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SUMMARY

This paper reports a radial basis function (RBF)-based Cartesian grid technique for the simulation of
two-dimensional buoyancy-driven flow in concentric annuli. The continuity and momentum equations are
represented in the equivalent stream function formulation that reduces the number of equations from three
to one, but involves higher-order derivatives. The present technique uses a Cartesian grid to discretize the
problem domain. Along a grid line, one-dimensional integrated RBF networks (1D-IRBFNs) are employed
to represent the field variables. The capability of 1D-IRBFNs to handle unstructured points with accuracy
is exploited to describe non-rectangular boundaries in a Cartesian grid, while the method’s ability to avoid
the reduction of convergence rate caused by differentiation is instrumental in improving the quality of the
approximation of higher-order derivatives. The method is applied to simulate thermally driven flows in
annuli between two circular cylinders and between an outer square cylinder and an inner circular cylinder.
High Rayleigh number solutions are achieved and they are in good agreement with previously published
numerical data. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Natural convection has been of great interest in many fields of science and engineering such as
meteorology, nuclear reactors and solar energy systems. The problem has been extensively studied
by both experimental and numerical simulations. For the latter, one needs to find a numerical
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solution of a set of partial differential equations (PDEs), namely the continuity, conservation of
momentum and conservation of energy. Such a numerical solution can be achieved by means
of discretization schemes, followed by algebraic equations solution. Numerical simulations of
buoyancy-driven flow have been conducted by a variety of numerical techniques such as finite-
difference methods (FDMs) (e.g. [1, 2]), finite-element methods (FEMs) (e.g. [3, 4]), finite-volume
methods (FVMs) (e.g. [5, 6]), boundary-element methods (BEMs) (e.g. [7–9]) and spectral tech-
niques (e.g. [10, 11]). It is noted that natural convection heat transfer in a square slot is considered
as a benchmark test problem for the assessment of new numerical solvers in computational fluid
dynamics (CFD).

The objective of discretization techniques is to reduce the PDEs to sets of algebraic equations.
To do so, the problem domain needs to be discretized into a set of finite elements (e.g. [3, 4]), a
Cartesian grid (e.g. [1, 2]) or a set of unstructured points (e.g. [12, 13]). Among these typical types
of domain discretization, generating a Cartesian grid can be seen to be the most straightforward
task. There has been a renewed interest in the development of Cartesian-grid-based techniques for
dealing with problems defined in geometrically complicated domains (e.g. [14–19]).

Over the past 15 years, the radial basis function (RBF) collocation methods have emerged as
an attractive solver for PDEs. The methods are extremely easy to use and capable of achieving a
high degree of accuracy using relatively low numbers of nodal points. They have been successful
in solving different types of differential problems encountered in applied mathematics, science and
engineering (e.g. [20–25]). However, there is still a lack of mathematical theories for specifying
optimal values of the free parameters of the RBF. The obtained system matrix is fully populated
and its condition number grows rapidly as the number of nodes is increased. As a result, in practice,
one has great difficulty in making full use of the capabilities of the RBF method. Very recently,
an efficient RBF technique based on one-dimensional integrated RBF networks (1D-IRBFNs)
approximation schemes and Cartesian grids for linear elliptic problems in irregular domains has
been reported in [26]. The problem domain is simply embedded in a Cartesian grid. The RBF
approximations at a grid node involve only points that lie on the grid lines intersected at that
point rather than the whole set of nodes, leading to a significant improvement in the matrix
condition number and computational effort. Moreover, the construction of the RBF approximations
is based on integration (the integral collocation approach) and therefore avoids the reduction in
convergence rate caused by differentiation. The 1D-IRBFN technique allows a larger number of
nodes to be employed. Numerical results have shown that it yields a fast rate of convergence with
grid refinement.

In this paper, we extend a 1D-IRBFN-based Cartesian grid technique to the simulation of
buoyancy-driven flow defined in a multiply connected domain and governed by a set of nonlinear
PDEs. The motion of a fluid is caused by the combination of density variations and gravity. The
velocity and temperature fields are closely coupled. At high values of the Rayleigh number, very thin
boundary layers are formed, making the numerical simulation difficult. The traditional FDM (e.g.
[1]) and differential-quadrature technique (DQM) (e.g. [11, 27]) require the computational domains
to be rectangular. Coordinate transformations are thus employed. Subsequently, the governing
equations are transformed into new forms that are usually more complicated. The relationships
between the physical and computational coordinates are given by a set of algebraic equations or
a set of PDEs, depending on the level of complexity of the geometry. In contrast, the present
technique succeeds in retaining the Cartesian form of the governing equations. Furthermore, they
are expressed in terms of stream function and temperature. This equivalent formulation reduces
the number of dependent variables from four (two velocity components, pressure and temperature)
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to two (stream function and temperature). However, the formulation’s well-known drawback is
that the obtained system involves higher-order derivatives and double boundary conditions. It will
be shown that such difficulties can be handled effectively with the present integral collocation
approach.

The remainder of this paper is organized as follows. Section 2 gives a brief review of the
governing equations, focusing on the stream function–temperature formulation. The 1D-IRBFN-
based Cartesian grid technique is presented in Section 3. The present method is applied to simulate
natural convection in annuli between two circular cylinders and between an outer square cylinder
and an inner circular cylinder in Section 4. Section 5 gives some concluding remarks.

2. GOVERNING EQUATIONS

Using the Boussinesq approximation, the two-dimensional dimensionless forms of the governing
equations for buoyancy-driven flow can be expressed as (e.g. [28])
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where u and v are the velocity components, p the dynamic pressure, T the temperature, and Pr and
Ra the Prandtl and Rayleigh numbers defined as Pr =�/� and Ra=�g�T L3/��, respectively, in
which � is the kinematic viscosity, � the thermal diffusivity, � the thermal expansion coefficient, g
the gravity and L and �T the characteristic length and temperature difference, respectively. In this
dimensionless scheme, the velocity scale is taken as U =√gL��T for the purpose of balancing
the buoyancy and inertial forces.

By expressing the velocity components in terms of a stream function � defined as
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the continuity equation is satisfied identically and the momentum equations reduce to

�
�t

(
�2�
�x2

+ �2�
�y2

)
+ ��

�y

(
�3�
�x3

+ �3�
�x�y2

)
− ��

�x

(
�3�

�x2�y
+ �3�

�y3

)

=
√

Pr

Ra

(
�4�
�x4

+2
�4�

�x2�y2
+ �4�

�y4

)
− �T

�x
(5)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1709–1730
DOI: 10.1002/fld



1712 N. MAI-DUY, K. LE-CAO AND T. TRAN-CONG

Using the equivalent stream function formulation, the set of four equations (1)–(4) reduces to a
set of two equations: (4) and (5).

The boundary conditions on (u,v) can be converted into the boundary conditions on stream
function and its normal derivative, namely

�= f and
��

�n
=g

where f and g are the prescribed functions and n is the direction normal to the boundary.

3. THE PROPOSED TECHNIQUE

3.1. One-dimensional IRBFNs

RBFNs are known as a universal approximator. The RBFN allows the conversion of a function to
be approximated from a low-dimensional space to a high-dimensional space in which the function
is expressed as a linear combination of RBFs:

f (x)=
m∑
i=1

wi gi (x) (6)

where m is the number of RBFs, {gi (x)}mi=1 the set of RBFs and {wi }mi=1 the set of weights to be
found.

In the traditional/direct approach, a function f is approximated by an RBFN, followed by
successive differentiations to obtain approximate expressions for its derivatives. There is a reduction
in convergence rate for derivative functions and this reduction is an increasing function of derivative
order [29].

Mai-Duy and Tran-Cong [24, 30] have proposed the use of integration to construct the RBF
approximations. A derivative of f is decomposed into RBFs, and lower-order derivatives and the
function itself are then obtained through integration:
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where I (p−1)
i (x)=∫ I (p)

i (x)dx, I (p−2)
i (x)=∫ I (p−1)

i (x)dx, . . . , I (0)
i (x)=∫ I (1)

i (x)dx and c1,
c2, . . . ,cp are the constants of integration. Numerical results have shown that the integral approach
significantly improves the quality of the approximation of derivative functions over conventional
differential approaches. The IRBF approximation scheme is said to be of pth order, denoted by
IRBFN-p, if the pth order derivative is taken as the staring point.

It has generally been accepted that, among RBFs, the multiquadric (MQ) scheme tends to result
in the most accurate approximation. The present technique implements the MQ function whose
form is

gi (x)=
√

(x−ci )2+a2i (12)

where ci and ai are the centre and the width of the i th basis function.

3.2. Simulation of buoyancy-driven flow

Consider the process of natural convection between two cylinders, one heated and the other cooled
(e.g. Figure 1). The problem domain is discretized using a Cartesian grid with a grid spacing h.
Grid points outside the domain (external points) together with internal points that fall very close—
within a distance of h/8—to the boundary are removed. The remaining grid points are taken to
be the interior nodes. The boundary nodes consist of the grid points that lie on the boundaries and
points that are generated by the intersection of the grid lines with the boundaries.

Along each grid line, 1D-IRBFNs are employed to discretize the solution and its relevant
derivatives. In what follows, the proposed method is presented in detail for the energy equation
(4) and the momentum equation (5). Special attention is given to the implementation of boundary
conditions.

3.2.1. IRBFN discretization of the energy equation. The energy equation involves the following
linear second-order differential operator:

L2= �2

�x2
+ �2

�y2
(13)

Figure 1. Circular cylinders: computational domain and discretizations: 11×11 (left) and 61×61 (right).
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Figure 2. Points on a grid line consist of interior points xi (◦) and boundary points xbi (�).

As presented earlier, an IRBFN-p scheme permits the approximation of a function and its derivatives
of orders up to p. To use only integrated basis functions, one needs to employ IRBFNs of at least
second order. A line in the grid contains two sets of points (Figure 2). The first set consists of
the interior points that are also the grid nodes (regular nodes). The values of the temperature at
the interior points are unknown. The second set is formed from the boundary nodes that do not
generally coincide with the grid nodes (irregular nodes). At the boundary nodes, the values of the
temperature are given.

For classical FDMs, the irregular points require changes of �x and �y in the formulas, and
such changes deteriorate the order of truncation error (e.g. [31]).

Unlike finite-difference and spectral approximation schemes, the IRBFNs have the capability to
handle unstructured points with high accuracy. This approximation power will be exploited here
to implement the boundary conditions. The boundary conditions are imposed through the process
of converting the network-weight space into the physical space (conversion process).

Consider a horizontal grid line (Figure 2). An important feature of the present technique is that,
along the grid line, both interior points {xi }qi=1 and boundary points {xbi }2i=1 are taken to be the
centres of the network. This work employs 1D-IRBFN-2s to discretize the temperature field T .
The conversion system is constructed as follows:(

T̂

T̂b

)
= Ĉŵ (14)

where

T̂ =(T1,T2, . . . ,Tq)
T

T̂b=(Tb1,Tb2)
T
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T
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The obtained system (14) for the unknown vector of network weights can be solved using the
singular value decomposition (SVD) technique:

ŵ= Ĉ
−1

(
T̂

T̂b

)
(15)

where Ĉ
−1

is the Moore–Penrose pseudo-inverse and ŵ is the minimal norm solution.
Taking (15) into account, the values of the first and second derivatives of T at the interior points
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−1

(
T̂

T̂b

)
(16)

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�2T1
�x2

�2T2
�x2

...

�2Tq
�x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎣

I (2)
1 (x1) · · · I (2)

m (x1) 0 0

I (2)
1 (x2) · · · I (2)

m (x2) 0 0

... · · · ...
...

...

I (2)
1 (xq) · · · I (2)

m (xq) 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ Ĉ
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or in compact forms

�̂T
�x

=D̂1x T̂ + k̂1x (18)

and

�̂2T
�x2

=D̂2x T̂ + k̂2x (19)

where the matrices D̂1x and D̂2x consist of all but the last two columns of the product of two
matrices on the right-hand side of (16) and (17), and k̂1x and k̂2x are obtained from multiplying
the vector T̂b by these last two columns. It is noted that k̂1x and k̂2x are the vectors of known
quantities related to boundary conditions.

It can be seen from (18) and (19) that the IRBFN approximations of �T/�x and �2T/�x2 at the
interior points include information about the inner and outer boundaries (locations and boundary
values). Thus, it remains to force only these approximations to satisfy the governing equation.
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The incorporation of the boundary points into the set of centres has several advantages:

• It allows the two sets of centres and collocation points to be the same, i.e. {ci }mi=1≡{{xi }qi=1∪
{xbi }2i=1}. Numerical investigations [24, 32] have indicated that when these two sets coincide,
the RBF approximation scheme tends to result in the most accurate numerical solution.

• It allows the use of IRBFNs with a fixed order (IRBFN-2), regardless of the shape of the
domain.

In the same manner, one can obtain the IRBF expressions for �T/�y and �2T/�y2 at the interior
points along a vertical line.

As with FDMs, FVMs, BEMs and FEMs, the IRBF approximations will be gathered together to
form the global matrices for the discretization of the PDE. By collocating the governing equation
at the interior points, a square system of algebraic equations is obtained, which is solved for the
approximate temperature at the interior points.

3.2.2. IRBFN discretization of the momentum equation. The momentum equation involves the
following linear fourth-order differential operator:

L4= �4

�x4
+2

�4

�x2�y2
+ �4

�y4
(20)

At each boundary node, the solution is required to satisfy two prescribed values, � and ��/�n.
It is straightforward to obtain the values of ��/�x and ��/�y at the boundary nodes from the
prescribed conditions. The double boundary conditions are implemented through the conversion
process of the network-weight space into the physical space.

Along each grid line, the set of centres also consists of the interior points and the boundary points.
The addition of extra equations to the conversion system for representing derivative boundary
conditions is offset by the generation of additional unknowns of the integral collocation approach.
Consider a horizontal grid line (Figure 2). The present work employs 1D-IRBFN-4s to approximate
the variable �. The conversion system is given by⎛⎜⎜⎜⎜⎝
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Ĉ=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I (0)
1 (x1) · · · I (0)

m (x1) x31/6 x21/2 x1 1

I (0)
1 (x2) · · · I (0)

m (x2) x32/6 x22/2 x2 1

... · · · ...
...

...

I (0)
1 (xq) · · · I (0)

m (xq) x3q/6 x2q/2 xq 1

I (0)
1 (xb1) · · · I (0)

m (xb1) x3b1/6 x2b1/2 xb1 1

I (0)
1 (xb2) · · · I (0)

m (xb2) x3b2/6 x2b2/2 xb2 1

I (1)
1 (xb1) · · · I (1)

m (xb1) x2b1/2 xb1 1 0

I (1)
1 (xb2) · · · I (1)

m (xb2) x2b2/2 xb2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and m=q+2.

The minimal norm solution of (21) can be obtained by the SVD technique:

ŵ= Ĉ
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−1

⎛⎜⎜⎜⎜⎝
�̂

�̂b

�̂�b

�x

⎞⎟⎟⎟⎟⎠ (23)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�3�1

�x3

�3�2

�x3

...

�3�q

�x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎣

I (3)
1 (x1) · · · I (3)

m (x1) 1 0 0 0

I (3)
1 (x2) · · · I (3)

m (x2) 1 0 0 0

... · · · ...
...

...

I (3)
1 (xq) · · · I (3)

m (xq) 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ Ĉ
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⎛⎜⎜⎜⎜⎝
�̂

�̂b

�̂�b

�x

⎞⎟⎟⎟⎟⎠ (25)

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

��1

�x
��2

�x
...

��q

�x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I (1)
1 (x1) · · · I (1)

m (x1) x21/2 x1 1 0

I (1)
1 (x2) · · · I (1)

m (x2) x22/2 x2 1 0

... · · · ...
...

...

I (1)
1 (xq) · · · I (1)

m (xq) x2q/2 xq 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Ĉ

−1

⎛⎜⎜⎜⎜⎝
�̂

�̂b

�̂�b

�x

⎞⎟⎟⎟⎟⎠ (26)

Equations (23)–(26) can be rewritten in a compact form:

�̂l�
�xl

=D̂lx �̂+ k̂lx (27)

where the matrices D̂lx (l={1,2,3,4}) consist of all but the last four columns of the product
of two matrices on the right-hand side of (23)–(26), and k̂lx come from multiplying the vector
(�̂b, �̂�b/�x)T by these last four columns. It is noted that k̂lx are the vectors of known quantities
related to boundary conditions.

Since the discretization used has a structured form, the process of joining ‘local’ 1D-IRBF
approximations together (assemblage process) is quite straightforward. For a special case of rect-
angular domain, the IRBF approximations over a 2D domain can simply be constructed using the
tensor direct product.

The fourth- and also third-order mixed derivatives are computed using the following relations:

�4�

�2x�2y
= 1

2

[
�2

�x2

(
�2�
�y2

)
+ �2

�y2

(
�2�
�x2

)]
(28)

�3�

�2x�y
= �2

�x2

(
��

�y

)
(29)

�3�
�x�y2

= �2

�y2

(
��

�x

)
(30)
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Expressions (28)–(30) reduce the computation of mixed derivatives to that of lower-order pure
derivatives for which IRBFNs involve integration with respect to x or y only. The additional work
here is the computation of �2(F)/�x2 and �2(F)/�y2, where F is a derivative function of � (i.e.
�2�/�y2,�2�/�x2,��/�y and ��/�x). It can be seen that the discretization of (5) requires the
values of the mixed derivatives at the interior points. IRBFN-2s can be employed here to construct
the approximations for �2(F)/�x2 and �2(F)/�y2. Both sets of centres and collocation points of
these second-order networks consist of the interior nodes only.

The IRBF expressions for derivatives are now expressed in terms of the values of � at the
interior points, and they already satisfy the boundary conditions. These nodal variable values are
determined by forcing the approximate solution to satisfy the momentum equation at the interior
points. Similar to the energy equation, the resultant system of algebraic equations here is of size
nip×nip, where nip is the number of interior points of the domain.

3.2.3. Solution procedures. An important feature of natural convection is that the temperature
and velocity fields are closely coupled. The energy and momentum equations must be solved
simultaneously to find the values of the temperature and stream function at the discrete points
within the domain. Owing to the presence of convective terms, the obtained algebraic equations
for the discrete solution are nonlinear. Two basic approaches are adopted here to handle this
nonlinearity.

3.2.4. A steady-state solution coupled approach. All time derivative terms in the governing equa-
tions are dropped out. We employ a trust region dogleg technique (e.g. [33]) to solve the discretized
nonlinear governing equations for the whole set of the variables. The main advantages of these
techniques over the Gauss–Newton methods are that they are capable of handling the cases where
the starting point is far from the solution and the Jacobian matrix is singular.

3.2.5. A time-dependent decoupled approach. The nonlinear equation set is solved in a marching
manner.

1. Guess initial values of T,� and their first-order spatial derivatives at time t=0.
2. Discretize the governing equations in time using a first-order accurate finite-difference

scheme, where the diffusive and convective terms are treated implicitly and explicitly,
respectively.

3. Discretize the governing equations in space using 1D-IRBF schemes: solve the energy
equation (4) for T and solve the momentum equation (5) for �. The two equations are
solved separately in order to keep matrix sizes to a minimum.

4. Check to see whether the solution has reached a steady state:

CM=
√∑nip

i=1(�
(k)
i −�(k−1)

i )2√∑nip
i=1(�

(k)
i )2

<� (31)

where k is the time level and � is the tolerance.
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5. If it is not satisfied, advance time step and repeat from step 2. Otherwise, stop the computation
and output the results.

Each approach has its own particular strengths. For example, the former can be seen to be less
parametric (no time steps specified here), while the latter allows the break-up of the problem
into the solution of the energy equation and the solution of the momentum equation (two smaller
subproblems at each iteration).

4. NUMERICAL RESULTS

The present method is applied to the simulation of buoyancy-driven flow in annuli. A wide range
of the Rayleigh number is considered. The computed solution at the lower and nearest value of
Ra is taken to be the initial solution. The MQ-RBF width is simply chosen to be the grid size h.

4.1. Natural convection in a concentric annulus between two circular cylinders

Consider the natural convection between two concentric cylinders that are separated by a distance
L , the inner cylinder heated and the outer cylinder cooled (Figure 1). A comprehensive review of
this problem can be found in [1]. Most cases have been reported with Pr=0.7 and L/Di =0.8, in
which Di is the diameter of the inner cylinder. These conditions are also employed in the present
work. Kuehn and Goldstein [1] have also reported finite-difference results for Ra=102–7×104.
Using the DQM, Shu [11] has provided the benchmark special results for values of the Rayleigh
number in the range of 102–5×104.

One typical quantity associated with this type of flow is the average equivalent conductivity
denoted by k̄eq. This quantity is defined as [1, 11]

k̄eq= − ln(Do/Di)

2�

∮
�T
�n

ds (32)

in which Do is the diameter of the outer cylinder.
The stream function and its normal derivative are set to zero along the inner and outer cylinders.

The temperature is held at T =1 at the inner cylinder and T =0 at the outer cylinder. We employ
a number of uniform Cartesian grids, namely 11×11,21×21, . . . ,61×61, to study the behaviour
of convergence of the method. Both coupled and decoupled approaches are applied here to solve
the nonlinear equation set. The codes are written using MATLAB. For the coupled approach, it
takes about 5–10 iterations to obtain a converged solution. For the decoupled approach, much
more iterations are required as shown in Figure 3. However, a single iteration of the decoupled
approach consumes much less central processing unit time than that of the coupled approach.
Overall, the decoupled approach is more efficient than the coupled approach. For example, in the
case of simulating the flow at Ra=104 using a grid of 41×41, the decoupled approach is about
9.2 times faster than the coupled approach.

The condition numbers of the system matrix associated with the harmonic (13) and biharmonic
(20) operators in the governing equations (4) and (5) are reported in Table I.

Results concerning k̄eq together with those of Kuehn and Goldstein [1] and of Shu [11] for
various Rayleigh numbers from 102 to 7×104 are presented in Tables II–VIII. It can be seen
that there is good agreement between these numerical solutions. For each Rayleigh number, the
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Figure 3. Circular cylinders, 61×61, decoupled approach: iterative convergence. Time steps used are 0.5
for Ra={102,103,3×103}, 0.1 for Ra={6×103,104} and 0.05 for Ra={5×104,7×104}. The values of
CM become less than 10−12 when the numbers of iterations reach 58, 154, 224, 1276, 1541, 5711 and

5867 for Ra={102,103,3×103,6×103,104,5×104,7×104}, respectively.

Table I. Circular cylinders: condition numbers of the RBF matrices
associated with the harmonic and biharmonic operators.

Grid Cond(L2T ) Cond(L4�)

11×11 1.3×101 7.4×101

21×21 1.2×102 5.0×103

31×31 3.3×102 3.3×104

41×41 5.1×102 7.9×104

51×51 7.5×102 1.6×105

61×61 1.0×103 3.2×105

Table II. Circular cylinders: convergence of k̄eq with grid
refinement for the flow at Ra=102.

Grid Outer cylinder (keqo) Inner cylinder (keqi)

11×11 0.969 0.972
21×21 0.994 0.989
31×31 0.997 0.997
41×41 0.999 0.999

FDM [1] 1.002 1.000
DQM [11] 1.001 1.001
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Table III. Circular cylinders: convergence of k̄eq with
grid refinement for the flow at Ra=103.

Grid Outer cylinder (keqo) Inner cylinder (keqi)

11×11 1.133 1.046
21×21 1.072 1.069
31×31 1.078 1.077
41×41 1.080 1.079
51×51 1.081 1.080

FDM [1] 1.084 1.081
DQM [11] 1.082 1.082

Table IV. Circular cylinders: convergence of k̄eq with
grid refinement for the flow at Ra=3×103.

Grid Outer cylinder (keqo) Inner cylinder (keqi)

11×11 1.745 1.200
21×21 1.365 1.378
31×31 1.387 1.386
41×41 1.391 1.390
51×51 1.393 1.393

FDM [1] 1.402 1.404
DQM [11] 1.397 1.397

Table V. Circular cylinders: convergence of k̄eq with grid
refinement for the flow at Ra=6×103.

Grid Outer cylinder (keqo) Inner cylinder (keqi)

31×31 1.698 1.702
41×41 1.704 1.705
51×51 1.709 1.709
61×61 1.711 1.711

FDM [1] 1.735 1.736
DQM [11] 1.715 1.715

convergence of the average equivalent conductivity with grid refinement is fast, e.g. the solution
keqo for the two Rayleigh numbers (i.e. Ra=104 and 5×104) converges as O(h2.71) and O(h3.36),
in which h is the grid spacing (errors are computed relative to the spectral results). Variations of
the local equivalent conductivity on the inner and outer cylinder surfaces using a grid of 51×51
for Ra=103 and 5×104 are shown in Figures 4 and 5, respectively. It can be seen that they are
compared well with those of Kuehn and Goldstein [1].
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Table VI. Circular cylinders: convergence of k̄eq with
grid refinement for the flow at Ra=104.

Grid Outer cylinder (keqo) Inner cylinder (keqi)

41×41 1.961 1.967
51×51 1.969 1.971
61×61 1.973 1.973

FDM [1] 2.005 2.010
DQM [11] 1.979 1.979

Table VII. Circular cylinders: convergence of k̄eq with
grid refinement for the flow at Ra=5×104.

Grid Outer cylinder (keqo) Inner cylinder (keqi)

41×41 3.089 3.045
51×51 2.936 2.946
61×61 2.922 2.941

FDM [1] 2.973 3.024
DQM [11] 2.958 2.958

Table VIII. Circular cylinders: convergence of k̄eq with
grid refinement for the flow at Ra=7×104.

Grid Outer cylinder (keqo) Inner cylinder (keqi)

41×41 3.465 3.254
51×51 3.241 3.187
61×61 3.167 3.174

FDM [1] 3.226 3.308

Figure 6 shows the streamlines and isotherms of the flow for Ra={103,6×103,5×104,7×104}
using a grid of 51×51. Each plot contains 21 contour lines whose levels vary linearly from the
minimum to maximum values. The plots look reasonable in comparison with those of the FD and
DQ methods.

4.2. Natural convection in a concentric annulus between an outer square cylinder and an inner
circular cylinder

There are relatively few papers on the numerical study of natural convection heat transfer from a
heated inner circular cylinder to its cooled square enclosure. Moukalled and Acharya [34] have
employed a control volume-based numerical technique to solve the governing equations in a
boundary-fitted coordinate system. The curvilinear grid that maps the physical domain to a uniform
computational domain is obtained by numerically solving a set of Poisson equations related to the
two coordinate systems. Shu and Zhu [27] have introduced a super elliptic function to represent the
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Figure 4. Circular cylinders: local equivalent conductivities for Ra=103 by 1D-IRBFN and FDM.
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Figure 5. Circular cylinders: local equivalent conductivities for Ra=5×104 by 1D-IRBFN and FDM.

outer square boundary in order to compute the geometrical parameters in an analytic manner. It can
be seen that the transformation of the physical into the computational coordinates for this problem
is much more complicated than that for the previous problem. On the other hand, the present
technique solves the governing equations in the Cartesian coordinate system and therefore does
not require any extra work when changing the shape of the domain here. A typical discretization
is shown in Figure 7.

An aspect ratio of R/L=0.2 (L the side length of the outer square cylinder), Pr=0.71 and
Ra={104,5×104,105,5×105,106} are considered here. Boundary conditions are specified in the
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Figure 6. Circular cylinders: contour plots of temperature (left) and stream function (right) for four
different Rayleigh numbers using a grid of 51×51.
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Figure 7. Circular and square cylinders: computational domain and discretization.

Table IX. Circular and square cylinders: convergence of
the average Nu number on the outer square cylinder

with grid refinement for different Ra values.

Ra

Grid 104 5×104 105 5×105 106

41×41 3.223 4.040 4.883 7.129 8.684
51×51 3.224 4.045 4.895 7.433 8.700
61×61 3.224 4.047 4.901 7.488 8.726

DQM [27] 3.24 4.86 8.90
FVM [34] 3.331 5.08 9.374

same way as those of the previous problem. Calculations are conducted on three uniform Cartesian
grids of 41×41, 51×51 and 61×61. The obtained results are presented in the form of streamlines,
isotherms (Figure 8) and the average Nusselt number (Table IX). In Figure 8, each plot contains
21 contour lines whose levels vary linearly from the minimum to maximum values. Following the
work of Moukalled and Acharya [34], the local heat transfer coefficient is defined as

h=−k�T/�n
�T

(33)
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Figure 8. Circular and square cylinders: contour plots of temperature (left) and stream function (right) for
four different Rayleigh numbers using a grid of 61×61.
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where k is the thermal conductivity. The average Nusselt number (the ratio of the temperature
gradient at the wall to a reference temperature gradient) is computed by

N̄u= h̄

k
(34)

where h̄=−∮ �T /�n ds. In Moukalled and Acharya [34], the computational domain is taken as
one-half of the physical domain owing to the symmetry about the vertical axis of the flow. The
values of N̄u in the present work (Table IX) are divided by 2 for comparison purposes. It can be
seen that the RBF results are in good agreement with those of Moukalled and Acharya [34] and
of Shu and Zhu [27].

4.3. Discussion

4.3.1. Comparison with other discretization techniques. The present method has several advan-
tages over the FDM [1], FVM [34] and DQM [11, 27]: (i) no difficulties are added when the level of
complexity of the geometry increases; (ii) given a spatial discretization, the size of the discretized
equation set for the velocity field is reduced by half; and (iii) the governing equations are retained
in their Cartesian form. Numerical results have shown that the proposed method achieves a fast rate
of convergence with grid refinement. On the other hand, the present RBF matrices are unsymmetric
and not as sparse as those yielded through the FDM and FVM.

4.3.2. Comparison with two-dimensional RBF-based approaches. Generally, a two-dimensional
RBF approach (i.e. RBFs are defined over the entire 2D domain) is expected to yield more accurate
results than a one-dimensional RBF approach (i.e. RBFs cover single grid lines). However, as shown
by theoretical results, the former leads to the interpolation matrix whose condition number grows
exponentially with decreasing separation distance [35]. As a result, in practice, one is able to apply
a two-dimensional approach with a few hundred collocation points [36]. As shown earlier (Table
I), the condition number of the 1D-IRBF matrix associated with the harmonic operator is only in
the range of O(101)–O(103) for grids with densities of 11×11–61×61. The proposed approach
thus facilitates the use of much larger numbers of nodes. In the context of fluid-flow problems,
the solutions usually have very complex shapes and one would expect to use a sufficiently large
number of nodes for an accurate simulation. The present approach appears to be more attractive
than the original approach for such classes of problems.

5. CONCLUDING REMARKS

In this paper, we have successfully implemented a numerical scheme based on Cartesian grids
and 1D-IRBFNs for the simulation of natural convection in annuli. The attractiveness of the
present technique lies in the simplicity of the preprocessing, the ease of implementation and the
achievement of high Rayleigh number solutions. This study further demonstrates the great potential
of the RBF technique for solving complex fluid-flow problems.
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