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ABSTRACT 

 

 The prediction distribution of generalized geometric series distribution (GGSD) and 
of its truncated and size-biased forms is derived and studied under the non-informative 
and beta prior distributions. The prediction distributions for all the models are beta 
distribution, but the parameters of the prediction distributions depend on the choice of the 
prior distribution as well as the model under consideration.  
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1. INTRODUCTION 
 

 The predictive inference is directed towards inference involving the observables, 
rather than the parameters. The predictive method had been the most popular statistical 
tool before the diversion of interest in the inferences on parameters of the models. 
Predictive inference uses the realized responses from the performed experiment to make 
inference about the behavior of the unobserved future responses of the  future experiment 
(cf. Aitchison and Dunsmore (1975, p.1)). The outcomes of the two experiments are 
connected through the same structure of the model and indexed by the common set of 
parameters. The prediction distribution forms the basis of all predictive inference. For 
details on the predictive inference methods and wide range of applications of prediction 
distribution interested readers may refer to Aitchison and Sculthorpe (1965), Fraser and 
Haq (1969), Guttman (1970),  Haq and Khan (1990), Geisser (1993), and Khan (2002, 
2006).   
 

 In this paper, Bayesian method is used to derive the prediction distribution of future 
responses from the generalized geometric series distribution (GGSD), conditional on the 
observed responses. The non-informative and beta prior distributions of the parameter of 
the GGSD are used to derive the posterior distribution of the parameters. Combining the 
distribution of the future responses and the posterior distribution the prediction 
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distribution is obtained. Two special cases of the GGSD, namely size-biased and zero-
truncated generalized geometric series distributions are considered. It is interesting to 
note that the prediction distribution follows the beta (or scaled) distribution with varying 
parameters for different forms of the GGSD, and under different priors. Prediction 
distributions for a single future response as well as that of a set of future responses are 
derived. 
 

 The probability function of generalized geometric series distribution (GGSD) was 
proposed by Mishra (1982) by using the results of the lattice path analysis as:  
 

  ( ) ( )111 1  ;  0< <1, 1,  x  0 , 1, 2, ...
   1

x xxx
P X x

xx
+β −+β⎛ ⎞

= = α −α α αβ < =⎜ ⎟+β ⎝ ⎠
                                    

  and 0 otherwise.                   (1.1) 
 
 It can be seen that at β=1 , the model (1.1) reduces to simple geometric distribution 
and is a particular case of Jain and Consul’s (1971) generalized negative binomial 
distribution in the same way as the geometric distribution is a particular case of the 
negative binomial distribution. 
 

 The first four moments of GGSD (1.1) are given as 
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 Various interesting properties and estimation of the parameters of the model in (1.1) 
have been discussed by Mishra (1982), Singh (1989), Mishra and Singh (1982), Hassan 
(1995) and Hassan et al. (2002, 2007 and 2008). They found that this distribution 
provides much better fit to many real life data than the geometric distribution and various 
compound geometric distributions proposed earlier by many authors. A brief list of 
authors and their works can be seen in Johnson and Kotz (1969), Johnson et al. (1992) 
and Consul and Famoye (2006).  
 

 In this paper, the prediction distribution of generalized geometric series distribution 
(GGSD) and of its truncated and size-biased form is defined and studied under non-
informative and beta prior distributions. 
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1.1 Truncated Generalized Geometric Series Distribution (TGGSD) 
 A discrete random variable is said to have truncated generalized geometric 
distribution of its probability mass function is given by 
 

  1 1
1

11( ) (1 ) ;0 1,  1,  x 1,2...
   1

x x xx
P X x

xx
− +β −+β⎛ ⎞

= = α −α <α< αβ < =⎜ ⎟+β ⎝ ⎠
  (1.6) 

 

The moments of zero truncated GGSD in (1.6) are obtained as 
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1.2 Size-Biased Generalized Geometric Series Distribution (SBGGSD) 
 A size biased GGSD is obtained by taking the weight of the GGSD as X. So from 
(1.1) and (1.2), the probability function of the size biased GGSD is found to be 
 

  1 1
2

  
( ) (1 ) (1 ) ;  0 <  < 1, | | 1,  1,2,

1
x x xx

P X x x
x

− +β −β⎛ ⎞
= = −αβ α −α α αβ =⎜ ⎟−⎝ ⎠

≺   (1.10) 

 When β = 1, the probability function of the SBGGSD in (1.10) reduces to size-biased 
GSD with probability function as   
 

  1 2
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 The moments of the SBGGSD are obtained as    
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 Other higher moments of the SBGGSD can be obtained, if need.  
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1.3 The Prior Distributions 
 Now we define the two prior distributions for the parameter α of the GGSD.  
Assuming that the parameter α follows a non-informative prior distribution we define the 
prior probability function as                     
 

  1( )h α ∝
α

.                  (1.15) 
 

 Similarly, for the beta prior distribution of the parameter α, the probability function is 
defined as  
 

  1 1( ) (1 )u vh − −α ∝ α −α ,               (1.16) 
 

where u and v are the two hyper-parameters of the beta prior distribution. Prediction 
distributions of the GGSD and its different forms are derived using the above two prior 
distributions. 
 

 In the next Section we provide the prior distributions and prediction distribution of 
the GGSD model. The prediction distribution for the truncated GGSD model is covered 
in Section 3. Section 4 derives the prediction distribution for the size biased GGSD 
model. 
 

2. PREDICTION DISTRIBUTION OF GGSD 
 

 Let 1 2, ,..., nx x x  be a random sample of size n from the GGSD defined in (1.1). The 
joint probability function of the realized sample responses is given by  
 

  ( )11
11( ,..., | ) 1  
   1

i ii x xi x
n

ii

x
p x x

xx
+β −⎡ ⎤+β⎛ ⎞

α = ∏ α −α⎢ ⎥⎜ ⎟+β⎢ ⎥⎝ ⎠⎣ ⎦
, 

where the symbol ∏  stands for the product of all the forthcoming terms for 1, 2,...,i n= . 
 
 Let fx  be a future response from the GGSD (1.1).  Let the probability function of fx  
be ( | )fh x α ). So the prediction distribution of fx , conditional on the realised responses 

1 2, ,..., nx x x , is defined as 
 

  ( ) ( )1 2 1 2| , ,...,   ( | ) | , ,...,f f
n ng x x x x h x p x x x∝ α α ,       (2.1) 

 

where ( )1 2| , ,..., np x x xα  is the posterior probability function of α. 
 
2.1 Prediction Distribution of GGSD Under Non-Informative Prior: 
 Under non-informative prior distribution, the prediction distribution of fx   becomes 
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where  
1

n
i

i
y x

=
= ∑  and 1 2( , ,..., )nx x x x= . 

 

 Clearly 
 

  ( ) ( )( )f| ~ ,   n x 2 f f fx x B x y y x y+ +β + − + + ,       (2.3) 
 

that is, a beta distribution with appropriate arguments. The mean and variance of the 
prediction distribution can easily be obtained by using the properties of the beta 
distribution. 
 

 Thus 

  Mean =   a
a b+

,                 (2.4) 
 

  Variance =
( ) ( )2 1

ab

a b a b+ + +
,             (2.5) 

 

where     fa x y= +      and     ( ) ( )fn x 2fb y x y= +β + − + + . 
 

 Now let  ( )1 2, ,...,f f f f
mz x x x=  be a set of m independent future responses from the 

GGSD in (1.1). Then for the non-informative prior distribution, the prediction 
distribution of fz  is obtained as 
 

  ( )|fg z x ∝ ( ) ( ) ( )1 1 n m z y z yz y + +β + − ++ −α −α ,         (2.6) 
 

where 
1

m f
j

j
z x

=
= ∑ . 

 

 So in the conventional notation, the prediction distribution can be written as 
 

  ( ) ( )( )| ~ ,   n z 1 fz x B z y m y z y+ + +β + − + + .        (2.7) 
 

 For this distribution the moments are given as 

  Mean =   a
a b

′
′ ′+

,                 (2.8) 

  Variance =
( ) ( )2 1

a b

a b a b

′ ′

′ ′ ′ ′+ + +
,            (2.9) 

 

where a z y′ = + and ( ) ( )n z 1b m y z y′ = + +β + − + + . 
 
2.2   Prediction Distribution of GGSD Under Beta Prior 
 Using the posterior distribution under the beta prior B (u, v), the prediction 
distribution of a single future response xf is given by 
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  ( )|fg x x ( )11 1
f ff v x x n y yx y u + +β − + +β −+ + −∝ α −α .        (2.10) 

 

 Therefore ( ) ( )( )| ~ ,   n 2 f f f fx x B x y u x y x y v+ + +β + − + + + . The mean and 

variance are 
 

  Mean = a
a b

′′
′′ ′′+

,                 (2.11) 
 

  Variance =
( ) ( )2 1

a b

a b a b

′′ ′′

′′ ′′ ′′ ′′+ + +
,            (2.12) 

 

where fa x y u′′ = + +  and ( ) ( )fn x 2fb y x y v′′ = +β + − + + + . 
 

 Similarly, the prediction distribution of a set of m future responses, 

1 2( , ,..., )f f f f
mz x x x=   from the model under the beta prior distribution is obtained as  

 

  ( )|fg z x ∝ ( ) ( ) ( ) 11 1 n m z y z y vz y u + +β + − + + −+ + −α −α ,        (2.13) 
 

where 
1

m f
j

j
z x

=
= ∑ .  

 

 Thus ( ) ( )( )| ~ ,   n z  fz x B z y u m y z y v+ + + +β + − + + . So the prediction distribution 
under the beta prior is a beta distribution. Unlike the prediction distribution under the 
non-informative prior, here the prediction distribution depends on the hyper-parameter of 
the prior distribution. 
 

 The mean and variance  of the distribution are 
 

  Mean =   a
a b

′′′
′′′ ′′′+

,                (2.14) 
 

  Variance =
( ) ( )2 1

a b

a b a b

′′′ ′′′

′′′ ′′′ ′′′ ′′′+ + +
,            (2.15) 

 

where a z y u′′′ = + + and ( ) ( )n zb m y z y v′′′ = + +β + − + + .                                           
 

 It is interesting to note that due to the use of different priors, the shape of the 
prediction distribution changes; although in both the cases the underlying distribution is 
the beta distribution. 
 

3. PREDICTION DISTRIBUTION OF TRUNCATED GGSD 
 

 Let fx  be a future response from the truncated generalized geometric series 
distribution (TGGSD) as defined in (1.6).  Let the probability function of fx  
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be ( | )fh x α ). So the prediction distribution of fx , conditional on the observed responses 

1 2, ,..., nx x x , is defined as 
 

  ( ) ( )1 2 1 2| , ,...,   ( | ) | , ,...,f f
n ng x x x x h x p x x x∝ α α ,       (3.1) 

 

where ( )1 2| , ,..., np x x xα is the posterior distribution of α. 
 
3.1 Prediction Distribution of TGGSD Under Non-Informative Prior 
 Under non-informative prior distribution, the prediction distribution of fx  becomes 
 

  ( ) ( ) ( )1
1 1

 11 1| 1 1

n
n n

f f if
i ii

i i

x nx x n x xf xg x x =
= =

−
+β − +β −−

⎡ ⎤∑ ∑ ∑⎢ ⎥∝ α −α α −α⎢ ⎥ α
⎢ ⎥⎣ ⎦

 

    ( )1 ( ) ( )2 1
f ff n x y x yx y n + +β + − ++ − −= α −α ,         (3.2) 

 

where 
1

n
i

i
y x

=
= ∑  and 1 2( , ,..., )nx x x x= . 

 

 Clearly  
 

  ( ) ( )( )f| ~ 1,   n x 2 f f fx x B x y n y x y+ − − +β + − + + .      (3.3) 
 

 Thus 

  Mean = a
a b+

,                 (3.4) 
 

  Variance =
( ) ( )2 1

ab

a b a b+ + +
,             (3.5) 

 

where fa x y n= + −      and     ( ) ( )fn x 2fb y x y= +β + − + + . 
 

 Now let  1 2,( , ..., )f
mz x x x=  be a set of m future responses from the TGGSD. Then 

for the non-informative prior distribution, the prediction distribution of fz  is found to be 
 

  ( )|fg z x ∝ ( ) ( ) ( )( ) 1 1 n m z y z yz y n m + +β + − ++ − + −α −α ,        (3.6) 
 

where 
1

m f
j

j
z x

=
= ∑ . 

 

 So in the conventional notation, the prediction distribution can be written as 
 

  ( ) ( )( )| ~ ,   n z 1 fz x B z y n m m y z y+ − − + +β + − + + .      (3.7) 
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 Note the prediction distribution under non-informative prior is a beta distribution. The 
moments of the distribution are given as 
 

  Mean =   a
a b′+

,                 (3.8) 
 

  Variance =
( ) ( )2 1

ab

a b a b

′

′ ′+ + +
,            (3.9) 

 

where a z y n m= + − − and ( ) ( )n z 1b m y z y′ = + +β + − + + . 
 
3.2 Prediction Distribution of TGGSD Under Beta Prior 
 Using the posterior distribution under the beta prior B (u, v), the prediction 
distribution of a single future response xf  is given by 
 

  ( )|fg x x ( )2 1
f ff n x x y y vx y u n +β − +β − ++ + − −∝ α −α .        (3.10) 

 

 Therefore ( ) ( )( )f| ~ 1,   n x 1 f f fx x B x y u n y x y v+ + − − +β + − + + + . The mean 

and variance are 
 

  Mean = 
ˆ

ˆ
a

a b′′+
,                 (3.11) 

 

  Variance =
( ) ( )2

ˆ

ˆ ˆ 1

ab

a b a b

′′

′′ ′′+ + +
,            (3.12) 

 

where     ˆ 1fa x y u n= + + − −      and     ( ) ( )fn x 1fb y x y v′′ = +β + − + + + . 
 

 Similarly, the prediction of a set of m future responses, 1 2( , ,..., )f f f f
mz x x x=   from 

the model under the beta prior can be given as:  
 

  ( )|fg z x ∝ ( ) ( ) ( ) 1( ) 1 1 n m z y z y vz y n m u + +β + − + + −+ − + + −α −α ,      (3.13) 
 

where
1

m f
j

i
z x

=
= ∑ .                                                                        

 

 Thus ( ) ( )( )| ~ ,   n z  fz x B z y n m u m y z y v+ − − + + +β + − + + . So the prediction 
distribution under the beta prior is a beta distribution. Unlike the prediction distribution 
under the non-informative prior, here the prediction distribution depends on the hyper 
parameter as expected.  The mean and variance of the distribution are 
 

   Mean =   a
a b′′′+

,                 (3.14) 
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  Variance =
( ) ( )2 1

ab

a b a b

′′′

′′′ ′′′+ + +
,            (3.15) 

 

where a z y n m u= + − − + and ( ) ( )n zb m y z y v′′′ = + +β + − + + .         
 

4.   PREDICTION DISTRIBUTION OF SIZE BIASED GGSD 
 

 Let fx  be a future response from the size biased generalized geometric series 
distribution (SBGGSD) in (1.10). So the prediction distribution of fx , conditional on the 
observed responses 1 2, ,..., nx x x , is given by 
 

  ( ) ( )1 2 1 2| , ,...,   ( | ) | , ,...,f f
n ng x x x x h x p x x x∝ α α .       (4.1) 

 
4.1 Prediction Distribution of TGGSD Under Non-Informative Prior 
 Under the non-informative prior, the prediction distribution of fx  becomes 
 

  ( ) ( ) ( )1
1 1

 11 1 1| (1 ) 1 1

n
n n

f f if
i ii

i i

x nx x n x xf n xg x x =
= =

−
+β − +β −+ −

⎡ ⎤∑ ∑ ∑⎢ ⎥∝ −αβ α −α α −α⎢ ⎥ α
⎢ ⎥⎣ ⎦

 

   ( )1 ( ) ( )1 2(1 ) 1
f ff n x y x yn x y n + +β + − ++ + − −= −αβ α −α ,                             (4.2) 

 

where  
1

n
i

i
y x

=
= ∑  and 1 2( , ,..., )nx x x x= . 

 

 Clearly    
 

  ( ) ( )( )1 f| ~ (1 ) 1,   n x 2 f n f fx x B x y n y x y+− αβ + − − +β + − + + .    (4.3) 
 

 Now let  1 2( , ,..., )f f f f
mz x x x=  be a set of m future responses from the SBGGSD in 

(1.10). Then for the non-informative prior distribution, the prediction distribution of fz  
is obtained as 
 

  ( )|fg z x ∝ 1(1 )n+−αβ ( ) ( ) ( )( ) 1 1 n m z y z yz y n m + +β + − ++ − + −α −α ,     (4.4) 
 

where 
1

m f
j

j
z x

=
= ∑ . 

 

 So in the conventional notation, the prediction distribution can be written as 
 

  ( ) ( )( )1| ~ (1 ) ,   n z 1 f nz x B z y n m m y z y+−αβ + − − + +β + − + + .   (4.5) 
 

 This is a scaled beta distribution with a scaling factor 1(1 )n+−αβ . 
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4.2 Prediction Distribution of SBGGSD Under Beta Prior 
 Using the posterior distribution under the beta prior B (u, v), the prediction 
distribution of a single future response xf is given by 
 

  ( )|fg x x ( )1 2(1 ) 1
f ff n x x y y vn x y u n +β − +β − ++ + + − −∝ −αβ α −α .      (4.6) 

 

 Therefore   
 

  ( ) ( )( )1 f| ~ (1 ) 1,   n x 1 f n f fx x B x y u n y x y v+−αβ + + − − +β + − + + + .  
 

where      
 

  ˆ 1fa x y u n= + + − −  and ( ) ( )fn x 1fb y x y v′′ = +β + − + + + . 
 

 Similarly, the prediction of a set of m future responses, ( )1 2, ,...,f f f f
mz x x x=   from 

the model under the beta prior can be given as:  
 

  ( )|fg z x ∝ ( ) ( ) ( ) 1( ) 1(1 ) 1 n m z y z y vn m z y n m u + +β + − + + −+ + − + + −−αβ α −α ,   (4.7) 
 

where 
1

m f
j

j
z x

=
= ∑ .                                                                        

 

 Thus  
 

  ( ) ( )( )| ~ (1 ) ,   n z  f n mz x B z y n m u m y z y v+−αβ + − − + + +β + − + + .  
 

 This is a scaled beta distribution with a scaling factor (1 )n m+−αβ which depends on 
the sample sizes of the realized and future responses. 
 

4.   CONCLUDING REMARKS 
 

 The prediction distributions for the future response(s) from the GGSD have been 
obtained in this paper. The non-informative as well has beta prior distributions are used 
to derive the posterior as well as the prediction distributions. Two special cases, namely 
the truncated and size bias GGSDs, are also studied. In all the cases, the prediction 
distribution follows beta distribution. Of course, the parameters of the beta distributions 
are different for different models as well as for the different choice of the prior 
distribution. However, in all cases the parameters of the prediction distribution depend on 
the size of the realized sample as well as that of the unobserved future sample. The mean 
and variance of the prediction distributions are also provided.  
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