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Abstract This paper presents a second-order (instead of the usual first-order) conti-

nuity non-overlapping domain decomposition (DD) technique for numerically solving

second-order elliptic problems in two-dimensional space. The proposed DD tech-

nique uses integrated Chebyshev polynomials to represent the solution in subdo-

mains. The constants of integration are utilized to impose continuity of the second-

order normal derivative of the solution at the interior points of subdomain interfaces.

To also achieve a C2 function at the intersection of interfaces, two additional un-

knowns are introduced at each intersection point. Numerical results show that the

present domain decomposition method yields a higher level of accuracy than con-

ventional DD techniques based on differentiated Chebyshev polynomials.

Keywords: Non-overlapping domain decomposition; Second-order continuity; Collo-

cation point; Integrated Chebyshev polynomials; Second-order elliptic problems

1 Introduction

Domain decomposition techniques (cf. [1], [2]) are designed to deal with large-scale

problems. The problem domain is decomposed into several subdomains, and each

subdomain can be analyzed separately. A discretization method used for solving

each subdomain is similar to that for a single domain. The use of subdomains

facilitates an improvement in the condition number of the system matrix resulting

from the discretization of the governing equation. For spectral methods, domain

decompositions can also be used for the purpose of handling complex geometries.

With the recent emergence of parallel computers, the DD techniques have become

more attractive because they allow the parallel implementation of discretization

schemes.

The basic part of any DD technique lies in the way employed to match the com-
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puted solutions on contiguous regions. The choice between non-overlapping and

overlapping subdomains has a profound effect on the computing strategy adopted.

In an overlapping domain technique, only continuity of the function is enforced.

The interface solution is solved via an iterative procedure, in which nodal function

values at interfaces are updated using previous approximate interior solutions of

their neighbouring subdomain. The rate of convergence is an increasing function of

the overlap.

In a non-overlapping domain method, continuity of the function and its normal

derivative is imposed at selected points along the interfaces. The computed solution

is thus considered to be C1 continuous across the interfaces. For the case of many

subdomains, there are further complications due to the presence of interior inter-

section points. There are two normal derivatives at an interior corner point, but

one has only one equation to enforce their continuity. As a result, special treatment

is required. Conventionally, one of these two normal derivatives is left out of the

solution process [3].

Spectral methods (cf. [3], [4], [5]) have become increasingly popular in the compu-

tation of continuum mechanics problems. For smooth problems, they feature the

property of spectral accuracy. In the context of pseudospectral techniques, given

a tensor product grid, integrated Chebyshev polynomials were found to be more

accurate than differentiated Chebyshev polynomials especially for the solution of

high-order problems ([6], [7]).

In our previous work [8], a numerical scheme based on non-overlapping subdomains

and integrated Chebyshev polynomials was presented in detail for the solution of

one-dimensional elliptic problems. In the present work, the scheme is further de-

veloped for the case of two-dimensional elliptic problems with many subdomains.

Particular emphasis is placed on the treatment for the difficulties in enforcing con-
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tinuity conditions at the interior corner points (two equations, three unknowns).

Karageorghis [9] proposed a fully conforming spectral collocation scheme, where the

approximate solution is C1 continuous not only at the interior points but also at

both ends of the interfaces. Unlike DD techniques based on differential formulations

(e.g. [3], [9], [10], [11]), the present integral DD technique achieves continuity in the

second-order normal derivative of the solution everywhere on the interfaces.

An outline of the paper is as follows. A brief review of the integral collocation

formulation using Chebyshev polynomials is given in Section 2. Section 3 describes

the proposed DD technique based on integrated Chebyshev polynomials for second-

order elliptic problems. Numerical results are presented in Section 4 to verify the

formulation and to demonstrate the attractiveness of the proposed DD technique.

Section 5 gives some concluding remarks.

2 The integral collocation formulation for single

domains

For simplicity, the integral formulation is presented in detail through the solution

of a Poisson equation

∇2u = b(x, y), (1)

defined on a square domain −1 ≤ x, y ≤ 1 with Dirichlet boundary conditions.

Unlike conventional differential collocation formulations, the construction of the

approximations for the field variable u here is based on integration. The second-

order derivatives of the variable u are approximated using truncated Chebyshev

series which are then integrated to obtain expressions for the first-order derivatives

and the function itself.
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The problem domain is discretized using a tensor product grid formed by the Gauss-

Lobatto points

xi = − cos

(
(i − 1)π

Nx − 1

)
, i = 1, 2, · · · , Nx (2)

yi = − cos

(
(i − 1)π

Ny − 1

)
, i = 1, 2, · · · , Ny. (3)

Along a grid line that runs parallel to the x−axis, the variable u and its derivatives

with respect to x are approximated by

∂2u

∂x2
=

Nx∑

k=1

akTk(x) =
Nx∑

k=1

akI
(2)
k (x), (4)

∂u

∂x
=

Nx∑

k=1

akI
(1)
k (x) + c1, (5)

u =
Nx∑

k=1

akI
(0)
k (x) + c1x + c2, (6)

where a1, a2, · · · , aNx
are expansion coefficients, c1 and c2 integration constants,

I
(1)
k (x) =

∫
I

(2)
k (x)dx, I

(0)
k (x) =

∫
I

(1)
k (x)dx, and Tk(x) or I

(2)
k (x) the Chebyshev

polynomial of the first kind defined as

Tk(x) = cos((k − 1) arccos(x)). (7)

To have the same unknown coefficient vector as (6), expressions (4) and (5) are

rewritten as

∂2u

∂x2
=

Nx∑

k=1

akI
(2)
k (x) + c10 + c20, (8)

∂u

∂x
=

Nx∑

k=1

akI
(1)
k (x) + c11 + c20. (9)

For two or higher dimensional problems, it would be more convenient to work in

physical space than in spectral space. In currently used notations, ̂ and ˜ denote
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vectors/matrices that are associated with a grid line (one-dimensional domain) and

the whole set of grid lines (two-dimensional domain), respectively.

Since (6) contains two extra coefficients c1 and c2, one can add two extra equations to

the system that converts the spectral space into the physical space. These additional

equations can be utilized to represent the values of ∂u/∂x and ∂2u/∂x2 at both ends

of the line. The use of ∂u/∂x and ∂2u/∂x2 as extra information facilitates an effective

implementation of Neumann boundary conditions and imposition of the differential

equation on the boundaries, respectively. In the context of domain decompositions,

it will be shown that satisfaction of the governing equation on the boundaries results

in a C2 solution across the interfaces. The conversion system for the case of using

∂2u/∂x2 is thus described in detail here

Ĉ




â

c1

c2




=




û

∂2u1

∂x2

∂2uNx

∂x2




, (10)

where â = (a1, a2, · · · , aNx
)T , û = (u1, u2, · · · , uNx

)T , and Ĉ is the conversion matrix

of dimension (Nx + 2) × (Nx + 2) defined as

Ĉ =




Ĥ

K̂


 , (11)

in which Ĥ and K̂ are Nx × (Nx +2) and 2× (Nx +2) matrices that are constructed

using (6) for (x1, x2, · · · , xNx
) and (8) for (x1, xNx

), respectively. Assume that Ĉ is

invertible, solving (10) yields




â

c1

c2




= Ĉ−1




û

∂2u1

∂x2

∂2uNx

∂x2




. (12)
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Taking (12) into account, the evaluation of (8) and (9) at the grid points along an

x−line yields

∂̂ku

∂xk
= D̂(kx)




û

∂2u1

∂x2

∂2uNx

∂x2




, k = 1, 2, (13)

where ∂̂ku
∂xk =

(
∂ku1

∂xk , ∂ku2

∂xk , · · · ,
∂kuNx

∂xk

)T

, and D̂(kx) = I(k)Ĉ−1 in which the matrices

I(k) are constructed via (9) for k = 1 and via (8) for k = 2 and they are of dimension

Nx × (Nx + 2).

Expression (13) can be rewritten as

∂̂ku

∂xk
= D̂

(kx)
1 û + D̂

(kx)
2




∂2u1

∂x2

∂2uNx

∂x2


 , (14)

where D̂
(kx)
1 and D̂

(kx)
2 are the first Nx columns and the last two columns of the

matrix D̂(kx), respectively.

The Chebyshev approximations for ∂ku/∂xk (k = 1, 2) over two-dimensional grids

can be conveniently constructed by means of Kronecker tensor products [5]. Assume

that the grid nodes are numbered from bottom to top and from left to right, the

values of ∂ku/∂xk at the grid points will be computed by

∂̃ku

∂xk
= D̃(kx)ũ + l̃(kx), (15)
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where

∂̃ku

∂xk
=

(
∂ku1

∂xk
,
∂ku2

∂xk
, · · · ,

∂kuNxNy

∂xk

)T

, (16)

ũ = (u1, u2, · · · , uNxNy
)T , (17)

D̃(kx) = D̂
(kx)
1 ⊗ 1̃, (18)

l̃(kx) =
(
D̂

(kx)
2 ⊗ 1̂

)
·

(
1̂ ⊗

[(
∂̂2u

∂x2

)

L

,

(
∂̂2u

∂x2

)

R

])
, (19)

in which ⊗ denotes the Kronecker tensor product, · the element-by-element product

of two matrices, 1̃ the unit matrix of dimension Ny ×Ny, 1̂ the Nx × 1 vector of all

ones,
(

∂̂2u
∂x2

)
L

and
(

∂̂2u
∂x2

)
R

the vectors of values of ∂2u
∂x2 along the left and right sides

of the domain. It is straightforward to compute the two vectors
(

∂̂2u
∂x2

)
L

and
(

∂̂2u
∂x2

)
R

using the following relation

∂2u

∂x2
= b −

∂2u

∂y2
. (20)

and hence l̃(kx) are known vectors.

In a similar way, one finds the Chebyshev approximations for the first- and second-

order derivatives of u with respect to y. The values of u at the interior points are

determined by solving the following determinate system of algebraic equations

Ã(ip,ip)ũ(ip) = f̃(ip), (21)

where

Ã(ip,ip) = D̃
(2x)
(ip,ip) + D̃

(2y)
(ip,ip), (22)

f̃(ip) = b̃(ip) − l̃
(2x)
(ip) − l̃

(2y)
(ip) − Ã(ip,bp)ũ(bp), (23)

in which bp and ip denote the boundary and interior points, respectively.
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3 The proposed domain-decomposition technique

The problem domain can be irregular to the extent that it can be domain-decomposed

into a number of regular domains where the use of tensor product grids is feasible.

The solution procedure of a substructuring technique involves two main steps: (i)

Find the solution on subdomain interfaces and (ii) Find the solution in subdomains.

The present substructuring technique is based on the use of integrated Chebyshev

polynomials to represent approximate solutions in subdomains. It provides a C2

continuity of the approximate solution across the interfaces. The method is first

presented for the simplest case of two subdomains, and then extended to the case

of multiple subdomains.

3.1 Two subdomains

A simple domain decomposition for a rectangular domain is illustrated in Figure

1. On the interface Γ between two subdomains I and II, one can choose unknown

values in the form of a Dirichlet-Dirichlet type or a Neumann-Dirichlet type. The

present work employs the Dirichlet-Dirichlet type

uI
k = uII

k = uΓ
k , k = {2, 3, · · · , Ny − 1}. (24)

These unknowns {uΓ
k}

Ny−1
k=2 will be determined by matching the first-order normal

derivative of u at the interface Γ

(
∂uk

∂x

)I

=

(
∂uk

∂x

)II

, k = {2, 3, · · · , Ny − 1}. (25)

Let fp denote the interior points on Γ. To form the interface system (25) (the so-

called Schur complement system), one needs to compute the vector
(

∂̃u
∂x

)
associated
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with each of two subdomains at fp in terms of nodal boundary values of u (i.e.

ũ(bp)).

Using (15), the values of ∂u/∂x along Γ are computed by

(
∂̃u

∂x

)

(fp)

= D̃
(1x)
(fp,bp)ũ(bp) + D̃

(1x)
(fp,ip)ũ(ip) + l̃

(1x)
(fp). (26)

Taking (21) into account, the second term on the right-hand side of (26) is replaced

with

D̃
(1x)
(fp,ip)ũ(ip) = −D̃

(1x)
(fp,ip)Ã

−1
(ip,ip)Ã(ip,bp)ũ(bp) + D̃

(1x)
(fp,ip)Ã

−1
(ip,ip)

(
b̃(ip) − l̃

(2x)
(ip) − l̃

(2y)
(ip)

)
.

(27)

In (26) and (27), there remain three terms, namely l̃
(1x)
(fp), l̃

(2x)
(ip) and l̃

(2y)
(ip) , which contain

the values of
(
b − ∂2u/∂t2

)
(28)

(t− is the direction tangent to a local boundary) at the interior points on the four

sides of each subdomain. These values are known on the three actual boundaries,

but unknown on the interface Γ. The following are two approaches proposed for the

approximation of ∂2u/∂t2 on Γ

3.1.1 Approach 1

This approach uses differential collocation formulations and hence one can have

∂̂2u

∂t2
=

∂̂2u

∂y2
= D2û = D2




uΓ
1

uΓ
2

· · ·

uΓ
Ny




, (29)
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where D is the differentiation matrix whose entries are explicitly known (see, e.g.,

[3], [4], [5]).

3.1.2 Approach 2

This approach is based on the integral collocation formulation

∂̂2u

∂t2
=

∂̂2u

∂y2
= D̂(2y)




û

∂2u1

∂y2

∂2uNy

∂y2




= D̂(2y)




uΓ
1

uΓ
2

· · ·

uΓ
Ny

∂2uΓ

1

∂y2

∂2uΓ

Ny

∂y2




, (30)

in which the values of ∂2uΓ
1/∂y2 and ∂2uΓ

Ny
/∂y2 are easily obtained using (1).

For calculating the values of ∂2u/∂t2 at the interior point on Γ, the first and last

rows of D2 in (29) and of D̂(2y) in (30) are removed.

It can be seen that the two vectors
(

∂̃u
∂x

)I

(fp)
and

(
∂̃u
∂x

)II

(fp)
are now written in terms

of nodal boundary values of u. By substituting them into (25) and then imposing

Dirichlet boundary conditions, one obtains a determinate system of equations for the

interface unknown vector ũfp =
(
uΓ

2 , uΓ
3 , · · · , uΓ

Ny−1

)T

. Once this vector is found, it

is straightforward to obtain the solution in subdomains by using (21).
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3.1.3 A C2 solution across the interface

From the above process, i.e. (24), (25), (10) and (20), the following constraints are

imposed at the interior points on the interface Γ

uI
k = uII

k , (31)
(

∂uk

∂x

)I

=

(
∂uk

∂x

)II

, (32)

(
∂2uk

∂x2

)I

= bI
k −

(
∂2uk

∂y2

)I

, (33)

(
∂2uk

∂x2

)II

= bII
k −

(
∂2uk

∂y2

)II

, (34)

where k = 2, 3, · · · , Ny − 1.

Consider (33) and (34). Approximations for
(

∂2u
∂y2

)I

and
(

∂2u
∂y2

)II

along the interface

Γ are identical because they are based on the same information. On the other hand,

one also has bI
k = bII

k . The two equations (33) and (34) thus lead to

(
∂2uk

∂x2

)I

=

(
∂2uk

∂x2

)II

, k = 2, 3, · · · , Ny − 1. (35)

Hence, equations (31), (32) and (35) indicate that the present DD technique provides

a C2 solution across the interface Γ.

3.2 Multiple subdomains

The solution procedure for the case of two subdomains is now extended to the case

of multiple subdomains. Special attention needs to be paid to the treatment for

continuity conditions at the interior corner points.

It can be seen from (29), Approach 1 introduces the values of u at both ends of a line.
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In the case of many subdomains, this approach thus produces one unknown value

at each interior corner point, and correspondingly one needs to add one additional

equation to the interface system. Possible choices for this equation include

(
∂u

∂x

)

L

=

(
∂u

∂x

)

R

, (36)

(
∂u

∂y

)

B

=

(
∂u

∂y

)

T

, (37)

1

2

((
∂2u

∂x2

)

L

+

(
∂2u

∂x2

)

R

)
+

1

2

((
∂2u

∂y2

)

B

+

(
∂2u

∂y2

)

T

)
= b, (38)

where L,R,B, T stand for left, right, bottom and top of the interior corner point,

respectively. Among them, it can be seen that only (38) uses information from both

x− and y− directions. To investigate the effect of continuity order of the approx-

imate solution at the interior corner points, (38) is chosen here. The computed

solution is seen to be C2 continuous at the interior points on the interfaces and “C0

continuous” at the interior corner points.

For Approach 2, there are three values (u, ∂2u/∂x2 and ∂2u/∂y2) at each interior

corner point as shown in (30). To achieve a C2 solution at an interior corner point,

the basic idea here is to also consider the values of ∂2u/∂x2 and ∂2u/∂y2 as two

additional unknowns. Since the number of unknowns becomes greater (3 instead of

1), one can add the following three independent equations

(
∂u

∂x

)

L

=

(
∂u

∂x

)

R

, (39)

(
∂u

∂y

)

B

=

(
∂u

∂y

)

T

, (40)

∂2u

∂x2
+

∂2u

∂y2
= b, (41)

to the interface system. In other words, the solution u and its second-order deriva-

tives in the x− and y− directions are required to be continuous, while the first-order

derivatives ∂u/∂x and ∂u/∂y are forced to match at the interior corner point. It
13



can be seen this treatment provides a C2 solution at the interior corner points. The

accuracy of Approach 2 is expected to be better than that of Approach 1.

For problems with Neumann boundary conditions, a slight modification for the

conversion process is required. The extra equation at a point on the actual boundary

is utilized to implement a normal derivative boundary condition. Since the normal

derivative ∂u/∂n (n−the direction normal to the local boundary) is prescribed along

the boundary, this equation does not introduce any new unknowns. The other extra

equation at a point on the interface is employed as before and hence continuity of

the second-order derivatives of u across the interface is maintained.

4 Numerical results

The grid size is defined as the minimum of average distances between the grid points

in the x− and y−directions

h = min {Lx/(Nx − 1), Ly/(Ny − 1)} , (42)

where L is the length of the side and N is the total number of points. The accuracy

of a numerical solution is measured via a discrete relative L2 error

Ne(f) =

√√√√√√

∑M

i=1

(
f

(e)
i − f

(a)
i

)2

∑M

i=1

(
f

(e)
i

)2 , (43)

where M is the total number of collocation points, and f (e) and f (a) the exact and

approximate solutions, respectively.
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4.1 Function approximation

This section is concerned with a special class of function approximation. Apart

from a given set of function nodal values, one also knows some nodal values of its

derivatives. In this case, the use of the integral formulation can enhance the quality

of the function approximation. This is demonstrated through the calculation of first-

and second-order derivatives of the following function

y = sin(x), −1 ≤ x ≤ 1, (44)

where the values of y at the whole set of grid points and the values of d2y/dx2 at the

two boundary points are given. The numerical schemes used here are similar to those

described in Approach 1 and Approach 2, respectively. In determining expansion

coefficients, conventional differential formulations use the set of function values only,

while the integral formulation takes all information into account. Results concerning

Ne(dy/dx) and Ne(d
2y/dx2) are shown in Figure 2. Both formulations employ the

same sets of grid points. It can be seen that the integral formulation yields a higher

degree of accuracy than the differential one.

4.2 Partial differential equations

The present DD technique is verified through the solution of the following Poisson

equation

∇2u = 4(1 − π2) [sin(2πx) cosh(2y) − cos(2πx) sinh(2y)] , (45)
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defined on the square −1 ≤ x, y ≤ 1, subject to Dirichlet boundary conditions

u = − sinh(2y), x = ±1, (46)

u = sin(2πx) cosh(±2) − cos(2πx) sinh(±2), y = ±1. (47)

The exact solution of (45)-(47) can be verified to be

u = sin(2πx) cosh(2y) − cos(2πx) sinh(2y), (48)

which is depicted in Figure 3.

The problem domain is divided into 2, 4, 9, 16, 25, 36 and 49 subdomains. For a

fixed number of subdomains, various tensor product grids are employed to study the

convergence behaviour of the method.

4.2.1 Comparison with conventional differential DD techniques

To assess the performance of the present integral DD technique, the obtained results

are compared with those of conventional differential DD techniques. It is noted that

conventional techniques yield only a C1 solution across the interfaces; the solution

procedure used here is similar to that described in [3]. Figures 4 and 5 show plots

of Ne(u) versus h. For a fixed number of subdomains, it can be seen that both

techniques yield spectral accuracy and the accuracy of Approach 1 (legend “Inte-

gral(1)”) and Approach 2 (“Integral(2)”) is superior to that of the conventional one

(“Differential”).

To study the influence of the C2 condition on the solution accuracy, the case of a

single domain is also considered here. It can be seen from Figures 4 and 5, the

gaps between two curves for the domain-decomposition case (legends “Differential”
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and “Integral(2)”) are much wider than that for the single domain case (legends

“Differential” and “Integral”). If one takes results obtained by the differential for-

mulation as the basis, the integral formulation is seen to perform much better for the

case of multiple subdomains than for the case of a single domain. It thus appears

that the achievement of a C2 solution across the interfaces results in a significant

improvement in accuracy.

4.2.2 Comparison of the performance of the integral DD technique be-

tween Approach 1 and Approach 2

The main difference between Approach 1 and Approach 2 is that a second-order

continuity of the solution is achieved at every point on the interfaces for the latter,

but only at the interior points on the interfaces for the former.

For the case of 2 subdomains, there are no interior corner points. Numerical results

show that the performance of Approach 2 is similar to that of Approach 1 despite

the fact that the former yields more accurate results than the latter for function

approximation (Section 4.1). From Figure 4, there is no discernible difference of

Ne(u) between the two approaches.

For the case of 4 subdomains, there is only one interior corner point. The perfor-

mance of Approach 2 is slightly better than that of Approach 1. However, it is still

difficult to see the gap between two curves from the plot (Figure 4).

For the case of 9 subdomains and more, a number of interior corner points become

noticeable. Approach 2 is found to be more accurate than Approach 1 by about two

orders of magnitude.

These observations indicate that the continuity order of the solution at the intersec-
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tion points strongly affects the accuracy of the integral DD technique which is always

better than differential DD techniques. Approach 2 is recommended for practical

use.

5 Concluding remarks

In this paper, a domain decomposition technique which provides a C2, instead of the

usual C1, solution for second-order elliptic problems is reported. This achievement

of higher-order smoothness is due to satisfaction of the governing equation on the

boundaries. Two approaches are proposed and studied in detail. The first approach

satisfies a C2 condition of the solution at the interior points on the interfaces and

C0 at the interior corner points, while the second approach provides a C2 solution

at every point on the interfaces. Numerical results obtained show that

(i) both approaches outperform conventional DD techniques regarding accuracy, and

(ii) the performance of the second approach is far superior to that of the first ap-

proach.
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Figure 2: Function approximation, y = sin(x),−1 ≤ x ≤ 1. Comparison of accuracy
between the differential and integral formulations. All plots have the same axis
scaling.
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Figure 3: Poisson equation, the exact solution.
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Figure 4: Poisson equation. For each case, a number of tensor product grids, namely
5 × 5, 7 × 7, · · · , 17 × 17, are employed. For the case of two subdomains, there is
no discernible difference of Ne between Integral(1) (Approach 1) and Integral(2)
(Approach 2). All plots have the same axis scaling.
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Figure 5: Poisson equation. For each case, a number of tensor product grids, namely
5 × 5, 7 × 7, · · · , 19 × 19, are employed. All plots have the same axis scaling.
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