an instantanenapst with external current defined
by (54) and for an alpha function input with external curréefined by (53).

4.1 Instantaneous Input

In the case of an input instantaneous input
f(X,T) = 8(X—X0)5(T) (55)

with zero initial condition,V (X,0) = 0, and external current defined by (54) the solutions
reduce toV (X, T) = G(X —Xo, T) (Model 1) andV(X,T) = Gj; (X — Xo, T) (Model 11).
These solutions are equivalent to solutions of the linesational cable equations with zero
external currentie = 0, and with initial conditionV (X,0) = 6(X — Xp). In a recent letter
[16] we considered these solutions foe k with Xy = 1 and found that the peak potential
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arrives at the som# = 0 earlier with decreasingand the potential is maintained at elevated
levels for longer times with decreasingIn Fig. 5 we show plots of (X,0) for the same
initial conditions but a wider range gfandk including cases witly # k. If k = 1 then the
peak arrives at the soma earlier with decreagitgt if y = 1 the peak arrives at the soma
later with decreasing. These features are broadly similar in both models.

Vi(0,7)

077077704 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

(@) ' (b) '

0.04

0.02 ‘Ik“y‘ =01

o 02 04 06 08 1 12 14 16 18 2 o 02 04 06 08 1 12 14 16 18 2
(©) ' (d) '

Fig. 5 Plots ofV(0,T) in response to an instantaneous unit input at 1. (a) Model Ik = 1.0, (b) Model |
y=1.0 (c) Model Il k = 1.0 (d) Model Il y= 1.0 The parameter = 1 in each case.

)/

4.2 Alpha Function Input
We now consider alpha function inputs
f(T)=0(X—Xo)BTe T (56)

with zero initial conditionyV (X,0) = 0, and withic defined by (53). In this case the input is
modulated by the fractional temporal operators in (49) &®). (
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4.2.1 Alpha Function Input — Model |

We first substitute the alpha function input, (56), with em& current density, (53) into (52)
with W(X’,0) = 0 to obtain

s 1 ,
W(X,S) = /39;12/ G* (X —Xo,5—§) 5710 1g*8%gaSV gg. (57)
0

To evaluate the integral, we expand the exponential @ as a Taylor series i8 and
take a Fourier transform @*(X — Xo, S— S) with respect toX. This yields

00

_ xS 1
W(q,s) = e 'Popou? Z}’f(—, / g F(5-8) zytOkiD-1g-asV yg (58)
=

The remaining exponential terms can be represented as Rotidns

1
—asSy _ 410 i
e =Hay [asv 0.1)

: (59)

e (5-5) — 20 {qz (5-9) ' o } , (60)

and the resulting integral can be simplified using the Foxction convolution identity
(171). This results in

1 o0 2 K o 7(]5%’ '
vN\/(q,S):e*iqxoBeuzsv“’kz (“je) Z)( rl >F(1J;r+6(1+k))
=0 : r= :

0.1)
0.1 (-1 -0(1+K).2) } - (6D

After taking the inverse Fourier Transform we now arrive at

[36;125%”) * (uZSG)k © (_O’S%> 1+r
= M rZO o r( +0(1+Kk)
X — 2
i (e

W(X,S) =

and the final solution that follows from (51) is

KUZBTH e W T @ (p2TH)k o (<aT) (1+r+K(k+1))

V(X,T) =

( ) yWATTY & K r;) r! y
120 M <%+1+r+;;(k+1)’1> . 63)
oA oy (G




Fractional Cable Equations for Anomalous Electrodiffasio Nerve Cells 17

In the case of standard diffusion and standard curnest K = 1) this solution reduces to

HZBefaT

VXT) ==

[Tl (X=Xo,T) —12(X = Xo,T)] (64)

where forp > 0

(X, T) = \2/—;_1 le"'X'erfc (\/g—pﬁ) —ePXlerfc (\/%4—[)\/?)] . (65)

A VI _ NG
|2(X,T)=—Fe ar pT+E (p|X|+1)e PXlerfc E—p\/'?

+ (pIX| - 1) e”Xlerfc (\/§+pﬁ>] . (66)

and forp =0
x2 X2
11(X,T) =2VTe o —|X|\/Terfc | (67)
2 2 2 3 2
(x.T) = 219 i X g i XLV Gﬁerfc( %) NG

wherep = /U2 —a.

4.2.2 Alpha Function Input — Model Il

We now consider the potential, (49), in response to the diphetion input, (56), with ex-
ternal current density defined by, (53), and with initialgratal vV (X', 0) = 0. The resulting
potential is given by

T

. 1-k ’
V(X,T) = 2B / G(X — X0, T—T) ;,H (T’e*"T ) dT (69)
0

whereG(X, T) is the Greens solution in (46). The fractional integral ceadily be evaluated
to yield

V(X,T) = u?B /G(X—XO,T/) (T-7) el (~a(m-T))dT.  @0)

where

e (-a(T-T)) = iij 2 (car-1))’ (71)
e
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is the Mittag-Leffler function [27]. The potential can thus ritten as

T ’
2 < (It (=a)! G(X—X,T) /
~—dT 72
B % +1+ K) 0/ (T_T’)1*<K+l+l) ( )
) ‘ 0 (K+1+])
_“B% (4 (- 0) S GX = X0, T). (73)

The fractional integral of the Green’s solution can be eatdd and simplified using the
identities (166) and (168) to yield

p2pTIK @ (—p2Te) @ o
ATy k;) m JZO(JH)( aT)!

X —Xo)?
Hg[(4w)

V(X,T) =

(2-3+k(k+1)+],y)

(0,1) (3+k1) (74)

In the case of standard diffusion and standard curneat K = 1) the solutions represented
in (64)—(68) are recovered.

Figure 6 shows the temporal behaviour of the potential abtigin for Model | (left)
and Model Il (right) in response to an alpha function inpukat= 1 with equal exponents
y = K. Other parametersy, 3, 4 have been set to unity in these plots. In each of the models
the peak height increases as the expomentreases. The arrival of the peak at the soma is
earlier with increasiny in Model | but earlier with decreasingin Model II.

5 Semi-Infinite Domain Solutions

In this section we consider solutions of the fractional eagjuations on semi-infinite do-
mainsX > 0 with initial conditionV (X, 0) = 6(X —Y) and with prescribed boundary condi-
tions atX = 0. This solution represents the response to an instantanedinput atX =Y
with Green’s functions corresponding Yo= 0. Solutions for other input functions could
be obtained using these Green’s functions as describedffoité cables in the preceding
section. The main purpose of introducing the semi-infinitkle here is to describe solution
methods for more realistic boundary conditions. Threeedifit boundary conditions are
considered:
(i) Voltage clamped

V(O,T) =W (75)

(ii) Constant fractional axial current
ov

DWMZ* (. T35 =V (76)
(iif) Constant standard axial current
1 oV
wox % 7

whereV{ is a constant and
D*(y) =/ th "D(¥). (78)
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Fig. 6 \oltage at the som& = 0 in response to alpha function input # = 1 for: (&) y = k =
0.1,0.2,0.3,...1.0. (b)k = 1.0. (c) y = 1.0. The results for Model | are shown at left and results for Blod
Il are shown at right. The arrows indicate plots with incihegs or increasing.

To simplify the algebra in the following we consider solmsowith D*(y) = 1. Killed end
boundary conditions and sealed end boundary conditiondbeabtained as special cases

with Vo = 0 andV{ = O respectively.
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5.1 Semi-Infinite Domain — Model |

As in section 3.1 we consider the change of variables i, T) to W(X, S) defined by
(29), (30) and we proceed to find the solution using Laplaaestfiorm methods with respect
to the variableS. The Laplace transform of the resulting diffusion equationW(X,S)
yields
°W -~
e —A%(W = —3(X —-Y) (79)
with algebraic solution

1 0, X <Y

W = A(s)e! (9% 4 B(s)e* (9% 209 { sinh[A(s) (X —=Y)], X >Y

(80)

whereA andB are arbitrary constants aid's) = /s. To ensure the solution is bounded as
X — oo We require
1 e Y

A(s) = e 2 (81)
(80) can then be written as
& _ 1 x| “A(9X
W(X,s) = 2)\(S)e +B(s)e . (82)

The value ofB(s) can now be determined from the boundary conditioX at 0 using
one of the following equations,

B(s) =W(0,s) — ! e NN,

2A(s)
_ 1w 1 s
B =~ 39 ax NP YO M

Here we consider the three boundary conditionsvfgX, T) described in equations (75) —
(77) which yield the corresponding boundary conditionsVitiix, S)
(i) Voltage clamped

W(0,S) = Voe'*S =Wy (S) (83)

(ii) Constant fractional axial current

!

ow V, 2
ax (09 =~ gme = WS (84)
(iif) Constant standard axial current
oW v,
ox (09 = _euTOSe =-Ws(§) (85)

wheref = £.
Using tk);e Laplace transforms of the boundary conditior®)+{85) as above we obtain:
0]
~ ~ 1 1
_ —ASX | T AA)IXY] L A (9)(XHY)
W(X,s) =Wy (s)e + 2)\(S)e 2/\(S)e , (86)
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(ii)
_ e L Ay 1 ey (87)
A(s) 2A(s) 2A(s) ’

(iii)

N ~ W5(9) a9 SA(S)X-Y]|

W(X,s) = S e + 2)\(S)e + 10
Note in each case the last two terms are simply the Laplacsftian of the infinite do-
main solution of the diffusion equation (31) with initialmaitionsW(X,0) = (X —Y) and
W(X,0) = (X +Y) respectively, and so it only remains to find the inverse Lepksans-
form of the first term. In each case this yields a convolutiategral that can be expressed
as a series expansion in terms of Fox H functions.

efA (s)(X+Y) ) (88)

Case (i)

The first term in (86),
@i(s) = Wa(s)e 9%, (89)

can be inverted using the Laplace convolution formula
1 &/ aa S
2 {999} = [ f(5-20(2)0z (90)

together with (83) and the result,

X{Le*% } (s) = e A%,

VanS
This yields
s
g 2
'"CE %/ 2 925 e dz (o1)
0

The above convolution integral can be evaluated as a seq@sision in terms ofl func-
tions. To see this we expand the first exponential on the tighd side of (91) as a Taylor
series giving

k S

WX / 3/2e *
dz (92)
\/_rr kZ) ki ) —(1+6K)
and then we identify the integral as a fractional integral, i
k
VoX 2 (“2) §-1-6k 32X
_ S s
@ (S Va2, K I (1+6Kk) 7S T 0K S/%e . (93)
The fractional integrals can be evaluated in terms of Foxtfons [46] to yield
k
VX & (1% 20[ (3 + 6k ) }
S = I (6k+1)Hy: Z . 94
q)l( ) \/Hsk: Kl ( ) 1,2 4S (7% ) ( )



22 T.A.M. Langlands et al.

We obtain the final solution of the fractional cable equati@4), for this case by com-
bining (29), (30), (86), (89) and (94). The result is

K k
VoX e KT @ (u2TX) K 20
R P R A A A B

1

] 1250
(=3.1) (0

1 e (X4Y 7[,12TK 1

VAanTY 4nT

which can be re-written, using (167) with=1/2, as follows

K k
Vo eﬁIJZT o (IJZTK) K 20
VT =" S K Flykrt) e 4TV

X+Y
+ ei( a ) 7}12TK

(95)

]

| (1 “kl)
0,2) ( 1)
ST |

+
VAanTY VAanTY

In the case of standard diffusign= k = 1 this solution reduces to

O |e MXErfc \/X—Z—uﬁ + e*XErfc \/X—2+uﬁ
4T a7

1 xv? er 1 xv?ep
+ e 4T — ———e 41 .
VATT VATT
In Fig 7 we show plots of the solution, (95), for various valwe y andk with Vo = 1 and
V(X,0) = d(X —1) (i.e.,Y = 1). Note that when the axial diffusion is standayds 1, the
peak takes longer to decay than when the axial diffusion @retous,y = 0.5. In these
semi-infinite cable solutions the derivative is continuouall cases.

V(X,T) =

(97)

Case (ii)
The first term in (87),
®(3) =Wo(s)e A%, (98)

can be inverted using the Laplace convolution formula, ,(8@)ether with (84) and the
result,

1 % 1 hex
2{ o=

This yields
, s
2V, 11 2520 12, X2
(S = 20 /(sz)v (527126 % gy (99)
y\/4rro

Proceeding as above we can write this as a series expandiemmis ofH functions,

_zv(;sl/v - (“256) 20 | X2 (3+146k1
R(5) = V\/HSkZo Kl (GH v) Uiz |7 (<02,1)y (%,1)) - 1o0)
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Fig. 7 Plot of (95) withV (X,0) = 6(X — 1) and the fixed boundary conditidfy = 1 at timesT = 0.1, 0.25,
and 05 for (a)y=1.0,k = 1.0, (b)y=0.5,k =10, (c)y= 1.0,k =0.5, and (d)y = 0.5, k = 0.5. Time
increases in the direction of the arrow.

The solution of the fractional cable equation, (24), thawrollows from (29), (30),
(87), (98), (100) in this case is given by

T e M2 o (27K 2 (1,1, k
vix.T)_ 2eTe (u )I_(K 1) Z,O{x 2+y+yk,1)}

—k+=
Wamry & K vy P4 01 (39)
1 xY? o 1 2o
+ e av H e v T (101)
VATTY VanTy

Plots of the solution, (101), for various valuesydndk and WithV(; =landY =1are
shown in Fig. 8. Note again that the peakXat 1 decays more slowly in tim& when the
axial diffusion is standardy = 1, then when it is anomaloug= 0.5.
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V(X,T)
V(X,T)

0 1 3 5 4
X X
Fig. 8 Plot of the solution, (101), with initial conditioW (X,0) = (X — 1), and a constant fractional axial

current boundary condition Witld(; =1, at timesT = 0.1, 0.25, and 6 and for (a)y = 1.0, k = 1.0, (b)
y=05k=10, (c)y=10,k =0.5, and (d)y = 0.5, k = 0.5. Time increases in the direction of the arrow.

Case (iii)

The inverse Laplace transform of (88) can be found in a simfélshion to the above cases
and the solution to the fractional cable equation, (24)his tase is

Iy 7u2TK 0 2TK k 2
vix,T)= 2ol’® (H°T*) r(%kﬂ) H29 [X—

(%—i—%k,l)]

Vammy & K 417 10,1 (3,1)
1 Y2 ok 1 _xv)?  ark
+ e av KT e o H . (102)
ATTY VAanTY

The above solution, (102), for a constant standard axiaeatiboundary condition is very
similar to the solution, (101), for a constant fractionaldxurrent boundary condition. The
similar behaviours can be seen by comparing the plots if&jigith those in Fig.(9).
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V(X,T)
V(X,T)

Fig. 9 Plot of the solution, (102), with initial conditiod (X,0) = 6(X — 1), and a constant standard axial

current boundary condition Witld(; =1, at timesT = 0.1, 0.25, and ® and for (a)y = 1.0, k = 1.0, (b)
y=05k=10, (c)y=10,k =0.5, and (d)y = 0.5, k = 0.5. Time increases in the direction of the arrow.

In the case of standard diffusiop,= k = 1, the solution in Case (ii), (101), and the
solution in Case (iii), (102), both reduce to

V(X,T) = % {e“Erfc (\/?—u\/f) — e’XErfc <\/§+yﬁ>}

1 X-Y)?2 _ > 1 X402 2
+——e Wy Z g ar HT 103
VAT VAT (103)

5.2 Semi-Infinite Domain — Model Il

The solution of the fractional cable equation, (25), on aidafimite domain can also be
found using Laplace transform methods (with respect toithe tariableT). The Laplace

transform of the fractional cable equation, (25), yields

o

= —A2(sV = -5 15(X —Y) (104)
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where
A(S) = /S + p2sr—«

andV is the Laplace transform af. The general solution of this equation is

-1 0, X <Y

J— A(s)eMS)X + B(s)e*/\ (X _ w { sinh[A(s) (X=Y)], X > Y

(105)

where A and B are arbitrary constants. To ensure the solution is boundeXi &  we
require

Ag) = ST 106
(s) = e 2 (106)
(105) can then be written as
V(X,s) = S gAY, +B(s)e X, (107)
2409

The value ofB(s) is determined from the boundary conditions\ofX, T) atX = 0. Us-
ing the Laplace transform of the boundary conditions in{{B§) we obtain the respective
solutions in Laplace space:

(i)
G g = Yoerox, I aexv I Ao
V(X,s) = S e + 2/\(S)e 2)\(S)e , (108)
(ii)
G SN I ex . T aexeyv L I aeoa
V(X,S)— ?2)\(5)9 +2)\—(S)e +2)\—(S)e s (109)
(i)
G SN I ex . T aexeyv L I aeoa
V(X,s) = ?2)\—(5)8 + 2)\(S)e +2/\—(S)e . (110)

Note in each case the last two terms are the Laplace trangfb@®(X — Y, T) andG(X +
Y, T) respectively wher&(X, T) is the infinite domain solution in (46) and thus it remains
to find the inverse transform of the first term which we do onseday case basis below.

Case (i)

In order to invert the term

~ V, V, 4 -
(pl(s):goe*’ws)ngoe’xsz‘/““zs K (111)

we first consider the related function

9(2) = e PV2 = H1? {pz% (112)

o)

wherep andz are defined in (37) and (38). The functigfiz) can be written as a series
expansion in Fox functions as follows

© @D 12 (@D e
o= 5 a9 B - 5 o g

2 (113)

(31) k1 }
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Thus we have

4

- k
~ . VW %(_“2) o kK120 [XZS"
k=

@(s) = WT Kl 02| 1

Gown]

which can also be written, using the reduction formula giverf168) withd = 1+ kk and
A=y, as

o K
~ o V2 (=) k-1 3.,0[X25V
4

o(s) = ﬁkZoT 13

We can now identify each term of (115) as a Laplace transfdria Box function using
(169) withw = kk, 0 = y, andz= x?/4 so that we obtain

(1+kk,y)
(1+kky) (3.1) (k1) } (113)

Ve 2 (—HZTK)k of X | (1+kk,y)
@(T)—ﬁk;THfS {ﬁ (1) (k,l)}’ (116)

The solution of the fractional cable equation, (25), that fallows from .(108), (111),
(37), (38), (116) in this case is given by

V, & (ﬂlzTK)k X2

! 1+kk,
V(X,T)Zﬁk;)ik! 12 [ﬁ/ G Kkoy)

(3:1) k1)

}—FG(X—Y,T)—G(X—FY,T)

(117)
with G(X,T) given by (46). In the case of standard diffusion this solutieduces to the
resultin (97).

In Fig 10 we show the plot of the solution, (117), for differealues ofy andk with Vo =
1 andV(X,0) = 0(X —1). Note that whery = 1 (first column) the derivative is continuous
atX =1 in contrast to whely = 0.5 (second column).

Case (ii)

In (109) the first term

_ N I e
S 2A(s)

can be inverted by noting the relation, in Laplace spacej wait integral of the infinite

domain solution given in (46). The Laplace transform of thfnite domain solution is

@(s) (118)

-1
Z{G(X,T)}(s) = 10 g A (X (119)
so that we can write ;
() =N, & { / G (x.{)dt } 9) (120)
0

which upon inverting gives

@(T) = w;]G(x,t’) dt’. (121)
0
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Fig. 10 Plot of the potential in the semi-infinite cable, Model Il tvinitial conditionV (X,0) = 6(X — 1)
and the fixed value boundary conditidh = 1. The solution is shown &t = 0.1, 0.25, and 06 for the case
of(@y=10,k=1, (b)y=05k =10, (c)y= 1.0,k = 0.5, and (d)y = 0.5,k = 0.5. Time increases in

the direction of the arrow.

The above expression can be evaluated as a series expamdtax functions by using
(46) and (164) with3 = —y, a = —y/2+ kn andv = —1. The corresponding semi-infinite
solution of the fractional cable equation in this case is now

(2— % +kk,y) }
(0,1) (3+k1)

FG(X-Y, T)+G(X+Y,T). (122)

’ k
T 2 (AN o[ X2
VIX.T) = 4nTkaO 2 | g1y

This solution is plotted in Fig 11 for different values pandk with V(; =1andV(X,0) =
0(X —1). Note wheny = 1 (first column) the derivative is again continuous in caosttta
the cases with anomalous subdiffusign= 0.5 in the second column).
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Case (iii)

In (109) the first term

(123)

can be identified as a fractional integral of the infinite domsalution in Laplace space, i.e.,

~ , a-v
w2, { 76T} 9. (124)
This can now be inverted to obtain
a7y
»(T) = ZVOWG(X7T)7 (125)

and the resulting expression can be evaluated as a serasséomp in Fox functions by using
(46) and (164) witt3 = —y, a = —y/2+knandv = —y.
The semi-inifinite domain solution in this case is given by

’ 0 k
v, T) = 26T (—p7T%) 2,0{X2 (1+%+Kk,v)}

4nTVkZo k! 1214717 |(0,1) (3 +k1)
+G(X =Y, T)+G(X+Y,T),

(126)

with G(X, T) given in (46). This solution is plotted in Fig.12 for differevalues ofy andk
withV, = 1 andV (X,0) = §(X — 1).

In the case of standard diffusion, the two solutions, (128) €126), both reduce to
(103).

Overall the semi-infinite domain solutions with pulse @ittonditionsV (X, 0) = §(X —
1) are broadly similar to the case where diffusion is standendgathe axial direction of the
cable. In both Model | and Model II, with different values rfand different boundary
conditions atX = 0, the initial pulse aX = 1 decays and the long time plot @{X,T) is
approximately exponential. When the diffusion is anomsalalong the axial direction of the
cable the initial pulse decays faster in Model | whereas ird&dl the initial decay is fast
but the long time decay is slow and the puls&Xat 1 is non-differentiable at subsequent
times.

6 Action Potential Firing Rates

Firing rates can be deduced from the fractional cable egpmtby using a simple passive
2

. i . a5V
leaky integrate-and-fire model [7] based on solutions =0 for ahomogenous mem-
brane patch, and with a constant externally applied cudensityie.
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Fig. 11 Plot of the potential in the semi-infinite cable, Model Il tvinitial conditionV (X,0) = 6(X — 1)
and a constant fractional axial current boundary condititth V; = 1. The solution is shown &t =0.1, 0.25,
and 05 for the case of (ay =1.0,k =1, (b)y=0.5,k = 1.0, (c)y= 1.0,k = 0.5, and (d)y = 0.5,k = 0.5.
Time increases in the direction of the arrow.

6.1 Firing Rates — Model |

2
. . . . . . V
Starting with the dimensionless fractional cable equat{@4), and settmg{% =0 we

have

oV _ .
= 2KTR LV —ierm), (127)

with solution
V(T) = iefm+ (Vo —iefm) e HT". (128)

The time for the potential to increase from an initial resgtie, Vo = Vieses t0 a threshold
value for firing,V (T¢) = Vin, can readily be obtained by solving (128) fiyr. The result is

o= (lon(2))
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1
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0.4

0.2

V(X,T)
V(X,T)

Fig. 12 Plot of the potential in the semi-infinite cable, Model Il tvinitial conditionV (X,0) = (X — 1) and
and a constant standard axial current boundary conditiém\yi= 1. The solution is shown &t = 0.1, 0.25,
and 05 for the case of (ay =1.0,k =1, (b)y=0.5,k = 1.0, (c)y= 1.0,k = 0.5, and (d)y = 0.5,k = 0.5.
Time increases in the direction of the arrow.

where _
_ Vih—lelm (130)

Vreset— lelm

The firing rater is the reciprocal of the firing time,

1 1\\ "~
n=|—=In{= . 131
| (uz <p>> (3
Positive solutions for the firing rate can only be obtaine@ # p < 1. This defines the

same cut-off rheobase curregt> \in/rm as the standard leaky integrate and fire model.
However the firing rate, (131) in the fractional integratel dine model is affected by the

fractional scaling exponemt through the dependence pn(28). If p < e+ the firing rate
is @ monotonic increasing function efwhereas ifp > e H* it is a monotonic decreasing

function. In the special case whepe= e+ the firing rate is constant with respect The
firing rate, (131) is plotted in Fig 13 as a functiontofor different values op.

X[
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Fig. 13 Plots of the firing rater, as a function of the exponenrtin the case of Model | for parameters
p = 0.3 (red lower),p = e~ (blue middle) ang = 0.4 (black upper). Here we have get= 1.

6.2 Firing Rates — Model Il

Starting with the dimensionless fractional cable equaf@mmModel II, (25), and setting
oV
=35 = 0 we have

aXx
ov , oYK .
a7 = Matix (V —iefm). (132)
This equation has solution
V(T) =iefm+ (Vo —ielm) Ex (—HT) (133)

where\y is the initial potential ané, (z) is the Mittag-Leffler function, [27], which behaves
like a stretched exponential

2TK
Ex (—u2T¥) ~ exp(fl_ﬁ(lliIK)) (134)

for small times and decays to zero like an inverse power laMoftg times [24]. It follows
that the solution reaches a steady state giveW by icrm. Incorporating the results from
(133) and (134) in a simple passive leaky integrate-andifivdel [7] now yields the firing

rate
r1+ 1\| *

with p defined in (130). Again this model predicts the same cuttebbase current as the
standard leaky integrate and fire model. However the firig, rd135), in the fractional
leaky integrate and fire model is affected by the scaling egptk as follows: For a fixed
value ofp > 0.5 the firing rate increases with decreasinghereas fop <« 0.5 the firing
rate decreases with decreasingThere is little variation in the firing rate witk in the
intermediate regimg = 0.5.
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7 Calibration and Validation

An experimental measurement of voltage attenuation isigeavby the ratio of the peak

potential at the soma to the peak potential at differenttgatong the dendrite in response

to an alpha function input along the dendrite [11]. Standailule theory predicts exponential

steady state voltage attenuation. In Figure 14 (Model I)Eigdre 15 (Model II), we show

log-linear plots of the ratio

p*(X) = maxr [Vsomd T)]
maxr [V (X, T)]

for various input position¥, along the dendrite, and for different valuesyodnd k. The
peak potentials used to calcula@tewere obtained from (63) (Model I) and (74) (Model II).

(136)

X
05 1 15 2 25 3 X

log(p)
S
e

log(p)
Vs
)
yd

AN N
@ AN (b) ™

05 1 15 2 25 3 L

AN 5
AN \
gt \ |
.05 \ | \\

© )
Fig. 14 Log-linear plot ofp* versusX for Model | (24), with an alpha function input and paramet&p
y=10,k =10, (b)y=05k =10 (c) y= 1.0,k = 0.5 (d) y= 0.5,k = 0.5 The other parameters are
o = u = 3 =1. The straight line of best fit is also shown.

log(p)
log(p)
4

For each set of parameters the voltage attenuation can bappebximated by an ex-
ponential fit, however the slopes estimated from the logdirplots differ for the different
parameters sets and the different models (see Table 1).

It follows that exponential voltage attenuation is not adminating feature of standard
cable theory and cable properties cannot be inferred frazh sMperiments without addi-
tional information. A further difficulty in making companas with experiments is that the
results shown are in dimensionless variables. In partictiia input positionXo, is in terms
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Fig. 15 Log-linear plot ofp* versusX for Model Il (25), with an alpha function input and paramstéa)
y=10,k =10, (b)y=05k =10 (c) y= 1.0,k = 0.5 (d) y= 0.5,k = 0.5 The other parameters are
o = u = 3= 1. The straight line of best fit is also shown.

Table 1 Slopes of straight lines of best fit in log-linear plots@f(X) versusX for different values of the
fractional exponenty andk.

Parameters Slope
Model I Model Il

y=10,k =10 -1.066 -1.066
y=05«k =10 -1.822 -1.320
y=05k =05 -1.144 -1.272
y=10,k =05 -0.701 -0.968

of the dimensionless space variable, (27), which is its@lination of y, ry, cm, r, d. Addi-
tional information could be obtained from patch clamp reloays in response to prescribed
current inputs. For example in the case of a constant cuimpot, the parametens,, U, K
could be obtained from fits based on (128) and (133) Assuntarglard values fot,, and
assuming thay = k in steady state, estimatesmf y) could then be obtained from voltage
attenuation measurements using simultaneous patcheigebrdings [47] from the soma
and the apical dendrite of a pyramidal tree.
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8 Discussion

The fractional cable equations described in this paperddoelused to model electrical sig-
nalling properties of nerve cells with anomalous elecffadion due to trapping or macro-
molecular crowding. Important examples where this could &ipplication include (i) spiny
dendrites, in which the trapping and release of moleculespines results in anomalous dif-
fusion on mesoscopic time scales along the axial directioreove cells and (ii) dendrites
with intracellular plagues where macromolecular crowdiffgcts result in anomalous dif-
fusion. The results in this paper show how the scaling expisnaf the anomalous diffusion
impact on the electrotonic properties of dendrites and ¢ioapotential firing rates. How-
ever the results in this paper are just a first step. In orderetke detailed comparisons with
real nerve cells it will be necessary to extend the fracticable results to finite domains
and to compartment models. Work on this is in progress.
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A Equal Exponents

In this appendix we explore the relationships between isoisitof the fractional cable equations, (24) and
(25), for equal values of the scaling exponemts; k, and solutions of the standard cable equation

v 9%V
aT Xz (137)

For comparison purposes we denote the solutions of theatdedble equation By (X, T), the solutions of
Model | by Vi (X,T) and the solutions of Model Il by, (X, T). The fundamental solution of the standard
cable equation is

2
G(X,T) = \/%e*%*. (138)

To simplify the algebra we have sgt= 1 in the following.

A.1 Model |

The solutions of the fractional cable equation, Model I }wédtjual exponents are identical to the solutions of
the standard cable equations except that they occur on arstioae scaleTY. To see this we observe that the
fractional cable equation
M _ TV-1 9V
aT ax2
can be simplified by introducing the change of variables

— YTV, (139)

S=TY (140)

with
U(X,9 =V (X,T). (141)

The equation folJ (X, S) is the standard cable equation and thus
Vi(X,T) =V(X,T"). (142)
In particular the fundamental solution is

1

2
GIXT) = e T (143)
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A.2 Model Il

The solutions of the fractional cable equation, Model ll{hneéqual exponents are time subordinated to the
solutions of the standard cable equations. Explicitly it ba shown that

V||(X7T):./OMV(XJ)qJ(LT)dT (144)

where@(1,T) is a Levy stable subordinator with Laplace transform

o(1,5) = /m o(1,T)esTdT. (145)
)
=g lg ™ (146)

The variabler defines an operational time that is distinct from the phydioze T.
Starting with the fractional cable equation,

Vi ot 92y, oty

9T 0TIV 9x2 ~ aTLv

Vi, (147)

we take the Laplace transform with respecttto obtain

9V (X,s)

Vi (X,8) — Vi (X,0) = st %2 — s (X, 9). (148)
But, using (146) we can write
i (X,s) = sV*l/OMV(xJ)e*TSydr (149)
— (X, ), (150)
and then using (150) in (148) we have
W(X,s) —V(X,0) = % —V(X,s") (151)

where we have assumed that
Vi1 (X,0) =V(X,0).

Finally we take the inverse Laplace transform of (151) witbpect to the variable’ to obtain the governing
evolution equation fo¥ (X, T):
ALY
aT — 9x? Vi (152)
which is the standard cable equation.
The result in (144) with the Laplace transformft, T) defined by (146) can also be shown directly.
We first note that the inverse Laplace transform of (146) eaavaluated as a Fox function as follows

(1(67{7)” :| 4 (153)

_ 1 10| T
o(1,T) = ﬁHl,l {ﬁ

If we subsitute the above expression into (144) using thddorental solution fov (X, T) in (138) we obtain

_ 1o T |A-vwy ] 1 ¥,
VII(X~T) _/0 ﬁHLl |:ﬁ (071) \/ﬁe at —tdr (154)
We now introduce a change of variables
T
W=y (155)

to obtain

0 _ —%—Bw
Vi (X,T) = —~ /OHll;f{w‘(l V’V)}e dw (156)
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where
X2
T (157)
and
B=TY. (158)
To evaluate this integral we first write
o0 k
Bw (=B)" «
€ kZO @ (159)
and 0
- _ 0|8 —
€ 7H11L)‘(0,1)] (160)
so that
1 (1-vy)
Vir(%,T) = 4rrTV kl / W { ‘(0 1)}H“[ ‘ 1) |9 (1)
The integral is a convolution |ntegra| of the form (171) ahid simplifies to
(1-2+yky)
Vi (X.T) 47TTV 20 K HH{ ‘(0,1)(%+k,1) (162)
which recovers the result in (46) with= k and3 andw defined as above.
B Useful Identities
Here we list some useful identities involving the Fox fuanti Full details can be found in [46,22].
The fractional derivative of a Fox function is given by
0¥ mn | (@p,ap) vymn+1 g|(—a,B) (ap,ap)
3 {z"Hp‘q {(az) (Do Be) =2"""H 51 (2 (bouBe) (V- a.B) | (163)
for B > 0 and
9" mn 8| (@p,ap) || _ _a-vym+in g| (ap.ap) (1+a-v,—B)
ﬁ{z"Hp,q {(az) (D o) =2"""Hp 141 | (22 (1+a.-B) (B, B) (164)
for B < 0.
Forc>0 }
HmN |y (ap, ap) } — cHmN |:Xc (ap,cap) } ) 165
pa | X| (bg, Bg) pa (g, cBq) (165)
mn+1 (0,a) (ap,0p) | _ m+1,n (ap,ap) (0,a)
il oy Ty | =R Tl o (166
X HMN _X (ap,ap) } _ Hmn { (ap+0ap,ap) } 167
Pa 7| (bq,Bq) (bq+ 0Bq, Ba) (aen
Reduction formula witlA > 0
miin [ | (@pap) (d,4) ] mnl, | (@ ap)
Morasa || (d.a) (bgf) | P ] (ba. i) (169)
Laplace transforms of the Fox Function with> 0
wpmn | 54—0 (apuap) —w—1yMm+1n apaap)
g | @) [o =i 9] 0 S5 (169
and
f{thg‘hﬂ |:Zta (apaap) :| } (S) — —w 1Hmn+l |:ZS—U (70), U) (apvap) :| . (170)

p+1q

(bg: Bq) (bg, Bg)
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Convolution integral of two Fox functions [46]

t
/xp*1 (t—x) 7 tHED {z%‘ (t—x)"
0

(ap,ap) M,N N
() | e

(cp,¥b)
(do ) } d

M o 4\l &
_pro-1 (-1 a (wrmapmni2 [ | (1= p—u&,p) (1— 0 —né&,v) (ap,ap)
t hzlr; ron 9&n Morzans |2 (bg,B) L—p— 0 —[u+n]&, p+Vv)
(171)
where
M N
N r(d=80) N (1-c+%9)
" r(1-dj+g6) . r( 6 e
—di + 9 Ci — Vi
j:HH ! ! j:ﬂ+1 ¥ )
and
dh+r
Er:T- (173)

See [46] for restrictions on parameters in the above.



