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Abstract

This paper reports a study of linear elastic analysis of two-dimensional piezoelectric structures
using a smoothed four-node piezoelectric element. The element is built by incorporating the strain
smoothing method of mesh-free conforming nodal integration into the standard four-node quadri-
lateral piezoelectric finite element. The approximations of mechanical strains and electric potential
fields are normalized using a constant smoothing function. This allows the field gradients to be
directly computed from shape functions. No mapping or coordinate transformation is necessary so
that the element can be used in arbitrary shapes. Through several examples, the simplicity, effi-
ciency and reliability of the element are demonstrated. Numerical results and comparative studies
with other existing solutions in the literature suggest that the present element is robust, compu-
tationally inexpensive and easy to implement. textbfkeyword piezoelectric structures, smoothed
finite element method, adaptive material, electro-mechanical problems.

1 Introduction

In recent years, there has been a fast growing interest in using piezoelectric materials integrated
with structural systems to form a class of smart/intelligent or adaptive structures. Piezoelectric
materials have a wide range of engineering applications owing to its inexpensive cost, light weight
and the ease with which these materials can be shaped and bonded to surfaces or embedded
into structures. The material generates an electric charge under a mechanical load or imposed
deformation, which is called the direct piezoelectric effect and conversely, mechanical stress or
strain occurs when the material is subjected to an applied electric potential, which is termed as
the converse piezoelectric effect. Therefore, piezoelectric materials can be used as sensor (passive)
or actuator (active) or both at different times to monitor and actively control vibration, noise and
shape of a structural system. They can be also used as a medium to transform electrical and
acoustic waves in telecommunication or in an accelerometer.

Significant progress has been made over past decades in analyzing such materials and structures
with various approaches, including analytic methods and experimental/numerical models, by many
researchers. For example, analytical methods were initially proposed for analysis of beam with
piezoelectric patches [Crawley and Luis (1987); Im and Atluri (1989); Shen (1995)] and later for
piezoelectric flat panels and plates [Tzou and Tiersten (1994); Bisegna and Maceri (1996); Ray
et al. (1998); Lam and Ng (1999), Han et al. (2006), etc.]. However, due to the complexity of
governing equations in piezoelectricity, only a few simple problems are solved analytically.

The first significant numerical attempt using finite element implementation for piezoelectric
phenomenon was a piezoelectric vibration analysis proposed by Allik and Hughes (1970). Since
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then, the FEM has been considered as a powerful tool for the numerical analysis and design of
piezoelectric devices and smart/adaptive structural systems. Most of the finite element models,
following the work of Allik and Hughes (see the literature survey of Benjeddou (2000) for example),
are based on the interpolation of displacement and electric potential as kinematic field variables
that satisfy compatibility equations. These elements are often too stiff, inaccurate and sensitive
to mesh distortion. To overcome these shortcomings, hybrid and mixed finite element have been
developed, with notable contributions from Cannarozzi and Ubertini (2001) and Sze’s group [Sze
and Pan (1999); Sze and Yao (2000); Wu et al. (2001); Sze et al. (2004)]. Other relevant works
include piezoelectric elements with drilling degrees of freedom of Long et al. (2006); Lim and Lau
(2005); Zemcik et al. (2007) . More details and reviews on the development of the finite element
methods applied to the modeling and analysis of piezoelectric material and smart structures can be
found in Mackerle (2003). So far, many researchers are still actively involved in the development
of new special element as can be seen from recent works of Benjeddou (2000); Carrera and Boscolo
(2007). However, in the FEM, there often exist difficulties when mesh distortion occurs.

To tolerate mesh distortion in FEM, several recent formulations using mesh-free method have
paralleled these developments to simulate piezoelectric structures such as Radial Point Interpolation
Meshfree (RIPM) method [Liu et al. (2003)], Point Interpolation Meshfree (PIM) method [Liu et al.
(2002)], Point Collocation Meshfree (PCM) method [Ohs and Aluru (2001)], Element Free Galerkin
(EFG) method [Liew et al. (2002)], Meshless Local Petrov-Galerkin (MLPG) method [Sladek et al.
(2006); Sladek et al. (2007)], etc. Recently, Liu et al. [Liu et al. (2007); Liu et al. (2006)] proposed
a new smoothed finite element method (SFEM) in which the strain smoothing method (SSM),
based on a mesh-free stabilized conforming nodal integration (SCNI), was incorporated into the
existing FEM for 2D elastic problems. Further application of SSM for laminated composite plates
was presented by Nguyen-Van et al. (2007). It is found that the FEM, integrated with SSM,
achieves more accurate results and higher convergence rate as compared with the non-smoothed
FEM without increasing the computational cost.

In this study, the SSM is further extended to the analysis of coupling between mechanical and
electrical behaviors of two-dimensional piezoelectricity structures. The present smoothed four-
node piezoelectric element, named SPQ4, is obtained by incorporating the SSM into the standard
four-node quadrilateral piezoelectric element. The approximation of mechanical and dielectric
displacements are similar to the conventional finite element method while mechanical strains and
electric potential fields are normalized using a constant smoothing function. With the constant
smoothing function, domain integrations can be changed into boundary integrations and hence
no mapping or coordinate transformation is required in computing the element stiffness matrices.
This allows the problem domain discretisation to be more flexible with element shapes. Numerical
examples are presented to verify and demonstrate the high performance of the present element.
The computed results are also compared with those available from the literature.

The paper is outlined as follows. First, a brief review of the variational form and finite element
formulations is introduced in section 2. The description of strain smoothing method for piezoelectric
material is derived in section 3. Several numerical applications are investigated in section 4 to assess
the performances of the proposed element. Finally, some concluding remarks are withdrawn in the
section 5.

2 Variational form and finite element formulations for 2D

piezoelectric problems

In this section, the principal equations of piezoelectricity and finite element formulations are briefly
reviewed. A two-dimensional piezoelectric problem in domain Ω bounded by Γ is considered. For
linear piezoelectric materials, the governing equations and boundary conditions can be derived as

σij,i + fj = ρüj, (1)

ǫij =
1

2
(ui,j + uj,i), (2)

Di,i = 0, (3)

Ei = −φ,i, (4)

2



together with the following boundary conditions

σijnj = t̄i on Γσ, ui = ūi on Γu, (5)

φ = φ̄ on Γφ, Dini = −q̄ on Γq, (6)

where σij , ǫij represent stress and strain tensor respectively, fj is the body force density, uj is
the mechanical displacement vector, ρ is the mass density, Di is the dielectric displacement vector,
Ei is the electric field vector and φ is the scalar electric potential field.

The general functional L is obtained by summing the kinetic energy, strain energy, dielectric
energy and potential energy of external fields as follows.

L =

∫

Ω

[

1

2
ρu̇T u̇ −

1

2
ǫT σ +

1

2
DT E + uT f

]

dΩ

+

∫

Γ

[

uT t̄ + φT q̄
]

dΓ. (7)

Then the variational form of the equations of motion can be derived using Hamilton’s principle

∫

Ω

[δǫT σ + δuT ρü− δETD − δuT f]dΩ

−

∫

Γ

[δuT t̄ + δφT q̄]dΓ = 0. (8)

The mechanical constitutive relation for 2D piezoelectric materials can be expressed in the
e-form as

σ = cEǫ − eTE,

D = eε + gE,
(9)

where cE is the elastic stiffness matrix for constant electric field, e is the piezoelectric matrix and
g is the dielectric constant matrix for constant mechanical strain.

Equation (9) can be rewritten in the explicit form in the x − z plane as





σx

σz

τxz



 =





c11 c13 0
c13 c33 0
0 0 c55









ǫx

ǫz

γxz





−





0 e31

0 e33

e15 0





[

Ex

Ez

]

, (10)

[

Dx

Dz

]

=

[

0 0 e15

e31 e33 0

]





ǫx

ǫz

γxz





−

[

g11 0
0 g33

] [

Ex

Ez

]

. (11)

If the piezoelectric stress constants are unavailable in Equation (10) or (11), they can be obtained
by using the following relationship

[

0 0 e15

e31 e33 0

]

=

[

0 0 d15

d31 d33 0

]





c11 c13 0
c13 c33 0
0 0 c55



 . (12)

in which [d] is the piezoelectric strain constant matrix.
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The finite element approximation solution for 2D piezoelectric problems using the standard
4-node quadrilateral element can be expressed as

u = Nuu
e, (13)

φ = Nφφe, (14)

where ue and φe are the nodal displacement and nodal electric potential vectors, Nu and Nφ

are shape function matrices. They are given by

ue =
4

∑

i=1

[ui vi], (15)

φe =
4

∑

i=1

[φi], (16)

Nu =

[

Ni 0
0 Ni

]

, (17)

Nφ = [Ni], (18)

in which Ni = 1

4
(1+ξiξ)(1+ηiη) is the bilinear shape function of the four-node serendipity element.

The corresponding approximation of the linear strain ǫ and electric field E are

ǫ = ∇su = Buu
e, (19)

E = −∇φ = Bφφe, (20)

where

Bu =





Ni,x 0
0 Ni,z

Ni,z Ni,x



 , (21)

Bφ =

[

Ni,x

Ni,z

]

. (22)

Substituting Equations (19)–(22) into Equation (8) leads to the piezoelectric dynamic equations
[

Me
uu 0
0 0

] {

ü

φ̈

}

+

[

Ke
uu Ke

uφ

Ke
uφ Ke

φφ

]{

u
φ

}

=

{

F
Q

}

, (23)

in which

Me
uu =

∫

Ω

ρNT
uNudΩ, (24)

Ke
uu =

∫

Ω

BT
u cEBudΩ, (25)

Ke
uφ =

∫

Ω

BT
u eT BφdΩ, (26)

Ke
φφ = −

∫

Ω

BT
φgBφdΩ, (27)

F =

∫

Ω

NT
u fdΩ +

∫

Γσ

NT
u t̄dΓ, (28)

Q =

∫

Γq

NT
φ q̄dΓ. (29)

3 Strain smoothing approach for piezoelectric finite element

method

The smoothed strain and smoothed electric field at an arbitrary point xC are obtained by

ǫ̃(xC) =

∫

ΩC

ǫ(x)Φ(x − xC)dΩ, (30)

Ẽ(xC) =

∫

ΩC

E(x)Φ(x − xC)dΩ, (31)
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where ǫ, E are respectively the mechanical strain and electric field obtained from displacement
compatibility condition as given in Equations (19) and (20). ΩC is the smoothing cell domain on
which the smoothing operation is performed. Depending on the stability analysis [Liu et al. (2007);
Liu et al. (2006)], ΩC may be an entire element or part of an element as shown in Figure 1. Φ is a
smoothing function that satisfies the following properties

Φ ≥ 0 and

∫

Ω

ΦdΩ = 1. (32)

For simplicity, Φ is chosen as a constant function

Φ(x − xC) =

{

1/AC x ∈ ΩC ,
0 x /∈ ΩC .

(33)

where AC =
∫

ΩC
dΩ is the area of the smoothing cell (subcell).

Figure 1: Subdivision of an element into smoothing cells (nc) and the values of shape functions at
nodes.

Substituting Φ into Equations (30)–(31) and applying the divergence theorem, we obtain the
smoothed strain and smoothed electric field in the domain ΩC as follows.

ǫ̃(xC) =
1

AC

∫

ΩC

∇su(x)dΩ =
1

AC

∫

ΓC

nuu(x)dΓ, (34)

Ẽ(xC) = −
1

AC

∫

ΩC

∇φ(x)dΩ = −
1

AC

∫

ΓC

nφφ(x)dΓ, (35)

where nu and nφ are outward normal matrices on the boundary ΓC

nu =





nx 0
0 nz

nz nx



 , nφ = [nx nz]
T . (36)

Introducing the finite element approximation of u and φ into Equations (34) and (35) one gets

ǫ̃(xC) =
nc
∑

i=1

B̃ui(xC)ue, (37)

Ẽ(xC) = −

nc
∑

i=1

B̃φi(xC)φe, (38)
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in which

B̃ui(xC) =
1

AC

∫

ΓC





Ninx 0
0 Ninz

Ninz Ninx



 dΓ, (39)

B̃φi(xC) =
1

AC

∫

ΓC

[

Ninx

Ninz

]

dΓ. (40)

Using one Gaussian point to evaluate Equation (39) and (40) along each line segment of the
boundary ΓC

i of ΩC , they can be transformed as

B̃ui(xC) =
1

AC

nb
∑

b=1





Ni(x
G
b )nx 0
0 Ni(x

G
b )nz

Ni(x
G
b )nz Ni(x

G
b )nx



lCb , (41)

B̃φi(xC) =
1

AC

nb
∑

b=1

[

Ni(x
G
b )nx

Ni(x
G
b )nz

]

lCb , (42)

where xG
b and lCb are the midpoint (Gauss point) and the length of ΓC

b , respectively; nb is the total
number of edges of each smoothing cell.

Finally, the linear equations of motion (23) can be rewritten as follows

[

Me
uu 0
0 0

] {

ü

φ̈

}

+

[

K̃e
uu K̃e

uφ

K̃e
uφ K̃e

φφ

]

{

u
φ

}

=

{

F
Q

}

, (43)

where

K̃e
uu =

nc
∑

C=1

B̃T
uCcEB̃uCAC , (44)

K̃e
uφ =

nc
∑

C=1

B̃T
uCeT B̃φCAC , (45)

K̃e
φφ = −

nc
∑

C=1

B̃T
φCgT B̃φCAC . (46)

Equation (43) forms the basis of the smoothed piezoelectric finite element method. In this
work, four-node quadrilateral element is employed for domain discretization. Two smoothing cells
or subcells (nc = 2) are used to evaluate Equation (44)–(46). Further increase of nc will lead to
high computational cost but the accuracy may not be better because this results in stiffer system
[Liu et al. (2006)]. The obtained four-node piezoelectric element with two smoothing cells is named
SPQ4 (Smoothed Piezoelectric Quadrilateral 4-node element).

4 Numerical results

In this section, several numerical examples are employed to test and assess the performance of
the SPQ4 element as applied to the linear static and free vibration analysis of two-dimensional
piezoelectric structures.

4.1 Patch testing

The patch test is an essential check for convergence and is used to verify whether the element can
display exactly the constitutive behaviour of material through correct stresses, when subjected to
constant strains. In this section, a patch test is used to verify that our proposed element, SPQ4, has
proper convergence properties. A choice of material, mesh and boundary conditions was adopted
from the work of Sze et al. (2004), as shown in Figure 2.

The following PZT4 material in reference Sze et al. (2004) is used for the patch test.
c11 = 139 × 103, c33 = 113 × 103, c13 = 74.3 × 103, c55 = 25.6 × 103(N/mm2),
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34

5 6

78

Figure 2: Geometry and mesh of the piezoelectric patch test.

e15 = 13.44× 106, e31 = −6.98 × 106, e33 = 13.84 × 106 (pC/mm2),
g11 = 6.00 × 109, g33 = 5.47 × 109 (pC/GV mm).

The prescribed mechanical displacements and electric potentials are applied at the edges defined
by nodes 1, 2, 3 and 4 as follows.

ux = s11σ0x, uz = s13σ0z, φ = b31σ0z.

where σ0 = 1000 is an arbitrary stress parameter. s11, s13 and b31 are material constants which
can be calculated by the following relation





s11 s13 g31

s13 s33 b33

b31 b33 −f33



 =





c11 c13 e31

c13 c33 e33

e31 e33 −g33





−1

.

Under the boundary conditions described above, the corresponding exact stress σ and electric
displacement D are given as

σx = σ0, σz = τxz = Dx = Dz = 0.

As expected, the obtained results using SPQ4 elements match the exact solution as shown in
Table 1 and hence SPQ4 elements successfully passed the patch test.

4.2 Single-layer piezoelectric strip in shear deformation

This example considers the shear deformation of a 1 × 1 mm single-layer square strip (Figure 3),
polarized in the z−direction as proposed in Ohs and Aluru (2001). The material PZT-5 was used
for this problem. Their properties and other important values are summarized in Table 2.

The strip is subjected to a uniform compressive stress σ0 in the z direction and an applied
voltage V0 as shown on Figure 3. The applied electric field is perpendicular to the polarization
of the material to cause a shear strain in the strip. The overall deformation is a superposition of
the deformation due to the shear strain and the compressive load. The following mechanical and
electrical boundary conditions were applied to the sides of the strip

φ,z(x,±h) = 0, σz(x,±h) = σ0, τxz(L, z) = 0,

τxz(x,±h) = 0, φ(L, z) = −V0, σx(L, z) = 0,

φ(0, z) = +V0, u(0, z) = 0, w(0, 0) = 0.

The analytical solution for this problem is given by Gaudnzi and Bathe (1995)

u = s13σ0x,

w =
d15V0x

h
+ s33σ0z,

φ = V0

(

1 − 2
x

L

)

.
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Table 1: Results of the patch test.

Variable
Results

SPQ4 Exact

σx 1000 1000
σz 1.9397 × 10−10 0
τxz 9.4022 × 10−11 0
Dx 9.1261 × 10−8 0
Dz −1.4486 × 10−8 0
ux5 1.9012 × 10−3 1.9012 × 10−3

uz5 −6.0626 × 10−5 −6.0626 × 10−5

φ5 −3.5557 × 10−7 −3.5557 × 10−7

ux6 3.0103 × 10−3 3.0103 × 10−3

uz6 −9.0939 × 10−5 −9.0939 × 10−5

φ6 −5.3335 × 10−7 −5.3335 × 10−7

ux7 2.8519 × 10−3 2.8519 × 10−3

uz7 −2.4251 × 10−4 −2.4251 × 10−4

φ7 −1.4223 × 10−6 −1.4223 × 10−6

ux8 2.2181 × 10−3 2.2181 × 10−3

uz8 −2.4251 × 10−4 −2.4251 × 10−4

φ8 −1.4223 × 10−6 −1.4223 × 10−6

Table 2: Single-layer piezoelectric material properties, dimensions and other constants.

s11 16.4 × 10−6 (mm)2

N
d31 −172 × 10−9 mm

V

s13 −7.22 × 10−6 (mm)2

N
d33 −374 × 10−9 mm

V

s33 18.8 × 10−6 (mm)2

N
d15 584 × 10−9 mm

V

s55 47.5 × 10−6 (mm)2

N
g11 1.53105 × 10−8 N

V 2

σ0 −5.0 N

mm2 g33 1.505 × 10−8 N

V 2

σ1 20.0 N

mm2 V0 1000V
L 1.0mm h 0.5mm

To demonstrate the capability of the SPQ4 elements with various complex shapes, the strip is
modelled with two types of mesh in this analysis with 10× 10 regular as well as irregular elements
as shown in Figure 4.

A plot of the total deformation of the strip is presented in Figure 5. The total displacements
obtained with regular and irregular mesh are compared and plotted together with exact solutions
in Figure 6 and Figure 7. Note that the computed displacements u are along the right side (x = L)
while the displacements w distribute along the bottom edge (z = −h). The distribution of the
computed electric potentials along the bottom side (z = −h) is also demonstrated in Figure 8. It
is observed that all the computed displacements and electric potentials for both types of mesh are
in excellent agreement with the analytical solutions.

4.3 Single-layer piezoelectric strip in bending

The strip with the same material and geometry as in the previous example is considered but with
modified boundary conditions for bending situation. In this case, the top and bottom surfaces are
poled and electroded in the same direction to cause the strip contracting in the z−direction and
expanding along the x−direction. The strip also bends downward due to the linear applied stress
at the right edge as shown in Figure 9.

The following mechanical and electrical boundary conditions are applied to the edges of the
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P

Figure 3: Piezo-strip subjected to a uniform stress and an applied voltage.

(a) regular elements (b) irregular elements

Figure 4: Typical meshes of the single-layer piezoelectric strip.

strip

φ(x,±h) = ±V0, σz(x,±h) = 0, τxz(x,±h) = 0,

φ,x(L, z) = 0, σx(L, z) = σ0 + σ1z, τxz(L, z) = 0,

φ,x(0, z) = 0, u(0, z) = 0, w(0, 0) = 0.

The analytical solution is available for this problem and can be found in Gaudnzi and Bathe (1995);
Ohs and Aluru (2001) as follows

u = s11

(

σ0 −
d31V0

s11h

)

+ s11

(

1 −
d2
31

s11g33

)

σ1xz,

w = s13

(

σ0 −
d33V0

s13h

)

z + s13

(

1 −
d33d31

s13g33

)

σ1

z2

2

−s11

(

1 −
d2
31

s11g33

)

σ1

x2

2
,

φ = V0

z

h
−

d31σ1

2g33

(h2 − z2).

Two types of mesh as shown in Figure 4 are analyzed again. The obtained deformation of the
strip is shown in Figure 10. Figure 11 illustrates the computed and exact displacements u along the
right side (x = L) while the vertical displacements w along the bottom edge (z = −h) are shown in
Figure 12. The distribution of the computed electric potentials along the right side (x = L) with
the exact solution are demonstrated in Figure 13. Once again, both computed displacements and
electric potential match well the exact solutions for regular mesh as well as for highly distorted
mesh.
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Figure 5: Total deformation of the strip in shearing.
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Figure 6: Computed and exact u−displacements.

4.4 A parallel piezoelectric bimorph beam

The example to be discussed here is the two-layer parallel bimorph beam. It consists of a cantilever
piezoelectric beam made of two PVDF layers of the same thickness ht = hb = H/2 = 0.2 mm and
a length of L = 5 mm, with same polarization orientations as shown in Figure 14. The PVDF
material properties are summarized as follows E = 2 GPa, ν = 0.29, e31 = 0.046 C/m2, e32 =
0.046 C/m2, g11 = 0.1062× 10−9 F/m, g33 = 0.1062× 10−9 F/m.

For the parallel bimorph configuration, a zeros voltage (V = 0) is applied to the intermediate
electrode, while the voltage V = 1 is applied to the bottom and top faces of the beam so that
the electric field along the thickness direction across the lower and upper layers are in opposite
direction. This will generate moments that bend the bimorph.

In this study, the beam is assumed to be in a plane stress state. For an applied electric field V
only, the tip deflection δ of the cantilever parallel bimorph can be approximated as [ Cambridge
(1995)]

δ =
2L2V d31

H2
. (47)

With L = 5 mm and H = 0.4 mm, the approximated value of the tip deflection calculated from
Equation (47) is δ = 1.0206× 10−8 (m).

The beam is analyzed using 15×2, 25×2, 35×2 and 50×2 meshes of SPQ4 elements. Table 3
presents the obtained tip deflections together with analytic and meshless solutions such as PIM
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Figure 7: Computed and exact w−displacements.
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Figure 8: Computed and exact electric potential φ.

[Liu et al. (2002)] and RPIM [Liu et al. (2003)]. Note that the values in parentheses corresponding
to the percentage of relative error compared with analytic solutions. It can be seen that the present
element, SPQ4, gives more accurate results than those of other numerical solutions cited here. A
plot of the total mechanical deformation of the bimorph with 25 × 2 mesh is also given in Figure
15.

4.5 A piezoelectric Cook’s membrane

This section deals with a clamped tapered panel with distributed in-plane tip load F = 1 similar
to the well-known Cook’s membrane. The lower surface is subjected to a voltage V = 0. The
geometry and boundary conditions of the beam are shown in the Figure 16. The beam is made of
PZT4 material as in the section 4.1.

Since no analytic solution is available for this problem, the present results are compared with
a finite element solution with a fine mesh. The best known values of the displacement, the electric
potential, the first principal stress and the electric flux density at node A, B, C respectively,
according to Long et al. (2006) are
uzA = 2.109 × 10−4mm, φA = 1.732 × 10−8GV,
σ1B = 0.21613N/mm2, DC = 22.409pC/mm2.

Table 4 presents the obtained results with mesh refinement and relative error (values in paren-
theses) when compared with the best known values using a fine mesh of FEM [Long et al. (2006)].
It can be seen that relative errors reduce when the mesh is refined. With a mesh of 24×24 elements,
the present method achieves excellent accuracy on displacement uzA (relative error= 0.379%) and
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Figure 10: Total deformation of the strip in bending.

reasonable predictions for φA, σ1B as well as D1C .

4.6 Free vibration of a piezoelectric transducer

This section performs an eigenvalue analysis of a piezoelectric transducer consisting of a piezoelectric
wall made of PZT4 material as in the section 4.1 with brass end caps as shown in Figure 17. The
piezoelectric material is electroded on both the inner and outer surfaces. This problem is similar
to the one studied numerically by Liu et al. (2003) and experimentally by Mercer et al. (1987).

The transducer is modeled as an axisymmetric structures with 44 SPQ4 elements as shown in
Figure 18. The obtained results are compared with those of Liu et al. (2002) using PIM method and
experimental results reported in Mercer et al. (1987) as given in Table 5. The values in parentheses
correspond to the relative error compared with experimental results. It can be seen that the present
solutions in general indicate good agreement with experimental results and give smaller relative
error than those of PIM results. The first four mode shapes are also displayed in Figure 19 which
are identical to those depicted in Liu et al. (2003).

5 Conclusions

A simple and efficient four-node quadrilateral piezoelectric element SPQ4 has been developed and
reported in this paper for linear analysis of two-dimensional piezoelectric problems. Both static and
free vibration analysis are considered. The element is obtained by incorporating cell-wise strain
smoothing method into the standard FEM. This technique allows field gradients to be computed
directly from shape functions themselves (i.e. derivatives of shape functions are not required) and
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Figure 11: Computed and exact u−displacements.
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Figure 12: Computed and exact w−displacements.

hence no limitation is imposed on the shape of elements. Domain discretization is therefore more
flexible than in the case of the standard FEM. Moreover, these good features are acquired without
increasing the number of field nodes and computational cost. The changes to the existing finite
element code are also very small. Several numerical examples are studied and the obtained results
are in excellent agreement with analytical solutions. It is found that the SPQ4 element is robust
and reliable. It can yield reasonable results even with coarse discretization.
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Figure 17: Representative sketch of a transducer.

Table 5: Computed eigenvalues of the transducer and comparison with other solutions.

Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Experimental 18.6 35.4 54.2 63.3 88.8
PIM (44 cells) 19.9 42.8 59.7 66.1 88.4

(6.989%) (20.904%) (10.148%) (4.423%) (-0.450%)
SPQ4 (44 elements) 18.214 41.773 58.642 65.798 87.386

(-2.075%) (18.003%) (8.195%) (3.946%) (-1.592%)
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Figure 18: Domain discretization of a transducer.
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Figure 19: Eigenmodes of the piezoelectric transducer.
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