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Abstract   Using an established genetic map, a single gene conditioning covered smut 

resistance, Ruh.7H, was mapped to the telomere region of chromosome 7HS in an 

Alexis/Sloop doubled haploid barley population. The closest marker to Ruh.7H, abg704 

was 7.5 cM away. Thirteen loci on the distal end of 7HS with potential to contain single 

nucleotide polymorphisms (SNPs) were identified by applying a comparative genomics 

approach using rice sequence data. Of these, one locus produced polymorphic co-

dominant bands of different size while two further loci contained SNPs that were 

identified using the recently-developed high resolution melting (HRM) technique. Two 

of these markers flanked Ruh.7H with the proximal marker located 3.8 cM and the 

distal marker 2.7 cM away. This is the first report on the application of the HRM 

technique to SNP detection and to rapid scoring of known cleaved amplified 

polymorphic sequence (CAPS) markers in plants. This simple, precise post-PCR 

technique should find widespread use in the fine-mapping of genetic regions of interest 

in complex cereal and other plant genomes. 
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Introduction 

High resolution melting (HRM) is a post polymerase chain reaction (PCR) technique 

which can be used for high throughput mutation scanning and genotyping (Gundry et al. 

2003). The technique involves a standard PCR reaction and the use of a double stranded 

DNA binding dye. When melted, each PCR product will exhibit a characteristic melting 

or disassociation behaviour (Montgomery et al. 2007). Specialised HRM instruments 

can plot the change in fluorescence that occurs when double stranded DNA amplicons 

melt to form single stranded DNA. Differences between homozygous samples can be 

distinguished by a simple shift in the melting temperature (Tm), whereas heterozygous 

samples can be distinguished by changes in the shape of the melt curve (Gundry et al. 

2003; Wittwer et al. 2003; Reed and Wittwer 2004). Differences in melt curves arise 

from variations in amplicon sequences, lengths, and GC content, provided that the salt, 

buffer conditions and the volume of each sample remain constant (White and Potts 

2006; Montgomery et al. 2007).  A number of methods have been used to assay single 

nucleotide polymorphism (SNP) markers, including pyrosequencing (Huang and Röder 

2005), digestion with restriction enzymes (Bulgarelli et al. 2004), denaturing high-

performance liquid chromatography (Kota et al. 2001) and the use of allele-specific 

PCR markers (Bundock et al. 2006). For these methods, knowledge of the sequence 

and/or position of the SNP is required. In contrast the HRM technique can be performed 

in the absence of the SNP sequence information and does not require the separation of 

products by gel electrophoresis. High resolution melting of PCR products has been 

employed in biomedical research for a number of years to detect mutations and 

distinguish single-nucleotide polymorphisms (Liew et al. 2004; Herrmann et al. 2007; 

Krypuy et al. 2007), however this is the first report of its application to mapping in plant 

genomes.  

 

Covered smut is a seed borne disease of barley (Hordeum vulgare L.) caused by the 

fungus Ustilago hordei (Pers.) Lagerh.. It is recognized by the appearance within 

smutted spikelets of masses of spores enclosed in a semi-persistent membrane that 

ruptures during harvesting (Langdon et al. 1976). The covered smut pathogen survives 

as teliospores (resting spores) on seed or in infested soil. Infection occurs as the 
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seedlings emerge from the sprouting seed.  The fungus enters the young seedling and 

grows intercellularly through the plant into the head (Willits and Sherwood 1999) to 

infect the developing florets.  

This disease can cause serious problems for growers. Growers with infected grain face 

both yield loss and marketing problems since grain contaminated with covered smut is 

unacceptable for malting. Fortunately this disease can be effectively controlled by 

fungicidal seed treatments (Wildermuth 1988) and resistant lines are available. 

Nevertheless, molecular marker-assisted selection for covered smut is desirable, as 

screening for this disease is space-, labour- and time- consuming with affected plants 

usually not showing symptoms until ear emergence (Willits and Sherwood 1999; 

Grewal et al. 2008).  

Although a large number of mapped microsatellite-based markers are available in the 

public domain (Graingenes; http://wheat.pw.usda.gov/GG2/index. shtml), to date 

characterised microsatellites are still sparsely distributed in some genomic regions, 

including the telomeric region of chromosome 7HS investigated in this study. Over 

1,000 Expressed Sequence Tag (EST) markers have been mapped in barley (Stein et al. 

2007) and 478,682 barley EST sequences are currently (May 2008) available from 

public websites (http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html). The 

increasing availability of EST sequences provides a valuable source of new DNA 

markers, primarily based on SNPs. In this study we report on the successful application 

of HRM to the identification and mapping of SNPs in a population derived from the 

barley cross Alexis/Sloop in order to obtain EST markers closely linked to the covered 

smut resistance gene, Ruh.7H.  

 

Materials and methods 

Plant material  

The doubled haploid (DH) barley population, Alexis/Sloop, consists of 111 lines and 

was developed by the Australian National Barley Molecular Marker Program 

(NBMMP) (Barr et al. 2003; D.B. Moody et al. unpublished data; Lehmensiek et al. 

2007). Sloop is resistant to covered smut while Alexis is susceptible. Sloop was bred by 

R. C. M. Lance, D. H. B Sparrow, and A. R. Barr in South Australia. It was reselected 

in F6 from the F2-derived breeders line WI2785 and was previously known as WI2875-

http://wheat.pw.usda.gov/GG2/index
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22 (Barr et al. 2003). The German malting variety Alexis was bred by Saatzucht Joseph 

Breun GDBR from the cross Br1622d54/Trumpf (Friedt et al. 2000). Three seeds of 

each barley line of the Alexis/Sloop population were germinated in a tissue culture rack 

in a 24°C incubator. Leaf material (about 50 mg) was taken from one week old 

seedlings and extracted using the Wizard
®

 Genomic DNA Purification Kit (Promega 

Corporation). The DNA was quantified using an Implen Nanophotometer™.  

 

Covered smut screening and analysis of data 

Individual barley lines were planted in 3-m single row plots (10 plots per row) with a 

row spacing of 50-cm. Each line was artificially inoculated using the spore suspension 

method (Tapke and Bever 1942). Spores were obtained from the previous year’s 

smutted heads. Unpublished testing indicated that this is a Race 5 isolate as per Tapke 

(1945). Fungus-inoculated seeds of 81 lines of the Alexis/Sloop population were 

planted in the field at Wellcamp, QLD and screened for covered smut in 2001 (3 

replicates). Due to space constraints only 50 of the same 81 lines were randomly 

selected and planted at the same location in 2002 (1 replicate). A further 20 lines of this 

population, which had not been rated in previous years, were screened in 2003 (1 

replicate) and again in 2004 (2 replicates). After harvest, plants were rated for 

percentage incidence of plants with smutted heads per experimental plot.  

To convert the covered smut ratings (% incidence of smutted heads) data to a 

classification of resistant or susceptible, the following procedure was followed. The 

standard error of the covered smut rating for the resistant parent Sloop was calculated 

and converted into a one-sided 95% confidence interval. Lines which had scores within 

this confidence interval for each trial in which they were rated were designated as 

resistant and all remaining lines were scored as susceptible.  

The Chi square test for goodness-of-fit was used to test for deviations of observed and 

expected segregation ratios. 

 

Linkage map 

A linkage map had previously been constructed using restriction fragment length 

polymorphism (RFLP), simple sequence repeat (SSR) and amplified fragment length 

polymorphism (AFLP) markers (Barr et al. 2003; Willsmore et al. 2006). Maps were 
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curated using the methods discussed in Lehmensiek et al. (2005). Three new EST 

markers and Ruh.7H were added to the existing Alexis/Sloop map using the ‘links 

report’ function in MapManager version QTXb20 (Manly et al. 2001) to find the best 

location for these markers.  

 

Development of EST markers and primers 

EST markers were added to the region containing the covered smut gene. The RFLP 

marker psr160 on barley chromosome 7HS and on rice chromosome 6 was used as the 

common marker to align a barley consensus map with a rice map in Gramene 

(http://www.gramene.org). The  physical map of the rice chromosome was then 

obtained from the International Rice Genome Sequencing Project (IGRSP; 

http://rgp.dna.affrc.go.jp/E/IRGSP/download. html) and individual rice clones identified 

(IGRSP; http://rgp.dna.affrc.go.jp/cgi-bin/statusdb/status.pl). Sequences of these clones 

were downloaded and used in BLAST searches to retrieve orthologous barley (EST) 

sequences from the Gramene or TIGR Genome Annotation Database (TIGR; 

http://www.tigr.org/tdb/e2k1/osa1). Primers were designed using Primer3 version 0.4.0 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) (markers1-6; Table 1). 

Primers were designed in such a way that the PCR products were less than 400 base 

pairs (bps) in size (Table 1).  Primer sequences for six additional barley ESTs were 

obtained from the barley EST project http://earth.lab.nig.ac.jp/~dclust/cgi-

bin/barley_map_pub/index.html (markers 7-12; Table 1). Primer sequences for a 

derived cleaved amplified polymorphic sequence (dCAPS) marker were obtained from 

Bulgarelli et al. (2004) who had previously developed this marker for fine mapping of 

the chromosome 7HS region (marker 13; Table 1). To make sure that EST markers 

produce single fragments they were amplified on the parental DNA using the standard 

PCR protocol described below and visualized using a Gel-Scan 2000™  (Corbett Life 

Sciences, Sydney, Australia). 

 

EST amplification and HRM analysis 

EST amplification and HRM analysis was performed with a Rotor-Gene 6000 

(Corbett Life Science, Sydney, Australia). A standard PCR protocol was used to 

amplify the ESTs. The reaction mixture consisted of  30 ng DNA, 5 µM of each primer, 

http://www.gramene.org/
http://rgp.dna.affrc.go.jp/E/IRGSP/download.%20html
http://www.tigr.org/tdb/e2k1/osa1
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
http://earth.lab.nig.ac.jp/~dclust/cgi-bin/barley_map_pub/index.html
http://earth.lab.nig.ac.jp/~dclust/cgi-bin/barley_map_pub/index.html
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100 M of each dNTPs, 1.5 mM MgCl2, 1x of PCR buffer (Bioline Pty Ltd., Australia), 

0.25 U Immolase™ DNA polymerase (Bioline Pty Ltd., Australia) and 0.75 l (18.75 

M) SYTO
® 

9 (Invitrogen Pty Ltd., Australia) in a total volume of 20 l. A negative 

control containing all reagents minus DNA was included in each run. The following 

PCR cycle profile was used: 7 min at 95°C, followed by 40 cycles of 15s at 95°C, 20s at 

55-60°C (depending on annealing temperature) and 20s at 72°C. The melt analysis was 

performed once amplification was completed by ramping the temperature from 75°C to 

95°C, rising by 0.1° each step with continuous acquisition of fluorescence. The 

automated genotype calling software (Corbett Life Science, version 1.7) was used to 

determine the genotypes of individual lines. For the HRM analysis the fluorescence 

versus temperature graphs were normalized to 100 to allow all the curves to be 

compared, thus having the same starting and ending fluorescent signal level. The raw 

data graph was used to adjust the regions of normalization. This was done according to 

the protocol provided by the supplier (Corbett Life Science).  

 

Results 

Phenotypic data 

To classify DH lines as resistant or susceptible the standard error of the covered smut 

ratings for the resistant parent Sloop were converted into a one-sided 95% confidence 

interval for each trial. Lines which had scores within this confidence interval (Table 2) 

across both years were designated as resistant. Only four lines were classified as 

resistant in one trial but susceptible in the other. Of the 31 lines tested only in 2001, 12 

were rated as resistant and all three field replicates fell within the confidence interval. 

Based on this classification, lines of the Alexis/Sloop population segregated in a 1:1 

ratio (χ
2
 = 0.16; P=0.69) of susceptible to resistant lines, indicating a single major gene. 

Covered smut scores ranged between 0 and 76.6%, with a mean of 4.1 to 18.6 across 

different years (Table 2).  

 

Mapping of covered smut gene 

The covered smut resistance gene was designated Ruh.7H and was mapped 7.5 cM 

distal to RFLP marker abg704 (Figure 1a). As abg704 is not a PCR-based marker and 

no flanking marker was available for the distal side of the gene, barley consensus maps 
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were examined for potential markers closer to the gene. Microsatellites or other PCR-

based markers known to map to this region and polymorphic in this population could 

not be found. The colinearity of the barley and rice genomes was therefore investigated 

to identify potential EST markers from this region.  

 

Identification and linkage analysis of EST/SNP markers  

The RFLP marker abg704 was used to identify the location of Ruh.7H on a barley 

consensus map constructed in 2003 (obtained from Gramene; Figure 2a). The psr160 

marker which is closely linked to abg704 (about 1 cM distal to abg704) was in turn used 

to align this region with a region in rice using the rice JRGP RFLP 2000 chromosome 6 

map (obtained from Gramene; Figure 2b). Markers located in a 10 cM region on the rice 

map (including markers V83, C1003B, S924, G8017, S10068 and S10372) were then 

used to align this map to the rice physical map downloaded from IGRSP 

(http://rgp.dna.affrc.go.jp/E/IRGSP/ download.html (Figure 2c). Six rice EST markers 

located on PAC/BAC contigs B1460A05, P0644B06, P0514G12, P0029D06 and 

P0541H01 were analysed in BLAST (http://www.gramene.org and 

http://www.tigr.org/tdb/e2k1/osa1) to obtain orthologous barley EST sequences (Figure 

2d). Sequences for a further 6 barley ESTs located on contig OSJNBa0075 were 

obtained from the barley EST project (http://earth.lab.nig.ac.jp/~dclust/cgi-

bin/barley_map_pub/index.html; Figure 2d). A primer set used to amplify a dCAPS 

marker located on PAC contig P0029D06 to produce a fragment (BV078160) of around 

90 bps (Bulgarelli et al. 2004) was also investigated (Figure 2d; Table 1).  

Seven (CK123008, CA003755, CA030150, AV911272, AV834214, AV938293 and 

BV078160) of the 13 markers produced a single fragment of the same size in both 

parents, while one marker (AV836787) was co-dominant.  The 5 remaining EST 

markers did not produce any PCR products across a range of annealing temperatures. 

Most of the amplified markers had the expected size, with the exception of markers 

AV834214 and AV938293 which were 300 and 340 bps in length, respectively (Table 

1).  

The 7 non-polymorphic markers were amplified with the Rotor-Gene 6000 and HRM 

analysis was subsequently performed. A difference in Tm indicating a SNP was 

identified in 2 of the 7 ESTs, CK123008 and BV078160. The normalized HRM graphs 

http://rgp.dna.affrc.go.jp/E/IRGSP/%20download.html
http://www.gramene.org/
http://www.tigr.org/tdb/e2k1/osa1
http://earth.lab.nig.ac.jp/~dclust/cgi-bin/barley_map_pub/index.html
http://earth.lab.nig.ac.jp/~dclust/cgi-bin/barley_map_pub/index.html
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for the parents Alexis (2 independent copies) and Sloop (2 independent copies) and 

eight of the progeny are shown in Figure 3. Alexis and Sloop had a Tm of 84.03°C and 

84.22°C, respectively with marker CK123008 (Figure 3a) and a Tm of 81.96°C and 

82.38°C, respectively with marker BV078160 (Figure 3b). Three EST markers, co-

dominant marker AV836787 and the SNP markers CK123008 and BV078160, were 

mapped on the Alexis/Sloop map.  Marker AV836787 mapped between Ruh.7H and 

marker abg704, 1.4 cM distal to marker abg704 and 3.8 cM proximal to Ruh.7H (Figure 

1b). CK123008 was located 2.7 cM distal to Ruh.7H (Figure 1b) and marker BV078160 

mapped 4.2 cM proximal to abg704.  

 

Discussion  

Based on an available map of the Alexis/Sloop doubled haploid population (Barr et al. 

2003; Willsmore et al. 2006), we have identified a major covered smut gene, Ruh.7H 

near the end of chromosome 7HS. Subsequent targeted mapping has led to the addition 

of two EST markers distal to abg704 which flank the gene. Only one other published 

study has mapped a locus for covered smut resistance (Ardiel et al. 2002). Using a 

bulked segregant analysis approach, a randomly amplified polymorphic DNA (RAPD) 

marker tightly linked to the covered smut resistance gene, Ruhq was identified in the 

barley line Q21861 (Ardiel et al. 2002). This marker was mapped to chromosome 1HS 

in a Harrington/TR306 mapping population and together with two more closely linked 

markers has been validated and applied in marker-assisted introgression (Grewal et al. 

2008). 

Other disease resistance genes have been mapped to the 7HS region, including the leaf 

stripe (Rdg2a) and stem rust resistance (Rpg1) genes, and high resolution mapping of 

this region has been undertaken (Ayliffe et al. 2000; Brueggeman et al. 2002; Bulgarelli 

et al. 2004; Brueggeman et al. 2006). Rdg2a and Rpg1 are located proximal to RFLP 

abg704 (approximately 3 and 1 cM, respectively).  

A net form of net blotch (NFNB) resistance QTL, QNFNBAPR.A/S-7Ha contributed by 

Alexis, has been identified in the Alexis/Sloop cross in the same region as Ruh.7H 

(Lehmensiek et al. 2007). Reanalysis of the NFNB data, after the addition of the two 

EST markers distal to abg704, has indicated that abg704 is still the closest marker to 

QNFNBAPR.A/S-7Ha (data not shown), suggesting that this locus is located a few cM 
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proximal to Ruh.7H. One of the two lines in the Alexis/Sloop population with a 

crossover between marker abg704 and AV836787 possesses the resistant marker alleles 

for both the covered smut and the NFNB resistance genes and may be a useful selection 

for backcrossing into elite backgrounds.  

The dCAPS marker BV078160, mapped by Bulgarelli et al. (2004), was examined in 

our study. dCAPS markers are initially amplified by standard PCR, after which the 

product is digested with a restriction enzyme overnight and the fragments compared on 

an agarose gel. Use of HRM analysis immediately after the PCR step eliminates the 

need for restriction enzyme digestion and gel electrophoresis, allowing results to be 

obtained within two hours of commencing PCR. The BV078160 marker mapped 4.2 cM 

proximal to marker abg704, a distance which is similar to the estimate of 5.6 cM for this 

interval indicated by Bulgarelli et al. (2004) using 93 recombinant lines of a 

Thibaut/Micro population. 

Of the 13 putative ESTs investigated on the distal end of 7HS, only one of the 8 ESTs 

that produced PCR products in our study indicated a size-based polymorphism by 

standard PCR. However, by applying the HRM technique we identified two additional 

ESTs with sequence-based polymorphisms (SNPs). Five ESTs could not be amplified 

even though a range of annealing temperatures was tested. The lack of amplification 

may be due to variations at the primer binding sites. Bulgarelli et al. (2004) similarily 

found that only 8 of the 19 putative ESTs, for which they had produced primers, 

amplified successfully.  

In this paper we have illustrated the usefulness of HRM analysis to identify and map 

SNP markers in barley. This technique clearly has applications for trait mapping across 

a wide range of crops. HRM analysis is a rapid way of mapping SNPs without sequence 

knowledge or electrophoresis and is also useful as an alternative method for scoring 

known CAPS markers. To obtain reproducible results with HRM, several criteria apply.  

PCR conditions must be optimised to amplify only a single fragment, since the presence 

of non-specific bands and primer dimers can significantly reduce HRM performance 

(White and Potts 2006). Studies which have examined the effect of PCR product size on 

sensitivity and specificity of HRM, have concluded that amplicons with sizes greater 

than 300 bps may produce more errors (Reed and Wittwer 2004; White and Potts 2006, 

Montgomery et al. 2007). In this study, high quality DNA was essential, as partially 
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degraded DNA produced inconclusive results when using HRM, while 20 µl PCR 

reaction volumes produced clearer, more consistent results than 10 µl reaction volumes 

(data not shown). 

The HRM technique can detect all single base changes, with the A/T conversions being 

the most difficult to detect (Gundry et al. 2003; Liew et al. 2004), requiring 

instrumentation of high precision with regard to temperature control. The difference in 

melt temperature is >0.8°C for C/T and G/A base changes and decreases to <0.2°C for 

A/T base changes (Liew et al. 2004). Marker BV078160 indicated a Tm difference of 

1.4°C between the two parents suggesting that this polymorphism is due to a C/T or 

G/A base change. Sequencing of this fragment has indicated that a G/A base change is 

present (data not shown). Marker CK123008 indicated a Tm difference of 0.19°C 

between the two parents. This small difference may indicate that the polymorphism is 

due to an A/T base change.  

This study demonstrates the successful application of the HRM technique to fine 

mapping of the barley genome and indicates that the EST markers AV836787 and 

CK123008 are closely linked to the covered smut resistance locus Ruh.7H, present in 

the cultivar Sloop. These markers are currently being screened across elite barley lines 

known to be resistant to this disease, to determine their usefulness for marker assisted 

selection in Australian breeding populations.  
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Table 1 Primer sequences of markers tested for linkage to covered smut resistance on 

chromosome 7HS. Sequences for primers 7-12 were obtained from 

http://earth.lab.nig.ac.jp/~dclust/cgi-bin/barley_map_pub/index.html and primer 

sequences for marker 13 were obtained from Bulgarelli et al. (2004). Expected and 

observed fragment sizes for the markers are listed 

 

Table 2 Descriptive statistics of the Alexis/Sloop covered smut trials indicating the 

number of DH lines screened (N), the minimum (min) and maximum (max) covered 

smut percentages, the mean and standard error (SE) for each trial and the mean parental 

line scores (% infected heads) for each year. N (Sloop) is the number of Sloop plots 

used to calculate the one-sided 95% confidence interval (CI) for the resistant parent 

 

Fig. 1 Location of the covered smut gene, Ruh.7H on chromosome 7H of the barley 

cross Alexis/Sloop. Map distances (cM) are given on the left; (a) indicates the original 

map without EST markers (the centromere region is indicated in black); the region 

containing the Ruh.7H gene has been enlarged in (b) and the EST markers have been 

underlined 

 

Fig. 2 Alignment of the 7H barley consensus 2003 map (a; Gramene: 

http://www.gramene.org) with the rice JRGP RFLP 2000 chromosome 6 map (b; 

Gramene). The RFLP marker abg704 in the region of Ruh.7H is circled. Marker psr160 

was used to align the two maps (marker w130 is orthologous to psr160). Markers 

located in a 10 cM region on the rice map were aligned to the rice physical map 

downloaded from IGRSP (c; http://rgp.dna.affrc.go.jp/E/IRGSP/ download.html). 

Orthologous barley ESTs used in this study are listed and their expected locations on 

the rice PAC/BAC contigs indicated (d) 

 

Fig. 3 Normalized HRM curves for marker CK123008 (a) and marker BV078160 (b); 

two independent samples of parent Alexis (black solid lines) and Sloop (black dashed 

lines) and 8 progeny (gray) are shown 

 

 

 

http://earth.lab.nig.ac.jp/~dclust/cgi-bin/barley_map_pub/index.html
http://www.gramene.org/
http://rgp.dna.affrc.go.jp/E/IRGSP/%20download.html
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Table 1 

 

Marker 
number 

GenBank 
Accession 
number 

Expected 
Fragment 
Size (bp) 

Observed 
Fragment 
Size (bp) 

Primer sequence 

1 CK123008 191 191 5’-AGGGGAGTGGTTCTGTTGTG- 
    5’-CAGTGGCACTTCTACCAGCA- 
2 CA003755 137 137 5’-CAAGCCAATCGAGAGTCACA- 
    5’-GATCTTGGTCTTGGCCTTCA- 
3 AL506064 290  5’-CTTGTTAGTGGGCGAACCAT- 
    5’-CATAATAGGGCAGGCAAGGA- 
4 CA030150 197 197 5’-AGCCCGAGCAAATTGTCTAA- 
    5’-ATGGTCGATTTGGATGGGTA- 
5 BQ471402 243  5’-TTAGGCCTTGGGTTGATGTC- 
    5’-GTAGCAGAAGCTGCCGAAGT- 
6 BQ468427 220  5’-TCTGAACTGCAATGGTGAGC- 
    5’-TAGCCCCGTATCCTTTGTTG- 
7 AV836787 172 150, 172 5’-TAATGGCAGGACCTCTCCAC- 
    5’-CGGTAAGACAGAGCCGCTAC- 
8 AV911272 209 209 5’-CAGATTCAGGGACCAAGGAA- 
    5’-GTGGACGCGTTTGACTACAC- 
9 AV834214 180 300 5’-GTCGGTGATGGCCTGTATCT- 
    5’-TTCTCGACGTATCCCAGGAC- 
10 AV913712 181  5’-CCAGGACGATGCTCTCTAGG- 
    5’-CCTTTTATGGCAGGAACGAA- 
11 AV913519 205  5’-TAATGCACAGCCCAACTCTG- 
    5’-CTGCCAAACTTTCCACCAAT- 
12 AV938293 223 340 5’-CAGCAGCAGCATCAATCAAT- 
    5’-AACCATCCGAGACAAACCTG- 
13 BV078160 90 90 5’-CCAAGCTAGAAGGAAACCTTCCACTCT- 
    5’-GCATGATGACGACACGTGGCTT- 
 

 

Table 2 

 

Year N Min Max Mean SE Alexis Sloop N (Sloop) CI (%) 

2001 81 0.0 70.6 18.6 2.3 52.4 4.4 3 0, 10.0 

2002 50 0.0 76.6 16.6 2.8 36.2 1.8 5 0, 2.6 

2003 23 0.0 27.7 4.1 1.4 20.0 0.9 2 0, 2.3 

2004 20 0.0 48.6 9.4 3.1 25.9 1.9 4 0, 3.6 
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Fig 2 
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Fig 3B 

 

 

 

 


