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Abstract

This thesis investigates the prediction distributions of future response(s),

conditional on a set of realized responses for some linear models having

Student-t error distributions by the Bayesian approach under the uniform

priors. The models considered in the thesis are the multiple regression model

with multivariate-t errors and the multivariate simple as well as multiple re-

gression models with matrix-T errors. For the multiple regression model,

results reveal that the prediction distribution of a single future response and

a set of future responses are a univariate and multivariate Student-t distri-

butions respectively with appropriate location, scale and shape parameters.

The shape parameter of these prediction distributions depend on the size of

the realized responses vector and the dimension of the regression parameters’

vector, but do not depend on the degrees of freedom of the error distribu-

tion. In the multivariate case, the distribution of a future responses matrix

from the future model, conditional on observed responses matrix from the

realized model for both the multivariate simple and multiple regression mod-

els is matrix-T distribution with appropriate location matrix, scale factors

and shape parameter. The results for both of these models indicate that

prediction distributions depend on the realized responses only through the

sample regression matrix and the sample residual sum of squares and prod-
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ucts matrix. The prediction distribution also depends on the design matrices

of the realized as well as future models. The shape parameter of the pre-

diction distribution of the future responses matrix depends on size of the

realized sample and the number of regression parameters of the multivariate

model. Furthermore, the prediction distributions are derived by the Bayesian

method as multivariate-t and matrix-T are identical to those obtained un-

der normal errors’ distribution by the different statistical methods such as

the classical, structural distribution and structural relations of the model

approaches. This indicates not only the inference robustness with respect to

departures from normal error to Student-t error distributions, but also indi-

cates that the Bayesian approach with a uniform prior is competitive with

other statistical methods in the derivation of prediction distribution.
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Chapter 1

Introduction

The prediction distribution is a fundamental tool for all kinds of predictive

inferences. There are many practical situations in real life where we need to

make inferences about the behavior of the unobserved future responses for a

model such as the linear regression model, based on the observed responses

from the model. A linear regression model is used to represent the linear

relationship between the response variable and a single or a set of explana-

tory variables. Different linear models are commonly used in many practical

situation. This study considers the simple, multiple, multivariate simple

and multivariate multiple regression models. The prediction distribution of

future response(s) can be derived for these regression models in statistical

predictive inferences.

To deal with linear regression models, some statistical assumptions for

the error variables are prominent. Traditionally in prediction problems, the

regression models with independent and normal error distribution are com-

monly considered by researchers. In many practical situations, the assump-

tion of normality and independency for error variables of a linear model may

not be appropriate. In particular, when the underlying distributions have
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2 CHAPTER 1. INTRODUCTION

heavier tails, the normal errors assumption fails to allow sufficient probabil-

ity in the tail areas to make allowance for any extreme value or outliers. Also,

the normality assumption can not deal with the uncorrelated but not inde-

pendent observations which are often common in time series and econometric

studies. For these cases the Student-t errors assumption is suitable in which

the error variables of the linear models are assumed to follow a Student-t

distribution with appropriate parameters.

A number of statistical methods can lead to prediction distribution. The

commonly used statistical approaches are the classical approach, the struc-

tural distribution approach, the structural relations of the model approach

and the Bayesian approach. The classical method is one of the oldest tools

for statistical inference which is based on the likelihood principle and deals

with the parameters of a model through sample observations. Under the

structural distribution approach a linear model can be expressed in a re-

duced form, which has an error probability distribution and a structural

equation between predictor variables and unknown parameters related to er-

ror constants - that are also unknown in the structural equation. The error

probability distribution can generate a structural distribution of unknown

parameters that is used to derive a prediction of future response(s). But the

method of structural relations of the model is based on a composite struc-

tural equation of the model rather than the structural distribution, in which

an observed errors value from the error distribution provides a relation be-

tween the observed responses and the unknown parameters. Moreover, the

Bayesian approach is based on the Bayes’s Theorem introduced by Bayes

(1763) where a probabilistic information or prior probability distribution of
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unknown parameters is essential. The prior distribution of parameters has

a type of statistical form such as a noninformative or uniform or flat prior

and a class of conjugate or informative prior distributions. In practical situa-

tions, it is realistic to assume that there is some information given in previous

studies and it is more convenient to use that prior information in predictive

inferences.

This thesis deals with the derivation problems of prediction distribution

for some linear models having Student-t errors under the Bayesian approach

with uniform prior distribution. The widely used multiple regression model

and its special case the simple linear regression model, the multivariate sim-

ple regression model and the multivariate multiple regression model are con-

sidered in this study to obtain the prediction distributions of the future

response(s) for the models.

The Bayesian prediction rule is very straightforward and mainly based

on the Bayes’s posterior distribution of unknown parameters. Let y be a set

of observed responses from a performed or realized experiment with a joint

probability density f(y|θ), in which θ is a set of unknown parameters. Again

let a prior density of θ be g(θ), the posterior density of θ for given y can

be obtained by Bayes’s theorem and defined as f(θ|y) ∝ f(y|θ)g(θ). Now,

if z∗ is an unobserved future response from a future experiment with the

same parameters θ and assumption of the performed experiment but with

different given values for the predictors, then under the Bayesian approach

the prediction distribution of z∗, conditional on y, can be obtained by solving
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the following integral

f(z∗|y) ∝
∫

θ
f(θ|y)f(z∗|θ)dθ

where f(z∗|θ) is the probability density function of the future response z∗

from the future model. This principle is appropriate when the future response

z∗ is independently distributed with the observed responses y, that means z∗

and y are not dependent to each other. However, in this study the responses

for the realized as well as the future models are considered uncorrelated but

not independent for the multiple regression model, and correlated for the

multivariate models.

The outline of the dissertation is as follows. In Chapter 2 the realized

and the future multiple linear regression model are specified with multivari-

ate Student t-error distribution. The prediction distribution of a single future

response as well as a set of future responses are derived by the Bayesian ap-

proach under uniform prior. As a special case, the simple linear regression

model with multivariate Student-t errors is also considered in this chapter

to illustrate the results of prediction distribution. Chapter 3 introduces the

multivariate simple regression model with matrix-T errors assumption and

obtains the prediction distribution of the future responses matrix, conditional

on the realized responses matrix. This chapter also defines a matrix-T dis-

tribution and briefly discuss the properties and application of the matrix-T

distribution. In chapter 4, the multivariate multiple regression model under

matrix-T error distribution is defined. Then the prediction distribution of

the future responses matrix for the multivariate multiple regression model is

derived. Furthermore, each of the above three chapters contains an intro-
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duction section with a relevant literature review and another section for the

chapters’ concluding remarks. The final chapter contains the summary of

the results and the final conclusions.
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Chapter 2

Multiple Regression Model

2.1 Introduction

The widely used multiple linear regression model represents the linear re-

lationship between the response variable and a set of explanatory variables.

The prediction distribution of future response(s) for the regression model can

derive for statistical predictive inferences. In general, predictive inference

uses the observed responses from a performed experiment to make inferences

about the behavior of the unobserved future response(s) of a future exper-

iment (Aitchison and Dunsmore, 1975). The details of predictive inference

methods and applications of prediction distribution can be found elsewhere

(Aitchison and Sculthorpe, 1965; Geisser, 1993).

Different statistical methods can lead to prediction distribution and many

authors have considered prediction problems in the linear regression model.

General prediction problems have been discussed by Jeffreys (1961), Aitchi-

son and Sculthorpe (1965), and Faulkenberry (1973). Goldberger (1962),

Wilson (1967) and Hahn (1972) considered prediction from linear models by

7



8 CHAPTER 2. MULTIPLE REGRESSION MODEL

using the classical method. Fraser and Haq (1970) obtained the prediction

distribution for the multilinear model by using the structural distribution

approach. Some authors used the structural relations, rather than the struc-

tural density function, to drive the prediction distribution from the multiple

regression model (Haq 1982, Haq and Khan 1990, and Khan 2004). Khan

and Haq (1994) proposed predictive inference for the auto-correlated multi-

linear regression model. Zellner and Chetty (1965), Aitchison and Dunsmore

(1975) and Geisser (1993) discussed the prediction problem from the Bayesian

viewpoint, and its applications in many areas has been discussed by Roberts

(1965), Geisser (1993) and Khan (2002).

Most of the authors have contributed to study the prediction problem for

linear models with independent and normal errors. But in many practical

situations when the underlying distributions have heavier tails, the normal

errors assumption may not be appropriate, and for such case the multivari-

ate student-t errors assumption for linear models is suitable. Unlike others

Haq and Khan (1990), and Khan and Haq (1994) obtained prediction dis-

tribution for the linear regression model with multivariate Student-t error

terms by using the structural relation approach. The linear models with

multivariate t-errors have also been considered by Zellner (1976) and Su-

tradhar and Ali (1989). In this chapter, the thesis assumes that the error

terms of the performed as well as the future regression model have a joint

multivariate Student-t distribution with a zero location vector. Under this

assumption, the marginal distribution of each error component has an uni-

variate Student-t distribution that includes the Cauchy as well as normal

distributions as special cases.
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The layout of this chapter is as follows. In Section 2.2, the multiple linear

regression model is specified with t-errors. The future model is introduced

in Section 2.3. The prediction distribution of a single future response has

been obtained using the Bayesian approach with uniform prior distribution

in Section 2.4. Then the prediction distribution of a set of future responses is

derived in Section 2.5. As a special case, the simple linear regression model

with multivariate Student-t error is considered in Section 2.6 to illustrate the

results of prediction distribution. Section 2.7 contains a summary of results

and some concluding remarks.

2.2 The model

Let the multiple linear regression model for n responses, y = (y1, y2, ..yn)′,

be given by

y = Xβ + e (2.1)

where β = (β0, β1, .., βk−1)
′, a k × 1 dimensional regression parameters vec-

tor; e, a n × 1 error vector; and X, a n × k dimensional design matrix of

explanatory variables (n > k).

Assume that each of the n components in e is uncorrelated but not inde-

pendent of the others and has the same univariate Student-t distribution with

location 0, scale σ > 0 and ν degrees of freedom. Here ν > 0 represents the

shape parameter of the t-distribution. Therefore, the joint probability den-

sity function (pdf) for the n elements of e is an n-dimensional multivariate

Student-t pdf

f(e) ∝ (σ2)−
n
2

[
1 +

1

νσ2
e′e

]− ν+n
2

. (2.2)
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It is to be noted that the mean vector and covariance matrix of e are

E(e) = 0, and Cov(e) = νσ2

(ν−2)
In for ν > 2. Thus the elements of e and hence

those of y are uncorrelated but not independent. Therefore the probability

density function of the realized vector y becomes

f(y|β, σ2, ν) ∝ (σ2)−
n
2

[
1 +

1

νσ2
(y −Xβ)′(y −Xβ)

]− ν+n
2

. (2.3)

A Bayesian analysis of the multiple regression model with multivariate

Student-t errors has been discussed by Zellner (1976). The posterior distri-

bution of parameters for a set of observations is typically the major objec-

tive of the Bayesian statistical analysis. A posterior distribution implies a

marginal distribution known as prediction distribution for outcomes of any

future sample observations (Roberts, 1965). Fraser and Ng (1980) discussed

details about the inference of parameters β and σ of the linear model. This

chapter derives the prediction distribution of unobserved responses from the

future model given the observed responses y from the realized model, us-

ing the Bayesian methodology with a noninformative prior distribution of

parameters.

2.3 The future model

Let yf be an unobserved future response from the model (2.1) corresponding

to the 1 × k dimensional design vector xf . Then the future multiple linear

regression model for a single response can be defined as

yf = xfβ + ef (2.4)
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where β is a k×1 dimensional parameters vector for future response yf , and

ef is the scaler error component associated with yf . According to the as-

sumption ef has univariate Student-t distribution with ν degrees of freedom

i.e., ef ∼ t1(0, σ, ν).

Since the errors are uncorrelated but not independent, the realized error

e and the future error ef have been combined to form a n + 1 dimensional

multivariate Student-t distribution with ν degrees of freedom. Hence the

observed responses y from the performed model and the unobserved response

yf from the future model are also not independent but uncorrelated, then

the joint density function of the combined responses y for the performed

experiment and yf for the future experiment becomes

p(y, yf |β, σ2) ∝ (σ2)−
n+1

2

[
1 +

1

νσ2
(Qy + Qyf

)
]− ν+n+1

2

(2.5)

where Qy = (y −Xβ)′(y −Xβ) and Qyf
= (yf − xfβ)2.

2.4 Prediction of a single future response

In the Bayesian method a prior distribution of unknown parameters is cus-

tomary. Let a noninformative joint prior distribution of unknown parameters

β and σ2 be

p(β, σ2) ∝ 1

σ2
. (2.6)

It is assumed that the degrees of freedom of the error distribution is unknown

and the elements of β and logσ2 are independently and uniformly distributed.
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On combining the prior density function of parameters in (2.6) with the

joint density function of the combined responses from both the performed

and future models in equation (2.5) by means of Bayes’ Theorem, we have

the following joint posterior density of β and σ2 for given y and yf :

p(β, σ2|y, yf ) ∝ p(y, yf |β, σ2)p(β, σ2) (2.7)

∝ (σ2)−
n+3

2

[
1 +

Q

νσ2

]− ν+n+1
2

, (2.8)

where Q = Qy + Qyf
.

Since the density function of a future response from the future model

join with the density function of a set of observed responses y within the

joint density in (2.5), the prediction distribution of a future response can be

obtained by solving the following integral

f(yf |y) ∝
∫

β

∫

σ2
p(y, yf |β, σ2)p(β, σ2)dσ2dβ (2.9)

or

f(yf |y) ∝
∫

β

∫

σ2
p(β, σ2|y, yf )dσ2dβ. (2.10)

That means in this case we can obtain the prediction distribution of future

response(s) from the joint posterior density of unknown parameters for given

combined responses generated from the performed and future models.

The joint posterior density in (2.8) can be written as the following con-

venient form

f(β, σ2|y, yf ) ∝ (σ2)
ν
2
−1

[
Q + νσ2

]− ν+n+1
2 . (2.11)
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For the transformation

Q + νσ2 = t−1,

the Jacobian of the transformation is |J | = 1
νt2

with the range of t from 0 to 1
Q

.

Now equation (2.10) can be written as

f(yf |y) ∝
∫

β

∫ 1
Q

0

[
1

ν

(
1

t
−Q

)] ν
2
−1 [

1

t

]− ν+n+1
2 1

ν

(
1

t

)2

dtdβ

or

f(yf |y) ∝ ν−
ν
2

∫

β

∫ 1
Q

0
[1−Qt]

ν
2
−1t

n+1
2
−1dtdβ. (2.12)

If we put z = Qt, then the prediction density in (2.12) becomes

f(yf |y) ∝
∫

β
[Q]

n+1
2 ν−

ν
2

∫ 1

0
z

n+1
2
−1[1− z]

ν
2
−1dzdβ. (2.13)

Equation (2.13) confirms that z has a beta distribution, that is, z ∼
B(n+1

2
, ν

2
). After integrating with respect to z, the equation (2.13) becomes

f(yf |y) ∝
∫

β
[Q]−

n+1
2 dβ. (2.14)

Now Q = Qy + Qyf
can be expressed as the following quadratic form of

the parameters’ vector β

Q = A + (β −B)′M(β −B) (2.15)

where M = X ′X + x′fxf , B = M−1(X ′y + x′fyf ) and

A = y′y + y2
f − (y′X + yfxf )M

−1(X ′y + x′fyf ).

It is noted that A is free from the unknown regression parameters’ vector β.
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Using relation (2.15), the probability density function in (2.14) can be

expressed as

f(yf |y) ∝
∫

β
[A + (β −B)′M(β −B)]−

n+1
2 dβ. (2.16)

The prediction density for yf can be obtained by integrating the above

equation with respect to the elements of β using the multivariate Student-t

integral. Hence the prediction distribution of yf , given a set of observed

responses y, is obtained as

f(yf |y) ∝ [A]−
n−k+1

2

or

f(yf |y) ∝ [y′y + y2
f − (y′X + yfxf )M

−1(X ′y + x′fyf )]
−n−k+1

2 . (2.17)

Applying matrix multiplication that has been discussed by Zellner (1971,

p.73) on the quantity within the square brackets in (2.17), the prediction

distribution of a single future response yf is obtained as

f(yf |y) = Ψf

[
(n− k) + (yf − xf β̂)′H(yf − xf β̂)

]−n−k+1
2 (2.18)

where

H =
(1− xfM

−1x′f )

s2
, β̂ = (X ′X)−1X ′y,

s2 =
1

n− k
[(y −Xβ̂)′(y −Xβ̂)] = y′[In −X(X ′X)−1X ′]y

and

Ψf =
Γ(n−k+1

2
)|1−XfM

−1x′f |
1
2

Γ(n−k
2

) [π(n− k)s2]
1
2
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is the normalizing constant.

Therefore, under the Bayesian approach with uniform prior the prediction

distribution of a future response yf , given a set of realized responses y, for

the multiple linear regression model with multivariate Student-t errors is

a univariate Student-t distribution with n − k degrees of freedom, mean

xf (X
′X)−1X ′y and variance (n−k)s2

(n−k−2)

(
1− xfM

−1x′f
)−1

. Also note that the

degrees of freedom of the prediction distribution does not depend on ν, the

degrees of freedom in the error distribution of the model. This result also

coincides with the result obtained by Haq and Khan (1990) and Khan (1992),

that is, the prediction distribution of future response for multivariate t-errors

model using the structural relation approach.

2.5 Prediction of a set of future responses

The future multiple linear regression model for a set of nf responses can be

defined as

yf = Xfβ + ef (2.19)

where β is a k×1 dimensional parameters vector for future response; yf and

ef both are nf × 1 dimensional responses and error values respectively; and

Xf is a nf × k dimensional design matrix of future model explanatory vari-

ables. Also in the future model we assume that ef has multivariate Student-t

distribution with ν degrees of freedom, i.e., ef ∼ tnf (0, σ, ν).
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Thus, the observed responses for the realized model and the unobserved

future responses for the future model are combined to define as the joint

density function of the set of realized responses y = (y1, y2, .., yn)′ and a set

of future responses yf = (y1, y2, ....ynf )′, by the following way

p(y, yf |β, σ2) ∝ (σ2)−
n+nf

2

[
1 +

1

νσ2
(Qy + Qyf

)
]− ν+n+nf

2

(2.20)

where,

Qy = (y −Xβ)′(y −Xβ)

and

Qyf
= (yf −Xfβ)′(yf −Xfβ).

Considering the joint prior density function of parameters in (2.6) and

the combined joint density function of y and yf in (2.20), the joint posterior

density function of unknown parameters β and σ2 for the responses y and

yf is obtained as

f(β, σ2|y,yf ) ∝ (σ2)−
n+nf +2

2

[
1 +

Q

νσ2

]− ν+n+nf

2

(2.21)

where Q = Qy + Qyf
.

Proceeding as before in section 2.4 and applying the appropriate transfor-

mations as Q+ νσ2 = t−1 and then z = Qt in equation (2.21), the prediction

distribution of yf , conditional on y, can be expressed as

f(yf |y) ∝
∫

β
[Q]

n+nf

2 ν−
ν
2

∫ 1

0
z

n+nf

2
−1[1− z]

ν
2
−1dzdβ (2.22)
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where z ∼ B(n+nf

2
, ν

2
).

Now at first using beta integral to integrating out z from the above joint

density, and then after expressing β in the quadratic form and using multi-

variate Student-t distribution properties, the prediction distribution of a set

of future responses yf is obtained as

f(yf |y) ∝ [y′y + y′fyf − (y′X + y′fXf )M
−1(X ′y + X ′

fyf )]
−n−k+nf

2 (2.23)

where M = X ′X + X ′
fXf .

Hence, the prediction distribution of a set of future responses yf given y is

derived as

f(yf |y) = Φf

[
(n− k) + (yf −Xf β̂)′H(yf −Xf β̂)

]−n−k+nf

2 (2.24)

where

H =
(Inf −XfM

−1X ′
f )

s2
,

β̂ and s2 are the same as defined in section 2.4, and

Φf =
Γ(n−k+nf

2
)|Inf −XfM

−1X ′
f |

1
2

Γ(n−k
2

)
[
πnf (n− k)s2

] 1
2

is the normalizing constant.

Under the Bayesian theory with a noninformative prior, conditional on

a set of realized responses y, a set of future responses yf has the predic-

tion distribution of multivariate Student-t distribution with n − k degrees

of freedom. This indicates that the shape parameter of the prediction dis-

tribution depends on the size of the observed sample n and the dimension
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of β. The location and scale of the prediction distribution are Xf β̂ and
{
s−2

∣∣∣Inf −XfM
−1X ′

f

∣∣∣
}− 1

2 respectively. This result coincides with that of

Zellner (1971) and Hahn (1972), where they considered the normal error

terms and operated through classical treatment. Geisser (1993) obtained

a similar result for the linear model with normal errors using the Bayesian

technique under a diffuse prior distribution, and Fraser and Haq (1970) ob-

tained an identical result by using structural distribution of the model in-

stead of the Bayesian approach. The result also conforms that obtained

for the model having multivariate Student-t error distribution through the

structural relation approach (Haq and Khan 1990 and Khan 1992). Thus

the prediction distribution is unaffected by departures from the model with

indepedent and normal errors to multivariate Student-t errors distribution

under different statistical methods.

2.6 Special case: The Simple Regression Model

This section provides the results of prediction distribution of a single future

response as well as a set of future responses for the simple linear regression

model with multivariate Student-t errors.

Since the simple linear regression model is an special case of the mul-

tiple linear regression model, the prediction distribution for a single future

response as well as a set of future responses for the simple linear regression

model can be easily obtained from that for the multiple regression model.

Note that for k = 2, equation (2.1) in Section 2.2 represents a simple lin-

ear regression model with multivariate Student-t error distribution. Follow-

ing the appropriate operational process as used for the multiple regression
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model the prediction distribution of a single future response for the simple

regression model can be derived as

f(yf |y) = Ψf

[
(n− 2) + (yf − xf β̂)′H(yf − xf β̂)

]−n−1
2 (2.25)

where

H =
(1− xfM

−1x′f )

s2

in which M = X ′X + X ′
fXf , β̂ = (X ′X)−1X ′y,

s2 =
1

n− 2
[(y −Xβ̂)′(y −Xβ̂)]

and the normalizing constant is given by

Ψf =
Γ(n−1

2
)|1−XfM

−1x′f |
1
2

Γ(n−2
2

) [π(n− 2)s2]
1
2

.

The above density is a univariate Student-t distribution with n−2 degrees

of freedom, mean xf (X
′X)−1X ′y and variance (n−2)s2

(n−4)

(
1− xfM

−1x′f
)−1

.

Moreover, in this special case for k = 2 in the multiple regression model,

we can obtain the prediction distribution of a set of future responses for the

simple regression model as

f(yf |y) = Φf

[
(n− 2) + (yf −Xf β̂)′H(yf −Xf β̂)

]−n+nf−2
2 (2.26)

where

H =
(Inf −XfM

−1X ′
f )

s2
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M , β̂ and s2 are the same as defined above in (2.25), and

Φf =
Γ(n+nf−2

2
)|Inf −XfM

−1X ′
f |

1
2

Γ(n−2
2

)
[
πnf (n− 2)s2

] 1
2

is the normalizing constant.

It is clear that under the Bayesian method with a uniform prior distri-

bution, a set of future responses for the simple linear regression model has

the prediction distribution of multivariate Student-t distribution with n− 2

degrees of freedom. The location and scale of this prediction distribution are

Xf (X
′X)−1X ′y and

[
s−2

∣∣∣Inf −XfM
−1X ′

f

∣∣∣
]− 1

2 respectively.

2.7 Concluding remarks

In this chapter, the prediction distribution for unobserved future response(s),

conditional on a set of observed responses is derived from the multiple linear

regression model by using the Bayesian method with a noninformative prior

distribution, and under the assumption that the error terms of the model

are uncorrelated but not independent as well as having the joint multivariate

Student-t distribution. The results reveal that the prediction distribution of

a single future response and a set of future responses are univariate Student-t

distribution and multivariate Student-t distribution respectively. These pre-

diction distributions coincide with the results as derived by other statistical

methods as well as for the model with normal errors. Therefore, it is noted

that the prediction distribution for multiple regression model with multivari-

ate Student-t error distribution as well as independent and normal errors

under the Bayesian, classical, structural relation and structural distribution
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approach is the same. Furthermore, the simple regression model is consid-

ered as a special case of the multiple regression model, and the results reveal

that, like the response(s) for the multiple regression model, a single future

response as well as a set of future responses for the simple regression model

follow the univariate and multivariate Student-t distributions respectively

with n− 2 degrees of freedom. As well, the prediction distribution depends

on the observed responses and the design matrices of the realized model as

well as the future model. The shape parameter of the prediction distribution

depends on the size of the realized sample and the dimension of parameters

vector of the model. However the shape parameter of the prediction distri-

bution does not depend on the degrees of freedom of the error distribution.
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Chapter 3

Multivariate Simple Regression
Model

3.1 Introduction

The multivariate simple regression model represents the relationship between

a set of values of several dependent variables and a single value of an inde-

pendent or explanatory variable. This model is more general than the simple

linear regression model which represents the linear relationship between a

single value of dependent variable and a specific value of the independent

variable. It is noted that the multivariate simple linear regression model is

an extension of the commonly used simple linear regression model in a mul-

tivariate setup. The multivariate simple regression model is used to analyze

data from different experimental situations where more than one response

variables are observed for a single value of the explanatory variable.

There are many experimental situations in real life where we need to study

on a set of responses from more than one dependent variable corresponding

to a single value of the independent variable. For example, if several patients

are given the same dose of a medicine to observe any response from the

23
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subjects, then for one particular value of the explanatory variable, there will

be several values of the response variable from different subjects. The model

can also be applied to any other experimental or observational studies where

multiple responses are generated for one particular value of the independent

variable. For details on the multivariate simple regression model interested

readers may refer to Khan (2005, 2006) and Saleh (2006).

In studying multivariate regression models, most researchers have consid-

ered the normal errors model. Geisser (1965) studied the multivariate linear

model under independent normal errors and obtained the prediction distribu-

tion by a classical approach. Fraser and Haq (1969) considered a structural

distribution approach, and Haq (1982) used the method of structural rela-

tionships of the model to obtain the prediction distribution from the normal

errors multivariate model. The Bayesian method has been considered by

Zellner and Chetty (1965), Zellner (1971) and Kibria et al. (2002) among

others to deal with prediction problems from the traditional multivariate

model under the multivariate normal errors assumption. Furthermore, the

multivariate simple regression model with independent and normal errors is

considered by Khan (2006). He uses the structural relation of the model

approach and the Bayesian approach to obtain the prediction distribution.

The matrix-T errors regression models are considered by few researchers.

Khan and Haq (1994b) investigated the predictive inference for the future re-

sponses from a multilinear model with matrix-T errors by using the structural

relationships of the model. In addition, the prediction distribution for future

responses from the multivariate linear model with matrix-T errors has been

studied by Kibria and Haq (2000). They also used the structural relation
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approach. Khan (2002) considered this structural relation method to obtain

the prediction distribution of the regression matrix under the matrix-T errors

but not for the future responses matrix.

In this chapter, the widely used multivariate simple regression model

with matrix-T error distribution is introduced. The prediction distribution

for the future responses matrix is derived by the Bayesian approach under the

uniform or non-informative prior distribution of the unknown parameters of

the model. It is shown that the prediction distribution of the future responses

matrix is a matrix-T distribution with appropriate degrees of freedom that

depends on the size of the realized sample and the dimension of the regression

parameter. Furthermore, since the errors matrix, the responses matrix and

the prediction distribution of the future responses matrix follow matrix-T

distribution, a definition of matrix-T distribution is provided here and its

properties as well as applications are also briefly addressed.

The layout of this chapter is as follows. Section 3.2 defines a matrix-T

distribution and also addresses some proprieties, and application of matrix-

T distribution in predictive inference. The multivariate simple regression

model with matrix-T errors is defined in Section 3.3, and the uniform prior

distribution of unknown parameters is provided in Subsection 3.3.1. The

future multivariate simple regression model is defined in Section 3.4. In Sec-

tion 3.5, the prediction distribution of the future responses matrix is derived

by the Bayesian method under uniform prior. Some concluding remarks are

presented in Section 3.6.
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3.2 Matrix-T distribution

To deal with multivariate models having matrix-T errors, the definition of

matrix-T density is essential. The errors matrix as well as the responses ma-

trix for matrix-T error models will obviously follow matrix-T distributions.

Let Γm(b) be a generalized gamma function introduced by Siegel (1935)

and defined as

Γm(b) =
[
Γ

(
1

2

)] 1
2
m(m−1) m∏

α=1

Γ
(
b +

α−m

2

)
; b >

m− 1

2
(3.1)

for nonzero positive integers m and b with α = 1, 2, ....., m.

Then a random matrix X of order p × m has a matrix-T distribution

with location parameter µ ∈ <p×m, scale factors Ωp×p and Σm×m both being

positive definite symmetric matrices, and the shape parameter ν > 0, defined

by X ∼ Tpm (µ,Ω,Σ, ν), if its density function is given by:

f(X|µ,Ω,Σ) = c
|Ω−1|m2
|Σ| p2 |Im +Σ−1(X−µ)′Ω−1(X−µ)|− 1

2
(ν+p+m−1) (3.2)

where c = [Γ(1
2
)]mp Γm[ 1

2
(ν+m−1)]

Γm[ 1
2
(ν+p+m−1)]

is the normalizing constant.

The matrix-T distribution was first introduced by Dickey (1967). He

derived the density of matrix-T as a logical generalization of the multivariate

Student-t distribution to deal with matrix variate problems. The matrix-T

distribution and some of its properties can be found in Zellner (1971, pp.

396-99), Box and Tiao (1992, sec. 8.4), Press (1982), Bauwens et al. (1999,

pp. 305-9), and Loschi et al. (2003) among others. For example, when X

has the above matrix-T distribution the mode is equal to µ and E(X) = µ if

ν > 1, while the covariance matrix of X is Cov(X) = ν
ν−2

[Σ⊗Ω] if ν > 2,

and ⊗ represents the Kronecker product between two matrices.
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Moreover, the distribution of the transpose of X can be written as X ′ ∼
Tmp (µ′,Σ−1,Ω−1, ν) when X ∼ Tpm (µ,Ω,Σ, ν). This follows from a well

known result for the determinant, that is, if A and B are p × m matrices,

then |Ip + AB′| = |Im + B′A| (see Magnus and Neudecker, 1988, sec. 12),

and also, from the properties of the generalized gamma function Γp(ν+p+m)
Γp(ν+p)

= Γm(ν+p+m)
Γm(ν+m)

for all p,m ≥ 1 and ν > 0; (see, e.g., Phillips, 1989).

According to Khan (2002), since the degrees of freedom ν of matrix-

T distribution is a positive real number, for different values of ν we get

different distributions, and hence the matrix-T model represents a class of

distributions with varying shape. If ν tends to infinity, the matrix-T density

approaches to matric-variate normal density, and when ν = 1, the matrix-T

distribution becomes matrix variate Cauchy distribution.

The distribution of individual elements of X can be obtained directly

from the respective components in the parameters of the above matrix-T

distribution in (3.2). For instance, if Xij and µij denote the element in ith

row and jth column of X and µ, respectively, and if σjj is the jth diagonal

element of Σ, while ωii denotes the ith diagonal element of Ω, then it can be

shown that Xij ∼ t(µij, ωii, σjj, ν) when X has the above matrix-T distri-

bution. That means Xij has an univariate Student-t distribution. Similarly,

the marginal distribution of any column (or row) as well as the conditional

distribution of one column (or row), given another, follows a multivariate

Student-t distribution with appropriate parameters. As well, the marginal

and conditional distributions of any sub-matrix of X and one sub-matrix,

given another, follow matrix-T distribution with appropriate parameters and

can also be determined directly from the parameters of the distribution of
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the random matrix X.

The matrix-T distribution has a wide range of applications in multivariate

statistical inference, especially in Bayesian analysis. Kibria (2006) demon-

strates some applications of matrix-T distribution in spatial prediction prob-

lems. He reveals that the matrix-T distribution has significant contributions

to interpolate the air pollutants and thereby to the field of environmental risk

analysis. Further applications of matrix-T distribution have been discussed

in Press (1986), Box and Tiao (1992, sec. 8.4) among many others.

3.3 The Model

Let yj be a row vector of order 1× p of the values of the jth responses asso-

ciated with a single value of the independent variable xj from a multivariate

simple regression model. Then n realization of yj can be expressed as the

set of linear equations

yj = β0 + β1xj + ej, for j = 1, 2, ...., n (3.3)

where β0 and β1 are the p-dimensional intercept and slope parameters respec-

tively, and ej is the error vector of order 1× p associated with the responses

vector yj.

Assume that each of the p components in ej is correlated with the others

and ej has the multivariate Student-t distribution with ν degrees of freedom,

location 0 and scale factor Σ, where 0 is a 1× p dimensional vector of zero’s

and Σ is a p× p order non-singular scale parameter matrix. Thus, the joint

probability density function of ej is a p-dimensional multivariate Student-t
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density, which is defined as

f(ej) ∝ |Σ−1| 12
[
1 +

1

ν
Σ−1ej

′ej

]− ν+p
2

. (3.4)

It is to be noted that the mean vector and covariance matrix of ej are

E(ej) = 0 for ν > 1, and Cov(ej) = ν
(ν−2)

Σ for ν > 2.

The linear model in (3.3) can be expressed in the following form

yj = xjβ + ej (3.5)

where β = (β0,β1)
′, a 2 × p dimensional parameters vector; and xj =

(1, xj), a 1 × 2 dimensional design matrix of the explanatory variable for

j = 1, 2, ...., n. Since the elements of ej are correlated, the elements of

responses vector yj are also correlated. Therefore, the joint density function

of a set of p elements of yj can be expressed as

f(yj|β,Σ) ∝ |Σ−1| 12
[
1 +

1

ν
Σ−1(yj − xjβ)′(yj − xjβ)

]− ν+p
2

. (3.6)

Now, a set of n(> p) vector responses Y = (y1,y2, ..., yn)′ is a n × p

matrix, that has been generated from the above multivariate simple regres-

sion model in (3.5), then the multivariate simple regression model can be

expressed in the following way

Y = Xβ + E (3.7)

where Y is a n × p matrix of observed responses, X a n × 2 dimensional

design matrix of explanatory variables for (n > 2), β is a 2 × p matrix of

regression parameters and E is a n× p random error matrix associated with

the response matrix. Since each of the p dimensional row vector of errors
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ej follows a multivariate Student-t distribution with density given in (3.4),

the errors matrix E has a matrix-T distribution with the probability density

function

f(E) ∝ |I−1
n | p2 |Σ−1|n2 |Ip + Σ−1E′E|− 1

2
(ν+p+n−1) (3.8)

where In is an n× n order identity matrix.

It is noted that, within the errors matrix E, p elements of each row are

correlated and n rows are uncorrelated.

Thus, the responses matrix Y also has a matrix-T distribution with prob-

ability density function as

f(Y |X,β,Σ) = c
|I−1

n | p2
|Σ|n2 |Ip + Σ−1(Y −Xβ)′(Y −Xβ)|− 1

2
(ν+p+n−1) (3.9)

i.e.,

Y ∼ Tnp(Xβ, In×n,Σp×p, ν)

where the normalizing constant is given by

c =
[
Γ

(
1

2

)]np Γp[
1
2
(ν + p− 1)]

Γp[
1
2
(ν + p + n− 1)]

in which Γp(.) is a generalized gamma function as defined in (3.1), In is an

n×n positive definite identity matrix, Σ is a p×p positive definite symmetric

matrix and ν is degrees of freedom of the matrix-T distribution.

3.3.1 The prior and posterior distributions

A prior distribution of unknown parameters is an important element of the

Bayesian statistical method. Assume that the joint prior distribution of the

regression matrix β and the 1
2
p(p + 1) distinct elements of Σ is uniform,
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which means in the experimental situation that a little is known about these

unknown parameters. Adopting the invariance theory (Jeffreys, 1961, p.179),

we consider the following prior distribution

p(β,Σ) = p(β)p(Σ) ∝ |Σ|− p+1
2 , (3.10)

where

p(β) = constant,

p(Σ) ∝ |Σ|− p+1
2 ,

and β and Σ are independently distributed.

Let θ= [β, Σ] be a set of unknown parameters. Then the Bayes’ posterior

density of θ can be defined as

p(θ|Y ) =
p(θ)p(Y |θ)

p(Y )
(3.11)

where

p(Y ) =
∫

θ
p(θ)p(Y |θ)dθ

in which p(Y |θ) is the joint probability function or likelihood function for

Y and p(θ) is a prior density of θ.

Now, the posterior density of parameters β and Σ for the observed re-

sponses matrix Y can be defined as

p(β,Σ|Y ) ∝ p(Y |β,Σ)p(β,Σ) (3.12)

where p(Y |β,Σ) is the joint probability function or likelihood function for

Y , which is provided in equation (3.9) and p(β,Σ) is the prior density of

β and Σ is defined in equation (3.10). Hence we get the following posterior
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density of unknown parameters’ matrices β and Σ for the realized responses

matrix Y as

p(β,Σ|Y ) ∝ |Σ|−n+p+1
2

∣∣∣Ip + Σ−1(Y −Xβ)′(Y −Xβ)
∣∣∣
− ν+p+n−1

2 (3.13)

in which the normalizing constant of the posterior distribution can be easily

obtained by integrating over the density function with respect to the param-

eters β and Σ.

To evaluate the normalizing constant the above density in (3.13) can be

written as

p(β,Σ|Y ) = Φ|Σ|−n+p+1
2

∣∣∣Ip + Σ−1(Y −Xβ)′(Y −Xβ)
∣∣∣
− ν+p+n−1

2 (3.14)

where Φ represents the normalizing constant. The value of Φ can be obtained

by solving the following equation

1 = Φ
∫

β

∫

Σ
|Σ|−n+p+1

2

×
∣∣∣Ip + Σ−1(Y −Xβ)′(Y −Xβ)

∣∣∣
− ν+p+n−1

2 dΣdβ (3.15)

or

Φ−1 =
∫

β

∫

Σ
|Σ|−n+p+1

2

×
∣∣∣Ip + Σ−1(Y −Xβ)′(Y −Xβ)

∣∣∣
− ν+p+n−1

2 dΣdβ (3.16)

Using the matrix transformation Σ−1 = Λ with the Jacobian of the trans-

formation

|J | = dΣ

dΛ
= |Λ−1|p+1,

equation (3.16) can be expressed as
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Φ−1 =
∫

β

∫

Λ
|Λ−1|−n−p−1

2 |Ip + Λ(Y −Xβ)′(Y −Xβ)|− ν+p+n−1
2 dΛdβ

=
∫

β

∫

Λ
|Λ|n2− p+1

2

× |Ip + Λ(Y −Xβ)′(Y −Xβ)|−(n
2
+ ν+p−1

2
)
dΛdβ. (3.17)

Applying the generalized beta integral for the matrix variables (cf. Khan,

2000) over Λ the above equation becomes

Φ−1 =
∫

β
|(Y −Xβ)′(Y −Xβ)|−n

2 Bp

(
n

2
,
ν + p− 1

2

)
dβ

= Bp

(
n

2
,
ν + p− 1

2

)

×
∫

β

∣∣∣SY + (β −Xβ̂)′X ′X(β −Xβ̂)
∣∣∣
−n

2 dβ (3.18)

where, β̂ = (X ′X)−1X ′Y is the OLS of β and SY = (Y −Xβ̂)′(Y −Xβ̂)

of order p× p.

Now equation (3.18) can be written as

Φ−1 = Bp

(
n

2
,
ν + p− 1

2

)
|SY |−n

2

×
∫

β

∣∣∣Ip + S−1
Y (β −Xβ̂)′X ′X(β −Xβ̂)

∣∣∣
− δ+p+2−1

2 dβ (3.19)

where δ = n− p− 1.

By using the properties of the matrix-T distribution to the integration

with respect to β, the result can be expressed as

Φ−1 = Bp

(
n

2
,
ν + p− 1

2

)
|SY |−n

2 |X ′X|− p
2 |SY |

[
Γ

(
1

2

)]2p Γp

(
δ+p−1

2

)

Γp

(
δ+p+1

2

)

= Bp

(
n

2
,
ν + p− 1

2

)
|SY |−n−2

2 |X ′X|− p
2

[
Γ

(
1

2

)]2p Γp

(
δ+p−1

2

)

Γp

(
δ+p+1

2

)

=
[
Γ

(
1

2

)]2p

|SY |−n−2
2 |X ′X|− p

2

Γp

(
δ+p−1

2

)

Γp

(
δ+p+1

2

)Bp

(
n

2
,
ν + p− 1

2

)
(3.20)
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Now putting δ = n − p − 1 and expressing Bp

(
n
2
, ν+p−1

2

)
as the generalized

gamma function, the above equation has a form

Φ−1 =
[
Γ

(
1

2

)]2p

|SY |−n−2
2 |X ′X|− p

2

Γp

(
n−2

2

)

Γp

(
n
2

)
Γp

(
n
2

)
Γp

(
ν+p−1

2

)

Γp

(
ν+n+p−1

2

)

and hence the normalizing constant in p(β,Σ|Y ) is obtained as

Φ =
|X ′X| p2 |SY |n−2

2

[
Γ

(
1
2

)]2p

Γp

(
ν+n+p−1

2

)

Γp

(
n−2

2

)
Γp

(
ν+p−1

2

) . (3.21)

3.4 The Future Model

Let Y f be an unobserved future responses matrix generated from the model

provided in equation (3.7) corresponding to the nf × 2 dimensional design

matrix Xf . Then the future multivariate simple regression model for Y f

can be defined as

Y f = Xfβ + Ef (3.22)

where β is a 2 × p dimensional regression parameters matrix for future re-

sponses, and Ef is an nf × p dimensional errors matrix associated the re-

sponses matrix Y f . Also in the future model, Ef has a Matrix-T distribution

with ν degrees of freedom, that is,

Ef ∼ Tnf p(0, Inf×nf
,Σp×p, ν).

The components in each row of the realized error matrix E and the future

error matrix Ef are correlated, their respective components in each row of

the observed responses matrix Y for the realized model and that of the unob-

served future responses matrix Y f from the future model are also correlated.
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Thus the joint likelihood function of parameters β and Σ for the combined

responses Y from the realized model and Y f from the future model can be

expressed as

p(Y ,Y f |β,Σ) ∝ |Σ|−n+nf

2

∣∣∣Ip + Σ−1Q
∣∣∣
− ν+p+n+nf−1

2 (3.23)

where

Q = (Y −Xβ)′(Y −Xβ) + (Y f −Xfβ)′(Y f −Xfβ).

3.5 Prediction of future responses

Since prior distribution of unknown parameters is a part of the Bayesian

method, a uniform prior density is considered in (3.10) which has been used

by Zellner (1971), Bernardo and Rueda (2002) and Khan (2006) among oth-

ers. Employing this prior distribution in conjunction with the joint likelihood

function for the response matrices of both the performed and future models

as given in equation (3.23), the following posterior density of β and Σ can

be obtained by the Bayes’ Theorem

p(β,Σ|Y ,Y f ) ∝ |Σ|−n+nf +p+1
2

∣∣∣Ip + Σ−1Q
∣∣∣
− ν+p+n+nf−1

2 (3.24)

Then the prediction distribution of a future response can be derived by

solving the following integral

f(Y f |Y ) ∝
∫

β

∫

Σ
p(Y ,Y f |β,Σ)p(β,Σ)dΣdβ (3.25)

or

f(Y f |Y ) ∝
∫

β

∫

Σ
p(β,Σ|Y ,Y f )dΣdβ (3.26)
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or

f(Y f |Y ) ∝
∫

β

∫

|Σ|>0
|Σ|−n+nf +p+1

2

∣∣∣Ip + Σ−1Q
∣∣∣
− ν+p+n+nf−1

2 dΣdβ. (3.27)

Consider the following matrix transformation

Σ−1 = Λ.

The Jacobian of the transformation is

|J | = dΣ

dΛ
= |Λ−1|p+1.

Employing the result of the above transformation, the equation (3.27) can

be written as

f(Y f |Y ) ∝
∫

β

∫

|Λ|>0
|Λ−1|−n+nf−p−1

2 |Ip + ΛQ|− ν+p+n+nf−1
2 dΛdβ (3.28)

or

f(Y f |Y ) ∝
∫

β

∫

|Λ|>0
|Λ|n+nf

2
− p+1

2 |Ip + ΛQ|−
(

n+nf

2
+ ν+p−1

2

)
dΛdβ. (3.29)

Now using an extension of the generalized beta integral with the matrix

variable introduced by Khan (2000) as

I =
∫

|W |>0
|W |a−m+1

2 |Im + WD|−(a+b)dW = |D|−1Bm(a, b); (3.30)

Following result is obtained from equation (3.29) by integrating with respec-

tive to Λ

f(Y f |Y ) ∝
∫

β
|Q|−n+nf

2 Bp

(
n + nf

2
,
ν + p− 1

2

)
dβ (3.31)

or
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f(Y f |Y ) ∝
∫

β
|Q|−n+nf

2 dβ. (3.32)

Now Q can be expressed as the following convenient form

Q = R + (β − P )′M (β − P ), (3.33)

where R = Y ′Y + Y ′
fY f − P ′MP , P = M−1(X ′Y + X ′

fY f ) and M =

X ′X + X ′
fXf .

Applying this convenient form of Q in (3.33) to equation (3.32) and then

after integrating with respect to β by matrix-T integral, the prediction den-

sity can be expressed as

f(Y f |Y ) ∝ |R|−n+nf−2
2 . (3.34)

It is noted that R is free from the unknown regression matrix β.

To simplify the expression of R into a convenient quadratic form for a

prediction distribution of Y f , the quadratic form in Y f can be established

by the following way

R = Y ′Y + Y ′
fY f − P ′MP

= Y ′Y + Y ′
fY f − [M−1(X ′Y + X ′

fY f )]
′M [M−1(X ′Y + X ′

fY f )]

= Y ′Y + Y ′
fY f − (X ′Y + X ′

fY f )
′M−1MM−1(X ′Y + X ′

fY f )

= Y ′Y + Y ′
fY f − (X ′Y + X ′

fY f )
′M−1(X ′Y + X ′

fY f )

= Y ′Y + Y ′
fY f − Y ′XM−1X ′Y − Y ′

fXfM
−1X ′

fY f

− Y ′XM−1X ′
fY f − Y ′

fXfM
−1X ′Y
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= Y ′(I −XM−1X ′)Y + Y ′
f (I −XfM

−1X ′
f )Y f

− Y ′XM−1X ′
fY f − Y ′

fXfM
−1X ′Y

= Y ′(I −XM−1X ′)Y + Y ′
fHY f − Y ′XM−1X ′

fY f

− Y ′
fXfM

−1X ′Y (3.35)

where

H = I −XfM
−1X ′

f .

As shown by Zellner (1971, p.235)

H−1 = (I −XfM
−1X ′

f )
−1 = I + Xf (X

′X)−1X ′
f

which can be verified by the following matrix multiplication

HH−1 = (I −XfM
−1X ′

f )[I + Xf (X
′X)−1X ′

f ]

= I −Xf [M
−1 − (X ′X)−1 + M−1X ′

fXf (X
′X)−1]X ′

f

= I −XfM
−1[X ′X −M + X ′

fXf ](X
′X)−1X ′

f

= I (3.36)

since X ′X −M + X ′
fXf = 0, by the definition of M = X ′X + X ′

fXf .

Therefore, R can be expressed as

R = Y ′[I −Z1(M ,H)]Y + [Y f −Z2(M , H)]′H [Y f −Z2(M ,H)] (3.37)

where

Z1(M ,H) = XM−1X ′ + XM−1X ′
fH

−1XfM
−1X ′

and

Z2(M , H) = H−1XfM
−1X ′Y .
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Now the following relationships (see. e.g., Zellner, 1971, p.235) can be

expressed as

Z1(M ,H) = XM−1X ′ + XM−1X ′
fH

−1XfM
−1X ′

= XM−1X ′ + XM−1X ′
f [I + Xf (X

′X)−1X ′
f ]XfM

−1X ′

= XM−1[X ′ + X ′
f{I + Xf (X

′X)−1X ′
f}XfM

−1X ′]

= XM−1[X ′ + X ′
fXf{M−1X ′ + (X ′X)−1X ′

fXfM
−1X ′}]

= XM−1[X ′ + X ′
fXfF ] (3.38)

where

F = M−1X ′ + (X ′X)−1X ′
fXfM

−1X ′

= (X ′X)−1(X ′X)M−1X ′ + (X ′X)−1X ′
fXfM

−1X ′

= (X ′X)−1[X ′XM−1X ′ + X ′
fXfM

−1X ′]

= (X ′X)−1[{X ′X + X ′
fXf}M−1X ′]

= (X ′X)−1[MM−1X ′]

= (X ′X)−1X ′

Using this value of F to equation (3.38), Z1(M ,H) is obtained as

Z1(M ,H) = XM−1[X ′ + X ′
fXf (X

′X)−1X ′]

= XM−1[(X ′X)(X ′X)−1X ′ + X ′
fXf (X

′X)−1X ′]

= XM−1[X ′X + X ′
fXf ](X

′X)−1X ′

= XM−1M (X ′X)−1X ′

= X(X ′X)−1X ′. (3.39)

And also

Z2(M ,H) = H−1XfM
−1X ′Y
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= [I + Xf (X
′X)−1X ′

f ]XfM
−1X ′Y

= Xf [I + (X ′X)−1X ′
fXf ]M

−1X ′Y

= Xf (X
′X)−1(X ′X + X ′

fXf )M
−1X ′Y

= Xf (X
′X)−1MM−1X ′Y

= Xf (X
′X)−1X ′Y . (3.40)

Applying the relationships in (3.39) and in (3.40) to the equation (3.37),

R can be expressed as

R = Y ′[I −X(X ′X)−1X ′]Y

+ [Y f −Xf (X
′X)−1X ′Y ]′H [Y f −Xf (X

′X)−1X ′Y ]

= Y ′[I −X(X ′X)−1X ′]Y + (Y f −Xf β̂)′H(Y f −Xf β̂)(3.41)

where β̂ = (X ′X)−1X ′Y is the OLS of β.

Again, since Y ′[I−X(X ′X)−1X ′]Y = (Y −Xβ̂)′(Y −Xβ̂) = SY , the

expression in (3.41) has the following form

R = SY + (Y f −Xf β̂)′H(Y f −Xf β̂), (3.42)

Using this relation of R in (3.42) to the equation (3.34), the prediction

distribution of the future responses matrix Y f , conditional on a set of realized

responses matrix Y , is finally obtained as

f(Y f |Y ) = C(Y ,H)
[
SY + (Y f −Xf β̂)′H(Y f −Xf β̂)

]−n+nf−2
2 (3.43)
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where C(Y ,H) is the normalizing constant which is given by

C(Y ,H) =
(π)−

pnf

2 Γp

(
n−2

2

)
|H|− p

2

Γp

(
n+nf−2

2

)
|SY |n−2

2

. (3.44)

It is clear that the above density in (3.43) is the probability density func-

tion of an nfp-dimensional matrix-T with location matrix Xf β̂, scale factors

SY and H and degrees of freedom (n − p − 1). Thus, the matrix of future

responses Yf , has a matrix-T distribution, and hence the the location of

the prediction distribution is Xf β̂ and the covariance matrix is given by

Cov(Y f |Y ) = (n−p−1)
n−p−3

[SY ⊗H ], where ⊗ denotes the Kronecker product.

Note Y f |Y ∼ Tnf p(Xf β̂,SY , H, ω = n − p − 1), that is, E(Y f |Y ) =

Xf β̂, Cov(Y f |Y ) = (n−p−1)
n−p−3

[SY ⊗H ] and the degrees of freedom (df) ω =

n− p− 1.

3.6 Concluding remarks

In this chapter, the prediction distribution for future responses matrix Y f ,

conditional on an observed responses matrix Y for the multivariate sim-

ple regression model with matrix-T errors has been derived by the Bayesian

method under uniform prior distribution. The results reveal that the pre-

diction distribution of the future responses matrix is a matrix-T distribution

with n − p − 1 degrees of freedom, location matrix Xf (X
′X)−1X ′Y and

scale factors SY and H . The shape parameter or degrees of freedom of the

prediction distribution of the future responses matrix depends on the size

of the realized sample and the number of the regression parameters of the

model, but it does not depend on the degrees of freedom of the errors ma-
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trix distribution. In addition, the prediction distribution depends on the

observed responses matrix Y only through the sample regression matrix and

the sample residual sum of squares and products matrices as well as the de-

sign matrices X and Xf of both the realized and future multivariate simple

regression model.

By the properties of the matrix-T distribution, the distribution of indi-

vidual element, the marginal distribution of any column (or row), the condi-

tional distribution of one column (or row), given another, and the marginal

as well as conditional distributions of any sub-matrix, and one sub-matrix,

given another, of the future responses matrix Y f can be determined directly

from the parameters of the matrix-T distribution of Y f . Also it is inter-

esting to note that, an individual element of Y f has a univariate Student-t

distribution, the marginal distribution of any column (or row) as well as the

conditional distribution of one column (or row), given another, follows a mul-

tivariate Student-t distribution and the marginal as well as the conditional

distributions of any sub-matrix of Y f and one sub-matrix, given another,

follow matrix-T distribution with appropriate parameters.



Chapter 4

Multivariate Multiple
Regression Model

4.1 Introduction

The multivariate multiple regression model is an extension of the multiple

linear regression model in a multivariate or matrix-variate setup. This model

represents the linear relationship between a set of values of several response

variables and a single set of values of some explanatory or predictor variables.

Let Y 1,Y 2, ..., Y n be a set of vectors of n responses and x1, x2, ..., xk−1 be

a single set of k − 1 predictor variables. Then a relation between these set

of vector responses and the single set of values of predictor variables can

be written as a multivariate multiple regression model when each of the n

responses is assumed to follow its own multiple linear regression model.

The multivariate multiple regression model is used to analyze data from

different situations in econometrics as well as in many other experimental

circumstances to deal with a set of linear regression equations. There are

many experimental situations in real life where we need to study a set of

responses from more than one dependent variables corresponding to a set of

43
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values from several independent variables. For example, in an agricultural

farm, if several varieties in different blocks are given a single set of a treat-

ments (such as kinds of fertilizers, water, spray, medicine etc.) to observe any

responses to the products, then for a set of values of the predictor variables,

there will be several set of values of the response variables from different

products. More about this model can be found in Tiao and Zellner (1964).

Kibria (2006) considers the multivariate model and derives the prediction

distribution of future responses and regression matrices by the structural

relation approach introduced by Fraser and Haq (1969). Haq (1982) used

their developed method, and Guttman and Hougaard (1985) considered the

classical approach to obtain the prediction distribution from the multivariate

multiple regression model with independent and normal errors distribution.

Also, from the Bayesian point of view, the multivariate regression model

under independent and normal errors assumption have been studied by Tiao

and Zellner (1964), Geisser (1965), Zellner (1971), Kibria et al. (2002) and

Khan (2006).

Furthermore, in the case of multiple regression model, the matrixT error

has been considered by Khan and Haq (1994), Kibria and Haq (2000)and

Khan (2002). Khan and Haq (1994b) derived the prediction distribution

of the future responses matrix by the structural relation model, and Khan

(2002) obtained the prediction distribution of regression matrix using the

same method. In both cases they obtained the prediction distribution as

matrix-T distribution with appropriate parameters.

The multivariate multiple linear regression model is presented in this

chapter. The general assumption that the errors matrix of the model has
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a matrix-T distribution is considered. The Bayesian approach is applied to

derive the prediction distribution for the future responses matrix. Since a

prior distribution is an element of the Bayesian method and it can be obtained

from previous studies, a non-informative or uniform prior distribution of the

unknown parameters matrices is considered here (cf. Jeffreys, 1961). This

non-informative prior has been used by many researchers such as Zellner

(1971), Bernardo and Rueda (2002) and Rowe (2003). It is observed that

by the Bayesian method the prediction distribution of the future responses

matrix follows a matrix-T distribution with appropriate degrees of freedom

and location as well as scale factors.

The layout of this chapter is as follows. In Section 4.2 the multivariate

multiple regression model with matrix-T errors is introduced. A uniform

prior distribution is defined as well as the posterior density is obtained in

Subsection 4.2.1. The future multivariate simple regression model is defined

in section 4.3. Section 4.4 derives the prediction distribution of the future

responses matrix under the Bayesian method with uniform prior. Some con-

cluding remarks are presented in Section 4.5.

4.2 The Model

Suppose Y 1,Y 2, ..., Y n is a set of vectors of n responses and x1, x2, ..., xk−1

is a set of k − 1 predictor variables. Also let each of the n responses follows

its own multiple linear regression model, as

Y j = β0j + β1jx1 + β2jx2 + ... + βk−1jxk−1 + ej, for j = 1, 2, .., n
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where, Y j and ej are the jth response and its associated error vectors respec-

tively each of order 1 × p. β.j is a k × 1 dimensional regression parameters

vector on the regression line of jth response. Moreover, [x1, x2, ..., xk−1] is a

single set of values of the k− 1 predictor variables. Assume ej ∼ tp(0,Σ, ν).

Let xj. = [xj1, xj2, ..., xj(k−1)], Y j = [yj1, yj2, ..., yjp]
′ and ej = [ej1, ej2, ..., ejp]

′

denote the values of the explanatory, response and error variables respectively

for the jth trial. Then there is an n× k order design matrix

X̃ =




1 x11 x12 · · · x1(k−1)

1 x21 x22 · · · x2(k−1)
...

...
...

. . .
...

1 xn1 xn2 · · · xn(k−1)




.

Also, the following matrix notations may consider

β̃ =




β01 β02 · · · β0p

β11 β12 · · · β1p
...

...
. . .

...
β(k−1)1 β(k−1)2 · · · β(k−1)p




,

the unknown regression coefficients matrix of order k × p,

Ỹ =




y11 y12 · · · y1p

y21 y22 · · · y2p
...

...
. . .

...
yn1 yn2 · · · ynp




,

the n× p order matrix of responses and

Ẽ =




e11 e12 · · · e1p

e21 e22 · · · e2p
...

...
. . .

...
en1 en2 · · · enp




the n× p order errors matrix.
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The multivariate multiple linear regression model can be expressed as

Ỹ = X̃β̃ + Ẽ (4.1)

where rank(X̃) = k and n ≥ k.

Now, assume that the components of each row in Ẽ of the model are

correlated, and jointly follow a multivariate Student-t distribution. Since

each row of the errors matrix Ẽ are uncorrelated with others, the covariance

of the errors matrix becomes ν
ν−2

[Σ ⊗ In]; where ν is the shape parameter

or degrees of freedom of the matrix-T distribution for the errors matrix, ⊗
denotes the Kronecker product between two matrices Σ and In in which Σ is

a p× p order positive definite symmetric matrix and In is an identity matrix

of order n × n. The errors matrix Ẽ has a matrix-T distribution with the

density

f(Ẽ) ∝ |I−1
n | p2 |Σ−1|n2 |Ip + Σ−1Ẽ

′
Ẽ|− 1

2
(ν+p+n−1). (4.2)

Hence the responses matrix Ỹ from the model (4.1) has also a matrix-T

distribution, that is, Ỹ ∼ Tnp(X̃β̃, In×n,Σp×p, ν) with the following proba-

bility density function

f(Ỹ |X̃β̃,Σ, ν) = C
|I−1

n | p2
|Σ|n2 |Ip+Σ−1(Ỹ −X̃β̃)′(Ỹ −X̃β̃)|− 1

2
(ν+p+n−1) (4.3)

where the normalizing constant

C =
[
Γ

(
1

2

)]pn Γp

[
1
2
(ν + p− 1)

]

Γp

[
1
2
(ν + p + n− 1)

]
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in which Γp(.) is a generalized gamma function introduced by Siegel (1935),

and defined in equation (3.1) in Section 3.2.

4.2.1 The prior and posterior distributions

Assume that the joint prior distribution of the regression matrix β̃ and the

1
2
p(p + 1) distinct elements of Σ is noninformative or uniform. Also, assume

that the elements β̃ as well as that of Σ are independently distributed. Which

means if p(β̃,Σ) is a joint prior density of β̃ and Σ, then

p(β̃,Σ) = p(β̃)p(Σ).

Adopting the invariance theory due to Jeffreys (1961, p. 179), this study

consider

p(β̃) = constant,

and

p(Σ) ∝ |Σ|− p+1
2 .

Thus, the joint prior density of unknown parameters matrices β̃ and Σ be-

comes

p(β̃,Σ) ∝ |Σ|− p+1
2 . (4.4)

This uniform prior distribution has been used by many researchers such

as Zellner (1971), Bernardo and Rueda (2002), and Khan (2006).

Using the Bayes’s theory described in Subsection 3.3.1, the joint posterior

density function of β̃ and Σ for the given responses matrix Ỹ can be obtained

as

p(β̃,Σ|Ỹ ) = Φ̃|Σ|−n+p+1
2

∣∣∣Ip + Σ−1(Ỹ − X̃β̃)′(Ỹ − X̃β̃)
∣∣∣
− ν+p+n−1

2 (4.5)
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where the normalizing constant is given by

Φ̃ =
|X̃ ′

X̃| p2 |S̃Y |n−k
2

[
Γ

(
1
2

)]kp

Γp

(
ν+n+p−1

2

)

Γp

(
n−k

2

)
Γp

(
ν+p−1

2

) (4.6)

and this value of Φ̃ is evaluated in Appendix A.1.

4.3 The Future Model

Let Ỹ f be an unobserved future response matrix from the model provided in

equation (4.1) to the nf × k dimensional design matrix X̃f . Then the future

multivariate multiple linear regression model for Ỹ f can be defined as

Ỹ f = X̃f β̃ + Ẽf (4.7)

where β̃ is a k × p dimensional regression parameters matrix for future re-

sponses; Ỹ f and Ẽf both are nf × p dimensional response matrix and as-

sociated error matrix respectively. In the future model it is assumed that,

Ẽf has an nfp dimensional matrix-T distribution with ν degrees of freedom,

which is expressed as

Ẽf ∼ Tnf p(0, Inf×nf ,Σp×p, ν).

Since the elements in each row of the realized errors matrix Ẽ and the

future errors matrix Ẽf are correlated, and n rows in Ẽ as well as nf rows

in Ẽf are uncorrelated, the joint density function of β̃ and Σ for the real-

ized responses matrix Ỹ from the performed experiment and the unobserved

future responses matrix Ỹ f from the future experiment can be expressed as

p(Ỹ , Ỹ f |β̃,Σ) ∝ |Σ|−n+nf

2

∣∣∣Ip + Σ−1Q̃
∣∣∣
− ν+p+n+nf−1

2 (4.8)
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where

Q̃ = (Ỹ − X̃β̃)′(Ỹ − X̃β̃) + (Ỹ f − X̃f β̃)′(Ỹ f − X̃f β̃).

4.4 Prediction of future responses

Using the uniform prior density for β̃ and Σ as given in equation (4.4) and

the joint density function for the response matrices Ỹ and Ỹ f in (4.8), the

joint posterior density of unknown parameters β̃ and Σ for the responses

matrices Ỹ and Ỹ f can be determined as

p(β̃,Σ|Ỹ , Ỹ f ) ∝ |Σ|−n+nf +p+1
2

∣∣∣Ip + Σ−1Q̃
∣∣∣
− ν+p+n+nf−1

2 . (4.9)

Now the prediction distribution of a set of nf future responses can be

obtained by solving the following integral

f(Ỹ f |Ỹ ) ∝
∫

˜β

∫

|Σ|>0
p(β̃,Σ|Ỹ , Ỹ f )dΣdβ̃. (4.10)

or

f(Ỹ f |Ỹ ) ∝
∫

˜β

∫

|Σ|>0
|Σ|−n+nf +p+1

2

∣∣∣Ip + Σ−1Q̃
∣∣∣
− ν+p+n+nf−1

2 dΣdβ̃. (4.11)

Applying the appropriate matrix transformation Σ−1 = Λ, as considered

in Chapter 3 (sec. 3.5) the probability density in (4.11) can be written as

f(Ỹ f |Ỹ ) ∝
∫

˜β

∫

|Λ|>0
|Λ−1|−n+nf−p−1

2

∣∣∣Ip + ΛQ̃
∣∣∣
− ν+p+n+nf−1

2 dΛdβ̃. (4.12)

or

f(Ỹ f |Ỹ ) ∝
∫

˜β

∫

|Λ|>0
|Λ|n+nf

2
− p+1

2

∣∣∣Ip + ΛQ̃
∣∣∣
−
(

n+nf

2
+ ν+p−1

2

)
dΛdβ̃. (4.13)
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By using the properties of the generalized beta integral for the matrix

variables (cf. Khan, 2000), the following prediction density can be obtained

from the equation in (4.13) after integrating with respective to Λ

f(Ỹ f |Ỹ ) ∝
∫

˜β
|Q̃|−n+nf

2 Bp

(
n + nf

2
,
ν + p− 1

2

)
dβ̃, (4.14)

or

f(Ỹ f |Ỹ ) ∝
∫

˜β
|Q̃|−n+nf

2 dβ̃. (4.15)

Now Q̃ can be expressed as a quadratic form in β̃ by the following way

Q̃ = R̃ + (β̃ − P )′M(β̃ − P ), (4.16)

where R̃ = Ỹ
′
Ỹ + Ỹ

′
f Ỹ f − P̃ ′M̃P̃ , P̃ = M̃−1(X̃

′
Ỹ + X̃

′
f Ỹ f ) and M̃ =

X̃
′
X̃ + X̃

′
fX̃f .

Using this representation of Q̃ in (4.16) to equation (4.15) and then in-

tegrating with respect to β̃ by matrix-T integral, the prediction distribution

of the future responses matrix is obtained as

f(Ỹ f |Ỹ ) ∝ |R̃|−n+nf−k
2 (4.17)

where R̃ is free from the unknown parameters.

For the completion of the derivation f(Ỹ f |Ỹ ), the prediction density

of the unobserved future responses matrix Ỹ f , given the realized responses

matrix Ỹ , the relation R̃ = Ỹ
′
Ỹ +Ỹ

′
f Ỹ f−P̃ ′M̃P̃ in (4.16) can be expressed

as the following quadratic from of the future responses matrix Ỹ f

R̃ = S̃Y + (Ỹ f − X̃f
ˆ̃β)′H̃(Ỹ f − X̃f

ˆ̃β) (4.18)
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where ˆ̃β = (X̃
′
X̃)−1X̃

′
Ỹ is the OLS of β̃, H̃ = Ĩ − X̃fM̃

−1
X̃

′
f and

S̃Y = (Ỹ − X̃ ˆ̃β)′(Ỹ − X̃ ˆ̃β). See, Appendix A.2 for the derivation of the

quadratic form of Ỹ f , which follows somewhat similar operational steps as

described in Chapter 3 (sec. 3.5).

Applying the expression of R̃ in (4.18) to (4.17), finally the prediction

distribution of the future responses matrix Ỹ f , conditional on the realized

responses matrix Ỹ , is obtained as

f(Ỹ f |Ỹ ) = C(Ỹ , H̃)
[
SY + (Ỹ f − X̃f

ˆ̃β)′H(Ỹ f − X̃f
ˆ̃β)

]−n+nf−k
2

(4.19)

where the normalizing constant is given by

C(Ỹ , H̃) =
(π)−

nf p
2 Γp

(
n−k

2

)
|H̃|− p

2

Γp

(
n+nf−k

2

)
|S̃Y |n−k

2

. (4.20)

The density in (4.19) is the probability density function of a nfp-dimensional

matrix-T with location matrix X̃f
ˆ̃β, scale factors S̃Y , H̃ and shape parame-

ter n−p−k+1. Therefore, the future responses matrix Ỹ f for the multivari-

ate multiple regression model has a nfp dimensional matrix-T distribution.

The location of the prediction distribution is X̃f (X̃
′
X̃)−1X̃

′
Ỹ and the co-

variance matrix is (n−p−k+1)
(n−p−k−1)

[S̃Y ⊗ H̃ ], where ⊗ represents the Kronecker

product of the matrices S̃Y and H̃ .

Moreover, from the properties of the matrix-T distribution, the marginal

prediction distribution of any column or row vector of the future responses

matrix Ỹ f is a multivariate Student-t distribution with appropriate param-

eters. An individual observation of the future responses matrix follows a

prediction distribution as a univariate Student-t distribution, and any sub-
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matrix of Ỹ f has a prediction distribution as a matrix-T distribution with

appropriate location, scale and shape parameters. It is also noted that, the

prediction distributions of any sub-matrix, column (or row) vector and indi-

vidual element of the future responses matrix Ỹ f can be obtained directly

from the parameters of the matrix-T distribution for the future responses

matrix Ỹ f .

4.5 Concluding remarks

The prediction distribution of future responses matrix for the multivariate

multiple regression model with matrix-T errors has been derived in this chap-

ter. The Bayesian method under uniform prior is considered here to obtain

the prediction distribution. It has been seen that the prediction distribution

of the matrix of future responses Ỹ f , conditional on the realized responses

matrix Ỹ , is a matrix-T distribution with appropriate shape, location and

scale parameters. The shape parameter of the prediction distribution of the

future responses matrix depends on the size of the realized sample and the

number of the regression parameters of the model. However, the shape pa-

rameter does not depend on the degrees of freedom of the distribution of er-

rors or responses matrix. The prediction distribution of the future responses

matrix depends on the observed responses matrix Ỹ and both of the design

matrices X̃ and X̃f of the realized and future models. Furthermore, it is

noted that the marginal prediction distributions of any sub-matrix, any col-

umn or row vector and an individual observation of the future responses ma-

trix Ỹ f are a matrix-T , a multivariate Student-t and a univariate Student-t

distributions respectively with appropriate location, scale and shape param-
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eters; and all of these marginal distributions can be obtained directly from

the prediction distribution of Ỹ f .



Chapter 5

Conclusions

In this thesis, the multiple, multivariate simple and multivariate multiple re-

gression models with Student-t errors are considered. The Bayesian approach

under the noninformative prior distribution has been employed to derive the

prediction distribution of the future responses for these models. It is revealed

that the prediction distributions of a single future response and a set of fu-

ture responses, conditional on a set of observed responses for the multiple

linear regression model are univariate Student-t distribution and multivari-

ate Student-t distribution respectively with appropriate parameters. Results

have shown that these prediction distributions coincide with the results as

derived by other statistical methods such as the classical, structural distribu-

tions, structural relations of the model as well as for the normal errors model.

Therefore, the prediction distribution for the multiple regression model with

multivariate Student-t error distribution as well as independent and normal

errors under the Bayesian approach with uniform prior and the classical,

structural relation as well as structural distribution approaches is the same.

Furthermore, the shape parameter of the prediction distribution depends on

the size of the realized sample and the dimension of the parameters vector of

55
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the model. However the shape parameter of the prediction distribution does

not depend on the degrees of freedom of the errors distribution.

Moreover, an special case of multiple regression model, the simple lin-

ear regression model has been also considered in this dissertation. Results

demonstrate that, a single and a set of future response(s) for the simple

regression model with multivariate-t errors have a univariate and multivari-

ate Student-t distribution respectively with n − 2 degrees of freedom and

appropriate location as well as scale parameters.

The multivariate simple regression model with matrix-T errors distribu-

tion has been defined in this study, and the prediction distribution of the

future responses matrix, conditional on an observed responses matrix for the

model is derived. It has been shown that by the Bayesian approach under the

uniform prior distribution, the prediction distribution of the future responses

matrix for the multivariate regression model is a matrix-T distribution with

appropriate location, scale and shape parameters. In addition, the predic-

tion distribution depends on the observed responses matrix Y only through

the sample regression matrix and the sample residual sum of squares and

products matrices as well as the design matrix Xf of the future multivariate

simple regression model.

Finally, we have also derived the prediction distribution for the future

responses matrix, conditional on an observed responses matrix for the mul-

tivariate multiple regression model with matrix-T errors distribution. The

same Bayesian method is employed here that has been considered for the

multivariate simple regression model to obtain the prediction distribution.

The results of the derivations reveal that the prediction distribution of the
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matrix of future responses for the multivariate multiple regression model

is also a matrix-T distribution with appropriate shape, location and scale

parameters. Like the prediction distribution for the multivariate simple re-

gression model, the shape parameter of the prediction distribution of the

future responses matrix for the multivariate multiple regression model de-

pends on the size of the realized sample and the number of the regression

parameters of the model. However, the shape parameter does not depend

on the degrees of freedom of the distribution of errors matrix. In addition,

the prediction distribution of the future responses matrix depends on the ob-

served responses matrix only through the sample regression matrix and the

sample residual sum of squares and products matrix, and it also depends on

the design matrices of the realized and future regression models. It is noted

that the marginal prediction distributions of any sub-matrix, any column or

row vector and an individual response observation of the future responses

matrix for the multivariate simple as well as multiple regression models are a

matrix-T , a multivariate Student-t and a univariate Student-t distributions

respectively with appropriate location, scale and shape parameters; and all

of these marginal distributions can be obtained directly from the parameters

of the prediction distributions of the future responses matrices for these two

models.

A number of possibilities for future work into the Bayesian predictive

inference for regression models are described below.

1. This thesis considered the noninformative or uniform prior distribution

of unknown parameters to derive prediction distribution of future response(s)
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for the multiple, multivariate simple and multiple regression models. Further

work should consider another type of prior distribution such as conjugate

prior, mixture prior, shrinkage prior, or Stein’s prior distribution.

2. The Bayesian statistical inference for these linear models, in particular

the Bayesian optimal tolerance regions or beta-expectation tolerance regions

for the future responses may be addressed in the future research.

3. This research considered the multiple regression model with multivari-

ate Student-t errors where the elements of the error vector are uncorrelated

but not independent with others. What will be the prediction distribution

of future response(s) for correlated error components?

4. In the multivariate models this study considered the assumption that

within the row the elements of error vectors are correlated and between rows

the error vectors are uncorrelated but not independent. Further study should

check other assumptions to obtain the prediction distribution by the Bayesian

approach.

5. In econometrics and many other practical situations in real life the

dynamic linear regression model is of interest. The prediction distributions

for the dynamic regression models should be studied by the Bayesian method

in further research.
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Appendix A

Appendix

A.1

This section of appendix derives the normalizing constant of the joint poste-

rior density function in (4.5) that has provided in (4.6).

The density in (4.5) can be written as

p(β̃,Σ|Ỹ ) = Φ̃|Σ|−n+p+1
2

∣∣∣Ĩp + Σ−1(Ỹ − X̃β̃)′(Ỹ − X̃β̃)
∣∣∣
− ν+p+n−1

2 (A.1)

where Φ̃ represents the normalizing constant.

To evaluate the value of Φ̃, the following characteristic of the probability

density function is used

1 = Φ̃
∫

˜β

∫

Σ
|Σ|−n+p+1

2

×
∣∣∣Ĩp + Σ−1(Ỹ − X̃β̃)′(Ỹ − X̃β̃)

∣∣∣
− ν+p+n−1

2 dΣdβ̃ (A.2)

The value of ˜̃Φ is obtained by solving the following equation

Φ̃
−1

=
∫

˜β

∫

Σ
|Σ|−n+p+1

2

×
∣∣∣Ĩp + Σ−1(Ỹ − X̃β̃)′(Ỹ − X̃β̃)

∣∣∣
− ν+p+n−1

2 dΣdβ̃ (A.3)
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Considering the matrix transformation Σ−1 = Λ with the Jacobian of the

transformation

|J | = dΣ

dΛ
= |Λ−1|p+1,

in (A.3)

Φ̃
−1

=
∫

˜β

∫

Λ
|Λ−1|−n−p−1

2

∣∣∣Ĩp + Λ(Ỹ − X̃β̃)′(Ỹ − X̃β̃)
∣∣∣
− ν+p+n−1

2 dΛdβ̃

=
∫

˜β

∫

Λ
|Λ|n2− p+1

2

×
∣∣∣Ĩp + Λ(Ỹ − X̃β̃)′(Ỹ − X̃β̃)

∣∣∣
−(n

2
+ ν+p−1

2
)
dΛdβ̃. (A.4)

Using the generalized beta integral for the matrix variables discussed by

Khan (2000) for integrating with respect to Λ, the results is

Φ̃
−1

=
∫

˜β

∣∣∣(Ỹ − X̃β̃)′(Ỹ − X̃β̃)
∣∣∣
−n

2 Bp

(
n

2
,
ν + p− 1

2

)
dβ̃

= Bp

(
n

2
,
ν + p− 1

2

)

×
∫

˜β

∣∣∣∣S̃Y + (β̃ − X̃ ˆ̃β)′X̃
′
X̃(β̃ − X̃ ˆ̃β)

∣∣∣∣
−n

2

dβ̃ (A.5)

where, ˆ̃β = (X̃
′
X̃)−1X̃

′
Ỹ is the OLS of β̃ and S̃Y = (Ỹ − X̃ ˆ̃β)′(Ỹ − X̃ ˆ̃β)

of order p× p.

Equation (A.5) can be written as

Φ̃
−1

= Bp

(
n

2
,
ν + p− 1

2

)
|S̃Y |−n

2

×
∫

˜β

∣∣∣∣Ĩp + S−1
Y (β̃ − X̃ ˆ̃β)′X̃

′
X̃(β̃ − X̃ ˆ̃β)

∣∣∣∣
− δ+k+p−1

2

dβ̃ (A.6)

where δ = n− k − p + 1.

Using the properties of the matrix-T distribution for integrating with

respect to β̃ we have

Φ̃
−1

= Bp

(
n

2
,
ν + p− 1

2

)
|S̃Y |−n

2
|X̃ ′

X̃|− p
2

|S̃Y |− k
2

[
Γ

(
1

2

)]kp Γp

(
δ+p−1

2

)

Γp

(
δ+k+p−1

2

)
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= Bp

(
n

2
,
ν + p− 1

2

)
|S̃Y |−n−k

2 |X̃ ′
X̃|− p

2

[
Γ

(
1

2

)]kp Γp

(
δ+p−1

2

)

Γp

(
δ+k+p−1

2

)

=
[
Γ

(
1

2

)]kp |X̃ ′
X̃|− p

2

|S̃Y |n−k
2

Γp

(
δ+p−1

2

)

Γp

(
δ+k+p−1

2

)Bp

(
n

2
,
ν + p− 1

2

)
(A.7)

Considering the value of δ and also expressing Bp

(
n
2
, ν+p−1

2

)
as the general-

ized gamma function, the equation in (A.7) can be expressed as

Φ̃
−1

=
[
Γ

(
1

2

)]kp

|S̃Y |−n−k
2 |X̃ ′

X̃|− p
2

Γp

(
n−k

2

)

Γp

(
n
2

)
Γp

(
n
2

)
Γp

(
ν+p−1

2

)

Γp

(
ν+n+p−1

2

) (A.8)

Therefore, the normalizing constant is obtained as

Φ̃ =
|X̃ ′

X̃| p2 |S̃Y |n−k
2

[
Γ

(
1
2

)]kp

Γp

(
ν+n+p−1

2

)

Γp

(
n−k

2

)
Γp

(
ν+p−1

2

) . (A.9)

A.2

In this section, the expression of R̃ in (4.18) that has been used to derive the

prediction distribution of future responses for multivariate multiple regression

model is derived.

The quadratic form of Ỹ f in (4.18) can be established by the following

way.

Using P̃ = M̃
−1

(X̃
′
Ỹ + X̃

′
f Ỹ ), the relation R̃ in equation (4.16) can

be expressed as

R̃ = Ỹ
′
Ỹ + Ỹ

′
f Ỹ f − P̃

′
M̃P̃

= Ỹ
′
Ỹ + Ỹ

′
f Ỹ f − [M̃

−1
(X̃

′
Ỹ + X̃

′
f Ỹ f )]

′M̃ [M̃
−1

(X̃
′
Ỹ + X̃

′
f Ỹ f )]

= Ỹ
′
Ỹ + Ỹ

′
f Ỹ f − (X̃

′
Ỹ + X̃

′
f Ỹ f )

′M̃
−1

M̃M̃
−1

(X̃
′
Ỹ + X̃

′
f Ỹ f )

= Ỹ
′
Ỹ + Ỹ

′
f Ỹ f − (X̃

′
Ỹ + X̃

′
f Ỹ f )

′M̃
−1

(X̃
′
Ỹ + X̃

′
f Ỹ f )
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= Ỹ
′
Ỹ + Ỹ

′
f Ỹ f − Ỹ

′
X̃M̃

−1
X̃

′
Ỹ − Ỹ

′
fX̃fM̃

−1
X̃

′
f Ỹ f

− Ỹ
′
X̃M̃

−1
X̃

′
f Ỹ f − Ỹ

′
fX̃fM̃

−1
X̃

′
Ỹ

= Ỹ
′
(I − X̃M̃

−1
X̃

′
)Ỹ + Ỹ

′
f (I − X̃fM̃

−1
X̃

′
f )Ỹ f

− Ỹ
′
X̃M̃

−1
X̃

′
f Ỹ f − Ỹ

′
fX̃fM̃

−1
X̃

′
Ỹ

= Ỹ
′
(I − X̃M̃

−1
X̃

′
)Ỹ + Ỹ

′
fH̃Ỹ f − Ỹ

′
X̃M̃

−1
X̃

′
f Ỹ f

− Ỹ
′
fX̃fM̃

−1
X̃

′
Ỹ (A.10)

where

H̃ = I − X̃fM̃
−1

X̃
′
f

and hence

H̃
−1

= (I − X̃fM̃
−1

X̃
′
f )
−1 = I + X̃f (X̃

′
X̃)−1X̃

′
f

which can be verified by the following matrix multiplication (Zellner, 1971,

p.235)

H̃H̃
−1

= (I − X̃fM̃
−1

X̃
′
f )[I + X̃f (X̃

′
X̃)−1X̃

′
f ]

= I − X̃f [M̃
−1 − (X̃

′
X̃)−1 + M̃

−1
X̃

′
fX̃f (X̃

′
X̃)−1]X̃

′
f

= I − X̃fM̃
−1

[X̃
′
X̃ − M̃ + X̃

′
fX̃f ](X̃

′
X̃)−1X̃

′
f

= I (A.11)

since X̃
′
X̃ − M̃ + X̃

′
fX̃f = 0, by the definition of M̃ = X̃

′
X̃ + X̃

′
fX̃f .

Now, R̃ can be written with the following functional forms of M̃ and H̃

R̃ = Ỹ
′
[I −Z1(M̃ , H̃)]Ỹ + [Ỹ f −Z2(M̃ , H̃)]′H̃ [Ỹ f −Z2(M̃ , H̃)] (A.12)

where

Z1(M̃ , H̃) = X̃M̃
−1

X̃
′
+ X̃M̃

−1
X̃

′
fH̃

−1
X̃fM̃

−1
X̃

′
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and

Z2(M̃ , H̃) = H̃
−1

X̃fM̃
−1

X̃
′
Ỹ .

Now the function Z1(M̃ , H̃) can be expressed as its useful form by the

following way

Z1(M̃ , H̃) = X̃M̃
−1

X̃
′
+ X̃M̃

−1
X̃

′
fH̃

−1
X̃fM̃

−1
X̃

′

= X̃M̃
−1

X̃
′
+ X̃M̃

−1
X̃

′
f [I + X̃f (X̃

′
X̃)−1X̃

′
f ]X̃fM̃

−1
X̃

′

= X̃M̃
−1

[X̃
′
+ X̃

′
f{I + X̃f (X̃

′
X̃)−1X̃

′
f}X̃fM̃

−1
X̃

′
]

= X̃M̃
−1

[X̃
′
+ X̃

′
fX̃fM̃

−1
X̃

′
+ X̃

′
fX̃f (X̃

′
X̃)−1X̃

′
fX̃fM̃

−1
X̃

′
]

= X̃M̃
−1

[X̃
′
+ X̃

′
fX̃f{M̃−1

X̃
′
+ (X̃

′
X̃)−1X̃

′
fX̃fM̃

−1
X̃

′}]

= X̃M̃
−1

[X̃
′
+ X̃

′
fX̃f F̃ ] (A.13)

where

F̃ = M̃
−1

X̃
′
+ (X̃

′
X̃)−1X̃

′
fX̃fM̃

−1
X̃

′

= (X̃
′
X̃)−1(X̃

′
X̃)M̃

−1
X̃

′
+ (X̃

′
X̃)−1X̃

′
fX̃fM̃

−1
X̃

′

= (X̃
′
X̃)−1[X̃

′
X̃M̃

−1
X̃

′
+ X̃

′
fX̃fM̃

−1
X̃

′
]

= (X̃
′
X̃)−1[{X̃ ′

X̃ + X̃
′
fX̃f}M̃−1

X̃
′
]

= (X̃
′
X̃)−1[M̃M̃

−1
X̃

′
]

= (X̃
′
X̃)−1X̃

′

Employing this value of F̃ to equation (A.13), Z1(M̃ , H̃) is obtained as

Z1(M̃ , H̃) = X̃M̃
−1

[X̃
′
+ X̃

′
fX̃f (X̃

′
X̃)−1X̃

′
]

= X̃M̃
−1

[(X̃
′
X̃)(X̃

′
X̃)−1X̃

′
+ X̃

′
fX̃f (X̃

′
X̃)−1X̃

′
]

= X̃M̃
−1

[X̃
′
X̃ + X̃

′
fX̃f ](X̃

′
X̃)−1X̃

′
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= X̃M̃
−1

M̃ (X̃
′
X̃)−1X̃

′

= X̃(X̃
′
X̃)−1X̃

′
. (A.14)

Also Z2(M̃ , H̃) can be expressed as the following form

Z2(M̃ , H̃) = H̃
−1

X̃fM̃
−1

X̃
′
Ỹ

= [I + X̃f (X̃
′
X̃)−1X̃

′
f ]X̃fM̃

−1
X̃

′
Ỹ

= X̃f [I + (X̃
′
X̃)−1X̃

′
fX̃f ]M̃

−1
X̃

′
Ỹ

= X̃f (X̃
′
X̃)−1(X̃

′
X̃ + X̃

′
fX̃f )M̃

−1
X̃

′
Ỹ

= X̃f (X̃
′
X̃)−1M̃M̃

−1
X̃

′
Ỹ

= X̃f (X̃
′
X̃)−1X̃

′
Ỹ . (A.15)

Applying the useful expressions in (A.14) and in (A.15) to the equation

(A.12), R̃ can be written as

R̃ = Ỹ
′
[I − X̃(X̃

′
X̃)−1X̃

′
]Ỹ

+[Ỹ f − X̃f (X̃
′
X̃)−1X̃

′
Ỹ ]′H̃ [Ỹ f − X̃f (X̃

′
X̃)−1X̃

′
Ỹ ]

= Ỹ
′
[I − X̃(X̃

′
X̃)−1X̃

′
]Ỹ + (Ỹ f − X̃f

ˆ̃β)′H̃(Ỹ f − X̃f
ˆ̃β)(A.16)

where ˆ̃β = (X̃
′
X̃)−1X̃

′
Ỹ is the OLS of β̃.

Again, using the well known relation Ỹ
′
[I − X̃(X̃

′
X̃)−1X̃

′
]Ỹ = (Ỹ −

X̃ ˆ̃β)′(Ỹ − X̃ ˆ̃β) = S̃Y , the equation in (A.16) can be expressed as the

following convenient quadratic form of Ỹ f

R̃ = S̃Y + (Ỹ f − X̃f
ˆ̃β)′H̃(Ỹ f − X̃f

ˆ̃β). (A.17)


