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1 Introduction

The predictive inference had been the oldest form of statistical inference used
in real life. Predictive inference uses the realized responses from the performed
experiment to make inference about the behavior of the unobserved future
responses of the future experiment (cf. Aitchison and Dunsmore (1975, p.1)).
The outcomes of the two experiments are connected through the same struc-
ture of the model and indexed by the common set of parameters. The pre-
diction distribution forms the basis of all predictive inference. For details on
the predictive inference methods and wide range of applications of prediction
distribution interested readers may refer to Aitchison and Sculthorpe (1965)
and Geisser (1993). Prediction distribution for a set of future responses, or
appropriate functions of future responses, of a model, conditional on the re-
alized responses from the same model, has been derived by many authors
including Fraser and Haq (1969), Aitchison and Dunsmore (1975), and Haq
and Khan (1990). The prediction distribution of a set of future responses
from the multilinnear model has been used by Haq and Rinco (1976) to
derive β-expectation tolerance region. Guttman (1970) and Aitchison and
Dunsmore (1975) obtained different kinds of tolerance regions from the pre-
diction distribution.

A statistical tolerance region (interval in one dimension) is a region, de-
fined on the sample space, that contains a specified proportion of the future
responses, or any suitable function of future responses of a random vari-
able under study with a preassigned level of probability. There are several
kinds of tolerance regions available in the literature (cf. Guttman, 1970, and
Aitchison and Dunsmore, 1975). Geisser (1993) discussed the Bayesian ap-
proach to predictive inference and discussed a wide range of real-life appli-
cations in many areas. This includes model selection, discordancy, perturba-
tion analysis, classification, regulation, screening and interim analysis. The
β-expectation tolerance region is a special type of tolerance region when the
expected probability of the region to contain a set of future responses or an
appropriate function of future responses is a known value β, a real number,
usually not too far from 1. It is a problem under the broader area of the
predictive inference and can be solved by using the prediction distribution.

In the recent years, there has been a growing interest in the non-normal
and robust models. Nevertheless, Fisher (1956) discarded the normal distri-
bution as a sole model for the distribution of errors. Fraser (1979, p.41)
showed that the results based on the Student-t errors for linear models
are applicable to those of normal models, but not the vice-versa. Prucha
and Kelejian (1984) critically described the problems of normal distribu-
tion and recommended the Student-t distribution as a better alternative for
many problems. The failure of the normal distribution to model the fat-
tailed distributions has led to the use of some other members of the spheri-
cal/elliptical class of distributions. Some of the well known members of the
spherically/elliptically contoured family of distributions are the multivariate
normal, Kotz Type, Pearson Type VII, Multivariate t, Multivariate Cauchy,
Pearson Type II, Logistic, Multivariate Bassel, Scale mixture and Stable laws.
Extensive work on this area of non-normal models has been done in recent
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years. A brief summary of such literature has been given by Chmielewiski
(1981), and other notable references include Fang and Zhang (1990), Haq and
Khan (1990), and Fang and Anderson (1990). Zellner (1976) first considered
the linear regression model with Student-t errors. However, Fang and Ander-
son (1990), Anderson (1993), Khan (1996) and Ng (2000) provide predictive
analyses of future responses for linear models with spherically contoured
errors. Recently Khan (2004, 2005, 2006) has derived the prediction distri-
butions of the future regression vector and future residual sum of squares for
the multiple regression model with normal and multivariate Student-t errors
respectively. This is a new approach that provides predictive inference for the
future regression parameters as a function of future responses, rather than
that of the future responses themselves.

This paper considers the widely used multiple regression model with a
more general assumption of a family of spherically contoured errors for the re-
alized as well as the future responses. The two sets of responses are connected
through the common set of regression and scale parameters. The family of
spherically contoured distributions encompass a range of symmetrical dis-
tributions including the normal and Student-t distributions as special cases.
The distribution of the FRV and FRSS of the future responses, conditional on
the realized responses, are obtained under the non-informative prior for the
parameters. Identical prediction distributions are obtained by the structural
approach without assuming any prior distribution. The predictive distribu-
tion of the FRV follows a multivariate Student-t distribution, and the FRSS
of the future regression follows a scaled beta distribution. The distribution
of the statistics for the future regression model, conditional on the realized
responses, are dependent, and hence their joint density can’t be factorized.

The multiple regression model with spherically contoured errors is pro-
vided in section 2. The β-expectation tolerance region and its optimality are
introduced in section 3. Some preliminaries are included in section 4. The
predictive distributions of the FRV and FRSS, conditional on the realized
sample, are provided in section 5. The β-expectation tolerance regions for
the FRV and FRSS are derived in section 6. Some concluding remarks are
included in section 7.

2 The Multiple Regression Model with Spherical Errors

Consider the multiple regression equation

y = δx + σe (2.1)

where y is the response variable, δ is the vector of regression parameters
assuming values in the p-dimensional real space Rp, x is the vector of p
regressors with known values, σ is the scale parameter assuming values in
the positive half of the real line R+, and e is the error variable associated
with the response y. Assume that the error component, e, is distributed as
a spherically contoured variable with location 0 and scale 1. Now, consider a
set of n > p responses, y = (y1, y2, · · · , yn), from the above regression model
that can be expressed as

y = δX + σe (2.2)
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where the n-dimensional row vector y is a vector of the response variable; X
is a p× n dimensional matrix of fixed known values of the p regressors; e is
a 1×n vector of the error component associated with the response vector y;
and the regression parameter vector δ and scale parameter σ are the same
as defined in (2.1). Then the error vector follows a multivariate spherically
contoured distribution with location 0

¯
, a vector of n-tuple of zeros, and scale

matrix, In. Therefore, the joint density function of the vector of errors can
be written as

f(e) ∝ g{ee′} (2.3)

such that the f(e) is a proper density function. See Fang and Zhang (1980)
for details on spherical distributions and their properties. Note that when
g(ee′) = e−

1
2ee′ the spherical density becomes the normal density, and for

g(ee′) =
(
1 + 1

ν ee′
)− ν+p

2 we get the Student-t density with ν degrees of free-
dom. It is well known that when the error vector is spherically distributed
then the response vector follows a family of multivariate elliptically symmet-
ric contoured distributions with location vector δX, scale matrix, σ2In, and
density function

f(y; δ, σ2) ∝
[

1
σ2

]n
2

g

{
1
σ2

[
(y − δX) (y − δX)′

]}
(2.4)

so that f(·) is a proper density function. In this paper, the above multiple
regression model represents the realized model of the responses from the
performed experiment.

Now, consider another set of nf (≥ p) unobserved future responses, yf =
(yf1, yf2, · · · , yfnf

), from the same multiple regression model in (2.1) with
the same regression and scale parameters. Such a set of future responses can
be expressed as

yf = δXf + σef (2.5)

where Xf is a p × nf matrix of the values of p regressors that generate the
future response vector yf , and ef is a vector of future error terms. Similar
to the error vector of the realized model the future error vector from the
future experiment follows a family of multivariate spherically contoured dis-
tributions, and as such the future responses follow a family of multivariate
elliptically contoured distributions.

From the specifications of the model, the future sample is not independent
of the realized sample. However, for the joint density function of the combined
error vector, that is, the errors associated with the realized and that of the
future responses, e∗ = [e, ef ], we can write e∗e∗

′
=

∑n
j=1 e2

j +
∑nf

j′=1 e2
fj′ =

ee′ + efe′f . Then the join density function of the combined error vector,
(e, ef ), can be expressed as

f(e, ef ) ∝ g
{
ee′ + efe′f

}
(2.6)

where g {·} is such that f(·) is a proper density. This joint density function
is used to derive the prediction distributions of the functions of the future
errors as well as the responses of the future model in the next section. For
the β-expectation tolerance region we need the prediction distribution of the
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future regression vector (FRV) and future residual sum of squares (FRSS) of
the future regression model.

3 β-Expectation Tolerance Region

In the literature, a tolerance region R(Y ) is defined on a probability space
(X ,A,Pθ) where X is the sample space of the responses in the random sample
(Y 1,Y 2, · · · , Y n); A is a σ-field defined on the sample space; and Pθ is the
probability measure such that θ = [δX, σ] (see the multiple regression model
in the next section) is an element of the joint parameter space Ω. Thus a
tolerance region R(Y ) is a statistic defined on the sample space X and takes
values in the σ-field A. The probability content of the region R(Y ) is called
the coverage of the tolerance region and is denoted by C(R) = P θ

Y [R(Y )].
Note that C(R) being a function of R(Y ), a random variable, is itself a
random variable whose probability measure is induced by the measure Pθ.

Of different kinds of tolerance regions available in the literature, here we
consider a particular kind of tolerance region that has an expected probabil-
ity of 0 < β < 1. A tolerance region R(Y ) is called a β-expectation tolerance
region if the expectation of its coverage probability is equal to a preassigned
value β. Thus for a given set of observed responses y, a β-expectation toler-
ance region R(Y ) must satisfy

E[C(R)|y] = β. (3.1)

Let p(λf | y) denote the prediction distribution of λf , a function of a set of
future responses Y f , for the given set of observed responses y. Then we can
write, ∫

R

p(λf | y)dλf =
∫

R

∫

Ω

p(λf , θ | y)dθdλf (3.2)

where p(λf , θ | y) is the joint density function of λf and Θ for any given y.
Since, in general, λf and Θ may not necessarily be independent, so λf and Θ
are assumed to be not independent, and hence the density can’t be factored.
However, by applying the rule of conditional probability and assuming that
the conditions of Fubini’s theorem hold (to be able to change the order of
integration), we can write,

∫

R

p(λf | y) dλf =
∫

R

∫

Ω

p(θ | y) p(λf | θ, y) dθ dλf

=
∫

Ω

∫

R

p(λf | θ, y) p(θ | y) dλf dθ

=
∫

Ω

P [λf ∈ R(Y ) | θ, y] p(θ | y) dθ

= Eθ [C(R) | y] = β (3.3)

where p(θ | y) is the density of the parameter Θ for any given y. In the
Bayesian approach this density function, p(θ | y) becomes the Bayes poste-
rior density and in the structural approach it is the structural density. Fraser
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and Haq (1969) discussed that for the non-informative prior, the Bayes pos-
terior density is the same as the structural density. Thus one can find a
β-expectation tolerance region for any suitable function of a set of future
responses by using the prediction distribution of the function of future re-
sponses. However, there are many regions on the sample space that are likely
to satisfy (2.1), and hence a β-expectation tolerance region is not unique. So
the search for an optimal tolerance region becomes obvious.

3.1 An Optimal Tolerance Region

There could be infinitely many tolerance regions on the same sample space
having the same expected coverage. Hence we need to search for an optimal
tolerance region. A β-expectation tolerance region is said to be optimal if the
enclosure or the coverage of the tolerance region is the minimum subject to

E
θ|y {C [R(Y )]} ≥ β (3.4)

where θ | y denotes the density of Θ for given y. But as shown in (3.3), the
relation (3.4) can be written as

Pλf |y { λf ∈ R(Y ) } ≥ β (3.5)

where Pλf |y represents the prediction density of a function of the future
response λf for any given set of data, y. Different approaches have been
proposed to determine an optimal tolerance region in the literature. Here,
we would apply the Neyman-Pearson Lemma approach to find a tolerance
region that satisfies (2.4) and has a minimum enclosure.

Let us assume that the coverage C[R(Y )] has an induced probability
density h(λf ) on the space of the future responses. Then by the Neyman-
Pearson Lemma a tolerance region R(Y ) would be optimal if it satisfies the
following:

R(Y ) =
{

λf :
p(λf | y)

h(λf )
> k(y)

}
(3.6)

where k(y) is determined such that

Pλf |y { λf ∈ R(Y ) } = β. (3.7)

Bishop (1976, p. 99-100) shows that the β-expectation tolerance region
obtained by using the prediction distribution is an optimal tolerance region.
Therefore, the β-expectation tolerance region defined above would be an
optimal tolerance region in the sense of having a minimum enclosure.
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4 Some Preliminaries

Some useful notations are introduced in this section to facilitate the presen-
tation of the results in the forthcoming sections. First, we denote the sample
regression vector of e on X by b(e) and the residual sum of squares of the
error vector by s2(e). Then we have

b(e) = eX ′(XX ′)−1 and s2(e) = [e− b(e)X][e− b(e)X]′. (4.1)

Let s(e) be the positive square root of the residual sum of squares based on
the error regression, s2(e), and d(e) = s−1(e)[e − b(e)X] be the ‘standard-
ized’ residual vector of the error regression. So

e = b(e)X + s(e)d(e) and hence ee′ = b(e)XX ′b′(e) + s2(e) (4.2)

since d(e)d′(e) = 1, inner product of two orthonormal vectors; and Xd′(e) =
0, since X and d(e) are orthogonal. From (4.2) we observe the following
relationship between the error and response statistics (cf. Fraser, 1968, p.127)

b(e) = σ−1{b(y)− δ}, and s2(e) = σ−2s2(y), (4.3)

where b(y) = yX ′(XX ′)−1 and s2(y) = [y − b(y)X][y − b(y)X]′ are the
sample regression vector of y on X, and the residual sum of squares of the
regression based on the realized responses respectively. Now define the fol-
lowing statistics based on the future regression model:

bf (ef ) = efX ′
f (XfX ′

f )−1, s2
f (ef ) = [ef −bf (ef )Xf ][ef −bf (ef )Xf ]′ (4.4)

in which bf (ef ) is the future regression vector and s2
f (ef ) is the residual sum

of squares of the future error of the future model respectively. Then we can
write

ef = bf (ef )Xf+sf (ef )df (ef ) and hence efe′f = bf (ef )XfX ′
fb′f (ef )+s2

f (ef )
(4.5)

since Xf and d(ef ) are orthogonal, and df (ef ) is orthonormal. Moreover,
the following relations can easily be observed:

bf (ef ) = σ−1{bf (yf )− δ}, and s2
f (ef ) = σ−2s2

f (yf ), (4.6)

where bf (yf ) = yfX ′
f (XfX ′

f )−1 and s2
f (y) = [yf−bf (yf )Xf ][yf−bf (yf )Xf ]′

in which bf (yf ) is the future regression vector of the future responses and
s2

f (yf ) is the residual sum of squares of future responses respectively.

5 Predictive Distribution of FRV and FRSS

The joint density function of the error statistics b(e), s2(e), bf (ef ) and
s2

f (ef ), given d(·), is derived from the above joint density of the combined
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error vector by applying the properties of invariant differentials (see Eaton,
1983, p.194-206) as follows:

p
(
b(e), s2(e), bf (ef ), s2

f (ef )|d(·)
)
∝ [s2(e)]

n−p−2
2 [s2

f (ef )]
nf−p−2

2

×g
{
b(e)XX ′b′(e) + bf (ef )XfX ′

fb′f (ef )
}

. (5.1)

Note that the above density does not depend on d(·) (cf. Fraser, 1968, p.132)
so the conditional distribution is the same as the unconditional distribution.
Using the Jacobian of the transformation,

J
{

[bf (ef ), s2
f (ef )] → [bf (yf ), s2

f (yf )]
}

= [σ2]
− p+2

2 , (5.2)

and the non-informative prior distribution,

p

(
δ,

1
σ2

)
∝

{
1
σ2

}−1

, (5.3)

for the parameters of the model, the joint posterior density of δ, σ, bf (yf )
and s2

f (yf ) is obtained as

p
(
δ, σ2, bf , s2

f

)
∝ [s2]

n−p−2
2 [s2

f (yf )]
nf−p−2

2 [σ2]−
n+nf−p

2

g

{
1
σ2

[(
b− δ

)
XX ′

(
b− δ

)′
+ s2

+
(
bf − δ

)
XfX ′

f

(
bf − δ

)′
+ s2

f

]}
(5.4)

where bf = bf (yf ) and s2
f = s2

f (yf ) for notational convenience. Such results
can also be obtained by using the structural approach. However, the final
results of this paper will be the same as that obtained by the structural
approach. Interested readers may refer to Fraser and Haq (1969) for details.

To find the predictive distribution of the FRV and FRSS we need to
integrate out δ and σ2 from the above joint density. Following Ng (2000), to
integrate out σ2, let 1

σ2 = λ. So dσ2 = λ−2dλ. Thus the join density function
of δ, bf (yf ) and s2

f (yf ) can be written as

p
(
δ, bf , s2

f

)
∝ [

s2
f (yf )

]nf−p−2
2

∫

λ>0

[λ]−
n+nf−2

2

g
{

λ
[
Qy + s2 + Qyf

+ s2
f

]}
dλ (5.5)

where Qy =
(
b − δ

)
XX ′

(
b − δ

)′
and Qyf

=
(
bf − δ

)
XfX ′

f

(
bf − δ

)′
.

Now let ψ2 = Q + s2 + s2
f in which Q = Qy + Qyf

. Then set w = λψ2,

and hence dλ =
[
ψ2

]−1
dw. Completion of the integration leads to the join

density function of δ, bf (yf ) and s2
f (yf ) to be

p
(
δ, bf , s2

f

)
∝ [

s2
f (yf )

]nf−p−2
2

[
Q + s2 + s2

f

]−n+nf
2

. (5.6)
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Expressing the terms involving δ in Q as

Q =
(
b− δ

)
XX ′

(
b− δ

)′
+

(
bf − δ

)
XfX ′

f

(
bf − δ

)′

=
(
δ − FA−1

)
A

(
δ − FA−1

)′
+

(
bf − b

)
H−1

(
bf − b

)′
(5.7)

where

F = bXX ′ + bfXfX ′
f , A = XX ′ + XfX ′

f , and H = [XX ′]−1 + [XfX ′
f ]−1

(5.8)
the joint density of bf and s2

f becomes

p
(
bf , s2

f

)
= Ψ12 ×

[
s2

f

]nf−p−2
2

[
s2 + s2

f +
(
bf − b

)
H−1

(
bf − b

)]−n+nf−p

2

(5.9)
where Ψ12 = {|H|− 1

2 Γ (n+nf−p
2 )[s2]

n−p
2 }{(π)

p
2 Γ (n−p

2 )Γ (nf−p
2 )}−1 is the nor-

malizing constant. Integrating out s2
f from the above joint density, the pre-

diction distribution of the future regression vector, bf = bf (yf ), becomes

p
(
bf

∣∣∣y
)

= Ψ1 ×
[
s2 +

(
bf − b

)
H−1

(
bf − b

)′]−n
2

(5.10)

where Ψ1 = {Γ (n
2 )[s2]

n−p
2 }{(π)

p
2 Γ (n−p

2 )|H| 12 }−1. The prediction distribu-
tion of bf can be written in the usual multivariate Student-t distribution
form as follows:

p
(
bf

∣∣∣y
)

= Ψ6 ×
[
1 +

(
bf − b

)[
s2H

]−1(
bf − b

)′]−n
2

(5.11)

in which n > p. Thus, [bf |y] ∼ tp(n − p, b, n−p
n−p−2Hs2) where b is the

sample regression vector of realized responses and H is the scale matrix.
Khan (2005) obtained the same result for the multiple regression model with
normal errors. Khan (2004) noted that the prediction distribution of the FRV
of the future regression model does not depend on the shape parameter, ν of
the multiple regression model with multivariate Student-t errors.

5.1 Distribution of Future Residual Sum of Squares

The prediction distribution of the FRSS for the future regression model,
s2

f (yf ), conditional on the realized responses, y, is obtained as

p
(
s2

f (yf )
∣∣∣y

)
= Ψ2 × [s2

f (yf )]
nf−p−2

2
[
s2 + s2

f (yf )
]−n+nf−2p

2 . (5.12)

The above density function can be written in the usual form of beta distri-
bution of the second kind as follows

p
(
s2

f

∣∣∣y
)

= Ψ7 × [s2
f ]

nf−p−2
2

[
1 + s−2s2

f

]−n+nf−2p

2 (5.13)
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where Ψ2 = {Γ (n+nf−2p
2 )[s2]−

n−p
2 }{Γ (n−p

2 )Γ (nf−p
2 )}−1 is the normalizing

constant. This is the prediction distribution of the FRSS based on the fu-
ture response yf , conditional on the realized responses y, from the multiple
regression model with a family of multivariate spherically contoured errors.
The density in (5.13) is a modified form of beta density. However, it can be
shown that s2

f/s2 is a beta variable with arguments (nf −p)/2 and (n−p)/2.
Obviously, for the existence of the above distribution of s2

f we must have
nf > p in addition to n > p. Khan (2004) obtained the same prediction dis-
tribution of the FRSS, conditional on the realized responses, for the multiple
regression model with multivariate normal errors.

6 Optimal β-Expectation Tolerance Region

Since the tolerance regions based on prediction distributions are optimal in
the sense of having minimum closure, we use the prediction distributions of
the FRV and FRSS to find optimal β-expectation tolerance regions for them.
In order to obtain the tolerance regions, we need to determine the sampling
distribution of some appropriate functions involved in the prediction distri-
bution of the statistics of the future responses.

From the definition of the β-expectation tolerance region for any future
statistic, R∗(y) = {τ : τ < τ ∗} is a β-expectation tolerance region for τ > 0
if τ ∗ is the βth quantile of the sampling distribution of the future statistic
τ . That is, R∗(y) is a β-expectation tolerance region for the future statistic
τ if τ ∗ is such that ∫ τ ∗

τ=0

f(τ )dτ = β (6.1)

where f(τ ) is the pdf of the future statistic τ .

6.1 Tolerance Region for the FRV

For the future statistic bf (y) the prediction distribution is a multivariate
Student-t distribution. To find an optimal β-expectation tolerance region for
the FRV, we use the prediction distribution of the FRV to determine the
prediction distribution of an appropriate quadratic form of the FRV. The
following result is useful to derive the β-expectation tolerance region for the
FRV.

Theorem 5.1: If a p dimensional random vector η follows a multivariate
Student-t distribution with location vector ζ, scale matrix Ω, and shape pa-
rameter ν then the scaled quadratic form 1

ν (η− ζ)Ω−1(η− ζ)′ follows an F
distribution with p and ν degrees of freedom.
The proof is straightforward.

Since the prediction distribution of the FRV bf is a p-variate Student-t
distribution we use the above theorem to assert that the distribution of the
quadratic form

1
(n− p)

(
bf − b

)[
s2H

]−1(
bf − b

)′
(6.2)
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is an F distribution with p and n − p degrees of freedom. Then an opti-
mal β-expectation tolerance region that will enclose 100β percent of the fu-
ture regression vectors from the multiple regression model with multivariate
spherically symmetric errors is given by the ellipsoidal region:

R1(bf |y) =
{

yf :
[

1
n− p

(
bf − b

)[
s2H

]−1(
bf − b

)′]
≤ Fp,n−p,β

}
(6.3)

where Fp, n−p,β is the β × 100 percentile point of a central F distribution
with p and n − p degrees of freedom such that P (Fp, n−p < Fp, n−p,β) = β.
As noted by Bishop (1976) the region given by R1(bf |y) in the foregoing
expression is an optimal β-expectation tolerance region, and among all such
tolerance regions it has the minimum enclosure. Note that R1(bf |y) depends
on the sample responses through H, a function of observed and future re-
gressors, b = b(y) and s = s(y). Moreover, it depends on the size of the
observed sample as well as the dimension of the regression vector.

6.2 Tolerance Region for the FRSS

The β-expectation tolerance region for the FRSS can be based on its predic-
tion distribution. From the previous section, the prediction distribution of
the FRSS is known to be a beta distribution. So an optimal β-expectation
tolerance region for the FRSS can be defined using an appropriate beta dis-
tribution. A region on the sample space of the responses is a β-expectation
tolerance region if it encloses 100β percent of the future residual sum of
squares from the multiple regression model and is given by the ellipsoidal
region

R2(sf |y) =
{

yf :
[
s2

f (s2
y)−1

]
≤ Bβ

(
nf − p

2
,
n− p

2

)}
(6.4)

where Bβ(nf−p
2 , n−p

2 ) is the β × 100 percentile point of a beta distribution

with arguments
(

nf−p
2

)
and

(
n−p

2

)
such that

P

[
B

(
nf − p

2
,

n− p

2

)
< Bβ

(
nf − p

2
,

n− p

2

)]
= β.

Using the following relationship between the inverse beta distribution and F
distribution, the above β-expectation tolerance region for the FRSS can be
based on an F distribution with (nf − p) and (n− p) degrees of freedom.

Theorem 5.2: If ψ follows a beta distribution with arguments λ
2 and τ

2 then
ϕ = τ

λ [ψ]−1 follows an F distribution with λ and τ degrees of freedom.
In view of the above fact, since s2

f (s2
y)−1 follows a beta distribution with

arguments n−p
2 and nf−p

2 , the statistic
[
s2
y{s2

f}−1
]

is distributed as a scaled

F variable with (nf−p) and (n−p) degrees of freedom. That is,
[
s2
y{s2

f}−1
]
∼

n−p
nf−pFnf−p,n−p. Therefore an equivalent β-expectation tolerance region for
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Prediction distribution of future regression of 
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Prediction distribution of future regression of 
return on fund when future Index is 25
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Fig. 1 Prediction distribution of the future regression parameter for selected values
of future Index

the future residual sum of squares from the multiple regression model with
multivariate spherically symmetric errors is given by the ellipsoidal region:

R3(sf |y) =
{

yf :

[
s2
y

s2
f

]
≤ n− p

nf − p
Fnf−p,n−p,β

}
(6.5)

where Fnf−p, n−p,β is the β×100 percentile point of a central F distribution
with nf − p and n− p degrees of freedom such that

P
(
Fnf−p, n−p < Fnf−p, n−p,β

)
= β.

It is interesting to note that optimal β-expectation tolerance regions for both
the FRV and FRSS can be based on the F distribution, of course, with
appropriate degrees of freedom parameters.

7 An Example

As an example, we consider a real life data set from Moore (2003, p.98).
The data contains information on the Percentage Return of fund (response
variable), and Index of Overseas Stock Market in Europe, Australia and
Far East (EAFE) from 1982 (the first full year of the fund’s existence) to
2001. For the given data the fitted ordinary least squares model becomes
ŷ = 3.3670 + 0.8449x with adjusted value of R2 = 81.79%, x̄ = 13.274,
ȳ = 14.582,

∑20
j=1 x2

j = 14029.951, and s2 = 86.859, the mean squared error.
The prediction distribution of the regression parameter involves H which in
this special case becomes [

∑20
j=1 x2

j ]
−1 + [xf

2]−1.

The prediction distribution of the future regression (slope) parameter of
the regression of future Percentage Return on the future Index is given in the
two graphs of Figure 1. The two graphs represent two Student-t distributions
with different parameters. Although the shape of the distribution of both the
graphs is roughly the same, the first graph has a slightly more spread, but
lower pick, than the second graph.
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Predictive distribution of future residual sum of 
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Predictive distribution of future residual sum of 
squares for future smaple size 10
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Fig. 2 Prediction distribution of the future residual sum of squares for selected
future sample sizes

Figure 2 display the prediction distributions of the future residual sum
of squares for different sample sizes. These two graphs represent two beta
distributions with varying arguments. Therefore, tolerance regions for the
FRV can be based on the quadratic form of the Student-t variable, that is,
F -distribution. Similarly, tolerance regions for the FRSS would be based on
the beta distribution.

8 Concluding Remarks

The multiple regression model with a family of spherically symmetric errors
have been considered to derive the β-expectation tolerance region for the
FRV and FRSS. Khan (2004) showed that the above statistics are not in-
dependently distributed for the multiple regression model with multivariate
normal as well as multivariate Student-t errors. The prediction distribution
of the FRV for any member of the family of spherically contoured multiple
regression model is a Student-t distribution including the most commonly
used members of the family of models, namely the multivariate normal and
Student-t models. Similarly, the prediction distribution of the FRSS is a
scaled beta distribution for all members of spherically contoured family of
models. It is quite interesting to note that although for different member dis-
tribution of the spherically contoured family of distributions the regression
models are different, but the prediction distributions of the FRV and FRSS
are the same regardless of the choice of any particular member. Thus the
same predictive inference, including β-expectation tolerance regions, applies
for all members of the family of spherically contoured regression models.

The β-expectation tolerance region for the FRV based on the distribution
of an appropriate quadratic form of the FRV. From the prediction distribu-
tion of the FRV it follows that the required quadratic form of the FRV follows
an F distribution. Similarly, the tolerance region for the FRSS is based on
the appropriate beta distribution or equivalently an appropriate F distribu-
tion. Since the β-expectation tolerance regions of this paper are based on the
prediction distributions, they are optimal in the sense of having minimum
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enclosure among all such tolerance regions. The optimal β-expectation toler-
ance regions defined in the paper provide the criterion for the necessary and
sufficient conditions that any set of future responses satisfying the rules in
R1(·) and R3(·), given the observed responses, will produce FRV and FRSS
such that β × 100% of the time such tolerance regions will contain the true
future regression vector and true future residual sum of squares respectively.
The results in this paper are also applicable to multiple regression models
with normal and Student-t errors as these two widely used distributions are
also popular members of the family of elliptically contoured distributions.
The same prediction distributions and hence the same β-expectation toler-
ance regions for the FRV and FRSS can be obtained by using the structural
distribution or structural relation approach.
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