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ATTRACTORS IN CONFINED SOURCE PROBLEMS FOR
COUPLED NONLINEAR DIFFUSION∗
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Abstract. In processes driven by nonlinear diffusion, a signal from a concentrated source is
confined in a finite region. Such solutions can be sought in the form of power series in a spatial
coordinate. We use this approach in problems involving coupled agents. To test the method, we
consider a single equation with (a) linear and (b) quadratic diffusivity in order to recover the known
results. The original set of PDEs is converted into a dynamical system with respect to the time-
dependent series coefficients. As an application we consider an expansion of a free turbulent jet.
Some example trajectories from the respective dynamical system are presented. The structure of the
system hints at the existence of an attracting center manifold. The attractor is explicitly found for
a reduced version of the system.
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1. Introduction. A variety of physical processes are described by the nonlinear
diffusion equations

(1) ∂tK = (−1)n∇ (Km∇ΔnK) ,

where n ≥ 0 is an integer and m > 0. In the particular case of n = 0, (1) becomes
the second-order diffusion equation

(2) ∂tK = ∇ (Km∇K) .

An important common property of the nonlinear diffusion (2) and its higher-order
generalizations (1) is the finiteness of the speed of a signal propagation. If the signal
is initially confined in a finite region so that it is identically equal to zero beyond
the region, the signal remains confined during the dynamics. This property distin-
guishes the nonlinear diffusion from the linear diffusion (m = 0), where the signal
instantaneously propagates to infinity.

The range of processes described by (1)–(2) is wide. The second-order equa-
tions (2) are known as the porous medium equations and appear in models of gas
filtration in porous media [1, 2] and thin fluid films in a gravitational field (m = 3) [3].
The fourth-order equations (n = 1) emerge in lubrication models for thin viscous films
(m = 3) and Hele–Shaw flows (m = 1). The sixth-order models (n = 2) are relevant
to the process of isolation oxidation of silicon (m = 3) [4]. The models with m = 3
and different values of n describe thin viscous droplets driven by different factors:
gravity (n = 0), surface tension (n = 1), and an elastic plate (n = 2).

Various mathematical aspects of the second-order equation (2) are analyzed in [5,
6, 7]; the fourth-order model is investigated, for example, in [8]. Numerical schemes for
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ATTRACTORS IN TURBULENT DIFFUSION 1655

solving the fourth- and sixth-order equations using finite differences or finite elements
are developed in [9, 10, 11].

In this paper we focus on attractors in coupled nonlinear diffusion with confined
sources when there are more than one diffusing agent.

To give an example of an attractor in nonlinear diffusion we consider the second-
order equation (2) in one dimension, ∂tK = ∂x(Km∂xK). Its solution evolving from
a confined initial profile is attracted to the universal regime [12, 13],

(3) K(x, t) =
γ(m)

t1/(m+2)

(
ξ2
0 − ξ2

)1/m
,

where

ξ =
x

t1/(m+2)
, ξ0 =

[
Γ
(

1
m + 3

2

)
γ(m)

√
π Γ

(
1
m + 1

) E
] m

m+2

, γ(m) =

[
m

2(m + 2)

] 1
m

,

Γ is the gamma-function, and E is the integral

E =

∫ ∞

−∞
K(x, t) dx,

which conserves during the evolution. For our purposes it is convenient to write the
attractor (3) in the form

(4) K(x, t) =
α

t1/(m+2)

(
1 − β

t2/(m+2)
x2

)1/m

,

where α and β are the coefficients depending on m and E.
Similar attractors exist for the higher-order equations (1). For example, in one

dimension for m = 1 and n = 1, i.e., for the fourth-order equation ∂tK = ∂x(K∂3
xK),

the attractor is [14]

K(x, t) =
1

120 t1/5
(
ξ2
0 − ξ2

)2
,

where

ξ =
x

t1/5
, ξ0 =

(
225E

2

)1/5

.

Recently in [11], (1) was analyzed numerically for n = 2 and m = 1, that is, the
sixth-order equation ∂tK = ∂x(K∂5

xK). It was proved that the solution converges to
the attractor found in [14].

Many processes involve more than one diffusing agent. For example, in a free
turbulent jet the diffusing turbulent energy is coupled with the diffusing momentum.
We analyze this process later in the paper. In the multicomponent problems an
important question to answer is whether there exists an attractor.

Another motivation for us to analyze this particular phenomenon stems from
fluid mechanics, where an expansion of a jet from a narrow pulse is a natural problem
formulation. For other processes, other regimes can be of interest. For example, in
the isolation oxidation of silicon, traveling waves are of major interest [10].
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1656 D. V. STRUNIN

In this paper we take an approach in which confined solutions are sought as
power-series in a spatial coordinate. The diffusion of the turbulent jet is one of many
problems to which this approach is applicable.

Previously [15] we studied the expansion of the turbulent jet using a nonlocal
version of the K-� model of turbulence (see, e.g., the review [16]).

In the present paper we use the K-ε model [17, 18], which is local. The locality
enables us to convert the governing PDEs into a set of ODEs. Thus, the problem
transforms into a standard dynamical system formulation, in which framework we
look for an attractor.

As a first step, in section 2 we test our approach on some standard problems to
recover known results. Then, in section 3 the approach is applied to the turbulent
jet. In section 4 we analyze in detail its reduced version. The conclusions are given
in section 5.

2. Power-series approach. In this section we formulate our approach and test
it on simple problems. We consider the nonlinear diffusion with linear and then
quadratic diffusivity.

2.1. Diffusion with linear diffusivity. Consider (2) with m = 1:

(5) ∂tK = ∂x(K∂xK).

The long-term asymptotics (4) of its pulse solution is

(6) K =
α

t1/3

(
1 − β

x2

t2/3

)
or

(7) K = a(t)
[
1 − b(t)x2

]
with

a(t) =
α

t1/3
, b(t) =

β

t2/3
.

For finite times, assuming an initial pulse is symmetric, we seek a solution in the
form

(8) K(x, t) = A(t) [1 −B2(t)x
2 −B4(t)x

4 −B6(t)x
6 − · · · ],

where A(t) > 0 is the value of K at x = 0. Expression (8) is acceptable as long
as it gives a positive answer. Thus, (8) represents the solution on some interval
0 ≤ x ≤ h(t), where h(t) is the position of the front in which K[h(t), t] = 0. Beyond
the front, for x > h(t), formula (8) does not apply; we assume K(x, t) ≡ 0 instead.
With various initial values Bk(0), k = 2, 4, . . . , the form (8) expresses a wide class of
symmetric initial conditions. Apparently Bk(t) are proportional to the Taylor-series
coefficients of K(x, t).

Substituting (8) into (5), collecting the terms with the same powers of x, and
equating the coefficients gives

Ȧ = −2A2B2,

Ḃ2 = −4AB2
2 + 12AB4,

Ḃ4 = −28AB2B4 + 30AB6,

Ḃ6 = −54AB2B6 − 28AB2
4 + 56AB8,

. . . .

(9)
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The system (9) contains no linear terms; however, we can “create” those by modifying
time. Divide all the equations in (9) by AB2 and introduce the new time τ by

(10)
d

AB2 dt
=

d

dτ
≡ ()′.

Then system (9) transforms into

A′ = −2A,

B′
2 = −4B2 + 12

B4

B2
,

B′
4 = −28B4 + 30

B6

B2
,

B′
6 = −54B6 − 28

B2
4

B2
+ 56

B8

B2
,

. . . .

(11)

Looking at the coefficients of the linear terms we notice a considerable spectral gap
between the coefficient −4 at B2 in the equation B′

2 = . . . and the coefficient −28 at
B4 in the equation B′

4 = . . . . Therefore we can expect that B4 and the subsequent Bk,
k = 6, 8, . . . , will decay much faster than A and B2. This is confirmed numerically as
demonstrated by Figure 1. The plot shows a family of trajectories for the truncated
system formed by the dynamic equations for B2, B4, and B6 in (11) with the term
containing B8 removed. The figure gives three different views of the same trajectories
to expose the faster decay of B4 and B6 in comparison to B2.

The numerical results in this paper are obtained with the MATLAB solver DAE2
developed by Roberts [19].

It is interesting to evaluate the contribution of different terms, (−Bkx
k), in the

function

(12) 1 −B2x
2 −B4x

4 −B6x
6 − · · ·

defining the shape of K(x, t). Let us compare the terms for the largest value of x inside
the signal, that is, the coordinate of the front, x = h(t). Retain the first three terms
in (12), presuming that the input of the sixth- and higher-order terms is negligible.
On the front the signal vanishes, and therefore approximately

1 −B2h
2 −B4h

4 = 0.

From here

(13) h2 =

(
−B2 +

√
B2

2 + 4B4

)/
(2B4).

Further, if we suppose that

(14) B4 � B2/h
2,

then the fourth-order term appears to be negligible compared to the quadratic term.
Inserting (13) into (14) and rearranging, we obtain

(15) B4 � 2B2
2 .
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Fig. 1. Solutions of truncated system (11).

In the numerical experiments the condition (15) was satisfied several orders over.
Tracking the value of h(t) directly from the numerical experiment confirms the negli-
gible contribution of the fourth- and higher-order terms.

Thus, the power-series approach recovered the expected result that (6) is indeed
the attractor for the diffusion problem with the linear diffusivity.

2.2. Diffusion with quadratic diffusivity. In this section we consider the
diffusion equation with quadratic diffusivity,

(16) ∂tK = ∂x
(
K2∂xK

)
.

Its pulse solution (4) has the form

(17) K =
α

t1/4

(
1 − β

x2

t1/2

)1/2

.

Expanding (17) into the Taylor-series, we get

(18) K(x, t) = a(t) [1 − b2(t)x
2 − b4(t)x

4 − b6(t)x
6 − · · · ],
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where

b2(t) = β
1

2
√
t
, b4(t) = β2 1

8t
,

b6(t) = β3 1

16t3/2
, b8(t) = β4 5

128t2
,

. . . .

(19)

It converges for βx2/t1/2 ≤ 1, that is, for all x of interest, 0 ≤ x ≤ h(t) = t1/2/β.
Any bk in (19) can be expressed through a selected one, for instance, b2:

(20) b4 =
1

2
b22, b6 =

1

2
b32, b8 =

5

8
b42, . . . .

Expressions (20) describe the attractor which we intend to reproduce by our approach.
As in the previous section, we seek a power-series solution of (16),

(21) K(x, t) = A(t) [1 −B2(t)x
2 −B4(t)x

4 −B6(t)x
6 − · · · ].

Substituting (21) into (16) leads to

Ȧ = −2A3B2,

Ḃ2 = −10A2B2
2 + 12A2B4,

Ḃ4 = −58A2B2B4 + 30A2B6 + 10A2B3
2 ,

Ḃ6 = −110A2B2B6 + 56A2B2
2B4 − 56A2B2

4 + 56A2B8,

Ḃ8 = −178A2B2B8 + 90A2B2
2B6 + 90A2B2B

2
4 − 180A2B4B6 + 90A2B10,

. . . .

(22)

We divide all the equations in (22) by A2B2 and introduce the new time τ by

(23)
d

A2B2 dt
=

d

dτ
≡ ()′.

As a result, system (22) transforms into the following form with linear terms:

A′ = −2A,

B′
2 = −10B2 +

12B4

B2
,

B′
4 = −58B4 +

30B6

B2
+ 10B2

2 ,

B′
6 = −110B6 + 56B2B4 −

56B2
4

B2
+

56B8

B2
,

B′
8 = −178B8 + 90B2B6 + 90B2

4 − 180B4B6

B2
+

90B10

B2
,

. . . .

(24)

Consider only three dynamic equations for B2, B2, and B4 with the term containing
B8 omitted. A set of trajectories for such a system is shown in Figure 2. It is clearly
seen from different angles that the trajectories are attracted to a single curve or a
one-dimensional manifold. It can be shown that the curve is described by

(25) B4 = γB3
2 , B6 = μB3

2 ,
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Fig. 2. Solutions of truncated system (24).

where γ and μ are parameters. It is interesting to compare them to their values on
the attractor defined by (20). We substitute (25) into (24) to obtain

B′
2 = (−10 + 12γ)B2,

B′
2 =

(
−29 +

15μ

γ
+

5

γ

)
B2,

B′
2 =

(
−110

3
+

56γ

3μ
− 56γ2

3μ

)
B2.

(26)

As each of the equations in (26) describes the motion on the attractor, they all must
coincide. So must the coefficients at B2 in their right-hand sides. This leads to two
algebraic equations with respect to γ and μ, giving approximately γ = 0.31, μ = 0.14.
Compare these to the exact values from (20),

γ∗ = 1/2 = 0.5, μ∗ = 1/2 = 0.5.

The departure from the exact values can be diminished by involving more equations.
For the four-equation system with respect to B2, B4, B6, and B8, with the term
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containing B10 excluded, we have

(27) B4 = γB3
2 , B6 = μB3

2 , B8 = λB4
2 .

Inserting (27) into (24) leads to a system of three equations, with respect to γ, μ, and
λ, having the approximate solution γ = 0.35, μ = 0.20, λ = 0.11. Note that from (20)
the exact value for λ is λ∗ = 5/8 = 0.62. To improve the approximation further, more
equations have to be involved.

In summary, we reproduced the well-known fact that for the diffusion with qua-
dratic diffusivity the trajectories converge to a one-dimensional manifold representing
the similarity regime (17).

3. The K-ε model of a turbulent jet. Consider a turbulent jet created in an
unbounded motionless fluid by a quick impulse shaped in space as a narrow flat layer.
For instance, some amount of fluid is quickly injected. The velocity shear between the
jet and surrounding fluid pumps up the kinetic energy of turbulence. The turbulent
region expands and, in the long term, the energy decays due to the geometric effect of
expansion and the loss into heat caused by intersections of vortices (we will call this
loss simply dissipation).

The expansion is driven by the turbulent diffusion which is essentially nonlinear.
As a consequence, the jet has a sharp front similar to the above examples. However,
the dynamics is complicated by the coupling between the kinetic energy, dissipation,
and momentum. The K-ε model of turbulence [17, 18] is written

∂tK = α1∂x

(
K2

ε
∂xK

)
+ α2

K2

ε
(∂xu)

2 − α3ε,

∂tε = β1∂x

(
K2

ε
∂xε

)
+ β2K (∂xu)

2 − β3
ε2

K
,

∂tu = χ∂x

(
K2

ε
∂xu

)
.

(28)

In (28) the coordinate x is directed across the flat turbulent layer originating in its
middle, K stands for the kinetic energy of turbulent pulsations per mass unit, and
ε is the dissipation of the turbulent energy; α1,2,3, β1,2,3, and χ are nondimensional
coefficients. The system (28) is nondimensional, obtained from dimensional form by
using some useful scales, for example, the average initial velocity across the jet, U ,
as the velocity scale; the initial width of the jet, 2h, as the length scale; U2 as the
turbulent energy scale; U3/h as the dissipation rate scale; and h/U as the time scale.

The initial profiles of K, ε, and u across the turbulent layer are assumed to have
dome-like forms. We assume that they are symmetric with respect to the middle of
the layer. On the edge, or front, of the jet the functions descend to zero and remain
zero beyond the front (see the discussion further in this section).

We look for the power-series solutions of (28),

K = A(t) [1 −B2(t)x
2 −B4(t)x

4 −B6(t)x
6 − · · · ],

ε = P (t) [1 −R2(t)x
2 −R4(t)x

4 −R6(t)x
6 − · · · ],

u = M(t) [1 −N2(t)x
2 −N4(t)x

4 −N6(t)x
6 − · · · ].

(29)

Substituting the series (29) into the dynamic equations (28) leads to
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Ȧ = −α1
2A3B2

P
− α3P,

Ṗ = −β12A
2R2 − β3

P 2

A
,

Ṁ = −χ
2A2MN2

P
,

Ḃ2 = −α1
10A2B2

2

P
+ α3

PB2

A
+ α1

6A2B2R2

P
+ α1

12A2B4

P

− α2
4AM2N2

2

P
− α3

PR2

A
,

Ṙ2 = −β1
12A2B2R2

P
+ β1

8A2R2
2

P
− β3

PR2

A
+ β1

12A2R4

P

− β2
4AM2N2

2

P
+ β3

PB2

A
,

Ṅ2 = −χ
12A2B2N2

P
+ χ

2A2N2
2

P
+ χ

6A2N2R2

P
+ χ

12A2N4

P
,

Ḃ4 = −α1
58A2B2B4

P
+ α3

PB4

A
+ α1

10A2B3
2

P
− α1

20A2B2
2R2

P

+ α1
10A2B2R

2
2

P
+ α1

10A2B2R4

P
+ α1

20A2B4R2

P
+ α1

30A2B6

P

+ α2
8AB2M

2N2
2

P
− α2

4AM2N2
2R2

P
− α2

16AM2N2N4

P
− α3

PR4

A
,

Ṙ4 = −β1
40A2B2R4

P
+ β1

2A2R2R4

P
− β3

PR4

A
+ β1

10A2B2
2R2

P

− β1
20A2B2R

2
2

P
− β1

20A2B4R2

P
+ β1

10A2R3
2

P
+ β1

30A2R2R4

P

+ β1
30A2R6

P
+ β2

4AB2M
2N2

2

P
− β2

16AM2N2N4

P
+ β3

PB2
2

A

− β3
2B2PR2

A
+ β3

B4P

A
+ β3

PR2
2

A
,

Ṅ4 = −χ
40A2B2N4

P
+ χ

2A2N2N4

P
+ χ

10A2B2
2N2

P
− χ

20A2B2N2R2

P

− χ
20A2B4N2

P
+ χ

10A2N2R
2
2

P
+ χ

10A2N2R4

P
+ χ

20A2N4R2

P

+ χ
30A2N6

P
,

. . . .

(30)

An immediate idea of how to solve (30) could be to truncate the system by re-
moving higher-order variables and solve the resulting closed system under some initial
conditions. However, such an approach has a serious flaw since there is no guarantee
that the three fronts—the energy front, dissipation front, and velocity front—would
coincide during the evolution. By the physics of diffusion, if the fronts do not coincide
initially, they must catch up with each other. Suppose, for example, that initially the
velocity front is behind the energy and dissipation fronts (suppose that these two
coincide). Then the turbulent diffusion will instantaneously transfer the momentum
forward up to the energy/dissipation front position. Conversely, if the velocity front
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is initially ahead of the energy/dissipation front, it will be motionless for some time,
as there is no turbulence in its vicinity. The velocity front would move only when
the energy/dissipation front catches up, after which all the fronts move together. The
front x = h(t), where the energy, dissipation, and velocity decrease to a zero level, is
a special point, yet the system (30) “does not know about it.” We should explicitly
impose the physical condition that the three profiles (29) must meet at the point
(K = ε = u = 0, x = h).

Let us demonstrate with a simple example that the lack of such a condition leads
to the growth of the gap between the fronts. Consider a relatively simple model

∂tK = ∂x(K∂xK),

∂tu = ∂x(K∂xu),

without attributing any physical sense to K and u. We look for power-series solutions
in the form of (29) and transfer to the new time by using AB2 dt = dτ . Retaining
only two leading equations for the series coefficients and removing terms with B4 and
N4, we have

B′
2 = −4B2,

N ′
2 = −6N2 +

2N2
2

B2
.

(31)

Upon solving (31), the front of K can be determined from

1 −B2h
2
K = 0,

and the front of u can be found from

1 −N2h
2
u = 0.

Clearly N2 = B2 satisfies (31), but is this solution stable? Introduce the perturbation
s by

(32) N2 = B2 − s.

Substituting (32) into (31) and linearizing, we get

s′ = −2s.

The perturbation decays as exp(−2τ), whereas B2 decays, according to (31), as
exp(−4τ). Thus, the perturbation goes to zero slower than the function itself. This
leads to a large discrepancy between the values of B2 and N2, and hence in the front
positions, h2

u = 1/N2 and h2
K = 1/B2. A similar effect occurs with the system (30).

Let us see how the situation changes if we require that the fronts coincide. We
augment (31) by two extra equations stating that the functions turn into zero at
the same point x = h(t), that is, K(h, t) = 0 and u(h, t) = 0, where K and u are
represented by the truncated series (29). The two extra equations bring one extra
unknown, h. Therefore we need to add another unknown to have as many equations
as unknowns. Let this new unknown be N4. We get

B′
2 = −4B2,

N ′
2 = −6N2 +

12N4

B2
+

2N2
2

B2
,

1 −B2h
2 = 0,

1 −N2h
2 −N4h

4 = 0.

(33)
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Excluding h and N4 from (33) leads to

B′
2 = −4B2,

N ′
2 = −6N2 +

2N2
2

B2
+ 12(B2 −N2).

(34)

Substituting (32) into (34) and linearizing gives

s′ = −14s.

Now s decays much faster than B2 so that, in contrast to the previous case, B2 and
N2 become closer to each other.

Applying a similar approach to the system (30), we require that K, ε, and u turn
into zero at the same location x = h(t). Retaining in the power-series (29) only terms
up to the fourth order, we require

1 −B2h
2 −B4h

4 = 0,

1 −R2h
2 −R4h

4 = 0,

1 −N2h
2 −N4h

4 = 0.

(35)

Equations (35) are complemented by the truncated dynamic equations (30),

Ȧ = −α1
2A3B2

P
− α3P,

Ṗ = −β12A
2R2 − β3

P 2

A
,

Ṁ = −χ
2A2MN2

P
,

Ḃ2 = −α1
10A2B2

2

P
+ α3

PB2

A
+ α1

6A2B2R2

P
+ α1

12A2B4

P

− α2
4AM2N2

2

P
− α3

PR2

A
,

Ṙ2 = β1
8A2R2

2

P
− β3

PR2

A
− β1

12A2B2R2

P
+ β1

12A2R4

P

− β2
4AM2N2

2

P
+ β3

PB2

A
,

Ṅ2 = χ
2A2N2

2

P
− χ

12A2B2N2

P
+ χ

6A2N2R2

P
+ χ

12A2N4

P
,

(36)

Ḃ4 = −α1
58A2B2B4

P
+ α3

PB4

A
+ α1

10A2B3
2

P
− α1

20A2B2
2R2

P

+ α1
10A2B2R

2
2

P
+ α1

10A2B2R4

P
+ α1

20A2B4R2

P
+ α1

30A2B6

P

+ α2
8AB2M

2N2
2

P
− α2

4AM2N2
2R2

P
− α2

16AM2N2N4

P
− α3

PR4

A
.

The system (35)–(36) contains 10 equations with respect to 10 time-dependent func-
tions: A, P , M , B2, R2, N2, B4, R4, N4, and h.
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As before, we “create” linear terms by modifying time:

(37)
d

(A2B2/P ) dt
=

d

dτ
≡ ()′.

Dividing (36) by A2B2/P and converting to τ results in

A′ = −α12A− α3
P 2

A2B2
,

P ′ = −β1
2R2P

B2
− β3

P 3

A3B2
,

M ′ = −χ
2MN2

B2
,

B′
2 = −α110B2 + α3

P 2

A3
+ α16R2 + α1

12B4

B2

− α2
4M2N2

2

AB2
− α3

P 2R2

A3B2
,

R′
2 = −β112R2 + β1

8R2
2

B2
− β3

P 2R2

A3B2
+ β1

12R4

B2

− β2
4M2N2

2

AB2
+ β3

P 2

A3
,

N ′
2 = −χ12N2 + χ

2N2
2

B2
+ χ

6N2R2

B2
+ χ

12N4

B2
,

(38)

B′
4 = −α158B4 + α3

P 2B4

A3B2
+ α110B2

2 − α120B2R2

+ α110R2
2 + α110R4 + α1

20B4R2

B2
+ α1

30B6

B2

+ α2
8M2N2

2

A
− α2

4M2N2
2R2

AB2
− α2

16M2N2N4

AB2
− α3

P 2R4

A3B2
.

Figures 3, 4, and 5 display some trajectories for the system (35)–(38). We used
α1 = 0.09, α2 = 0.09, α3 = 1, β1 = 0.07, β2 = 0.13, β3 = 1.92, χ = 0.09. The initial
conditions were chosen to ensure the same position for the three fronts.

Figure 6 shows the front propagation. Note that the seeming acceleration occurs
only in terms of the artificial time τ . In terms of the real time t the graph will have
opposite curvature showing deceleration.

We notice a considerable spectral gap between the linear decay rates in (36): the
coefficient at B4, (−58α1), is from 5 to 6 times larger than that of B2, (−10α1), of
R2, (−12β1), and of N2, (−12χ). The numerical data show that the linear terms are
the largest in absolute value in each dynamic equation.

The numerical data also show that on the initial sections of the trajectories the
velocity terms M , N2, and N4 in the equation B′

4 = . . . are much smaller than the
terms associated with the energy and dissipation. However, after some period of time
the velocity-associated terms become comparable to the other terms.

This points to a mechanism characteristic of center manifolds, where some vari-
ables, such as B4 in our problem, rapidly decay until they are small enough to be
comparable with the nonlinear terms which come into play.
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Fig. 3. Trajectories for the model (35)–(38) in the space of the energy variables.

To illustrate this mechanism we use a simple example from [20]:

ẋ = −px− xy,

ẏ = −y + x2 − 2y2.
(39)

The linear decay rate p of x is much smaller than that of y, say p = 0.1 � 1. A set
of trajectories for the system (39) is shown in Figure 7. See that the trajectories are
attracted to a single curve. It can be shown that in the limit p = 0 the attractor is
exactly

(40) y = x2,

which is called the center manifold. Driven by the linear term (−y) the trajectories
quickly drop onto the manifold on which the nonlinear terms (x2−2y2) are comparable
to (−y). On the attractor, in view of (40), the motion is described by ẋ = −xy = −x3.
The variable y depends on t through x to which it is rigidly linked by (40).

We anticipate that a similar situation takes place in our problem with B4 being
analogous to y in the above example. However, the problem is complicated by a
multitude of variables. In this paper we investigate a simplified version of the model.
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Fig. 4. Trajectories for the model (35)–(38) in the space of the dissipation variables.

4. Reduced version of the model. In this section we simplify the K-ε model
(28) to a great extent, yet make sure that the key physical factors remain. These
factors are the nonlinear diffusion and the coupling via the velocity shear. We will
keep calling K the energy and u the velocity for consistency with the previous section.
However, these terms should not be directly associated with the physical quantities.
If we find attractors, our approach will provide a useful basis for studies of more
complicated systems.

We assume that (a) α3 = β3 = 0 to remove the dissipation terms, (b) α1 = α2 =
β1 = β2 = 1 for simplicity, and (c) initial conditions for K and ε coincide. Thus, the
problem formulations for K and ε become identical; therefore K ≡ ε at all times, that
is, A(t) ≡ P (t) and Bk(t) ≡ Rk(t), k = 2, 4, . . . . As a result, system (28) reduces to
the two equations

∂tK = ∂x (K∂xK) + K (∂xu)
2
,

∂tu = ∂x (K∂xu) .
(41)

The manipulations in section 3 automatically apply to (41). The definition of new
time (37) transforms into
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Fig. 5. Trajectories for the model (35)–(38) in the space of the velocity variables.

(42)
d

(AB2) dt
=

d

dτ
≡ ()′.

We introduce the new function

(43) T ≡ M2

A
.

It turns out that it is possible to derive a dynamic equation for T , where M and A
appear in combination (43). This equation will replace the two dynamic equations
for A and M . Differentiating (43) gives

(44) T ′ =

(
M2

A

)′
=

2MM ′A−M2A′

A2
.

The following expressions for A′ and M ′ are obtained from (38) under conditions (a),
(b), and (c): A′ = −2A and M ′ = −2MN2/B2. Substituting these into (44) gives
the equation shown below.

Under assumptions (a), (b), and (c), and in view of (44), system (35)–(38) be-
comes
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Fig. 6. Propagation of the turbulent front in the model (35)–(38).
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Fig. 7. Center manifold in model (39).

T ′ = −4N2T

B2
+ 2T,

B′
2 = −4B2 −

4N2
2T

B2
+

12B4

B2
,

N ′
2 = −6N2 +

2N2
2

B2
+

12N4

B2
,

B′
4 = −28B4 + 4N2

2T − 16N2N4T

B2
,

1 −B2h
2 −B4h

4 = 0,

1 −N2h
2 −N4h

4 = 0.

(45)
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System (45) contains six equations with respect to six unknown functions: T , B2, N2,
B4, N4, and h. We solved (45) numerically, making sure that the initial positions of
the energy and velocity fronts coincide.

Using the data from the numerical experiments we can deduce results in analytical
form. According to the data, at large times some terms in (45) become negligible,
namely, (−16N2N4T/B2) in the equation B′

4 = . . . , (12B4/B2) and (−4N2
2T/B2) in

the equation B′
2 = . . . , and (12N4/B2) in the equation N ′

2 = . . . . Also it is important
to note N2 → B2. Therefore from (45) we get asymptotically

(46) T ′ = −2T, N ′
2 = −4N2, B2 = N2,

from which we get

(47) T = T0e
−2(τ−τ0), B2 = N2 = N0e

−4(τ−τ0),

where τ0, T0, and N0 are some reference values. Substituting (47) into (45), we get

(48) B′
4 = −28B4 + 4N2

0T0e
−10(τ−τ0).

The solution of the homogeneous part of (48), ∼ exp[−28(τ−τ0)], expresses the decay
caused by the linear term (−28B4). This part of the solution is negligible compared
to the solution of the nonhomogeneous equation,

(49) B4 = Ce−10(τ−τ0),

expressing the forced dynamics of B4.
Here we recognize the center manifold mechanism: a rapid decay of a function to

a level where the linear term becomes comparable to the nonlinear term. It is easy
to find the constant by substituting (49) into (48),

C =
2

9
N2

0T0.

Hence, the variable B4 is attracted to the manifold described by

B4(τ) =
2

9
N2

0T0 exp[−10(τ − τ0)] =
2

9
N2

2T

or, using (43),

(50) B4 =
2N2

2M
2

9A
.

Let us use the numerical data directly to show that B4 is indeed attracted to (50).
There are many ways to demonstrate the attraction, and below we implement just
one of them. A graph B4 versus N2

2 and T would be a curved surface. We go over to
new variables, in terms of which the surface would be a plane,

(51) N2
2 = ξ + η, T = ξ − η.

The product N2
2T is represented by a plane in terms of ξ2 and η2:

(52) N2
2T = ξ2 − η2.
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Fig. 8. Trajectories for the reduced model (45).

The new variables are defined by (51),

ξ =
1

2

(
N2

2 + T
)
, η =

1

2

(
N2

2 − T
)
.

Figure 8 gives two views of a set of trajectories in the space (ξ2, η2). The right-
hand view shows that all the trajectories converge to a surface which, from this
particular angle, appears as a straight line. Clearly the surface is a plane.

In order to obtain a closed system from (35)–(38), we removed the term with B6

from the equation B′
4 = . . . and obtained the dynamics of N4 from the front equation

1 −N2h
2 −N4h

4 = 0 rather than from the respective dynamic equation.
To let N4 evolve according to the dynamic law, we add the equation N ′

4 = . . . .
Adding the extra equation makes it necessary to add another unknown to the system,
say B6 (or alternatively, N6; however, this is not of principle importance):

T ′ = −4N2T

B2
+ 2T,

B′
2 = −4B2 −

4N2
2T

B2
+

12B4

B2
,

N ′
2 = −6N2 +

2N2
2

B2
+

12N4

B2
,

B′
4 = −28B4 + 4N2

2T − 16N2N4T

B2
+

30B6

B2
,

N ′
4 = −20N4 +

2N2N4

B2
− 10N2B4

B2
,

1 −B2h
2 −B4h

4 −B6h
6 = 0,

1 −N2h
2 −N4h

4 = 0.

(53)

Trajectories for the system (53) are shown in Figure 9. We see the same attractor
as for the shorter version (45). In the dynamic equation B′

4 = . . . the new term
(30B6/B2) and the old term (−16N2N4T/B2) are smaller than the other terms by
two orders of magnitude.
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Fig. 9. Trajectories for the enhanced version (53) of the reduced model.

Now we look for an attractor for N4. Substituting N2 = B2 (we emphasize
that this relation is asymptotic, not exact) and the expression for B4, (50), into the
equation N ′

4 = . . . in (53) we get

(54) N ′
4 = −18N4 −

20

9
N2

0T0e
−10(τ−τ0).

As in the case for B4, the solution of the homogeneous part of this equation rapidly
decays as exp[−18(τ − τ0)] so that the solution is virtually the forced one,

(55) N4 = De−10(τ−τ0).

Substituting (55) into (54) gives D = −5N2
0T0/18, and therefore the attractor is

(56) N4 = −5N2
2M

2

18A
.

A graph N4 against ξ2 and η2 is again a plane, as is evident from Figure 10.
Remarkably, dividing (50) by (56), we find

(57)
B4

N4
= −4

5

on the attractor. The dependence B4/N4 versus time in the numerical experiments
is given in Figure 11. It clearly shows the attraction to the predicted value (−4/5) =
−0.8.

Further extension of the model can be done by involving the equation B′
6 = . . .

(without the term with B8). Accordingly we need to add another unknown, for
instance, N6, to make the front equation 1 −N2h

2 −N4h
4 −N6h

6 = 0. This process
can be continued.

More equations would give a more accurate description; however, the result about
the existence of the attractors (50) and (56) holds.

In summary, the solutions of the confined-source problem for the quasi–fluid-
dynamical system ∂tK = ∂x (K∂xK) + K (∂xu)

2
, ∂tu = ∂x (K∂xu) converge to the
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Fig. 10. Trajectories for the enhanced version (53) of the reduced model.
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Fig. 11. The ratio B4/N4 versus time.

attractor

K = A (1 −B2x
2 −B4x

4 − · · · ),
u = M (1 −N2x

2 −N4x
4 − · · · ),

where

(58) B4 =
2N2

2M
2

9A
, N4 = −5N2

2M
2

18A

and the variables A, M , B2, and N2 evolve according to (43), (53). (Note that one
should not substitute the asymptotic result (58) into (53) and then solve for A, M , B2,
and N2. This would break stability, similarly to example (34). If in (34) one replaces
12(B2 −N2) by its asymptotic value zero, the system becomes unstable; see (31).)
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5. Conclusions. We considered a process of an expansion of a turbulent jet
driven by turbulent diffusion. The mathematical model essentially involves coupling
between the turbulent energy, dissipation, and momentum. Looking for solutions in
the form of power-series in a spatial coordinate, we derived dynamical systems with
respect to time-dependent series coefficients. The system is essentially nonlinear;
however, modifying time allowed us to create linear terms, which dominate during
the early dynamics. We analyzed in detail a simplified version of the model with a
radically reduced number of variables. The numerical and analytical analyses allowed
us to find an attractor in exact form.
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