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Abstract

Consider the flow of a thin layer of non-Newtonian fluid over a solid surface. I model the case where the viscosity depends nonlinearly on the
shear-rate; power law fluids are an important example, but the analysis here is for general nonlinear dependence. The modelling allows for large
changes in film thickness provided the changes occur over a relatively large enough lateral length scale. Modifying the surface boundary condition
for tangential stress forms an accessible foundation for the analysis where flow with constant shear is a neutral critical mode, in addition to a mode
representing conservation of fluid. Perturbatively removing the modification then constructs a model for the coupled dynamics of the fluid depth
and the lateral momentum. For example, the results model the dynamics of gravity currents of non-Newtonian fluids when the flow is not creeping.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the two-dimensional flow of a thin layer of fluid
over a flat substrate. The fluid of thickness η(x, t) spreads with
mean lateral velocity ū(x, t). Suppose the fluid has the non-
Newtonian, power law, stress–strain relation that the stress ∝
(strain-rate)s for some fixed exponent s: the exponent s = 1 for
a Newtonian fluid; s < 1 is shear thinning; and s > 1 is shear
thickening. Such a power law is sometimes called Ostwald’s or
Norton’s constitutive relation [1]. Then the systematic analysis
developed in this Letter supports the nondimensional model of
the flow
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where Re is the nondimensional Reynolds number, cs is the
coefficient of proportionality in the nonlinear stress–strain re-
lation, and where g1 and g2 are the nondimensional compo-
nents of gravity along and normal to the flat substrate, re-
spectively. This model generalises the model of Newtonian
fluids [2]. Fluid is conserved through (1). The momentum
equation (2) incorporates effects of inertia, ūt , self-advection,
ūūx and ū2ηx , bed drag, (ū/η)s , and gravitational forcing,
(g1 − g2ηx); the dependence of the coefficients upon s models
the subtle effects of the power law rheology. For example, for
flow down an inclined flat plate with lateral gravity g1, the non-
linear bed friction may balance gravitational forcing whence the
above model predicts the equilibrium flow to have mean veloc-
ity

(3)ū = η1+1/s
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Just as for the special case of Newtonian fluids [2, Section 6.1],
the model (1)–(2) also resolves instabilities from the equilib-
rium flow (3) and the emergence and interaction, or otherwise,
of solitary waves on the falling fluid. Similarly, modulating
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gravity g2 in time allows the above model to simulate Fara-
day waves as previously displayed for Newtonian fluids [2,
Section 6.1]. Further, substituting the equilibrium mean veloc-
ity (3) into the fluid conservation equation (1), modelling the
very slow dynamics at small Re, leads to an accurate lubrica-
tion model for nonlinear fluids, one previously approximated by
others, e.g. [3,4], and reducing to the classic lubrication model
for Newtonian fluids when exponent s = 1.

The model (1)–(2) not only applies to the flow of simple liq-
uid, it applies to: gravity currents of suspensions with medium
to high volume fractions as these are non-Newtonian [5]; ice
flow as power law rheologies are often used in models, e.g.
[6,7]—at even a few metres per year the Reynolds number is
significant for a thick glacier; and a modified model would ap-
ply to turbulent flow as the Smagorinsky large eddy closure of
turbulence corresponds to the shear thickening case of exponent
s = 2, e.g. [8, Eq. (6)]. This Letter puts models such as (1)–(2)
within the sound support of modern dynamical systems theory,
Section 3, to empower us to systematically control error, assess
domains of validity, and to systematically account for further
physical effects. For example, this analysis in the special case
of Newtonian fluids is valid for free surface steepnesses ηx up
to about one [2, Eq. (62)].

The analysis here encompasses not only power law fluids but
also a general nonlinear rheology with a general dependence of
the stress upon the strain-rate as described in Section 2. In con-
trast, almost all previous thin fluid film modelling use only a
power law dependence. Some industrial plastics have a com-
plicated non-monotonic dependence that cannot be represented
by a simple power law [9]. Similarly, dense suspensions often
have non-monotonic dependence [5]. The model derived in Sec-
tion 4 applies to such complicated industrial plastics and dense
suspensions.

The lubrication approximation of very slow flow, negligible
Reynolds number, underpins previous theoretical models for
non-Newtonian thin fluid films: Perazzo and Gratton [4] and
Betelu and Fontelos [3] examined flow with surface tension;
this followed experiments comparing travelling waves and sim-
ilarity solutions by Gratton, Minotti and Mahajan [1]. Gratton
et al. comment “the differences between Newtonian and non-
Newtonian currents are significant and can clearly be observed
in experiments”. But the lubrication approximation, that creates
models expressed only in terms of the fluid thickness η(x, t),
does not model inertial dynamics and so cannot resolve any
wave-like dynamics. To model faster flows, potentially with
wave effects, we must resolve the dynamics of both the fluid
thickness and a measure of horizontal momentum [2,10], we
used η and ū in (1)–(2). For example, Harris et al. [11] modelled
particle driven gravity currents using shallow water equations
that resolve the dynamics of both the fluid thickness and the
mean lateral velocity. However, such modelling of essentially
dissipative flows, albeit dissipative via turbulence, by the lam-
inar inviscid foundation of shallow water equations appears a
contradiction that demands resolution. This Letter shows how
models of non-Newtonian rheology fluid flow may be put on a
sound mathematical basis to empower accurate physical fore-
casts.
2. Differential equations to model non-Newtonian flow

Let the incompressible fluid have thickness η(x, t), constant
density ρ, a nonlinear rheology, and let the fluid flow with
some varying velocity field u = (u, v) = (u1, u2) and pressure
field p. In this Letter we restrict attention to two-dimensional
fluid flow.

2.1. Nonlinear constitutive relation

Define the strain-rate tensor [1,5]1
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where x1 = x and x2 = y are distances along and normal to the
solid substrate, respectively. Then the stress tensor for the fluid
is σij = −pδij + 2ρνε̇ij : the kinematic viscosity ν is constant
for a Newtonian fluid; but when the kinematic viscosity varies
with strain-rate then we model shear thickening or shear thin-
ning non-Newtonian fluids.

The important class of non-Newtonian fluids that we address
has viscosity which depends only upon the magnitude ε̇ of the
second invariant of the strain-rate tensor [3]:

(5)ε̇2 =
∑
i,j

ε̇2
ij .

For example, Bird et al. [12] (see [3]) report that a solution
of 0.5% hydroxyethylcellulose is shear thinning: at 20 ◦C the
solution has viscosity μ = mε̇s−1 for exponent s = 1/1.96 and
coefficient m = 0.84 N ss/m2.

2.2. Partial differential equations

Make variables nondimensional with respect to some veloc-
ity scale, a typical fluid thickness, and the fluid density. The
nondimensional PDEs for the incompressible, two-dimensional
fluid flow are firstly the continuity equation
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and secondly the momentum equation
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where Re is the appropriate Reynolds number, τ is the nondi-
mensional deviatoric stress tensor, and g = (g1, g2) is the
nondimensional forcing of gravity. For a fluid with a nonlin-
ear stress–strain relation, the nondimensional deviatoric stress
tensor
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1 Some, such as Betelu and Fontelos [3], use double this tensor.
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2.3. Boundary conditions

Solve these PDEs with nondimensional boundary condi-
tions:

• on the bed of no-slip,2

(9)u = 0 on y = 0;
• the kinematic condition on the free-surface of
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• the stress normal to the free surface comes from constant
environmental pressure and surface tension, that is,
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where We is a nondimensional Weber number characterising the
importance of surface tension;

• and there must be no tangential stress at the free surface,

(12)
(
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x

)
τ12 + ηx(τ22 − τ11) = 0 on y = η.

This boundary condition of zero tangential stress implicitly is
effectively one of zero shear at the surface; this zero shear
would not be appropriate for material with a finite yield stress.
Here we assume the fluid yields for arbitrarily small stress.

3. Centre manifold theory supports the modelling

This section describes one approach to placing models such
as (1)–(2) on a sound theoretical base. Artificially modify the
zero tangential stress free surface condition (12) to have an arti-
ficial forcing proportional to the local velocity, a forcing which
we later remove by evaluating at parameter γ = 1:(

1 − 1
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(13)on y = η.

Evaluated at γ = 1 this artificial right-hand side becomes zero
so the boundary condition (13) reduces to the physical bound-
ary condition of zero tangential stress (12). However, when the
parameter γ = 0 and the lateral gravity and lateral derivatives
negligible, g1 = ∂x = 0, a neutral mode of the dynamics is the
lateral shear flow u = √

2Ey where I define E to be proportional
to the mean lateral strain-rate:

E = 1√
2η

η∫
0

∂u

∂y
dy = 1√

2η
u|y=η.

This neutral lateral shear mode arises because in pure shear flow
τ12 = νuy and hence the artificial free surface condition (13)

2 If modelling turbulent flows by a large eddy closure, we may justifiably
replace this no-slip bed condition by a mixed boundary condition on the lateral
velocity: u ∝ ∂u

∂y
.

reduces to νuy = νu/η on y = η. Conservation of fluid pro-
vides a second neutral mode in the dynamics. That is, when
γ = g1 = ∂x = 0 then a two parameter family of equilibria ex-
ists corresponding to some uniform lateral shear flow, u = Ey,
on a fluid of any constant thickness η. For large enough lat-
eral length scales, these equilibria occur independently at each
location x (e.g. [13,14]) and hence the space of equilibria are
in effect parametrised by E(x) and η(x). Provided we can treat
lateral derivatives ∂x as a modifying influence, that is provided
solutions vary slowly enough in x, centre manifold theorems
(e.g. [15–17]) assure us three vitally important properties:

1. this space of equilibria is perturbed to a slow manifold,
on which the evolution is slow, that exists for a finite range
of gradients ∂x , and parameters γ and g1, and which may be
parametrised by the mean lateral shear E(x, t) and the local
thickness of the fluid η(x, t);

2. the slow manifold attracts solutions from all nearby ini-
tial conditions; and that

3. a formal power series in the parameters γ , g1 and gradi-
ents ∂x approximates the slow manifold to the same order of
error as the order of the residuals of the governing differential
equations.

That is, the theorems support the existence, accurate rel-
evance and construction of slow manifold models such as
(1)–(2).

An alternative and powerful view of these theorems is that
they follow from a nonlinear, normal form, coordinate trans-
form that decouples the slow and fast modes in the fluid dy-
namics, e.g. [18]. That is, the models we discuss are essentially
just a reparametrisation of the state space, restricted to the slow
dynamics.

4. Low order models of the dynamics

The detailed and complicated algebra deriving a model is of
little interest to users of the model. Computer algebra readily
constructs slow manifold models [19, Section 3]. Those inter-
ested should check the code and verify that the algorithm solves
the governing differential equations and boundary conditions as
specified [19, pp. 17–23]. The solution is valid for in small lat-
eral derivatives, small lateral forcing and small perturbation of
the free surface condition [Property 3]. Here we focus on the
resulting model and its interpretation.

4.1. Power law fluids

For simplicity, suppose the rheology is a nondimensional
power law for the kinematic viscosity, ν = cs ε̇

s−1.
Computer algebra [19, Section 3] derives that for such a

power law fluid, the evolution of the fluid thickness η and the
stress parameter E is
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The nonlinear rheology primarily appears in the first line of (15)
as a nonlinear drag on the bed. However, the different power
laws also change the vertical profiles of velocity and pressure;
these changes affect the coefficients of the model (14)–(15)
through their dependence upon exponent s.

In modelling the flow of thin fluid layers, we generally prefer
to use the mean lateral velocity or the lateral fluid flux instead
of the shear parameter E. Using the velocity fields computed at
the same time as the evolution (14)–(15), the computer algebra
[19, Section 3] also derives the mean lateral velocity
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Reverting this series to express E in terms of ū, and substitut-
ing into the model (14)–(15) leads to a model for the coupled
evolution of fluid thickness η(x, t) and mean lateral velocity
ū(x, t). Evaluating at the physically relevant γ = 1, to remove
the artifice in the surface boundary condition (13), then gives
the model (1)–(2) discussed in the Introduction of this Let-
ter.

Computer algebra experiments [19, Section 1] suggest that
the convergence of the asymptotic series in γ is markedly im-
proved by the factor (1 − 1

6γ ) on the left-hand side of the tan-
gential stress boundary condition (13). This factor is equivalent
to an Euler transformation of the asymptotic series. As shown
in other similar applications, e.g. [2,10], evaluation at γ = 1 is
physically valid.

Computer algebra [19, Section 3] may construct terms in the
formal power series solutions to higher order in the notionally
small parameters γ , g1 and ∂x . Various truncations of the mul-
tivariate power series generate many valid approximations of
varying orders of accuracy. For example, to resolve any effects
of surface tension we need to compute terms in ∂2

x that are ne-
glected in (2) and (15). With the support of centre manifold
theory, researchers may choose an approximate model that suits
the parameter regime of their application.

4.2. More general non-Newtonian fluids

We now return to the more general rheology where the vis-
cosity ν of the fluid depends arbitrarily upon the magnitude of
the shear-rate ε̇, instead of being a simple power law. In this
more general rheology the expressions for the modelling are
much more complicated. For conciseness define

(16)Ē =
√

2ū

η
, ν̄ = ν(Ē) and Rν̄ = 1

ν̄ + Ēν̄′ ,

where primes on ν̄ denote the derivatives d/dE of the viscosity
ν(E) and evaluated at E = √

2ū/η.
Theory [Section 3] supports a model obtained through solv-

ing asymptotically the governing differential equations. The
procedure is as for the power law rheology: computer alge-
bra [19, Section 3] constructs the slow manifold and evolution
thereon to some order of error; then revert the asymptotic se-
ries to find stress parameter E as a function of mean velocity ū;
and substitute to express the model in terms of η and ū. Con-
servation of fluid again derives (1) (to any order of error). The
momentum dynamics leads to
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As before, the terms on the right-hand side represent, respec-
tively, bed drag through the nonlinear rheology, self-advection
of momentum, and forcing due to gravity and hydrostatic pres-
sure. Evaluate this equation at γ = 1 to recover a physically
relevant model of the dynamics of lateral momentum.

The power law model (2) is just one specific subclass of the
general model (17): obtain (2) by the specific choice of a power
law viscosity, ν(ε̇) = cs ε̇

s−1.

5. Conclusion

Following similar modelling for Newtonian thin films [2,10],
this innovation of modifying the free surface condition to (13)
places the modelling of a physically important class of non-
Newtonian fluids upon the powerful and sound basis of centre
manifold theory, e.g. [15–17]. This modern dynamical system
foundation empowers us to systematically derive the novel and
accurate models (2), (15) and (17) for the lateral momentum of
fluids with nonlinear rheology.

These models of thin fluid flow can be directly applied to
flows as diverse as those of industrial plastics, (e.g. [9]), ice
(e.g. [6,7]), and medium to dense suspensions (e.g. [5]). The
models replace lubrication theory when inertia becomes im-
portant n the flow. When you desire more accuracy than that
presented here, computer algebra readily computes higher order
approximations [19, Section 3]. Modifying the no-slip bound-
ary condition on the bed, (9), will empower the modelling of
turbulent layers of flow over a substrate via large eddy closures.
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There are enormous applications for this approach to modelling
the dynamics of relatively thin layers of fluids flowing over sub-
strates.
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