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Abstract 

The V1b vasopressin receptor (V1bR) is a receptor for a neurohypophysial nonapeptide 

[arginine
8
] vasopressin (AVP).  V1bR is a G-protein coupled receptor (GPCR) belonging to the 

Family A GPCR superfamily.  The structures of seven α-helical transmembrane domains of this 

family members can be predicted based on the crystal structure of bovine rhodopsin (bRho) and 

human β2 adrenergic receptor (β2AR) obtained by the X-ray diffraction techniques.  This study 

aimed to identify amino acid residues which participate in ligand binding of the V1bR by site-

directed mutagenesis with the aid of molecular models of vasopressin receptors based on the 

crystal structure of bRho. 

 The V1bR is a potential drug target in treating stress-related conditions such as 

depression, anxiety and post-traumatic stress disorders.  Since it is the latest subtype identified 

among the mammalian neurohypophysial hormone receptors, it remains as the least studied 

subtype.  A closely related subtype V1a receptor (V1aR) has been studied in far more detail for its 

potential of being a drug target in treating cardiac conditions and epilepsy.  Hence, effective 

means of studying the V1bR can be accomplished by exploring the information already available 

on the V1aR and thereby defining the differences and similarities existing between the two.  

Detailed subtype comparisons are also fundamental for designing subtype selective drugs for 

effective therapy with fewer side-effects.  This project was designed also to elucidate amino 

acid residues which determine selectivity of ligands for the V1bR over the V1aR. 

 

This study demonstrated that the charged residues Glu
1.35 

and Arg
3.26

, polar residues Gln
2.61 

and 

Tyr
5.38

, and cyclic residue Pro
2.60 

are crucial in AVP binding to the V1bR.  These residues are all 
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located at the extracellular facing surface of transmembrane domains (TMs).  Also at the 

vicinity, charged residues Arg
1.27 

and Asp
2.65

, and aromatic Trp
2.64 

are shown to be important 

components of the AVP binding cavity.  The study demonstrated that two residues Trp
6.48 

and 

Phe
6.51 

located at the TM6 are required for high affinity binding of non-peptide antagonists to 

the V1bR.   

The reciprocal mutagenesis between V1bR and V1aR residues revealed that Phe
7.35 

located at the exofacial surface of TM7 is a key residue required for a high affinity binding of a 

non-peptide antagonist with selectivity for the V1bR over V1aR.  Also on the TM7, Met
7.39 

was 

shown to be involved in a high affinity binding of an antagonist with selectivity for the V1bR 

over V1aR.  Two residues on the top of TM5, Leu
5.39

 and Thr
5.42 

were also shown to participate 

in V1bR-selective binding of non-peptide antagonists.    

From the perspectives of drug development, the variants of V1bR were studied in two 

streams: firstly to characterise pharmacological properties of single nucleotide polymorphism 

(SNP) variants of human V1bR; and secondly to determine differences in TM architectures 

between rat and human V1bRs.  The study showed that a SNP variant of the V1bR with a residue 

substitution of Gly to Arg at position 191 is more readily expressed on the cell-surface in 

comparison to the wild-type.  The variant was also found to generate InsP-InsP3 accumulation 

effectively in response to AVP stimulation.  The mutagenesis involving introduction of specific 

rat V1bR residues into human V1bR revealed that there is a slight difference in the local 

environment of TM4 between the V1bRs found in the two species.     
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abbreviations were used: 

 

A1AR  A1  Adenosine receptor 

A2AR  A2  Adenosine receptor 

αAR  α adrenergic receptor 

AC  Adenylyl cyclase 

ACTH  Adrenocorticotropin 

AIMAH ACTH-independent macronodular adrenal hyperplasia 

AKA  A-kinase anchoring protein 

ARF6  ADP-ribosylation factor 6 

ARNO  ADP-ribosylation factor nucleotide site opener 

AT1AR  Angiotensin receptor type 1A  

AVP  [Arginine
8
]vasopressin 

AVT  [Arginine
8
]vasotocin 

β1AR  β1 adrenergic receptor 

β2AR  β2 adrenergic receptor 

bRho  Bovine rhodopsin 

BSA  Bovine serum albumin 

BNST  Bed nucleus of the stria terminalis 

BRET  Bioluminscence energy transfer 

CA  Cyclic antagonist: [d(CH2)5Tyr(Me)Arg
8
]vasopressin 

CA2  Cornu Ammonis 2 

CaM  Calmodulin 

CAM  Constitutively active mutant 

cAMP  Cyclic AMP 

CCKBR Cholecystokinin B receptor 



v  

CCR5  C-C chemokine receptor type 5 

CD8  Cluster of differentiation 8 

CHO  Chinese hamster ovary cell-line   

CNS  Central nervous system 

CP  Carboxy-terminal of glycopeptide 

CRF  Corticotrophin releasing factor 

CRFR1α Corticotrophin releasing factor receptor 1α 

CRLR  Calcitonin receptor-like receptor 

DAG  1, 2-diacylglycerol 

dAVP  [deamino-Cys
1
, Arg

8
]vasopressin 

d[Cha
4
]AVP    [deamino-Cys

1
, Cyclohyxylalanine

4
, Arg

8
]vasopressin 

dDAVP [deamino-Cys
1
, D-Arg

8
]vasopressin 

DI  Diabetes insipidus 

dVDAVP [deamino-Cys
1
, Val

4
, D-Arg

8
]vasopressin 

DMEM Dulbecco’s modified Eagle’s medium 

DMSO  Di-methyl-sulfoxide 

EGFR  Epidermal growth factor receptor 

ECL  Extracellular loop 

ELISA  Enzyme-linked immunosorbent assay 

ERK  Extracellular signal regulated kinase 

FBS  Foetal bovine serums 

FRET  Fluorescence energy transfer 

FSH  Follicle-stimulating hormone  

G-protein Guanine-nucleotide-binding protein 

GABA  Gamma-aminobutyric acid 

GIT  G protein-coupled receptor kinase-interactor 

GPCR  G-protein-coupled receptor 

GDP  Guanosine diphosphate 

GEF  Guanine nucleotide exchange factor 

GRK  G-protein-coupled receptor kinase 
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GSK  Glycogen synthase kinase 

GTP  Guanosine triphosphate 

H2R  H2 Histamine receptor 

H8  Helix 8 

HA  Haemagglutinin 

HEK  Human embryonic kidney 

HPA  Hypothalamic-pituitary adrenal 

5-HT  5-hydroxytryptamine 

InsP  Inositol monophosphate 

InsP3  Inositol 1,4,5-trisphosphate 

ICL  Intracellular loop 

LA  Linear antagonist: [PhACD-Tyr(Me)
2
Arg

8
Tyr-(NH2)]-vasopressin 

LH  Luteinising hormone 

MA  Medial amygdaloid nucleus 

mAChR Muscarinic acetylcholine receptor 

MAPK  Mitogen activated protein kinase 

MCS  Multiple cloning sequence 

MD  Molecular dynamic 

mGluR  Metabotropic glutamate receptor 

MLCK  Myosin light chain kinase 

MLCP  Myosin light chain phosphatase 

μOR  μ opioid receptor  

NDI  Nephrogenic diabetes insipidus 

NF-AT  Nuclear factor of activated T-cells 

NMR  Nuclear magnetic resonance spectroscopy 

NP  Neurophysin 

OT  Oxytocin 

OTR  Oxytocin receptor 

PDL  Poly-D lysine 

PDZ  PSD-95-discs-large-ZO-1 
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PEI  Poly-ethylenimine 

PKC  Protein kinase C 

PLC  Phospholipase C 

PTSD  Post-traumatic stress disorders 

PVN  Paraventricular nucleus 

RAMP  Receptor activity modifying protein 

RGS  Regulator of G-protein signalling 

RMSD  Root mean square deviations 

RTK  Receptor tyrosin kinase 

SCN  Suprachiasmatic nucleus 

SEM  Standard errors of means 

SH3  Src homology 3 

SON  Supraoptic nucleus 

SNP  Single nucleotide polymorphism 

TM  Transmembrane domain 

TSH  Thyrotropin stimulating hormone 

V1aR   V1a vasopressin receptor 

V1bR  V1b vasopressin receptor 

V2R  V2 vasopressin receptor 

VTR  [Arginine
8
]vasotocin receptor 

Wt  Wild-type 
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Chapter 1  Introduction 

 

1.1. Mammalian neurohypophysial hormones 

In the majority of mammalian hypothalamo-neurohypophysial systems, the magnocellular 

neurones within the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) synthesise 

oxytocin (OT) and [arginine
8
]vasopressin (AVP).  In some species, [lysine

8
]vasopressin replaces 

AVP.  These are synthesised as prohormones in the cell bodies of the magnocellular neurones 

along with neurophysins (NP) which act as carriers.  After the synthesis, AVP and OT are 

carried by specific NP, NP-I for AVP and NP-II for OT, whilst being transported along the 

axons into the posterior lobe of the pituitary gland.  The peptides are then released into the 

systemic circulation as required.  These peptides are known as neurohypophysial hormones.  

The functions of the hormones were initially found to induce uterine contraction [1], milk 

ejection and to increase blood pressure [2].    

 In addition to their original recognition as hormones, the neuromodulatory roles of these 

peptides have been identified [3, 4].  The parvocellular neurones in the PVN also synthesise 

both peptides, extending the axons to the other parts of the central nervous system (CNS) 

including the hypothalamus, brain stem and spinal cord [5, 6].  AVP was also shown to be 

present in the suprachiasmatic nucleus (SCN) [7-10]. AVP-producing neurones were also found 

in the bed nucleus of the stria terminalis (BNST), the subparaventricular zone, lateral septum 

and the medial amygdaloid nucleus (MA), [11-14].  
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Figure 1.1 A schematic representation of the AVP-neurophysin I prohormone: 

 

AVP and its carrier NP are synthesised altogether as a prohormone conprising: SP (signal peptide), AVP 

([arginine
8
]vasopressin), NP-I (neurophysin-I), CP (carboxy-terminal of glycopeptide). 

    

 

 

 

 

 

 

Figure 1.2  A simplified schematic diagram of the mammalian brain: 

 

The figure shows relevant brain regions mentioned in the previous page.  The sites where AVP was 

found are shown in bold. Abbreviations: BNST (the bed nucleus of the stria terminalis), PVN (the 

paraventricular nucleus), SCN (suprachiasmatic nucleus), SON (the supraoptic nucleus).   

Viewed from the left-hand side. 

   

BNST 

PVN 

Pituitary 

Amygdala 

SCN 

Cerebellum 

SON 
 

Brain stem 

Third ventricle 

 

    CP                NP-I        AVP      SP 
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1.1.1. Structure 

 AVP and OT are structurally very similar nonapeptides, each of which comprising a 

hexapeptide ring and a tripeptide tail that terminates with glycinamide.  The ring is formed by a 

covalent disulfide bond between Cys residues at positions one and six.  Figure 1.3 displays the 

molecular structure of AVP.  AVP and OT are distinguished by two amino acid differences at 

positions 3 and 8.  AVP has Phe at position 3 whereas OT has aliphatic amino acids Ile at 

position 3, and Leu at position 8 in place of Arg of AVP.     

 Peptides which are structurally and functionally similar to vasopressin or oxytocin have 

been found in other animal species. The neurohypophysial hormones which have been identified 

to date are summarised in table 1.1.  The existence of such analogous peptides in numerous 

species implicates the evolution of the neurohypophysial system in the animal kingdom.  An 

exceptionally interesting case is found in molluscs of the genus Conus which may contain such 

analogous peptides in their venom, utilising the structural similarity of the peptide to the 

endogenous peptides found in predators.  Conopressin-T found in the venom of C. tulipa has 

been shown to be an antagonist at the V1a vasopressin receptor [15].  In conopressin-T, the 

conserved Pro
7
 and Gly

9
 are replaced with Leu and Val, making the conformation less flexible 

and more hydrophobic at the tripeptide tail.   
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Figure 1.3 Molecular model of AVP:  standard chemical colour codes applied.  

 

a. The balls and sticks model; 

b. The space-filled model (rotated 180º from the above figure a, and tilted slightly). 

 

Figures made using Sirius (San Diego, Supercomputer Centre, USA). 

a 

b 

Gly
9
 

Gly
9
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Name 

 

Amino acid sequence 

 

Source identified 

Arginine vasopressin CYFQNCPRG(NH2) Mammals 

Lysine vasopressin CYFQNCPKG(NH2) Suiforms 

 (Pigs, Hippopotamus) 

Phenypressin CFFQNCPRG(NH2) Macropods  

(Kangaroos, Wallabies) 

Vasotocin CYIQNCPRG(NH2) Non-mammalian vertebrates 

Inotocin CLITNCPRG(NH2) 
L. migratoria, T. Castaneum 

 N. vitripennis (Insects) 

Crustacean OT/AVP-like 

peptide 
CFITNCPPG(NH2) D. pulex  (Plankton) 

Conopressin-T CYIQNCLRV(NH2) C. tulip 

Gastropods 

(Sea snails) 

Conopressin-Vil CLIQDCPγG(NH2) C. villepini 

Conopressin-S CIIRNCPRG(NH2) C. stratus 

Conopressin-G CFIRNCPKG(NH2) C. geographus 

Annetocin CFVRNCPTG(NH2) E. foetida   Annelid 

(ringed worm) 

Octopressin CFWTSCPIG(NH2) 
O. vulgaris  Cephalopod 

(Octopus) Cephalotocin CYFRNCPIG(NH2) 

Phasvatocin CYFNNCPVG(NH2) 

Chondrichthyes 

(Cartilaginous fishes) 

Aspargtocin CYINNCPLG(NH2) 

Valitocin CYIQNCPVG(NH2) 

Glumitocin CYISNCPQG(NH2) 

Isotocin CYISNCPIG(NH2) Osteichtyes (Bony fishes) 

Mesotocin CYIQNCPIG(NH2) Dipnoi (Lungfishes), Marshupials 

Oxytocin CYIQNCPLG(NH2) Mammals 

 

Table 1. 1 Vasopressin/Oxytocin-like peptides:    Disulfide-bonding cysteine residues are in 

underlined bold.  Highly conserved, with an exception of conopressin-T, proline and glysinamide 

are also shown in bold.  γ stands for γ-carboxyglutamate.   

Modified from Dutertre et al. 2008 [15]. 
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1.1.2. Receptor subtypes 

Three subtypes of receptors have been identified for AVP: V1a vasopressin receptor (V1aR), V1b 

vasopressin receptor (V1bR) and V2 vasopressin receptor (V2R).  There is only one type of 

oxytocin receptor (OTR) identified.  AVP is a high affinity partial agonist of OTR, but OT is not 

a high affinity agonist for any of the three subtypes of vasopressin receptors. 

 

1.1.3. Physiological distribution of the vasopressin receptors 

Each subtype has distinct patterns of distribution throughout the body.  Being expressed on the 

vasculature [16-19] and platelets [20] make V1aR probably the most widely expressed subtype 

amongst the three.  The V1aR is also present in the spleen, the liver [21, 22], the adrenal cortex 

[23] and the CNS [24, 25].  In the brain, V1aR is found mainly in the lateral septum, the fundus 

striatum, the hypothalamic stigmoid nucleus and the area postrema-nucleus of the solitary tract 

complex [26, 27].  OTR is expressed on reproductive tracts [28-31], mammary glands [32, 33], 

T-cells in thymus [34], vascular endothelial cells [35] and the CNS [36-38].  V2R is found on 

the kidney tubules where it mediates the anti-diuretic effect [39, 40].  The expression of V2R 

mRNA was also found in the brain of newborn rats;  however, the level of expression showed 

age-dependent decline and no V2R transcript was found in the brains of rats older than two-

weeks [41].  V1bR is expressed in the pituitary corticotrophs [42], the adrenal medulla [43, 44], 

the pancreas [45], white adipose tissue, cluster of differentiation 8 (CD8) cells in the thymus 

[34] and the CNS [45].  In the brain, the mRNA of V1bR have been identified in the olfactory 

bulb, CA2 pyramidal neurones in the hippocampus, supraoptic, surachiasmatic dorsomedial 

hypothalamic nuclei, piriform and entorhinal cortices, substantial nigra, and dorsal motor 

nucleus of the vagus [46-48].  
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1.1.4  Physiological actions  

As a hormone, AVP is released into the hypophysial portal system and the circulation to act on 

several target tissues including: i) the vasculature at which AVP induces vasoconstriction [49, 

50]; ii) the heart and hypothalamus where AVP increases secretion of atrial natriuretic factors 

[51, 52]; iii) the kidney tubule where AVP alters permeability of renal collecting duct to water 

[53]; iv) the pancreas where the secretion of pancreatic hormones, insulin and glucagon, are 

regulated [54-57]; v) the pituitary corticotrophs where AVP up-regulates adrenocorticotropin 

(ACTH) secretion predominantly by potentiating the effect of corticotrophin releasing factor 

(CRF) [58-60]; vi) the adrenal gland at which AVP increases glucocorticoids secretion [61] and 

aldosterone secretion [23]; vi) the liver in which AVP regulates protein catabolism, lipid 

metabolism [62] and glucose homeostasis [63, 64]; and viii) platelets where AVP induces 

aggregation [65, 66].  AVP has also been shown to have mitotic effects by activating the 

epidermal growth factor receptor (EGFR) in certain cell types [67]. 

The central effects of AVP have been shown by studies, predominantly on rodents.  AVP 

is involved in regulating: i) the brain water and electrolyte composition [68, 69]; ii) circadian 

rhythms [8, 70, 71]; iii) social and reproductive behaviour [72-76]; iv) spatial memory via V1aR 

[77, 78]; v) inter-male aggression [79-82] and behaviours related to dominant/subordinate social 

status [14, 83, 84].  The expression of AVP can be influenced by gonadal steroids androgens 

and oestrogen in BNST and MA regions [85-88] and therefore certain actions of AVP can be 

sexually dimorphic.  In monogamous prairie voles, affiliative pair-bonding formation is induced 

by AVP in males but by OT in females [89-92].  Male V1aR knockout mice were found to have 

a profound social recognition deficit [93].  
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Neuromodulatory roles of AVP have been identified in recent years.  AVP excites motor 

neurones via V1aR [94, 95].  AVP can enhance glycinergic and gamma aminobutyric acid 

(GABA)-ergic inhibitory transmission also via V1aR [96, 97].  AVP has been found to increase 

glutamate release in hippocampus and cortical regions [98], and dopamine release in the medial 

prefrontal cortex [99].  Recently knock-out studies of V1aR and V1bR revealed the involvement 

of AVP in nocioceptive responses and morphine-induced hyper-locomotion and hypothermia 

likely via ACTH and dopaminergic neurones in the mesolimbic system [100].  AVP has also 

been shown in vitro to act as a neurotrophic factor in cultured embryonic neurones from 

Xenopus laevis [101], rat hippocampus [102, 103] and rat ventral spinal cord [104].     

OT appears to participate predominantly in physiological roles involving reproduction 

and parental care both centrally and hormonally [105-108].  OT modulates myometrial 

contractility, facilitates induction of labour, and stimulates milk secretion by mammary glands.  

 

1.1.5  Pathophysiology 

The combination of vasoconstriction, water retention, and mitotic effects of AVP is thought to 

be involved in the pathogenesis of arthrosclerosis, heart failure and hypertension.  AVP has also 

been suggested to be involved in cerebral vasospasm following subarachnoid haemorrhage 

[109].  Such life-threatening conditions can potentially be treated by administration of V1aR 

antagonists [69, 110-112].   

The loss of function of AVP at the renal ducts results in nephrogenic diabetes insipidus 

(NDI), which is characterised by polyuria due to severe abnormality in water homeostasis.  The 

majority of NDI cases are congenital caused by X-linked mutations in the V2R gene, AVPR2.  

The mutations can be missense, frameshift, inframe deletion, insertion, nonsense, or combined; 
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but missense is the commonest among all, in particular involving Arg or Tyr residues [113].  An 

example of such missense mutations is Trp substitution of Arg
113

 which results in dysfunctional 

misfolded V2R.  Modified AVP, [deamino-Cys
1
, D-Arg

8
]vasopressin (dDAVP) also known as 

desmopressin, is a relatively selective V2R/V1bR agonist with weaker potency at V1aR.  It has 

been clinically proven for its use in preventing bed-wetting or milder cases of acquired DI, as it 

increases water retention in the kidney as well as increasing water retention via ACTH secretion 

upregulated by V1bR.  As for NDI, desmopressin is ineffective due to the loss of functional V2R.  

On the other hand, excessive V2R activity may result in hyponatremia with excessive fluid up-

take.  V2R-selective antagonist could provide effective treatment for such conditions [114]. 

 Inadequate central functions of OT have been suggested to result in subnormal parent-

child bonding, lack of social recognition, or possibly autism [115-118].  On the other hand, 

excess central OT activity in late pregnancy can induce anxiety behaviour in the mother, which 

can be reversed by OTR antagonist [119].  

 The dysregulation of hypothalamic-pituitary adrenal (HPA) axis caused by synergistic 

increase of AVP and CRF has been related to pathophysiology of depression and post-traumatic 

stress disorders (PTSD) [120].  AVP is released rapidly from the median eminence into the 

pituitary portal circulation in response to stress [121], and prolonged stress causes AVP to up-

regulate V1bR [122].  It has also been suggested that the V1bR-specific antagonists could 

possibly be applied in treating aggressive behaviours associated with dementias and traumatic 

brain injuries [123, 124].  Reduction of aggressive behaviour following administration of a V1bR 

antagonist has been demonstrated in hamsters [125].  When the functional suppression of either 

V1bR or CRFR1 was performed in mice, it reversed stress-induced suppression of neurogenesis 

[126]. Several other studies have also   demonstrated that the V1bR antagonists are potential 
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therapeutic agents to treat depression and stress-related disorders [127-132].  V1bR antagonists 

can also be used to alleviate the symptoms of ACTH-secreting tumours, since V1bR has been 

found to be over-expressed in certain ACTH-secreting adenoma associated with Cushing’s 

syndrome [133].  Moreover, ectopic expressions of V1bR and V2R were found in the adrenal 

gland of patients affected by a rare case of Cushing’s syndrome caused by ACTH-independent 

macronodular adrenal hyperplasia (AIMAH) [134, 135].  Since AIMAH can potentially be 

treated by V1aR antagonists to some extent [136], more effective treatments for the individuals 

exhibiting the phenotype may possibly be achieved by administration of dual antagonists of 

V1aR/V1bR or V1aR/V2R depending on the nature of ectopic expression identified in each 

patient.    

 

 

1.2. G-protein coupled receptors 

The GPCR superfamily is the largest class of the transmembrane receptor proteins in the human 

genome [137].  It is generally estimated that approximately 40 % of all drug targets are GPCRs.  

GPCRs commonly have seven α-helical transmembrane domains with an extracellular N-

terminus and an intracellular C-terminus.  In this section, the key characteristics of GPCRs are 

addressed regarding the receptor pharmacology.     

 

1.2.1. Classification 

Mammalian GPCRs can be divided into three families based on types of native ligands, and on 

similarities in the primary and the secondary structures.  Family A is the largest, containing 
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about 90% of all GPCRs.  The members of Family A include visual pigment rhodopsin, 

biogenic amine receptors, purine receptors, and neurohypophysial hormone receptors as well as 

some other neuropeptide receptors.  Rhodopsin and β2 adrenergic receptor (β2AR) are the two 

most explored among those.  The structures of Family A GPCRs are described in detail in the 

next sub-chapter 1.3.  The second largest is Family B, of which members have relatively larger 

ligands, and the extracellular domains contribute largely in the binding of their endogenous 

ligands.  Glucagon and secretin receptors often represent Family B members.  Family C is a 

group of GPCRs with small ligands such as amino acids.  GABAB receptors and metabotropic 

glutamate receptors (mGluRs) are well-studied members of this family.  The members 

characteristically have a large N-terminal domain and a very short intracellular C-terminal tail.  

The figure 1.4 illustrates the characteristic architectures of GPCRs which belong to the three 

major mammalian families.   

Fungal GPCRs which have been identified are categorised into the following three small 

families.  Yeast pheromone receptors are divided into Family D and Family E.  Family F 

contains cAMP receptors found in the slime mould Dictyostelium discoideum. 
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Figure 1.4. a-c. The characteristic features of three major mammalian GPCR families: 

 
The figure illustrates key features of three mammalian GPCR families: a) Family A members are characterised by 

several highly conserved residues (indicated by red circles) and a disulfide bond that connects ECL1 and ECL2. 

Most of these receptors have palmitoylated cysteine residues (orange zigzag) which serve as an anchor to the 

membrane by the C-terminal domain.  b) Family B GPCRs are characterised by a large N-terminal domain 

containing several cysteine residues that form a network of disulfide bridges. The palmitoylation site, the conserved 

residues and motifs typically present in Family A GPCRs are not found in Family B. c) Family C members have a 

large characteristic N-terminal domain with the ligand-binding domain (shown in yellow), which is often described 

as a venus fly trap that can open and close with the agonist bound. Family C members have short and highly 

conserved (red circles) ECL3.  Except for two cysteines in ECL1 and ECL2 that form a putative disulfide bridge, 

the Family C members have none of the features that characterise Family A and B members.   

Taken and modified from George et al., 2002 [138]. 

 

a.   Family A 

b.   Family B 

c.   Family C 
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1.2.2. Post translational modifications 

Most GPCRs have putative sites (NxS/T) for N-linked glycosylation in the N-terminus, while 

some may also contain the site within the extracellular loop (ECL) regions.  Family A GPCRs 

do not have signalling peptides for cellular trafficking of secretory or membrane proteins.  For 

such GPCRs, the glycosylation appears to have significance in cell-surface expression of the 

receptors [139].  Neither ligand binding nor signalling properties appear to be affected by the 

glycosylation [140, 141]. 

 Many Family A GPCRs have at least one Cys residue which can be thio-acylated with 

palmitate by the juxtamembrane region of the C-terminal domain.  The palmitoylation provides 

an anchor by embedding the acyl groups into the hydrophobic region of the cell membrane.  

Palmitoylation may also favour the receptor interaction with lipid rafts, which are regions rich in 

glycosphingolipids, cholesterol and also signalling molecules such as kinases.  The 

palmitoylation of V1aR at two residues, Cys
371

 and Cys
372

 has been confirmed.  The study 

showed that the receptor appeared to be less phosphorylated and more sequestrated in the 

absence of palmitoylation while ligand binding properties appeared to be unaffected [142]. 

 Cytoplasmic Lys residues of GPCRs have been shown to be ubiquitinated, initially in 

Family E yeast GPCRs Ste2p and Ste3p, upon agonist stimulation [143, 144].  Ubiquitination is 

a covalent attachment of a 76 amino acid protein ubiquitin via an isopeptide bond between Lys 

residues.  Family A GPCRs such as β2AR [145], and V2R [146] have also been shown to be 

ubiquitinated following agonist binding to facilitate the receptor degradation by proteosomes.              

 

 

 



 

14 

1.2.3. G-proteins and their regulators       

G-proteins are enzymes comprising three subunits: α, β, and γ. The α-subunit (Gα) has a GTPase 

domain, an α-helical domain with modulatory function, and the N-terminal domain which is 

disordered as a monomer but ordered by β-subunit (Gβ) binding [147-150].  The Gα is inactive 

as guanine di-phosphate (GDP) bound state.  The activation of GPCR initiates exchange of 

guanine nucleotide, favouring binding of guanine tri-phosphate (GTP) to the Gα.  The Gα at 

GTP-bound state dissociates from the other subunits.  The effectors of Gα include phospholipase 

Cβ (PLCβ), adenylyl cyclase (AC), guanine nucleotide exchange factor (GEF), src tyrosine 

kinase, and components of the mitogen-activated protein kinase (MAPK) pathway.  Both V1aR 

and V1bR are coupled to Gαq/11 which activates PLCβ.  PLCβ hydrolyses phosphatidylinositol 4,5 

bisphosphate (PtdIns(4,5)P2) to produce inositol 1,4,5-trisphosphate (InsP3) and 1,2-

diacylglycerol (DAG).  InsP3 binds to its receptor at the endoplasmic reticulum (ER) to release 

calcium ions (Ca
2+

), whilst DAG activates family of protein kinase C (PKC) to initiate cellular 

responses (figure 1.5).  The β- and γ- subunits (Gβγ) dimer also has many effectors including 

PLCβ [151], AC [152], Ca
2+

 pump [153], and K
+
 channel [154].  Gβ has a β-propeller structure, 

containing seven motifs of Asp-Trp repeats known as WD-40 repeats [148] which stabilises the 

N-terminal domain of Gα.  Gγ binds Gβ by the N-terminal coiled coil domain that spreads over 

the base of Gβ [148].  The binding of Gβγ to Gα inactivates it while enhancing its association with 

the GPCR [155, 156].   

The contact site between G-protein and GPCR involves the C-terminal domain [157], 

cytoplasmic portions of TM5, TM6 [158, 159], and intracellular loops (ICLs) [160, 161].  

Figure 1.6 shows sites of receptor contact in Gα. GPCRs have preferences in coupling to a 

particular type of G-protein; however, certain GPCRs are known to couple to more than one 
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type of G-protein [162]; thereby having the potential to activate numerous signalling pathways 

[163] under different circumstances and environments.  

At least 17 Gα, 5 Gβ, and 14 Gγ have been cloned so far [164].  In theory, such variations 

allow a diversity of G-protein population to emerge in different combinations.  To simplify, G-

proteins can be classified into four groups: Gs, Gi/o, Gq/11, and G12/13, based on the similarities in 

the primary structures of the Gα and the intracellular signalling events associated with each.  
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Figure 1.5. The intracellular signalling events initiated by Gαq/11 and the PKC family.      

The PKC family contains: PKCα, PKCβ, and PKCγ which are activated by Ca
2+

 and DAG; PKCδ, PKCε, PKCε, 

and PKCζ which are activated by DAG; and PKCη, PKCδ, and PKCκ which are activated neither by Ca
2+ 

nor DAG.  

Gαq/11 and Gβγ activate and recruit PLCβ to the membrane where it hydrolyses PtdIns(4,5)P2 to InsP3 and DAG.  

InsP3 binds to its receptor (IP3R) at the ER, and release Ca
2+

.  The increase in cytosolic Ca
2+

 activates calcineurin 

which dephosphorylates the transcription factor NF-AT, allowing it to translocate to the nucleus and activate 

transcription of hypertrophic response genes.  PKCα, PKCδ, PKCε, PKCδ and PKCκ activate PKC-potentiated 

inhibitor protein of 17kDa (CPI17).  CPI17 inhibits myosin light chain phosphatase (MLCP), leading to MLC 

phosphorylation by MLCK which is activated by calmodulin.  PKCδ/PKCκ-regulated pathway leads to the 

inhibition of histone deacetylase 7 (HDAC7) that regulate cellular hypertrophy. PKCα, PKCβ, PKCγ, PKCε, and 

PKCε activate v-Raf-1 murine leukemia viral oncogene homolog 1 (cRaf1) leading to the activation of mitogen-

activated protein kinase cascade events.  PKCα, PKCβ, PKCγ, PKCδ, and PKCη inactivate glycogen synthase 

kinase 3 β (GSK3β) which promotes the nuclear exit of NF-AT, thereby down regulating Ca
2+

-calcineurin 

signaling.  Taken from http://www.genego.com/map_453.php  GeneGo, St. Joseph, Michigan, USA. 

http://www.genego.com/map_453.php
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Figure 1. 6  Gβ/γ and receptor contact sites on Gα.  

 

Top: Sequence alignment of the N- and C- terminal regions of selected Gα-subunits. Residues that are 

subject to N-linked myristoylation, thio-palmitoylation or N-linked palmitoylation are highlighted in 

orange, green and yellow, respectively. Residues comprising the N-terminal αN helix are highlighted in 

red and residues at the extreme C-terminus of Gα are shown in blue. The αN helix is required for binding 

Gβ/γ-subunits, and Gβ/γ contacts are boxed in black, the extreme C-terminus plays a key role in specific 

receptor recognition. In the secondary structure diagram below the aligned sequences, Gβ/γ and receptor 

interaction sites are highlighted in red and blue, respectively. Only selected domains of Gα are shown, 

and for simplicity the domains between αA and the α2 helix have been omitted as indicated by the dotted 

line. Bottom: Illustration of the N-terminal αN helix (red) and the C-terminal receptor contact region 

(blue) in the context of the tertiary and quaternary structure of the resting state, inactive Gi1αβ1γ2 

heterotrimer. The GDP molecule is buried between the GTPase and helical domain of Gα (green), the β-

subunit (yellow) and the γ-subunit is shown in orange. 

 

 Taken from Milligan and Costenis, 2006 [165] 
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There are several regulators of G-proteins that have been identified.  Phosducin, originally 

isolated from bovine brain, is a protein kinase A which inhibits the GTPase activity of Gα [166, 

167].  GEF is a positive regulator that promotes Gα binding to GTP, and is activated by Gα12/13.  

There is a family of regulators of G-protein signalling (RGSs).  RGSs accelerate the hydrolysis 

of GTP by Gα; thereby acting as positive regulators by increasing the turn-over of G-protein 

activation in a short time-period.  RGSs can also act as negative regulators by the same means of 

accelerating the hydrolysis of GTP when competing GTP-Gα binding with the effectors.  The 

property whereby RGSs can act as both positive and negative regulators in a concentration-

dependent manner has been demonstrated experimentally in vivo and in silico by Smith et al. 

[168].  Certain RGSs have been shown to interact with the C-terminal regions of the receptors.  

RGS2 and RGS5 were also shown to bind to the C-terminal tail of OTR [169].    

A domain homologous to RGS is found in the N-terminal region of G protein-receptor 

kinases (GRKs) [170], which phosphorylate the agonist-bound GPCRs and recruit arrestins to 

initiate receptor internalisation [171].  The activity of GRK2 and GRK3 was shown to be 

positively regulated by free Gβγ subunits [172, 173].  GRK2 was shown also to be able to bind to 

GTP-Gαq, and inhibit activation of PLCβ via the RGS domain [174].  Moreover, GRKs and 

RGSs may compete for binding to the active receptors: RGS14 was shown to prevent GRKs 

from phosphorylating the morphine-bound κOR [175].  Cells are thought to utilise different 

RGSs and GRKs as either positive or negative regulators to adjust the signalling to appropriate 

level. 
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1.2.4. Oligomerisation of GPCRs 

GPCRs in living cells have been demonstrated by fluorescence resonance energy transfer 

method (FRET) to pre-couple to specific G-proteins [176].  Leucotrien B4 receptor has been 

shown to exist within the cell-membrane as pentamer, comprising GPCR homodimer and a 

trimeric G-protein at resting state [177].  Homodimerisation appears to occur in many Family A 

members [178-181] and Family C members [182].  Formation of heterodimers by related 

receptor subtypes were also demonstrated in Family A members [183, 184] and Family C 

members [185].  Heterodimeration is not limited within closely related subtypes and some 

distantly related receptors are also capable of forming heterodimers [186-188].  Heterodimers of 

GPCRs belonging to different families have also been reported [189, 190].  

 The dimerisation of GPCRs occurs in the endoplasmic reticulum (ER) and also in the 

Golgi apparatus during protein synthesis and maturation [191, 192], and the process might be 

necessary for efficient protein folding preventing aggregation.  Dimerisation of GPCRs may 

involve several domains, with slight variations among different receptors.  The extracellular 

domains, TMs [193, 194] and the C-terminal domain were all shown to participate in formation 

of GPCR dimers by several studies [178-180, 195-198].  Family C member mGluRs form 

disulfide-linked homodimers [182].  Dimerisation is a necessity for the mGluRs to be functional 

[195, 196]. 

Dimerisation appears to have effects on the functionality also of certain Family A 

GPCRs.  The studies of cross-linking at the TM4 of D2 dopamine receptor revealed that agonist 

binding accelerates homodimerisation, in contrast to inverse agonist decelerating it [199].  

Diminished signalling by D3 dopamine receptor was observed by heterodimerising with 
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adenosine 2A receptor (A2AR) [200].  Enhancement of signalling by avian CRFR1 by 

heterodimerisation with arginine vasotocin receptor has also been documented [190].    

 Many Family B members also form oligomers with a group of single α-helical 

transmembrane proteins known as receptor activity modifying proteins (RAMPs). RAMPs are 

known to alter pharmacological properties of calcitonin receptor-like receptor (CRLR) by direct 

association [201, 202]. 

 The abundance of evidence proving GPCRs exist as dimers or oligomers might make one 

wonder whether monomeric GPCRs actually exist.  Bioluminescence resonance energy transfer 

(BRET) study with a realistic optimisation has shown that some Family A GPCRs, including the 

members previously shown to form dimers in over-expressed systems, can exist as monomers at 

a moderate level of expression while Family C GABABR heterodimers were detected readily 

[203]. 

 Some GPCRs, including β2AR, V2R, parathyroid hormone receptor and angiotensin 

receptor, have been shown to activate intracellular signalling cascades independent of G-

proteins [204-207].  GPCRs may form complexes with other signalling proteins either directly 

or via scaffolding proteins.  These scaffolding proteins can include a-kinase anchoring protein 

(AKA)79/150, Homer [208], spinophilin, adaptor proteins containing PDZ domain or SH3 

domain [209-212].  These interactions are to facilitate signalling cascade while allowing cross-

talk between independent signalling events to occur. 
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 1.2.5. Cellular regulations of GPCRs 

Within the cells there are various components which regulate the functionality of GPCRs in 

response to any stimulus.  GPCRs can be regulated at the molecular level to adjust the signalling 

properties of the receptor, and also by adjusting the population of the receptor. 

Shortly after agonist induced activation, GPCRs attenuate strength of signals and 

become less responsive in the phenomena known as desensitisation.  Upon activation, GPCRs 

become phosphorylated at the intracellular loop domains (ICLs) and at the C-terminal domain 

by kinases such as PKA, PKC and GRK.  The phosphorylation reduces the receptor signalling 

by causing uncoupling of the G-protein from the receptor [213-215].  The phoshorylated GPCRs 

are internalised into the intracellular membrane compartment by interacting proteins such as β-

arrestin [216], clathrins [217], or dynamin [218].  Figure 1.7 describes the receptor 

internalisation initiated by the β-arrestin association.  The receptors internalised by endocytosis 

can be degraded within lysosomes, or by proteases following ubiquitination.  Prolonged and 

excess signalling cascades may result in down-regulation of the receptors at the level of gene 

expression and protein synthesis, as well as by degrading existing receptors [219-222].  GPCRs 

can be internalised in the absence of agonist binding by interaction with β-arrestin.  β-arrestin 

acts as an adaptor between GPCRs and clathrin-coated pits, thereby impairing the G-protein 

association with the receptor [223, 224].  Agonist-independent internalisation of AT1AR and 

cholecystokinin receptor A has been documented [225-227].   

Cells can maintain minimal levels of the receptors, and the de-sensitised cells can be re-

sensitised within a short-period of minutes.  In the endosomes containing phosphatases, the 

receptors are de-phosphorylated to be recycled back to the cell-surface. 
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GPCRs can also be up-regulated in response to inverse agonist, which prevents agonist-

independent activity of the receptor.  Many Family A GPCRs are known to have constitutive 

activity in the absence of agonist stimulation.  Inverse agonists have been used as therapeutic 

agents in order to reduce the constitutive activity of the receptors.  However, the uses have been 

associated with development of tolerance to chronic treatments.  The phenomenon has been 

studied on histamine H2 receptor (H2R).  Inverse agonists of H2R, cimetidine and rantidine both 

increased receptor density, while no significant increase was associated with the competitive 

antagonist burimamide [228].  The finding provided an explanation for the tolerance observed in 

treating ulcers using H2R specific drugs [229, 230]. 
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Figure 1.7 Model depicting the steps leading to endocytosis of G protein-coupled receptors: 

Agonist binds to receptors leading to the activation of G proteins and effectors (step 1).  GRKs are 

recruited to the activated receptor to initiate the desensitization and internalization process. GRKs 

phosphorylate Ser and Thr residues on the intracellular domains of the receptors to create high affinity 

binding sites for ß-arrestins (ßarr) (step 2). Once ß-arrestins are translocated from the cytosol to the 

activated receptors, this protein can act as an adaptor molecule and interact with many other proteins 

(step 3). ß-arrestin interact with AP2 and clathrin to regulate formation of clathrin-coated pits and 

vesicle. ß-arrestin and GRKs both interact with membrane lipids, as GRKs are found in complex with 

GRK-interacter (GIT), ß-arrestin, GTP-binding protein ARF, nucleotide binding site opener ARNO (step 

3). The exact events regulated by these interactions remain to be elucidated.  ß-arrestin can also bind to 

Src, which regulate the phosphorylation of dynamin (step 4). The participation of ATPase NSF in the 

receptor endocytosis remains to be confirmed.  Once the clathrin-coated vesicles are formed, dynamin 

and possibly other associated proteins regulate fission of the vesicles, which are then processed to 

intracellular compartments to allow dephosphorylation of the receptors (step 6), recycling (steps 7 and 9) 

or degradation (step 8). 

Taken from Claing et al, 2002 [231] 
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1.2.6. Receptor theory and pharmacological models for GPCR function 

The initial theory governing receptor-ligand interaction emerged as Hill and Langmuir 

discovered the equilibrium binding equation [232, 233].  Clark then published his theory of 

receptor and ligand association based on the law of mass action in 1930s [234].  Around the 

same time, Gaddum carefully quantified competition binding between two ligands at a receptor 

site, and derived an equation for obtaining receptor occupancy (ρA), shown below:  

ρA = [A]/KA(([A]/KA)+(1+[B]/Kb))
-1

    Equation 1 

Where A is tracer ligand, B is competitive antagonist, and KA and Kb are the dissociation 

constants of tracer ligand and competitive antagonist.    

 

The concept of efficacy was raised by Stephenson as partial agonism was identified with 

recognition that response is not necessarily proportional to occupancy [235].  In order to 

describe the receptor activation, the two-state model in which the receptors were described to be 

either in an inactive state (R) or in an active state (R*), was initially proposed by Del Castillo 

and Katz based on the study of ion channels [236] (figure 1.9a).  With the realisation that R* can 

exist in the absence of ligand, the reversible two-state model was later proposed to include a 

ligand-free conformational equilibrium between R and R* (K*) (figure 1.9b).  Ligands which 

selectively bind to R* are agonists.  The more selective the agonist is for R*, the greater the 

efficacy associated with the agonist.  Ligands which bind indiscriminately both R and R* do not 

shift K*, and thus behave as competitive antagonists; -also known as neutral antagonists.  

Competitive or neutral antagonists have no effect on the signalling properties of the receptors.  

Subsequently, many GPCRs have been described that have basal activity in the absence of 

agonist.  Such constitutive activity of GPCRs led to discovery of inverse agonists which have 

negative efficacy, influencing K* to favour R.  Figure 1.8 illustrates the effect of agonists, 
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partial agonists, inverse agonists and antagonists on GPCRs.  The two-state model of ligands 

selectively binding to pre-existing conformations is favourable energetically compared to an 

alternative idea of the conformational induction, in which ligand creates the conformation 

through the binding process to a receptor of a single conformation [237, 238].  In reality, ligands 

are thought to select initially certain receptor conformations to be able to bind, and may induce a 

slight conformational change for a better fit momentarily while binding.             

 In order to adapt the two-state model for GPCRs, the model was further elaborated to 

include G-protein binding to the receptor, and consequentially allosteric transitions or 

isomerisation of the receptor conformation.  The agonist binding and G-protein coupling 

appears to cooperate positively [239].  The derived model is known as ternary complex model.  

De Lean et al. first applied this model to describe ligand binding to β-adrenergic receptor (βAR) 

and its G-protein activation [240].  The extended ternary complex model was proposed to 

describe constitutive activities of GPCRs [241] (figure 1.9c).  The model has an isomerisation 

constant (L) which gives the amount of R* available for G-protein coupling.  By increasing the 

relative stoicheometry of receptor to G-protein, the elevated R*G-protein complex was obtained 

in the model.  However, the model remained thermodynamically incomplete.  The ternary 

complex model was further revised to include pre-coupling of G-protein to GPCR.  The model 

was named cubic ternary complex receptor occupancy model by Weiss et al. [242] (figure 1.9d) 

and it was thermodynamically complete.  The model includes four cooperativity factors 

designated with Greek alphabets: i) activation cooperativity of ligand (α); ii) activation 

cooperativity of G-protein (β); iii) binding cooperativity between ligand and G-protein (γ) and 

iv) activation cooporativity between ligand and G-protein (δ). 
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 Ternary complex models described above are limited in that these do not fully describe 

functionality of certain GPCRs with tendencies of coupling with more than one particular type 

of G-protein.  The three-state model was proposed by Leff et al. for such GPCRs which couple 

to two types of G-proteins [243].  The model contains two active states (R* and R**) each of 

which couples to specific G-protein.  Both R* and R** competes with one another in parallel, 

and the preference of ligands by the receptor determines which active state to dominate.  An 

alternative, ‘the multi-state model’ was suggested by Schwartz allowing a receptor to alternate 

between several active and inactive conformations [244].  The probabilistic model or ‘stimulus 

trafficking’ was another alternative proposed by Kenakin with a theoretical assumption that a 

receptor can exist in a limitless number of possible conformations inducible by different ligands 

which can either enhance or deplete depending on the efficacy associated with the ligand [245].       
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Figure 1.8. Classification of ligand efficacy for GPCRs: 

 

Many GPCRs exhibit certain levels of basal activity in the absence of agonist.  Inverse agonists inhibit 

this agonist-independent activity of the receptors (the line in turquoise), while antagonists do not affect 

the activity (in yellow).   Full agonists produce maximal biological responses capable of the system (in 

black).  Partial agonists do not elicit such large responses at high concentrations, as can another agonist 

in a given system under specified conditions.  The designation of full versus partial agonist is system 

dependent, and a full agonist for one tissue may be a partial agonist in another [246].    
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Figure 1.9 a-d Models of receptor activation:  

 

(a) Basic two-state model, (b) Reversible two-state model, (c) Extended ternary complex model, and (d) 

Cubic ternary complex model.  In the presence of agonist (a), receptors can go through several 

conformational states at inactive (R) and at active (R*) states governed by ligand-independent 

conformational equilibrium between R and R* (K*), equilibrium dissociation constants of agonist 

(KA) and of G-protein (KG). Ternary complex models contain G-protein (g) to show transitional 

processes influenced by cooperativity factors α,β,γ,δ and isomerisation constant (L) (see text).   
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1.2.7. Allosteric Modulators in GPCR pharmacology 

Allosteric modulators of GPCRs are compounds that bind to alternative sites of the receptor 

opposed to the orthodox ligand binding site.  In this context, the ligands which bind to the latter 

site are called orthosteric ligands.  As these occupy different sites, allosteric and orthosteric 

ligands can co-occupy the same receptor, and allosteric ligands can either be negatively or 

positively cooperative to the orthosteric ligand.  Allosteric modulators were discovered on 

observations that certain antagonists can show different affinities to the same receptor under 

different experimental conditions.  Such studies on adrenergic receptors are relatively well 

documented [247-250].  CGP12177 is a competitive antagonist at orthosteric site of β1AR; 

however, it activates receptor at a high concentration in a non-counteractive way by other 

classical β1AR antagonists [251-253].  CGP12177, and also two other ligands, LY362884 and 

carvedilol, have all been identified to bind allosteric sites of the receptors as positive allosteric 

modulators [252-255].    

Negative allosteric modulators and competitive antagonists both exhibit inhibitory action 

to receptor activation.  However, both are clearly distinguishable by saturation assay.  A schild 

plot of competitive antagonism gives a straight linear line with slope 1, while that of negative 

allosteric modulators are curvilinear [248].  The Schild plot is a graph of log10 (concentration-

ratio (r) minus one) plotted against log10 antagonist concentration; the graph yields a straight 

line of unit slope for competitive antagonism which obeys the Schild equation below: 

r – 1 = [B]∙KB
-1 

        Equation 2   

Where r is the ratio of the agonist concentration which produces 50% response in the presence of 

antagonist to the agonist concentration produces the same response in the absence of antagonist; B 

is the concentration of a reversible competitive antagonist; and KB is the equilibrium dissociation 

constant for the B with the receptor [256].   
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The two antagonisms can be distinguished by competition assay, because maximal displacement 

of orthosteric ligands by allosteric modulators is limited regardless of concentrations used, as 

the binding process is restricted by cooperativity factor α.  On the other hand, competitive 

antagonists can displace the bound ligands down to non-specific binding level when sufficient 

concentration is used.     

 

1.2.8. Cellular influence on GPCR pharmacology 

Some GPCRs such as adrenergic receptors and muscarinic acetylcholine receptors (mAChRs) 

were shown to have different pharmacological profiles depending on the cellular environment.  

The experimental evidence and observations on this subject are extensively reviewed by Nelson 

and Challiss [257], and Baker and Hills [258].  Several plausible mechanisms at different levels 

of the cellular events have been discussed.  

 Firstly, receptors can be processed differently depending on the cell-types at the level of 

post-transcriptional modifications.  RNA editing at up to five distinct sites of the 5-

hydroxytryptamine 2c receptor (5-HT2CR) have been demonstrated to influence constitutive 

activity and efficacy [259].  Alternative splicing product of mu-opioid receptor (κOR) showed 

less sensitivity to opioid peptide and more selectivity to opiate alkaloid [260].  On the other 

hand, four alternative splice variants of αARs remained to show functional consistency among 

them [247].  Alternative splicing affecting functionality of GPCRs is rare, since over 90% of 

GPCRs do not contain introns within the open reading frames and therefore do not undergo 

alternative splicing [261]. 

 Another possible factor is phosphorylation.  As cell types may vary in expression of 

kinases, differential phosphorylation of GPCRs might also contribute to pharmacological 
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profiles dependent on cell-types.  Phosphorylation of β2AR has been shown to alter its affinity 

for antagonists [262].  

Heterodimerisation can also contribute unique pharmacology associated with some 

GPCRs.  For instance, 6’-guanidinonaltrindole causes analgesia by selectively activating 

heterodimers of θ/δ opioid receptors but not homodimers of either subtype [263].  Alteration of 

agonist selectivity of CRLR by RAMPs has been well documented [264].  RAMP3 has also 

been shown to have an effect on the affinity of antagonists for CRLR [265].  The cell-specific 

expressions of GPCRs, which can potentially heterodimerise, and/or accessory proteins such as 

RAMPs are therefore thought to contribute to the cell-type dependent pharmacology profile. 

Since cell-types may vary in G-protein content and certain GPCRs have been shown to 

couple to more than one G-protein subtype, differential G-protein coupling might also have 

effect on GPCR pharmacology.  The influence of G-protein coupling on agonist efficacy has 

been reported.  The study of 5-HT2CR in Chinese hamster ovary (CHO) cell-line showed that 

agonists can activate multiple signalling pathways via two different G-proteins with a different 

rank order [266].  Affinities of antagonist for the adenosine A1 receptor (A1R), which couples to 

both Gαi and Gαs in CHO cells [163, 267], were not affected by the level of the relevant gene 

expressions [268].  Chini and Manning have shown that the synthetic peptide ligand Atosiban is 

an agonist at OTR by promoting Gαi coupling, while it acts as a competitive antagonist of the 

Gαq coupling to the same receptor [269].   

Signalling properties of a GPCR can also influence the pharmacology.  Propranolol has 

been reported to be an inverse agonist at β2AR preventing cAMP accumulation in CHO or 

human embryonic kidney (HEK) cell-lines [270].  However, it can also be a partial agonist at 

the same receptor for initiating extracellular signal regulated kinase (ERK) 1/2 activation [271].  
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Since β2AR has also been reported to be capable of signalling independently of G-protein via 

interacting with β-arrestin [205], such actions of propranolol indicate the ligand discrimination 

between different GPCR signalling complexes.               

 A final point is on the composition of plasma membranes, which may vary in the 

proportion of lipid rafts and caveolae, depending on cell types.  Caveolae are indentations of the 

plasma membrane with lipid composition similar to lipid rafts, but these are associated with 

caveolin which appears to have versatile roles including inhibition of signalling enzymes such 

as AC [272], kinases [273-276] and phosphatases [277, 278].  A role of caveolin as a molecular 

chaperone in GPCR trafficking to the cell surface has also been reported [279, 280].  Caveolae 

tend to be rich in signalling molecules, and the expression of the signalling molecules in 

caveolae can vary in a tissue-specific manner [281] and some proteins such as AC localise to 

these lipid-rich area in a cell-dependent manner [282].  The compartmentalisation of GPCR may 

also be cell-specific.  β2AR was found to be enriched in the lipid rafts of cardiac myocytes, but 

not in the vascular smooth muscle cells [282].  GPCRs may differ in their pharmacology within 

or outside the lipid rafts or caveolae.  Signalling properties may be affected in the protein-rich 

caveolae.  Moreover, the ligand affinity of some GPCRs can be modified by cholesterol [283].  

The localisation of OTR in lipid rafts was shown to correlate positively with an increased 

agonist affinity for the receptor [284].    
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1.3. Family A GPCRs 

1.3.1. Structure of Family A GPCRs 

GPCRs have seven alpha-helical transmembrane domains (TM1~ TM7) with connecting 

extracellular loops (ECL1-3) and intracellular loops (ICL1-3).  In Family A GPCRs, the upper 

TM3 and ECL2 are covalently bonded by a disulfide bond formed between cysteine residues.  In 

addition to the 7TMs, a short helix designated as helix 8 (H8) is present immediately after TM7, 

perpendicular to it and parallel to the membrane (figure 1.10).  The receptor forms a barrel-like 

shape as seven transmembrane alpha-helices associate with one another within the lipid bilayer.   

Family A members have highly conserved residues within TMs, each of which possesses 

at least one strictly conserved residue.  Using the most conserved residues as guidance points, 

Ballesteros and Weinstein proposed a numbering scheme for TM residues in order to facilitate 

structural comparisons between different receptors studied [285].  In the numbering scheme, 

each residue is presented as n
TM

.50, in which n
TM

 refers to the number of TM domain, and 50 

represents the most conserved residue in the TM domain.  This thesis employs this numbering 

scheme when discussing individual residues in or nearby TMs. 

 

The three dimensional structure of bovine rhodopsin (bRho) to 2.8 angstrom (Å) resolutions was 

obtained by X-ray crystallography in 2000 by Palczewski et al. [286].  The crystal structure and 

a schematic representation of Family A GPCR are shown in figure 1.10 and 1.11 below.  

Another crystal structure of bRho containing internal water molecules at 2.6Å resolution was 

obtained several years later [287].   The crystal structures of meta-rhodopsin I has also become 

available to provide a GPCR structure at an alternative functional state [288].  In addition, an 

engineered human β2AR structure with a bound inverse agonist has been obtained at 3.8 Å 
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resolution stabilised with fab fragment of antibody [289, 290].  The structure of chimeric human 

β2AR fused to T4-lysozyme at 2.4 Å was also obtained with an associated inverse agonist [291].  

A chimeric human adenonsine A2A receptor fused to T4 lysozyme was also crystalised with a 

bound inverse agonist at 2.6 Å with a high salt concentration [292].  The structure of avian 

β1AR, engineered to increase thermal stability, has also been determined in the presence of an 

antagonist [293].  
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Figure 1.11  The schematic representation of a rhodopsin-like, Family A GPCR: 

GPCRs have the extracellular N-terminal domain and the intracellular C-terminal domain with seven 

transmembrane domains each of which are joint by intracellular or extracellular loops in a single 

polypeptide.  Family A GPCRs have a disulfide bridge linking the upper TM3 and ECL2.  Cys residues 

in the C-terminal proceeding H8 (blue) are often palmitoylated. 

NH2 

HOOC 

c c 

c c 

 

Figure 1.10  

The tertiary structure of bovine 

rhodopsin obtained by X-ray 

crystallography at 2.8 Å resolutions: 

 

Anticlockwise from: TM1 (red), TM2 

(Orange), TM3 (yellow), TM4 (green), 

TM5 (pale blue), TM6 (purple), TM7 

(lilac) and helix 8 (blue). ICL2, ICL3 

and the C-terminal region are not 

shown. 
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Since most GPCRs naturally express at low levels, crystallisation of native GPCRs without 

extensive modifications has so far been successful only for rhodopsin, which expresses at high 

density and also contains a covalently bonded inverse agonist 11-cis-retinal stabilising the 

structure.  Lately, the structure of opsin crystals, formed at a low pH, in which the active 

conformation resembling metarhodopsin II was stabilised was obtained as a ligand-free opsin 

[294], and also as a complex with transducin derived peptide [295].  

Combined with other experimental studies of engineered GPCRs, the crystal structures 

revealed characteristic features which might be shared amongst the Family A members, as well 

as emphasising differences between the receptors studied.  As seen in the secondary structure 

comparison, relative similarities were seen in TM domains. When the structures of bRho and 

human β2AR obtained were superimposed, the similarities in the TM regions were shown with 

relatively small root mean square deviation (RMSD) of 1.56Å [290].   

Crystal structures revealed that some TM domains have bends and kinks. Such intra-

helical kinks can be produced at the imino acid residue proline, and also glycine which can 

produce negative phi torsion angles at the peptide backbone.  Dipole properties in serine, 

threonine and cysteine residues can also introduce significant bending or twisting as hydrogen 

bonds can be formed between the hydroxide or sulfhydride moieties of these residues and the 

carbonyl of the peptide backbone [286, 296].  Each of TM5, 6 and 7 has a conserved proline 

residue, and this conservation of proline-inducible flexibility is consistent with the functional 

importance of the three TMs.  Between TM7 and H8, there is a NPXXY motif that is highly 

conserved [297].  The proline residue in the motif allows the amphipathic H8 to bend almost 

perpendicular relative to TM7 by glycine residue joining TM7 and H8.  In both GPCR Family A 

and B, proline residue in TM6 are essential [298], and the same applies to Family D yeast 

pheromone receptors [299].   A proline residue has been identified to be important also in loop 
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regions, and a conserved Pro-Leu motif in the middle of ICL2 is often seen in GPCRs.  The 

mimetic peptide studies using a synthetic ICL2 of V1aR showed that the motif allows the peptide 

to adapt to different conformations [300]. 

 

The association between helices in the lipid bilayer was shown to be important for folding of 

GPCRs.  When the TM-TM interactions of human adenosine A2A receptor were investigated in 

a synthetic environment using circular dichroism spectroscopy and Föster resonance energy 

transfer, some TM domains were shown to require neighbouring helices for proper folding to be 

achieved [301].  The studies by the same group showed that compact and weakly polar residues 

are important in helix packing [299].  Similar interactions to dipoles occur between cation and 

conjugated π electrons of aromatic rings. The interactions are, however, regarded as somewhat 

more complicated since the forces occurring can be either repulsive or attractive due to the 

nature of π electrons [302].  Notable forces appear to be the cation-π interaction occurring 

between amphipathic Lys and aromatic residues. Such forces are likely to contribute to the 

effective packing of TM domains as the interaction energy involved has been proposed to be 

twice that of the van der Waals interactions [303-305].            

 

Four crystal structures of inverse agonist carazolol-bound β2AR, antagonist cyanopindolol-

bound β1AR, antagonist ZM241835-bound A2AR and rhodopsin were compared and studied by 

Rosenbaum et al. [306].  When the four structures were examined, particularly prominent 

structural differences are visible in the ECL regions (figure 1.12).  In rhodopsin, a part of ECL2 

adopts a short β-hairpin structure.  This structure, together with the N-terminal domain covers 

the interior of the receptor to prevent hydrolysis of Schiff base in 11-cis-retinal [307, 308].  In 

both β1AR and β2AR, ECL2 contains a short α-helix which is stabilised by the disulfide bond 
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while the N-terminal domain is disordered [289, 291, 293].  Another recognised difference was 

in ICL2.  A short α-helix was seen in ICL2 of β1AR and A2AR, but neither in the β2AR nor in 

rhodopsin [306].      

Superimposition of the ligand binding sites of the four structures showed that binding 

sites of rhodopsin, β1AR and β2AR are partly overlapping.  Polar and hydrophobic residues from 

TM3, TM5, TM6 and TM7 are involved in the ligand binding in rhodopsin and adrenergic 

receptors.  However, the ligands bound to adrenergic receptors appeared to be located slightly 

above 11-cis-retinal. The ionone ring of retinal was seen making direct contact with Trp
6.48 

which has been associated with functional significance.  The role of Trp
6.48 

is described in the 

Section 1.3.2.  In contrast, ZM241835 binds A2AR in a manner almost perpendicular to the plane 

of the cell membrane, extending along TM6 and TM7 from the ECL to Trp
6.48 

[292].   
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Figure 1.12  Crystal structures of GPCRs:   
Bovine rhodopsin (purple), avian 1AR (orange) and human A2A adenosine receptor (green) are each 

superimposed on the human 2AR structure (blue). b, Extracellular views of rhodopsin, the 2AR and 

the A2A adenosine receptor. The ligands are shown as spheres.   

Taken from Rosenbaum et al., 2009 [306]. 
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1.3.2. Functional motifs and molecular mechanisms of activation   

There have been two motifs established to be crucial in the function of Family A GPCRs.  

Firstly, Arg
3.50 

and Asp/Glu
3.49 

of a conserved D(E)RY motif at the cytosolic end of TM3 have 

been shown to be important for G-protein activation [309, 310].  The two residues have been 

demonstrated to stabilise inactive conformation by a strong intra-helical salt bridge [311].  The 

D(E)RY motif stabilising inactive conformation is in a general term known as an ‘ionic lock’.  

The inactive state is enforced by additional interactions of Arg
3.50

 with Glu
6.30 

and Glu
6.32

 

forming a hydrogen bonding network between TM3 and TM6 in catecholamine receptors, 

opsins and glycohormone receptors.  The neutralising substitution of Asp
3.49

 or Glu
6.30

 in a 

catecholamine receptor results in constitutive activation and increased accessibility of water 

molecules to the TM domains [312].  Glu
6.30 

and Glu
6.32 

are however not strictly conserved in 

Family A GPCRs.  In V1aR, V1bR and OTR, Lys
6.30 

and Arg
6.32 

are found.  Since Lys
6.30

 can 

possibly interact with Tyr
3.51

 by cation-π interaction and Arg
6.32 

may interact with Asp
3.49

, the 

mechanism in holding inactive state involving the regions of TM3 and TM6 may also be 

proposed in these receptors with slightly altered molecular interactions in details.  

Another motif involved in activation of Family A GPCRs is present in TM6, a conserved 

CWXP motif, in which X can be any, but often relatively hydrophobic residues.  Several studies 

have shown that Cys
6.47

 is pointing towards TM7 in the water accessible binding-site crevice 

[313-316].  Since Trp
6.48

 has been proposed to exist in two probable rotamer states depending on 

the freedom of rotational angles of the indole side chain of Trp
6.48

 (i.e. Chi-angle of − 60º in 

inactive and 180º in active approximately) this residue has been suggested to act as a micro-

switch to initiate the receptor activation upon ligand binding [244, 317]. Trp
6.48

 was predicted to 

be vertical at the interface between TM3 and TM6 in an inactive state by molecular model-
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based studies, one of which also predicted Cys
6.47

 hydrogen bonding to a water molecule [318, 

319].  The positioning of Trp
6.48

 relatively vertical to the TM was observed in crystal structures 

(figure 1.13).  The conserved Pro
6.50 

causes TM6 to kink in the inactive state.  The crystal 

structures of both inactive and ligand-free active receptors showed the vertical positioning of the 

indole of Trp
6.48

 (figure 1.13.a.ii).  The alternative rotamer state may possibly be captured when 

a crystal structure of agonist-bound Family A GPCR is obtained.  During the activation, TM6 

and TM7 have been suggested to move vertically around Pro
6.50

, inducing straightening of TM6.  

As a result, the cytoplasmic end of TM6 moves away from TM3 thereby unlocking ‘the ionic 

lock’ described above.  This mechanism of GPCR activation is known as a global toggle switch 

model [244].   

Comparisons between rhodopsin and opsin crystal structures revealed a few structural 

changes with insights in the activation mechanisms.  Firstly, the ligand binding cavity becomes 

relatively wider in opsin.  The opening appears to be induced by the displacement of the ionone 

ring of retinal by Trp
6.48

.  The movement of Trp
6.48

 causes the interaction between Lys
7.43 

and 

Glu
3.28

, which is a counterion to the Schiff-base, to be broken, resulting in the slightly wider 

cavity [306].  At the cytosolic end, TM6 moved away from the helical bundle core, over 6Å 

relative to the inactive state, towards TM5.  The space left after the TM6 migration was 

stabilised by newly adjusted conformation of Tyr
7.53 

of NPXXY motif.  The active structure is 

also stabilised by new interactions formed between Glu
6.30 

and Lys
5.66

, and between Arg
3.50 

and 

Tyr
5.58

 as Arg
3.50

 dissociates from Glu
3.49

.  Another interaction with Arg
3.50 

is also formed with 

the backbone of Gα peptide as a binding cavity for transducin forms between TM3, TM5 and 

TM6.  A hydrogen bonding network is also formed between the transducin peptide and TM3, 

TM5 and H8 of opsin.  The transducin derived C-terminal peptide adapted α-helical 
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conformation, as the amphipatic nature of hydrophobic interactions occurs in associating with 

the cytoplasmic ends of TM5 and TM6  in the co-crystallised structure [295]. 

  In addition to the mechanisms described above, a mechanistic role of H8 has been 

suggested as a conformational switch for GPCRs between active and inactive forms. H8 region 

has been suggested to be destabilised during activation [320, 321] while the amphipathic helix 

inforces the receptor association with the membrane at resting state [322].  Located above H8 at 

the bottom of TM7, is a conserved NPXXY motif.  The crystal structures of GPCRs showed the 

distortion of TM7 caused by Pro
7.50 

directing Tyr
7.53 

towards a water-containing cavity lined by 

TM2, TM3, TM6 and TM7.  The network of water molecules facilitates distortion of TM7 as 

well as providing interacting partners to polar residues [291, 292, 307, 308].  This so-called 

‘water pocket network’ appears to stabilise the inactive state.  The interactions involving 

solvents provide a rapid toggle switch which can be altered easily as an agonist binds [307, 308, 

323].    

 Biophysical studies on β2AR provided an insight into the allosteric modulation of GPCRs.  

A highly conserved, disulfide bonding Cys
3.25 

has been suggested to function as a molecular 

switch in an acid-base equilibrium, since the transition of the residue in the β2AR between the 

acid and base states alters TM-TM interactions.  The differences in inter-helical interacting 

energy observed suggested that the interaction between TM3-TM6, TM3-TM4, TM6-TM7 and 

TM1-TM7 discriminate the agonist and antagonist binding [324].     

The movement of TM domains in GPCRs have been studied by various groups. The 

movement of TM3 and TM6 in light-activated rhodopsin was recorded [325]. Two-dimensional 

dipolar-assisted rotational resonance NMR studies confirmed this TM interaction in rhodopsin 

and metarhodopsin II.  The studies showed the motion of TM6 migrating away from TM3 

during activation [326].  Solid-state magic angle spinning NMR studies by the same group 
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showed that strong hydrogen bond formed between Glu
122

 in TM3 and His
211

 in TM5 was 

disrupted in metarhodopsin II, implicating that alternative interactions become available for 

accessing TM3 upon activation [327].  The other TM-TM interaction which has been 

demonstrated to occur during activation is TM7 and TM1.  Agonist induced rotational 

movement of the cytosolic side of TM7 towards TM1 was confirmed by disulfide cross-linking 

and modelling studies on M3 acetylcholine receptor [328, 329]. 

The evidence for structurally important conformational changes involving TMs and 

ECL2 has been provided by a solid-phase NMR study.  The network of hydrogen bonding 

occurs between ECL2 and the extracellular ends of TM4, TM5 and TM6 are disrupted in 

metarhodopsin II forming opsin [330].  The disruption results in formation of a wider cavity.        
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Figure 1.13  Proposed mechanical activation switches of Family A GPCRs:    
The residues are indicated with Baldwin numbering scheme in which the central TM residues are 

counted as 13 following TM number in Roman numerals.  (a) (i) Trp
6.48

 (TrpVI:13) shown after 

molecular dynamic simulations to interact with water molecules in the inactive state of bRho. Upon 

activation, the residue has been proposed to be attracted towards Phe
5.47 

(PheV:13) by van der Waal’s 

forces. (ii) Overlay of 6 crystal structures showing Trp
6.48

: bovine rhodopsin (purple), β2AR (dark blue), 

β1AR (Orange), A2AR (light blue), squid opsin (yellow) and opsin (green). (b) Three states of Tyr
7.53

 

(TyrVII:20) viewed from TM3 (i) interacting with PheVIII:04 in inactive bovine rhodopsin. (ii) Tyr
7.53

 

rotated upward interaction with a water molecule in ‘water pocket’ in the intermediate state.  (iii) Tyr
7.53

 

rotated upwards engaging in hydrophobic interactions in a TM6 and TM7 interface (indicated as a dotted 

circle) in opsin.  (c) The ionic lock in three states (i) Arg
3.50 

(ArgIII:26) interacts with Glu
3.49

(GluIII:25) 

and Glu
6.30

(GluVI:05) in the inactive state.  (ii) Arg
3.50 

interacting only with Glu
3.49

 in the intermediate 

state.  (iii) Arg
3.50

 interacts with Tyr
5.58

(Tyr V:24) and also with the backbone of Gα peptide in the 

active opsin.  

 

Taken from Nygaad et al., 2009 [331] 
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1.4.  Vasopressin receptors 

The three subtypes of vasopressin receptors are described in this section with a slight focus on 

V1aR and V1bR.  Closely related oxytocin receptor (OTR) is also briefly mentioned.  The 

molecular cloning and expression of rat V1aR was first achieved in 1992 by Morel et al. [21].  

Lolait et al. also cloned rat V2R in the same year [332].  Subsequently, the cDNA of human 

V1aR was obtained by two groups in 1994 [22, 333].  In the same year, the cDNA of human 

V1bR  was cloned and sequenced by Sugimoto et al. [42].    

 

1.4.1. G-protein coupling 

V1aR and V1bR both preferentially couple to G-protein with Gq/11 subunits, both of which 

activate phospholipase C (PLC) to produce InsP3 and DAG as second messengers.  InsP3 

releases Ca
2+

 from the ER to increase the intracellular Ca
2+

 concentration.  DAG activates PKC 

to further initiate the cellular response (figure 1.5, section 1.2.3).  OTR also prefers to couple to 

Gq/11.  V2R couples preferentially to Gs which activates AC to increase cyclic AMP production.  

V1bR is capable of activating multiple signalling pathways by also coupling to Gs, depending on 

the level of the receptor expression [334].  V1aR has been shown to couple to Gi3 in fibroblast 

cell-line at G0/G1 phase of the cell cycle but not in the other phases [335].    

  

1.4.2. Oligomerisation 

Homo- and hetero-dimerisation of V1aR, V2R and OTR have been demonstrated experimentally 

by Terrillon et al. in 2003 using co-immunoprecipitation and BRET.  All subtypes can form 

either homo- or hetero-dimers when co-expressed, in both fully glycosylated and immature 
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forms in the ER.  Neither agonist- nor antagonist-treatment appeared to have affected 

dimerisation as measured by BRET measurement [191]. 

V1aR and V2R can both be internalised by associating with β-arrestin.  Following the 

internalisation, V1aR is rapidly recycled as it tends to dissociate from β-arrestin.  V2R, on the 

other hand, remains in the endosome longer by a stronger association with β-arrestin.  Co-

expression studies revealed that heterodimerisation of the two subtypes is strong enough to 

entrap the V1aR with weaker association to β-arrestin.  The recycling of V1aR was inhibited by 

co-expression with V2R [336]. 

The oligomerisation of neurohypophysial receptors were also confirmed by Albizu et al. 

using a series of radioligand binding assays: saturation, dissociation and competition binding 

experiments.  The studies revealed that there is a cooperative nature associated with the 

receptors to various ligands including endogenous AVP or OT, and the type of cooperativity, 

either negative or positive, does not depend on the agonist or antagonist properties of the 

ligands.  Since the study eliminated the possibility of G-protein coupling as a cause of 

cooperativity, the process of dimerisation was assumed to be the reasons for the phenomena 

observed [337].  The group also observed a negative cooperativity of V1bR binding to 

vasopressin when expressed in COS-7 (simian kidney fibroblast cell-line) or CHO cell-lines. 

Examples of neurohypophysial hormone receptors forming heterodimers were shown in 

the studies on human V1bR and corticotrophin releasing factor receptor 1 (CRFR1) dimers, and 

avian CRFR1 and [Arg
8
]vasotocin receptor (VTR) [189, 190].  Specificity in heterodimerisation 

was shown by a study on OTR.  The study showed that OTR can dimerise with V1aR or V2R, 

but not with the remotely related bradykinin receptor [338].  

 



 

47 

1.4.3. Synthetic peptide ligands 

In order to study functionalities of each receptor subtypes, a series of cyclic and linear peptide 

antagonists each of which are selective to V1aR or V2R were derived from AVP by Manning in 

collaboration with Sawyer in the 1980s.  A highly selective V1aR antagonist, 

d(CH2)5Tyr(Me)
2
AVP (CA), has often been used as a reference in studies of V1aR-specific 

compounds [339-341]. A linear antagonist [phenylacetyl-D-Tyr(Me)
2
Arg

8
Tyr

9
-

(NH2)]vasopressin (LA) was also produced [342].  LA is less selective as it also binds to both 

V1aR and V1bR with relatively high affinities but with a significant preference to V1aR.    

A group in SmithKline and French Laboratories was also actively developing peptide 

V2R antagonists [343].  However, compounds which displayed potency as V2R antagonists in 

several animal models turned out to be V2R agonists in human because of existing species 

differences [344].  This case highlights the necessity of investigating the differences in the 

species relevant in the process of drug development.     

There are a few peptide compounds which have exhibited specificity towards V1bR but 

with existing species differences in subtype selectivity.  [deamino-Cys
1
, D-3’-

(pyridyl)Ala
2
]AVP proved to be specific V1bR agonist in rats [345].  However, it has been 

reported to behave as a V1aR/V1bR agonist in humans.  [deamino-Cys
1
, Arg

8
]vasopressin 

(dAVP) modified at position 4, [deamino-Cys
1
, Cyclohyxylalanine

4
, Arg

8
]vasopressin 

(d[Cha
4
]AVP), also displayed a high affinity agonism to V1bR in human and bovine species, but 

the compounds showed less selectivity over V2R in rats [346].  Recently, [deamino-Cys
1
, Leu

4
, 

Lys
8
]vasopressin has been proven to be a selective rat V1bR agonist with a nanomolar affinity 

[347].   Some of the subtype-selective peptide ligand developed are summarised in table 1.2 

below. 
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Table 1.2 Subtype-selective peptide ligands of vasopressin receptors 

 

Receptor Ligand name Properties Ref. 

V1a CA Antagonist [348, 349] 

V1a HO-PhAc-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-(NH2) Antagonist [350] 

V1a LA Antagonist [339, 342] 

V1b dP[Tyr(Me)
2
]AVP Antagonist [351] 

V1b d[D-3’-(pyridyl)Ala
2
]AVP Agonist [345] 

V1b dDAVP Agonist [352] 

V1b d[Cha
4
]AVP Agonist [353, 354] 

V1b d[Leu
4
, Lys

8
]vasopressin Agonist [355] 

V2 desGly
9
-d(CH2)5[D-Ile

2
,Ile

4
]AVP Antagonist [356] 

V2 D(CH2)5[D-Ile
2
,Ile

4
]AVP Antagonist [357] 

V2 dDAVP Agonist [358] 

V2 dVDAVP Agonist [359] 

 

 

Abbreviations: CA = d(CH2)5[Tyr(Me)
2
]AVP; LA = [phenylacetyl-D-Tyr(Me)

2
Arg

8
Tyr

9
-

(NH2)]vasopressin; dDAVP = [deamino-Cys
1
-D-Arg

8
]vasopressin; d[Cha

4
]AVP = [deamino-Cys

1
, 

cyclohyxylalanine
4
, Arg

8
]vasopressin; dVDAVP = [deamino-Cys

1
-Val

4
, D-Arg

8
]vasopressin. 
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1.4.4. Non-peptide antagonists 

In the past years, various orally-active, nonpeptide antagonists have been designed for 

vasopressin and oxytocin receptors.  A few of them are selected here to be described briefly.  

Table 1.3 summarises non-peptide antagonists developed for vasopressin receptors.  The first 

two nonpeptide V1aR antagonists, quinolinone derivative OPC-21268 [360] and N-sulfonyl-

indoline SR49059, were synthesised in the early 1990s [361].  Based on OPC-21268, a selective 

OTR antagonist was developed by Merck & Co to treat preterm labour [362].  Rational 

modification of SR49059 yielded N-arylsulfonyl-oxindole SSR149415 as the first V1bR-

selective nonpeptide antagonist [363]. However, SSR149415 has been reported to be a mixed 

antagonist to V1bR and OTR [364]. 

 A few compounds have successfully entered clinical trials (table 1.3).  Some of these are 

benzazepine derivatives.  The benzazepine moiety appears to provide a good fit in some GPCRs.  

Benzazepine-derived compounds have been developed as selective ligands for other Family A 

GPCRs including: D1 dopamine receptor (D1R) agonists [365-367] or antagonists [368-370], 5-

HT2CR antagonist [371] or agonist [372], C-C chemokine receptor type 5 (CCR5) antagonists 

[373-375], κOR antagonist [376], and M3R antagonist [377].  V1bR and V2R selective 

compounds were derived from oxindole by Sanofi-Aventis.  Other ligands derived from 

oxindole include cholecystokinin B receptor (CCKBR) antagonist [378], β3AR agonist [379], 

and growth hormone secretagogue receptor agonists [380-382]. 
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Table  1.3 Non-peptide antagonist of vasopressin receptors 

Subtype Name  Company Chemical 

Derivatives 

Development  Ref. 

V1a OPC-21268 Otsuka Quinolinone  Stopped [360, 383] 

V1a SR49059 Sanofi-Aventis N-sulfonyl-

indoline  

Stopped [384] 

V1a SRX251 Azevan Azetidinone Phase I [385, 386] 

V1a SRX246 Azevan Azetidinone Phase I [386] 

V1a LY307174 Eli Lilly Azetidinone Preclinical [386] 

V1a YM218 Yamanouchi 

/Astella 

Benzazepine Preclinical [387] 

V1a FR218944 Fujisawa/Astella  Benzazepine Preclinical [388] 

V1a None Yamanouchi 

/Astella 

Triazole Preclinical [389] 

V1a JNJ17308616 Johnson&Johnson Spirobenzazepine Preclinical [390] 

V1b SSR149415 Sanofi-Aventis N-arylsulfonyl-

oxindole 

Phase II 

/Stopped 

[363, 391] 

V1b Org52186 Organon/ 

Schering Plough 

Undisclosed Preclinical [392, 393] 

V2 OPC31260 Otsuka Benzazepine Phase II [394] 

V2 OPC41061 Otsuka Benzazepine Phase II / III [395, 396] 

V2 SR121463 Sanofi-Aventis N-arylsulfonyl-

oxindole 

Phase II / III [397-400] 

V2 VPA985 Wyeth-Ayerst/ 

Cardiokine 

Benzodiazepine Phase II / III [401-404] 

V2 WAY140288 Wyeth-Ayerst Benzodiazepine Preclinical [405] 

V2 VP343 Wakamoto Quinoxaline Phase I [406] 

V2 VP365 Wakamoto Benzodiazepine Preclinical [406] 

V2 None Johnson&Johnson Indolazepine Preclinical [407] 

V1a / V2 YM087 Yamanouchi 

/Astella 

Benzazepine Phase IV [408, 409] 

V1a / V2 YM471 Yamanouchi 

/Astella 

Benzazepine Preclinical [410] 

V1a / V2 JVT605 Japan Tabacco Thiazepine Preclinical [411] 

V1a / V2 CL385004 Wyeth-Ayerst Benzodiazepine Preclinical [412, 413] 

V1a / V2 None Wyeth-Ayerst Tricyclic 

benzazepine 

Preclinical [414] 

V1a /V2 RWJ676070 Johnson&Johnson Spirobenzazepine Preclinical [415, 416] 
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1.4.5. Mutagenesis, molecular modelling and docking studies 

When molecular modelling is successfully achieved by a comparative method based on a known 

structure, the accuracy of the model can be tested by empirical experiments.  The ligand binding 

cavities can initially be predicated by molecular docking of the compound to a model of the 

receptor, thereby providing some target residues for site-directed mutagenesis.  The 

experimental data are then used to confirm, or make corrections to, the molecular model so as to 

generate a realistic representation.   

In the process of docking, most algorithms generate a large number of possible 

structures. The likely structure needs to be identified among those candidates.  The problem of 

generating and evaluating a plausible structure can be solved manually using interactive 

computer graphics, with six degrees of translational and rotational freedom of a molecule 

relative to the other.  This process is said to be rather more complex than it sounds, since very 

similar compounds have been shown to adopt quite different binding modes in reality.  In 

automated docking methods, scoring functions typically approximate the binding free energy of 

the ligand to the receptor.  Relatively fast approximations can be made by adding each 

contributing factor in a single equation as: 

ΔGbind = ΔGsolvent + ΔGconf + ΔGint + ΔGrot + ΔGt/r + ΔGvib                Equation 3      

Six contributing factors are included in the equation 3: i) the effects of solvent (ΔGsolvent); ii) the 

free energy arising from conformational changes (ΔGconf); iii) the free energy changes due to 

molecular interactions (ΔGint); iv) the free energy loss for freezing internal rotations due to 

entropic contributions (ΔGrot); v) the free energy loss in rotation and translation by association 

of two bodies into one (ΔGt/r); and vi) the free energy due to vibrations (ΔGvib) [417].  

Alternative equations which allow fast approximations can be written by finding a linear 
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relationship between parameters which reflects the overall free energy change.  Such parameters 

can be hydrogen bonding, ionic interactions, hydrophobic interactions, and the loss of internal 

degrees of freedom by the ligand.  The equation must includes a penalty function that considers 

deviation of the bond distance from the ideal geometry [418]. 

Several docking studies have been published for vasopressin receptors and the oxytocin 

receptor. For instance, docking of a nonpeptide antagonist OPC-21268 and AVP into the human 

V1aR was performed by Thibonnier et al. one by one, using the docking program LIGIN.  The 

program is based on a built-in complementary function as a sum of the surface area of atomic 

contacts, and it has the capability of optimising the length of hydrogen bonds [419].  Their 

structures showed that the orientation of the antagonist binding was distinct from the AVP 

binding.  A partial overlap was recognised only by the extracellular surface, where the polar part 

of the antagonist was located.  The hydrophobic portion of the antagonist was buried much 

deeper in the TM region. The binding pocket was composed of TMs 4,5,6,7 and ECL3. Their 

structure was shown to be plausible by rational analysis of findings from mutagenesis 

experiments [420].  Docking studies of subtype-selective antagonists and vasopressin receptors 

have been performed by Tahtaoui et al. with SR49059 and V1aR, and by Derrick et al with 

SSR149415 and V1bR, using the automated docking program Gold 1.2 which employs bond 

lengths, interaction energies as parameters.  The findings of the two studies are discussed in the 

chapter 4 of this thesis, which concerns the subtype differences in ligand binding between V1aR 

and V1bR.   
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1.5. Aim of this study 

The V1bR has been shown to have a distinctive role involved in eliciting physiological responses 

to stress.  The discovery of a high affinity V1bR-selective and orally active non-peptide 

antagonist would allow further investigation of the V1bR functions and the related physiology, as 

well as having a therapeutic potential.  The aim of this study was to investigate the ligand 

binding sites of the human V1bR, regarding peptide and non-peptide ligands.  The residues at 

which ligands may contact in the putative binding cavities were identified by engineering 

specific mutations in the receptor, with the aid of molecular models of V1bR and also V1aR.  In 

doing so, firstly the residues which are conserved among vasopressin receptors were studied.  

Secondly, the residues which may distinguish V1bR and V1aR in the binding of V1bR-selective 

non-peptide antagonists were also studied.  Thirdly, the species-specific interactions of the 

V1bR-selective antagonists regarding rat and human V1bRs would be investigated.  Single 

nucleotide polymorphic variants of V1bR occurring in the human population and 

pharmacological ramification of these would be investigated.    
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Chapter 2  Materials and Methods 

2.1. Materials 

2.1.1. Radio-labelled compounds  

[Phe
3
-3,4,5-

3
H]AVP (specific activity of 44 ~ 62 Ci∙mmol

-1
) and myo-[2-

3
H]inositol (specific 

activity of 22 Ci∙mmol
-1

) were purchased from PerkinElmer (Stevenage, UK).   

 

2.1.2. Ligands 

AVP, OT, the cyclic antagonist d(CH2)5[Tyr(Me)
2
]AVP (CA), the linear antagonist [PhAc-D-

Tyr(Me)
2
Tyr

9
-(NH2)]AVP (LA), dDAVP, AVP-free acid were purchased from Bachem (St. 

Helens, UK).  [Glu
8
]AVP and [β-Ala

9
]AVP were custom synthesised by Alta-Biosciences 

(University of Birmingham, UK).  d[Cha
4
]AVP was  purchased from Tocris Biosciences (Tocris 

Biosciences, Bristol, UK). (2S)-1-[(2R,3S)-5-chloro-3-(2-chloro-phenyl)-1-(3,4-

dimethoxybenzene-sulfonyl)-3–hydroxy-2,3 dihydro-1H-indole-2-carbonyl]-pyrrolidine-2-

carboxamide (SR49059) was a gift from Dr. C. Serradiel-Le Gal (Sanofi Recherché, France).  

(2S, 4R)- 1 -[ 5 – chloro -1 -[(2,4- dimethoxyphenyl) -sulfonyl] -3 -(2-methoxy-phenyl) -2 -oxo-

2,3 –dihydro -1H -indol-3-yl] -4-hydroxy –N ,N –dimethyl -2–pyrrolidine-carboxyamide 

(SSR149415) and the V1b-selective non-peptide antagonist N0083 PICK 5234B (5234B) were 

gifts from Schering-Plough Research Institute (Newhouse, UK).        

 

2.1.3. Molecular Biology Reagents 

Pfu polymerase was purchased from Promega (Southampton, UK).  Dpn-I was purchased from 

New England Biolabs (Hitchin, UK).  dNTPs were purchased from Bio-line (London, UK).  
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Kits used for DNA purification and preparation were obtained from Qiagen (QiaQuick PCR 

purification kit, QiaQuick Gel Purification kit), Promega (Wizard
TM

 mini-prep kit) and Marligen 

Life Technologies (High Purity Plasmid Maxiprep System).  Oligonucleotide primers, desalted, 

and cartridge purified for bases longer than 33 bases, were synthesized by Invitrogen (Paisley, 

UK).  Di-methyl-sulfoxide (DMSO) molecular biology grade, bovine serum albumin (BSA), 

monoclonal mouse anti-HA antibodies clone HA-7, monoclonal anti-FLAG antibodies clone 

M2, monoclonal goat anti-mouse antibodies conjugated with horseradish peroxidase, 

horseradish peroxidase substrates and associated buffer were purchased from Sigma Aldrich 

(Poole, UK).      

 

2.1.4. Cell Culture Reagents 

Dulbecco’s modified Eagles medium (DMEM), inositol-free DMEM, foetal bovine serum 

(FBS), phosphate buffered saline (PBS) were purchased from Gibco-BRL (Paisley, UK).  

DMSO cell culture grade and poly-D-lysine, poly-ethylenimine (PEI) and glucose were 

purchased from Sigma Aldrich.  Cell culture flasks, plates and dishes were purchased from 

TPP® (Sunderland, UK), BD Biosciences (Oxford, UK), and Orange Scientific (Braine-

l’Alleud, Belgium). 

 

2.1.5. Plasmid Expression Vector 

pcDNA3.1(+) (figure 2.1) was purchased from Invitrogen (Paisley, UK).  The vector is 5.4 kb in 

length, containing an ampicillin resistance gene for selection in E. coli, a human 

cytomegalovirus (CMV) immediate-early promoter for high expression, and a SV40 element for 

episomal replication in HEK293T cell-line which expresses the SV40 large T antigen.   
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Figure 2.1  The expression vector pcDNA3.1: The figure shows the functional elements and 

restriction digestion sites of pcDNA3.1. 

 

 

2.1.6. Oligonucleotide Primers 

Primer pairs were designed to keep differences in melting temperature (Tm) between sense and 

antisense primers to be no more than 5 °C.  Tm for each primer was estimated based on the 

proportion of GC and AT pairs. A web page, Stratagene QuickChange™ Primer Tm calculator 

(http://www.stratagene.com/QPCR/tmCalc.aspx) was used to assist designing the primers.  The 

sequences of the primers used for the site-directed mutagenesis are shown in the result sections.  

The sense (S) and antisense (AS) primer sequences for the vector pcDNA3.1(+) used to confirm 

the entire construct sequences were: 5’-CGA-CTC-ACT-ATA-GGG-AGA-CCC-AAG-C-3’ (S) 

and 5’-CCA-GGG-TCA-AGG-AAG-GCA-CGG-3’ (AS). 

 

 

http://www.stratagene.com/QPCR/tmCalc.aspx
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2.2. Methods 

2.2.1. Expression Constructs and the Site-Directed Mutagenesis 

 Human V1bR and V1aR, each fused to an N-terminal haemagglutinin (HA) epitope tag with 

protein sequence YPYDVPDYA, were subcloned into pcDNA3.1(+). The presence of the tag 

was previously shown not to have any significant effect on the receptor pharmacology (Hawtin, 

S.R. Doctoral thesis, 1999; Baker, A.J., Doctoral thesis 2008, University of Birmingham).   

Site-directed mutagenesis was performed using the QuickChange™ method (Stratagene, 

Cambridge UK), following the manufacturer’s instructions.  Briefly, a reaction mixture of the 

final volume 50 κL was prepared to contain approximately 100 ng of plasmid cDNA as 

templates, sense and antisense mutagenic primers with the final concentration of 100 κg.mL
-1

, 

dNTP mixture with the final concentration of 40 mM, and Pfu polymerase (0.5 ~ 2.0 units).  

Using a Biometra TRIO-thermoblock, a thermal cycling program was set to have an initial 

denaturing period of 1 min at 90°C, and 12 repeated cycles comprising 30 s denaturing period at 

90°C, 1 min annealing period at 55 ~ 63 °C, and 14 min extension period at 68 °C. When a 

reaction was set overnight, the sample was kept at 4 °C.  The templates present in the mixture 

were digested by 1.5 κL of a methylation-sensitive nuclease DpnI, for at least 90 minutes at 37 

°C.  The presence of template was checked by examining a control, which contained the same 

concentration of the template in the reaction mixture without primers. 

 

2.2.2. Agarose Gel Electrophoresis 

DNA was separated in 1% (w/v) agarose gel and electrophoresised on a horizontal gel-

electrophoresis system (Life technologies) with 1 x TBE at 72 mV for approximately 30 min for 

standard PCRs and Quickchange™ mutagenesis products.  For size determination, the 1% 
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agarose gel was electrophoresised at 30 mV for approximately 16 h.  Loading buffer containing 

glycerol (30 % w/v) and bromophenol blue (0.25 % w/v) was added in a 5:1 ratio to the samples 

prior to the separation.  The DNA incorporated with ethidium bromide (0.5 g∙mL
-1

) was 

visualized on an ultraviolet light illuminator.  A molecular marker, 1kb ladder (NEB, Bedford 

UK) was used as a standard to determine the sizes of DNA fragments and also to estimate the 

concentration of DNA. 

 

2.2.3. Gel-purification of the PCR Products 

The PCR products were purified from agarose gel using QiaQuick Gel Purification kit following 

the instructions provided by the manufacturer.  Briefly, each piece of gel was placed in a 1.5 mL 

tube, and an equal volume of the dissolving solution was added.  The mixture was incubated for 

5 minutes at 50 °C with occasional mixing by a moderate vortex every 2 min.  The solution was 

separated by micro column chromatography and the oligonucleotides were eluted in 30 κL 

sterile distilled water.    

 

2.2.4. Restriction Enzyme Digests 

The requirements for efficient enzyme activity depend on individual enzymes, and so digestions 

were performed according to the manufacturers’ recommendations.  Typically, 5 κL of plasmid 

DNA was digested with 2 ~10 units of restriction enzymes and their appropriate buffers in a 

volume of 10 κL.  Samples were incubated for 3 ~ 16 h at 37 °C. 
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2.2.5. Ligation of cDNA  

Ligation reactions contained 3:1 ratio of insert to vector, 1 - 3 units of T4 DNA ligase, ligase 

buffer and were made up to a final volume of 20 κL.  The mixture was incubated at 16 °C for 16 

h.  

 

2.2.6. Transformation of E.coli 

30 L of the XL-10 Gold ultracompetent cells (Stratagene) were incubated with 1 L of ligation 

mixture or Quickchange™ mutagenesis product on ice for 30 min. Cells were heat shocked at 

42 C for 30 s, and rested on ice for 2 min.  800 L of Luria broth (LB: containing 10 g peptone, 

5g NaCl, 5g yeast extract in 1L distilled water) was added and incubated at 37 C for 1 h.  The 

cells were sedimented at 11,000 x g for 5 min, 800 L of the supernatant removed, re-suspended 

in the remaining LB, spread onto LB agar plate containing ampicillin (100κg∙mL
-1

), and 

incubated at 37 C overnight. 

  

2.2.7. Plasmid cDNA Extraction 

The plasmid cDNA were extracted from the transformed XL-10 Gold cells and purified for a 

small scale (1 ~ 10 κg) using the Wizard Plus SV kit (Promega) following the manufacturer’s 

protocol.  For a larger scale (0.5 ~ 3 mg), High Purity Plasmid Maxiprep System (Marligen Life 

Technology, Maryland USA) was used to purify the vectors following the manufacturer’s 

instruction.  The concentration of plasmid was determined by measuring the absorbance of the 

sample (1:2000 dilutions in distilled water).  The purity of the DNA was assessed by measuring 

the absorbance ratio of ι 260 nm to ι 280 nm. 
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2.2.8.  Automated Fluorescence Di-deoxy Sequencing  

DNA sequences were confirmed by automated sequencing, using primers present at a pM range, 

by the Functional Genomics and Proteomics Laboratory in the University of Birmingham 

(Birmingham UK).  

 

2.2.9.  Sequence Alignments 

Nucleotide sequence alignments were performed using the ClustalW (1.81) algorithm with 

default setting inbuilt within San Diego Super-computer (SDSC) biology workbench 

(California, USA) faculty.  Protein sequences were obtained from Swiss-Prot/TrEMBL.  

Multiple sequence alighments were performed with the parameters: gap open penalty 10.0; gap 

extention penalty 0.2; and Gonnet series as weight matrix. 

 

2.2.10.  Cell Culture and Transfection 

HEK293T cell-line with passage numbers between 15 and 32 were used for good transfection 

efficiency.  The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% (v/v) FCS, in a humidified 5 % (v/v) CO2 in the air incubator at 37 ˚C.  

Cells were passaged twice weekly to keep approximately 50 % confluence for optimum growth.   

For membrane preparations, transfection was carried out 48 h after seeding cells at a 

density of approximately 5 x 10
5
 cells per 100 mm

2
 in a culture dish.  5 g DNA was mixed 

with 950 κL of 5 % (v/v) glucose solution and 120 κL of 10 mM PEI per dish, and incubated for 

30 min at room temperature.  1mL of the mixture was added to each dish containing 

approximately 8 mL of the growth medium.  Cells were harvested 48 hours after the 

transfection.  For ELISA, cells were seeded at a density of 1.5 x 10
5
 cells per well of a poly-D-
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lysine coated 24-well plate.  For inositol phosphate assay, the cells were seeded at a density of 

2.5 x 10
5
 cells per well of a poly-D-lysine coated 12-well plate.  The cells on the plates were 

transfected after 24 h.  A transfection mixture was prepared to contain (per well) 0.5 g DNA, 

30 κL 5 % glucose and 4 κL PEI (10 mM) for 24-well plates, and the quantities were doubled 

for 12-well plates.  Cells were allowed to grow for approximately 48 h after the transfection 

prior to each assay. 

 

2.2.11. Membrane Preparation 

Harvesting of membrane extracts for radioligand binding assays were carried out as described 

[421].  Cells were washed in ice-cold phosphate-buffered saline (PBS) and then scraped from 

plates using harvest buffer (20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), 1 mM glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), 10 mM 

Mg(CH3COO)2; pH 7.4) containing 250 mM sucrose and bacitracin (0.1 mg∙mL
-1

). Cells were 

sedimented by centrifugation (4000 x g at 4 C for 10 min) and re-suspended in harvest buffer 

containing 0.1 mg∙mL
-1

 bacitracin.  Cells were incubated on ice for 20 min before being 

sedimented as above.  The pellets were re-suspended in harvest buffer containing 250 mM 

sucrose, and stored at – 20 C in 500 L or 1 mL aliquots. 

 

2.2.12. Protein Assay 

The protein concentration of the membranes was determined using the Pierce BCA protein 

assay kit.  A standard curve was obtained using bovine serum albumin (BSA) solution.  5 κL of 

each membrane sample was diluted in distilled water for a total volume of 50 κL.  1mL of a 

50:1 mixture of Pierce assay reagents A : B was then added to each tube, and the samples were 
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incubated at room temperature for 2 h before reading absorbance at 562 nm.  Protein 

concentrations were determined using linear regression against BSA standards obtained in 

parallel in each assay.  

 

2.2.13. Competition Radioligand Binding Assays 

All the assays were performed using [Phe
3
-3,4,5-

3
H]AVP as a tracer ligand.  Membranes which 

had been transfected with appropriate receptor construct were diluted in 10 mL binding buffer 

(20 mM HEPES, 1 mM EGTA, 10 mM Mg(CH3COO)2, 0.1% w/v BSA; pH 7.4) per a curve.  

An unlabelled ligand concentration range used was 10
-6

 M (or 10
-5

M) to 10
-11

 M (or 10
-10

M), 

depending on the affinity of ligands to the receptor constructs.  Non-peptide ligands were 

dissolved in ≈ 100 % DMSO of molecular biology grade (Sigma-Aldrich).  The final 

concentration of DMSO in the assay was 2 %.  As for the non-peptide ligands, the total binding 

in the absence of competing ligand was determined in the presence of 2 % DMSO.  Non-

specific binding as determined by a saturating concentration (1 κM) of unlabelled ligand.  The 

final volume of the assay was 500 L.  After mixing each tube by a gentle vortex, the samples 

were incubated at 30 ˚C for 90 min to establish a binding equilibrium.  Bound and free ligands 

were separated by centrifugation at 13,000 x g for 10 min.  From the samples prepared without 

competing ligand, 100 κL supernatant was collected to determine the concentration of tracer 

ligand.  All the pellets were then washed twice gently in distilled water and dried.  Each pellet 

was solubilised in 50 κL Soluene 350 (Packard, UK) overnight at room temperature.  1 mL of 

ScintiSafe™ liquid scintillation cocktail 3 (Wallac, UK) was added to each tube to facilitate 

radioactivity counting by a Packard 1600 TR liquid scintillation analyser counter.   
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2.2.14. Thermal Denaturation Assay 

Membrane preparations were heat-treated in a water bath at 53 °C with a periodical time 

intervals in minutes determined using a sequence nx = 2(nx-1)+ 1 + ∑ nx-2 .. n0, which is similar 

in idea to Pell number (Pn = 2Pn-1 + Pn-2), but it differs in that each number also add 1 and the 

sum of the previous numbers.  After the incubation, cold binding buffer was added, and the 

membrane was aliquoted immediately to each microtube containing a fixed concentration (0.5 

nM as the final concentration) of [
3
H]AVP.  After brief and moderate mix by vortex, the 

mixtures were incubated for 90 min at 30°C, and then processed using the radioligand binding 

assay protocol described in section 2.2.14.  The use of the denaturing temperature of 53 °C was 

shown to be effective by Bee et al. [422].   

 

2.2.15. Determination of Cell-Surface Expression of Receptors by Enzyme-

linked Immunosorbent Assay (ELISA) 

Approximately 48 h after the transfection, the medium was removed by aspiration.  Cells on 24-

well plates were fixed using 4.8 % (v/v) formaldehyde in PBS by incubating at room 

temperature for 15 min.  After washing cells twice in PBS, 1 % (w/v) BSA in PBS was added to 

provide a block to prevent nonspecific binding, and incubated with a moderate shake for 1 h.  

After removing the block, the primary antibody diluted (1:2000) in 1 % (w/v) BSA/PBS were 

added and incubated with moderate shaking for 1 h.  Cells were washed three times in PBS, and 

re-blocked in 1 % (w/v) BSA/PBS for 15 min.  Blocking buffer was removed, and the secondary 

antibody diluted (1:2000) in 1 % (w/v) BSA/PBS were added and incubated with moderate 

shake for 1 hour.  The antibodies were removed, the cells were washed with PBS three times, 

and then horseradish pexroidase substrate (o-phenylenediamine dihydrochloride) was added.  
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The plates were incubated in dark for 5 - 8 min.  The reaction was stopped by 1M H2SO4, as 100 

κL of the sample and 1M H2SO4 were mixed in a well of 96-well plates.  The peroxidase 

activity was measured by the quantification of the substrates in the 96-well plate using a 

standard plate reader with absorbance measurement at ι 492nm.   

 

2.2.16.  Determination of Agonist-induced Internalisation of Receptors 

To promote the internalization, cells were exposed to AVP (1 κM) in growth media at 37 °C for 

the indicated time period in the relevant chapters.  Prior to assaying, the cells were washed with 

cold PBS three times.  The cells were fixed and quantification of receptors remaining at the cell 

surface was determined using the ELISA-based assay described in section 2.2.15.  The 

proportion of receptor remaining on the cell-surface was determined by normalising to the 

expression level of the unstimulated group for each receptor construct. 

 

2.2.17. Determination of the Effect of Non-peptide Antagonist on the Cell-

Surface Expression and Internalisation by ELISA 

24 h after the transfection, the two groups of cells were treated with 1 κM 5234B in DMEM 

containing 1% (v/v) DMSO and a control group with DMEM containing 1% (v/v) DMSO.  

After 24 hours incubation at 37 °C, one of the experimental groups pre-treated with 5234B was 

treated with AVP (1 κM) for 30 min to investigate the effect of the 5234B treatment on the 

agonist-induced internalisation.  ELISA was performed as described in section 2.2.16. 
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2.2.18.  Inositol Phosphate (InsP-InsP3) Assay  

AVP-induced accumulation of inositol phosphates were assayed as previously described [423].  

16 h post-transfection, the growth medium was replaced with inositol-free DMEM 

supplemented with 1.5 κCi.mL
-1

 myo-[2-
3
H]inositol, and incubated for a further 24 hours.  Cells 

were washed with PBS and incubated in the medium containing 10 mM LiCl for 30 min 

followed by 30 min incubation at 37 °C with agonist at concentration ranging from 10
-6

 M to 10
-

10
 M.  The reaction was terminated by adding 0.5 mL of 5% (v/v) percholic acid solution, which 

contains 1 mM EDTA and 1mg.mL
-1

 phytic acid hydrosylate, to each well.  After neutralisation 

with KOH, samples were kept at - 20 °C for at least 1 h to facilitate precipitation.  After the 

centrifugation, the supernatants were loaded onto Bio-Rad AG1-X8 (formate form) filled 

columns.  Following the elution of free inositol and glycerophosphoinositol with 60 mM 

NH4COOH containing 0.1 M HCOOH, a mixed InsP fraction containing inositol mono, bis and 

trisphosphates was eluted with 850 mM NH4COOH containing 0.1 M HCOOH.  10 mL of 

Ultima-Flo AF Scintillant (Fischer, UK) was added for liquid scintillation counting to quantify 

the radioactivity.       

 

2.2.19. Data Analysis 

The data for competition binding assay was analysed using Graphpad Prism version 4.0 (San 

Diego, USA) using its normalising function to show a percentage of maximum binding and the 

non-linear regression curve fitting adjusted for one-site competition (Equation 4) to determine 

IC50.  The graphs were plotted as a function of percentage binding against logarithm of the 

concentration of competing ligand.  The IC50 obtained were corrected for radioligand occupancy 
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to generate Ki values as described by Cheng and Prusoff [424], using equation 6.  The 

concentration of free radioligand was calculated using equation 5. 

   

Y = B + (T – B)∙(1 + 10
(X-LogIC50)

)
-1

    Equation 4 

Where B is the bottom of the curve (i.e. non-specific binding) and T is the top of the curve (i.e. 

the maximum binding). 

 

[free [
3
H]ligand] (nM) = DPM∙(SA + v ∙ 2.22)

-1
  Equation 5 

Where DPM is radioactivity counts in disintegration per minute, SA is the specific activity of 

radioligand in Ci∙mmol
-1

, and v is the sample volume in κL.  

 

Ki (nM) = IC
50

 ∙ (Kd ∙ (Kd ∙ [free [
3
H]-ligand])

-1
)  Equation 6 

Where Kd is the equilibrium dissociation constant of [
3
H]-ligand 

 

For ELISA to determine the cell-surface expression, the average values plus/minus standard 

error of means were determined relative to values obtained for the wild-type expression, defined 

as 100∙((ODmutant – ODmock)∙(ODwt – ODmock)
-1

). 

 

For InsP assay, results were expressed as a percentage of maximum Wt receptor activity 

measured.  EC50 values were determined by fitting the experimental data to a sigmoidal dose-

response curve using Prism 4.0. 
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Chapter 3  Investigating the role of conserved residues 

among vasopressin receptors in V1bR ligand binding 

 

3.1. Introduction 

Conserved residues among all the receptor subtypes are often involved in common features the 

receptors share, for instance in constructing binding cavities for a mutual agonist, or involved in 

the receptor activation.  In this section, the conserved resides in the putative ligand binding 

cavities were subjected to study.  The residues were selected based on the protein sequence 

alignment and the previous findings on V1aR and V1bR.   

There have been several studies revealing the roles of conserved residues in vasopressin 

receptors.  Some conserved polar residues in the TM domains of V1aR have been shown to be 

involved in AVP binding by mutagenesis and computational molecular modelling studies by 

Mouillac et al. in 1995, including Gln
2.57

, Gln
2.61

, Lys
3.29

, Gln
3.32

, Gln
4.60

, Gln
6.55

 [425].  The 

involvement of Gln
2.57 

in isotocin binding has also been shown in the vasotocin receptor [426].  

Molecular dynamic simulation studies of AVP docking into V1aR, V2R, and OTR by Slusarz et 

al. also displayed the interactions between AVP and the residues Gln
2.57

, Gln
2.61

, Gln
3.32

, Gln
4.60

, 

Gln
6.55

 in all the three subtypes [427].  The ligand interactions of Gln
2.57

, Gln
2.61

 in V1aR were 

shown to be specifc to agonist but not involved significantly in antagonist binding [425].  

 With a limited access for water molecules, hydrogen bonds may be sufficient as the main 

interaction within TM domains.  However, in the N-terminal domain and juxtamembrane 

regions, at least a few stronger ionic interactions are required to prime a significant ligand-

receptor association.  In the V1aR, Arg
1.27

 and Glu
1.35

 have been demonstrated by mutagenesis to 



 

68 

be key residues involved in AVP binding and signalling by Hawtin in 2005 [428].  Also in the 

OTR, Arg
1.27

 has been shown to be important in agonist binding but not in antagonist binding, 

by Wesley in 2002 [429].   

The four residues, Gln
2.57

, Gln
2.61

, Arg
1.27

 and Glu
1.35

, which have been shown by 

mutagenesis studies to be responsible in binding specifically to the endogenous agonist but not 

to antagonist, and are highly conserved among neurohypophysial hormone receptors of various 

species (figure 3.2).  This may indicate the existence of a common binding mode in which the 

nonapeptide comprising a hexapeptide ring with a tripeptide tail induces the conformational 

change that initiates the receptor activation.   

There are a few residues which have also been identified for their participations in AVP 

binding.  In V2R, two residues Thr
102 (2.67) 

and Arg
106

 in ECL1 have been indicated to interact 

with Arg
8
 of AVP based on photoaffinity labelling studies [430].  Arg

106
 is not conserved 

between the vasopressin receptor subtypes, while Thr
102 (2.67)

 is highly conserved among 

neurohypophysial hormone receptors.  In V1aR, a non-conserved Tyr
115 (2.68) 

was suggested to 

interact with Arg
8
 of AVP [425].  These findings suggest that although AVP may bind in a 

similar manner to vasopressin receptors overall, there are differences existing in the details.   

Other molecular modelling-based studies have suggested that during AVP binding to 

V1aR or V1bR, Arg
8
 forms a salt bridge with Glu

1.35
 [427, 431], and Rodrigo et al. suggested 

Arg
8
 also interacted with a relatively conserved residue Asp

2.56 
in both V1aR and V1bR [431].  

An AVP-docked molecular model of V1aR produced by Simms has shown that Glu
1.35

 and 

Gln
2.61

 are in the proximity of the tri-peptide (Pro
7
–Arg

8
–Gly

9
-NH2) tail of AVP (Simms J. 

unpublished study).  Importantly, the glycinamide in particular has been related to the potency 

of AVP [432, 433].  Using chemically modified vasopressin and appropriate series of 
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mutagenesis studies, Wootten and Wheatley showed that multiple interactions occurs involving 

Arg
8
 with Glu

1.35
 as well as with the terminal glycinamide of AVP in V1aR (manuscript in 

preparation).  The study has also showed that although Gln
2.61

 is required for AVP binding to 

the V1aR, Gln
2.61

 does not interact with the glycinamide, and the possibility of an interaction 

occurring between Glu
1.35

 and Gln
2.61

 was suggested.  In contrast, in the V2R Glu
1.35

 was shown 

to participate only slightly in AVP binding whereas Gln
2.61

 and Gln
2.57

 were both important for 

AVP binding.  Although OT has Leu
8
 in place of Arg

8 
which can engage in multiple 

interactions, Glu
1.35

 and Gln
2.61

 were both shown to be necessary for a high affinity binding of 

OT, and also AVP, to the OTR (Wootten and Wheatley, manuscript in preparation).  These 

findings have confirmed the existence of subtype differences in the molecular requirements for 

binding of a mutual agonist. 

The conserved residues in TM7 and H8 of the V1bR have recently been studied by Baker 

and Wheatley in 2008.  There is a highly conserved region in TM7 of the neurohypophysial 

hormone receptors.  Incorporating the NPXXY motif, the motif (N)SC(C)NPWIY is well-

conserved among all the neurohyophysial hormone receptors from various species with few 

exceptions.  Asn
7.45 

is highly conserved except in rodent V1bRs in which Ser
7.45 

is found (This 

residue is further mentioned in chapter 5).  Cys
7.48

 is also well conserved except in V2Rs which 

have Thr
7.48

.  Based on MD simulation, Ślusarz et al. predicted Asn
7.45

 to be a contacting point 

of AVP in V1aR and V2R [427].  However it was shown not to be the case in V1bR.  Ile
7.52 

in 

V1bR seems important for receptor folding as [I7.52A]V1bR was shown to be disrupted critically 

with no detectable AVP binding and with a large reduction of the cell-surface expression.  

Regarding the AVP binding, individual alanine substitutions of other residues within the motif 

were well-tolerated in the V1bR (Baker, A.J. 2008, Doctoral thesis. University of Birmingham).         
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 In this chapter, highly conserved residues within the putative binding cavities of vasopressin 

receptors in general were targeted for alanine mutagenesis to determine their roles in V1bR 

function.  The residues in TM domains and the extracellular juxtamembrane regions which have 

been demonstrated to participate in AVP binding in other subtypes were included in this study 

with an emphasis on TM2.  This study also included a few residues conserved throughout 

Family A GPCRs.  These included Cys
6.47 

and Trp
6.48

 of the rotamer switch, CWXP motif 

located in the middle of TM6 in the vicinity of the putative ligand binding cavity, Phe
5.47

 which 

has been proposed to interact with Trp
6.48

 during activation [427], and Tyr
5.58

 which has been 

shown to interact with Arg
3.50 

in the active state of opsin [295].  In addition some residues, 

which have been predicated to be located in the vicinity of the putative binding site of non-

peptide antagonists based on molecular modelling, were also subjected to study (Dr. Grant 

Wishart, Schering-Plough Research Institute. private communication).   
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3.2. Results 

3.2.1. Identification of conserved residues among vasopressin receptors by 

primary structure comparisons 

The protein sequences of vasopressin receptors, vasotocin receptors, and OTR from various 

species were aligned (figure 3.1).  The sequence of bovine rhodopsin was also included as a 

reference Family A GPCR.  The regions of the N-terminus/juxtamembrane and the upper TM2 

domain of the sequence alignment are shown in figure 3.2.  These regions include residues 

Gln
2.57

, Gln
2.61

, Arg
1.27

 and Glu
1.35

 which have been demonstrated experimentally to be 

important for AVP binding to vasopressin receptors but not for antagonist binding.  

Conserved residues which have been implicated in ligand binding of V1aR, V2R or OTR 

were selected in this study to investigate their role in ligand binding to V1bR.  Some aromatic or 

hydrogen-bonding residues were also selected additionally to investigate any functional 

involvement of such residues in V1bR.  All the residues subjected to study in this chapter are 

summarised in figure 3.3.   

In both alignments, the entire protein sequence of each receptor was used for all the 

receptors except the bovine V1bR, of which sequence was only available as a fragment.  The 

regions which are remotely relevant to this section were removed from the figures to facilitate 

an easy viewing on a single page.     
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                                                   1.27       1.35 
                                         ↓                   ↓  

  V1BR_HUMAN      -------19APNATTP----WLG-RDEELAKVEIGVLATVLVLATGGNLA- 

  V1AR_HUMAN      24GAGNTSREAEALGEGNGPPRDVRNEELAKLEIAVLAVTFAVAVLGNSS- 

  V2R_HUMAN       15SLPS-----LPSNSSQERPLDTRDPLLARAELALLSIVFVAVALSNGL- 

  OXYR_HUMAN      14ANAS--AAPPGAEGNRTAGPPRRNEALARVEVAVLCLILLLALSGNAC- 

  OPSD_BOVIN_Rho  14SNKTG----VVRSPFEAPQYYLAEPWQFSMLAAYMFLLIMLGFPINFL- 
 

         
                                                    2.57     2.60    2.64                                    3.28      3.32          3.37       3.41 
                                                                                      

  V1BR_          -FQVLPQLLWDITYRFQGPDLLCRAVKYLQVLSMFASTYMLLAMTLDRYLA 

  V1AR_HUMAN     -FQVLPQMCWDITYRFRGPDWLCRVVKHLQVFGMFASAYMLVVMTADRYIA 

  V2R_HUMAN      -FQVLPQLAWKATDRFRGPDALCRAVKYLQMVGMYASSYMILAMTLDRHRA 

  OXYR_HUMAN     -FQVLPQLLWDITFRFYGPDLLCRLVKYLQVVGMFASTYLLLLMSLDRCLA 

  OPSD_BOVIN_Rho -GGFTTTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVV 
 

 
                     4.60 
              

  V1BR_HUMAN      VCHPLRSLQQPGQSTY-LLIAAPWLLAAIFSLPQVFIFSLREVIQ-GSGV 

  V1AR_HUMAN      VCHPLKTLQQPARRSR-LMIAAAWVLSFVLSTPQYFVFSMIEVNN-VTKA 

  V2R_HUMAN       ICRPMLAYRHGSGAHWNRPVLVAWAFSLLLSLPQLFIFAQRNVEG-GSGV 

  OXYR_HUMAN      ICQPLRSLRR--RTDR-LAVLATWLGCLVASAPQVHIFSLREVAD-G--V 

  OPSD_BOVIN      VCKPMSNFRFGEN-HAIMGVAFTWVMALACAAPPLVGWSRYIPEGMQCSC 
 

 
                    5.38                     5.47                             5.58 
                                        

  V1BR_HUMAN      SGVLDCWADFGFPWGPRAYLTWTTLAIFVLPVTMLTACYSLICHEICKNL 

  V1AR_HUMAN      TKARDCWATFIQPWGSRAYVTWMTGGIFVAPVVILGTCYGFICYNIWCNV 

  V2R_HUMAN       SGVTDCWACFAEPWGRRTYVTWIALMVFVAPTLGIAACQVLIFREIHASL 

  OXYR_HUMAN      --VFDCWAVFIQPWGPKAYITWITLAVYIVPVIVLATCYGLISFKIWQNL 

  OPSD_BOVIN_Rho  CSCGIDYYTPHEETNNESFVIYMFVVHFIIPLIVIFFCYGQLVFTVKEAA 
 

 
                                 6.40                6.47      6.51      6.55          6.60 
                                                                                                 

  V1BR_HUMAN      SRVSSINTISRAKIRTVKMTFVIVLAYIACWAPFFSVQMWSVWDKNAPDE 

  V1AR_HUMAN      PCVSSVKSISRAKIRTVKMTFVIVTAYIVCWAPFFIIQMWSVWDPMSVWT 

  V2R_HUMAN       ----EGAHVSAAVAKTVRMTLVIVVVYVLCWAPFFLVQLWAAWDPEAPLE 

  OXYR_HUMAN      ARVSSVKLISKAKIRTVKMTFIIVLAFIVCWTPFFFVQMWSVWDANAPKE 

  OPSD_BOVIN_Rho  ----ESATTQKAEKEVTRMVIIMVIAFLICWLPYAGVAFYIFTHQG---S 
 

 
                                                     7.50 

                        

  V1BR_HUMAN      DSTNVAFTISMLLGNLNSCCNPWIYMGFNSHLLPRPLRHLACCGGPQPRM 

  V1AR_HUMAN      ESENPTITITALLGSLNSCCNPWIYMFFSGHLLQDCVQSFPCCQNMKEKF 

  V2R_HUMAN       G---APFVLLMLLASLNSCTNPWIYASFSSSVSSELRSLLCCARGRTPPS 

  OXYR_HUMAN      AS---AFIIVMLLASLNSCCNPWIYMLFTGHLFHELVQRFLCCSASYLKG 

  OPSD_BOVIN_Rho  DFGPIFMTIPAFFAKTSAVYNPVIYIMMNKQFRNCMVTTLCCGKNPLGDD 
 

 

Figure 3.1        Protein sequence alignment of human neurohypophysial hormone receptors:  

Multiple sequence alignment of human neurohypophysial receptors aligned with bovine rhodopsin as a 

reference.  Selected regions of TM domains are shown, with TM domains in red boxes. The residues 

studied are highlighted: conserved in the four neurohypophysial hormone receptors are with yellow; 

conserved in three of the four receptors are indicated with turquoise.  The roles of individual residues in 

the highly conserved region of TM7 (in black box) were previously studied in V1bR by Baker (Baker A.J. 

Doctoral thesis 2008, University of Birmingham).  The position of residues relative to the initiation Met 

is indicated with red numbers at the beginning.  
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                       1.27              1.35                                 1.50                  2.57    2.61 

                                                                                     
VT2R_cane toad_A3KD25         DVDKRNPYVAQWNIALLTIVFSFATFGNCL // MIHLCLADLVVAFFQVLPQLIWDITDRFQGPD 

VT2R_newt_A0ZT58              MSDDRDDNLAKVQIAILAILFVCTTLSNVL // MINLCIADLVVAFFQVLPQLVWVITDRFRGPD 

V2R_pig_P32307                PLDDRDPLLARVELALLSTVFVAVALSNGL // IGHLCLADLAVALFQVLPQLAWDATYRFRGPD 

V2R_dog_CANFA_O77808          LLDTRDPLLVQAELALLSTVFVAVALSNGL // IGHLCLADLAVALFQVLPQLAWDATDRFRGPD 

V2R_rat_Q00788                LLDDRDPLLVRAELALLSTIFVAVALSNGL // ISHLCLADLAVALFQVLPQLAWDATDRFHGPD 

V2R_human_P30518              PLDTRDPLLARAELALLSIVFVAVALSNGL // IGHLCLADLAVALFQVLPQLAWKATDRFRGPD 

VT1aR_fugu_Q5MZ03             DPFGRNEEVAKIEIGVLSLTFVAAVLGNVS // MKHLSLADLVVAFFQVLPQLCWEVTFRFYGPD 

VT1bR_fugu_Q5MZ02             DPFARNEEVAQIEIMVLSITFVVAVIGNVS // IKHLSLADLVVAFFQVLPQLCWEITFRFYGSD 

VTR_cane toad_A3KD24          DLLSRDEELAKVEIAVLAIIFVAAVLGNCS // IKHLSLADLVVAFFQVLPQLFWEVTYRFYGPD 

VT1aR_newt_A0ZT57             DLLDRNEALARVEVAVLALIFVAAVVGNSC // ILHLSLADLVVALFQVLPQLCWEVTYRFRGTD 

V1AR_prairie vole_Q9WTV9      SGDVRNEELAKLEIAVLAVIFVVAVLGNSS // IRHLSLADLAVAFFQVLPQLCWDITYRFRGPD 

V1AR_montana vole_Q9WTV8      SGDVRNEELAKLEIAVLAVIFVVAVLGNSS // IRHLSLADLAVAFFQVLPQLCWDITYRFRGPD 

V1AR_rat_P30560               LGDVRNEELAKLEIAVLAVIFVVAVLGNSS // IRHLSLADLAVAFFQVLPQLCWDITSSFRGPD 

V1AR_mouse_Q62463             PGDVRNEELAKLEVTVLAVIFVVAVLGNSS // IRHLSLADLAVAFFQVLPQLCWDITYRFRGPD 

V1AR_human_ P37288            PRDVRNEELAKLEIAVLAVTFAVAVLGNSS // IRHLSLADLAVAFFQVLPQMCWDITYRFRGPD 

V1AR_sheep_P48043             QADTRNEELAKLEIAVLAVIFVVAVLGNSS // IRHLSLADLAVAFFQVLPQLGWDITYRFRGPD 

V1BR_rat_P48974               WLG-RDEELAKVEIGILATVLVLATGGNLA // VLHLALTDLGVALFQVLPQLLWDITYRFQGSD 

V1BR_mouse_Q9WU02             WLG-RDEELAKVEIGILATVLVLATGGNLA // VLHLALTDLGVALFQVLPQLLWDITYRFQGSD 

V1BR_human_P47901             WLG-RDEELAKVEIGVLATVLVLATGGNLA // VLHLALTDLAVALFQVLPQLLWDITYRFQGPD 

VT1bR_chicken_Q90YN1          LQG-RDEQLARAEVGVLAAILLVATTGNLA // VLHLALSDLGVALFQVLPQMLWEVTYRFAGPD 

VT1bR_newt_A0ZT95             QDDPRDETLAKAEIAVLAVILAVTTVGNLV // IMHLGLTDLVVAGFQVLPQMIWDITFRFVGSD 

OXYR_mouse_P97926             GPPRRNEALARVEVAVLCLILFLALSGNAC // MKHLSIADLVVAVFQVLPQLLWDITFRFYGPD 

OXYR_rat_P70536               GPPQRNEALARVEVAVLCLILFLALSGNAC // MKHLSIADLVVAVFQVLPQLLWDITFRFYGPD 

OXYR_human_P30559             GPPRRNEALARVEVAVLCLILLLALSGNAC // MKHLSIADLVVAVFQVLPQLLWDITFRFYGPD 

VTR_chicken_Q9PTN7            GRPERDEQLAQVEIAVLGVIFLTASVGNFI // MLHLSIADLVVAFFQVLPQLIWDITDVFIGPD 

      Rhodopsin_bovine_P02699       QYYLAEPWQFSMLAAYMFLLIMLGFPINFL // LLNLAVADLFMVFGGFTTTLYTSLHGYFVFGP 

      T M 1      T M 2 
 

Figure 3.2   Excerpt of the multiple sequence alignment of neurohypophysial hormone receptors showing the N-terminal/juxtamembrane, 

the upper regions of TM1 and TM2 domains:   The strictly conserved residues are shown in red, and a highly conserved residue is shown in 

yellow.  There is a high level of conservation in the upper region of TM2 (FQVLPQ motif) including Gln
2.57 

and Gln
2.61

, both of which have been 

shown previously in V1aR to be involved in agonist binding and consequential activation [425]. 
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Figure 3.3 The schematic two-dimensional representation of V1bR indicating residues selected for 

the mutagenesis study (shown as colour-filled):   

 

The residues conserved within vasopressin receptors and OTR are shown in yellow, the residues 

conserved within three subtypes are shown in turquoise (as in the figure 3.1. The same colour code 

applied).  Pale orange indicates residues within the CWXP motif of the proposed rotamer switch; the two 

residues were also studied.   

 

The residues circled with orange line are indicated as reference residues used in Ballesteros-Weinstein 

numbering scheme.  Lavender pentagons show the putative glycosylation sites. The purple lines on the 

right indicate putative palmitoylation sites.  The residues comprising HA epitope tag are shown in pale 

grey. 
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Table 3.1 The mutagenic oligonucleotide primers for mutagenesis of V1bR:  
Codon altered shown underlined, and the nucleotides changed shown in BOLD.  As for 

directions, (S) is sense, and (AS) is antisense. 
  

Construct Direction Nucleotide Sequence 

[R1.27A]V1bR 
(S) 

(AS) 

5’-CCC-TGG-CTG-GGC-GCG-GAT-GAG-GAG-CTG-G-3’ 

5’-C-CAG-CTC-C'TC-ATC-CGC-GCC-CAG-CCA-GGG-3’ 

[R1.27E]V1bR 
(S) 

(AS) 

5’-CCC-TGG-CTG-GGC-GAG-GAT-GAG-GAG-CTG-G-3’ 

5’-C-CAG-CTC-C'TC-ATC-CTC-GCC-CAG-CCA-GGG-3’ 

[E1.35A]V1bR 
(S) 

(AS) 

5’-G-CTG-GCC-AAG-GTG-GCA-ATC-GGA-GTC-CTG-G-3’ 

5’-C-CAG-GAC-TCC-GAT-TGC-CAC-CTT-GGC-CAG-C-3’ 

[E1.35R]V1bR 
(S) 

(AS) 

5’-G-CTG-GCC-AAG-GTG-CGG-ATC-GGA-GTC-CTG-G-3’ 

5’-C-CAG-GAC-TCC-GAT-CCG-CAC-CTT-GGC-CAG-C-3’ 

[E1.35D]V1bR 
(S) 

(AS) 

5’-G-CTG-GCC-AAG-GTG-GAC-ATC-GGA-GTC-CTG-G-3’ 

5’-C-CAG-GAC-TCC-GAT-GTC-CAC-CTT-GGC-CAG-C-3’ 

[E1.35Q]V1bR 
(S) 

(AS) 

5’-G-CTG-GCC-AAG-GTG-CAG-ATC-GGA-GTC-CTG-G-3’ 

5’-C-CAG-GAC-TCC-GAT-CTG-CAC-CTT-GGC-CAG-C-3’ 

[F2.56A]V1bR 
(S) 

(AS) 

5’-GCC-GTG-GCG-CTC-GCC-CAG-GTG-CTG-CCA-C-3’ 

5’-G-TGG-CAG-CAC-CTG-GGC-GAG-CGC-CAC-GGC-3’ 

[Q2.57A]V1bR 
(S) 

(AS) 

5’-C-GTG-GCG-CTC-TTC-GCG-GTG-CTG-CCA-CAG-3’ 

5’-CTG-TGG-CAG-CAC-CGC-GAA-GAG-CGC-CAC-G-3’ 

[P2.60A]V1bR 
(S) 

(AS) 

5’-C-TTC-CAG-GTG-CTG-GCA-CAG-CTG-CTG-TGG-3’  

5’-CCA-CAG-CAG-CTG-TGC-CAG-CAC-CTG-GAA-G-3’ 

[P2.60G]V1bR 
(S) 

(AS) 

5’-C-TTC-CAG-GTG-CTG-GGA-CAG-CTG-CTG-TGG-3’ 

5’-CCA-CAG-CAG-CTG-TCC-CAG-CAC-CTG-GAA-G-3’ 

[Q2.61A]V1bR 
(S) 

(AS) 

5’-C-CAG-GTG-CTG-CCA-GCG-CTG-CTG-TGG-GAC-3’ 

5’-GTC-CCA-CAG-CAG-CGC-TGG-CAG-CAC-CTG-G-3’ 

[W2.64A]V1bR 
(S) 

(AS) 

5’-G-CCA-CAG-CTG-CTG-GCG-GA-CAT-CAC-CTA-CCG-3’  

5’-CG-GTA-GGT-GAT-GTC-CGC-CAG-CAG-CTG-TGG-C-3’ 

[D2.65A]V1bR 
(S) 

(AS) 

5’-CCA-CAG-CTG-CTG-TGG-GCC-ATC-ACC-TAC-CGC-3’  

5’-GCG-GTA-GGT-GAT-GGC-CCA-CAG-CAG-CTG-TGG-3’ 

[D2.65Q]V1bR 
(S) 

(AS) 

5’-CA-CAG-CTG-CTG-TGG-CAG-ATC-ACC-TAC-CGC-3’  

5’-GCG-GTA-GGT-GAT-CTG-CCA-CAG-CAG-CTG-TG-3’ 

[D2.65R]V1bR 
(S) 

(AS) 

5’-CA-CAG-CTG-CTG-TGG-CGG-ATC-ACC-TAC-CGC-3’  

5’-GCG-GTA-GGT-GAT-CCG-CCA-CAG-CAG-CTG-TG-3’ 

[Q2.61D/ 

D2.65Q]V1bR 

(S) 

(AS) 

5’-C-GAC-GTG-CTG-CCA-CAG-CTG-CTG-TGG-CAG-3’ 

5’-CTG-CCA-CAG-CAG-CTG-TGG-CAG-CAC-GTC-G-3’ 

[W2.64A/ 

D2.65A]V1bR 

(S) 

(AS) 

5’-G-CCA-CAG-CTG-CTG-GCG-GCC-ATC-ACC-TAC-CG-3’ 5’-

CG-GTA-GGT-GAT-GGC-CGC-CAG-CAG-CTG-TGG-C-3’ 

[W2.64D/ 

D2.65W]V1bR 

(S) 

(AS) 

5’-CCA-CAG-CTG-CTG-GAC-TGG-ATC-ACC-TAC-CGC-3’ 5’-

GCG-GTA-GGT-GAT-CCA-GTC-CAG-CAG-CTG-TGG-3’ 

[R3.26D]V1bR 
(S) 

(AS) 

5’-CCC-GAC-CTC-CTG-TGC-GAC-GCC-GTC-AAG-TAC-CTG-3’  

5’-CAG-GTA-CTT-GAC-GGC-GTC-GCA-CAG-GAG-GTC-GGG-3’ 

[V3.28A]V1bR 
(S) 

(AS) 

5’-CTG-TGC-AGG-GCC-GCC-AAG-TAC-CTG-CAG-3’  

5’-CTG-CAG-GTA-CTT-GGC-GGC-CCT-GCA-CAG-3’ 

[Q3.32A]V1bR 
(S) 

(AS) 

5’-GCC-GTC-AAG-TAC-CTG-GCG-GTG-CTC-AGC-ATG-3’ 5’-

CAT-GCT-GAG-CAC-CGC-CAG-GTA-CTT-GAC-GGC-3’ 
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Construct Direction Nucleotide Sequence 

[F3.37A]V1bR 
(S) 

(AS) 

5’-G-CAG-GTG-CTC-AGC-ATG-GCT-GCC-TCC-ACC-TAC-3’ 

5’-GTA-GGT-GGA-GGC-AGC-CAT-GCT-GAG-CAC-CTG-C-3’ 

[Q4.60A]V1bR 
(S) 

(AS) 

5’-C-TTC-AGC-CTC-CCT-GCA-GTC-TTC-ATT-TTT-TCC-C-3’ 

5’-G-GGA-AAA-AAT-GAA-GAC-TGC-AGG-GAG-GCT-GAA-G-3’ 

[F4.62A]V1bR 
(S) 

(AS) 

5’-C-CTC-CCT-CAA-GTC-GCC-ATT-TTT-TCC-CTG-CGG-G-3’ 

5’-C-CCG-CAG-GGA-AAA-AAT-GGC-GAC-TTG-AGG-GAG-G-3’ 

[Y5.38A]V1bR 
(S) 

(AS) 

5’-GG-CCA-CGG-GCC-GCC-CTC-ACC-TGG-ACC-3’  

5’-GGT-CCA-GGT-GAG-GGC-GGC-CCG-TGG-CC-3’ 

[F5.47A]V1bR 
(S) 

(AS) 

5’-CC-ACC-CTG-GCT-ATC-GCC-GTT-CTG-CCG-GTG-3’  

5’-CAC-CGG-CAG-AAC-GGC-GAT-AGC-CAG-GGT-GG-3’ 

[F5.47I]V1bR 
(S) 

(AS) 

5’-CCC-TGG-CTA-ATC-TCG-TTC-TGC-CGG-TG-3’ 

5’-CA-CCG-GCA-GAA-CGA-GAT-TAC-CCA-GGG-3’ 

[F5.47V]V1bR 
(S) 

(AS) 

5’-CC-CTG-GCT-ATC-GTC-GTT-CTG-CCG-GTG-3’   

5’-CAC-CGG-CAG-AAC-GAC-GAT-AGC-CAG-GG-3’ 

[F5.47W]V1bR 
(S) 

(AS) 

5’-CC-ACC-CTG-GCT-ATC-TGG-GTT-CTG-CCG-GTG-3’  

5’-CAC-CGG-CAG-AAC-CCA-GAT-AGC-CAG-GGT-GG-3’ 

[F5.47Y]V1bR 
(S) 

(AS) 

5’-CC-CTG-GCT-ATC-TAC-GTT-CTG-CCG-GTG-ACC-3’  

5’-GGT-CAC-CGG-CAG-AAC-GTA-GAT-AGC-CAG-GG-3’ 

[Y5.58A]V1bR 
(S) 

(AS) 

5’-CTC-ACG-GCC-TGC-GCC-AGC-CTC-ATC-TGC-C-3’ 

5’-G-GCA-GAT-GAG-GCT-GGC-GCA-GGC-CGT-GAG-3’ 

[I6.40A]V1bR 
(S) 

(AS) 

5’-G-AAG-ATG-ACC-TTT-GTC-GCC-GTG-CTG-GCC-TAC-3’ 5’-

GTA-GGC-CAG-CAC-GGC-GAC-AAA-GGT-CAT-CTT-C-3’ 

[C6.47A]V1bR 
(S) 

(AS) 

5’-GCC-TAC-ATC-GCT-GCC-TGG-GCT-CCC-TTC-3’ 

5’-GAA-GGG-AGC-CCA-GGC-AGC-GAT-GTA-GGC-3’ 

[W6.48A]V1bR 
(S) 

(AS) 

5’-CC-TAC-ATC-GCT-TGC-GCG-GCT-CCC-TTC-TTC-AGT-G-3’5’-

C-ACT-GAA-GAA-GGG-AGC-CGC-GCA-AGC-GAT-GTA-GG-3’ 

[W6.48F]V1bR 
(S) 

(AS) 

5’-CC-TAC-ATC-GCT-TGC-TTC-GCT-CCC-TTC-TTC-3’  

5’-GAA-GAA-GGG-AGC-GAA-GCA-AGC-GAT-GTA-GG-3’ 

[F6.51A]V1bR 
(S) 

(AS) 

5’-GCT-TGC-TGG-GCT-CCC-GCC-TTC-AGT-GTC-CAG-ATG-3’ 

5’-CAT-CTG-GAC-ACT-GAA-GGC-GGG-AGC-CCA-GCA-AGC-3’ 

[F6.52A]V1bR 
(S) 

(AS) 

5’-GG-GCT-CCC-TTC-GCC-AGT-GTC-CAG-ATG-TGG-3’  

5’-CCA-CAT-CTG-GAC-ACT-GGC-GAA-GGG-AGC-CC-3’ 

[Q6.55A]V1bR 
(S) 

(AS) 

5’-CCC-TTC-TTC-AGT-GTC-GCG-ATG-TGG-TCC-GTG-TGG-3’ 

5’-CCA-CAC-GGA-CCA-CAT-CGC-GAC-ACT-GAA-GAA-GGG-3’ 

[S6.58A]V1bR 
(S) 

(AS) 

5’-GTC-CAG-ATG-TGG-GCC-GTG-TG-GAC-AAG-3’  

5’-CTT-GTC-CCA-CAC-GGC-CCA-CAT-CTG-GAC-3’ 

[V6.59A]V1bR 
(S) 

(AS) 

5’-CAG-ATG-TGG-TCC-GCG-TGG-GAC-AAG-AAT-GCC-3’ 

5’-GGC-ATT-CTT-GTC-CCA-CGC-GGA-CCA-CAT-CTG-3’ 

[W6.60A]V1bR 
(S) 

(AS) 

5’-G-ATG-TGG-TCC-GTG-GCG-GAC-AAG-AAT-GCC-CC-3’  

5’-GG-GGC-ATT-CTT-GTC-CGC-CAC-GGA-CCA-CAT-C-3’ 

[D6.61A]V1bR 
(S) 

(AS) 

5’-GG-TCC-GTG-GCG-GCC-AAG-AAT-GCC-CCT-G-3’ 

5’-C-AGG-GGC-ATT-CTT-GGC-CCA-CAC-GGA-CC-3’ 
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3.2.2. The role of conserved residues in the N-terminal/juxtamembrane 

region of TM1 in V1bR 

 The two residues Arg
1.27

 and Glu
1.35

 have been proven in the V1aR, and OTR to be involved 

independently in AVP binding and the consequential signalling (Wootten and Wheatley, 

manuscript in preparation).  Hence the two residues were studied further in the V1bR to 

investigate whether similar mechanisms of AVP binding apply.  Using QuickChange™ 

mutagenesis method described in section 2.2.1, both residues were initially replaced with 

alanine individually.  The role of Glu
1.35

 was further investigated using systematic substitution.  

Three mutant constructs [E1.35D]V1bR, [E1.35Q]V1bR, and [E1.35R]V1bR, specifically altered 

the properties of  Glu
1.35 

in defined ways: Asp (one carbon atom shorter in length); Gln 

(replacing negative charge with a polar group); and Arg (charge reversal).  The affinity and 

potency of AVP on these constructs were investigated by means of radioligand binding assay 

and InsP3 assay.  In addition, with an assumption that there may possibly be a direct interaction 

occurring between AVP and Glu
1.35

, the three constructs were subjected to study using modified 

AVP in a complementally fashion for their proposed interactions.    

Arg
1.27

 and Glu
1.35

 are eight residues apart.  Since Arg
1.27

 is located at the extracellular 

N-terminal region possibly associated with some degrees of flexibility, it is plausible for the 

residue to form a mutual charge-induced interaction with Glu
1.35

 at the extracellular end of TM1 

in forming a binding cavity for AVP.  A reciprocal double mutant [R1.27E/E1.35R]V1bR was 

made to investigate the effect of the positional residue changes on AVP binding and the receptor 

activation.   
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 Over 20 fold increase in affinity 

 5 ~ 19 fold increase in affinity 

 2 ~ 4.9 fold increase in affinity 

 2 ~ 4.9 fold decrease in affinity 

 5 ~ 19 fold decrease in affinity 

 20 ~ 999 fold decrease in affinity 

 Over 1000 fold decrease in affinity 

 

 

Construct 

Binding Affinity   

(Ki, nM ±S.E.M.) 
Cell-surface 

Expression 

(% WT) 

AVP-induced 

Internalisation 

(% unstimulated) 

dDAVP-induced 

Internalisation 

(% unstimulated) AVP dDAVP 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.0) 100 47 (± 4) 50 (± 5) 

[R1.27A]V1bR 11.05 (± 4.22) Undetectable 95 (± 4) 37 (± 7) 19 (± 2) 

[R1.27E]V1bR Undetectable [3H]AVP binding 36 (± 2) 44 (± 3) - 

[E1.35A]V1bR  Undetectable [3H]AVP binding 38 (± 2) 45 (± 5) 29 (± 2) 

[E1.35R]V1bR Undetectable [3H]AVP binding 74 (± 2) 46 (± 2) - 

[R1.27E/E1.35R]V1bR Undetectable [3H]AVP binding 47 (± 2) 36 (± 1) - 

[E1.35Q]V1bR 17.86 (± 1.79) Undetectable 67 (± 3) 49 (± 3) 41 (± 8) 

[E1.35D]V1bR Undetectable [3H]AVP binding 25 (± 4) 36 (± 7) 38 (± 2) 

 

Table 3.2 Binding affinities, the cell-surface expression levels and the responsiveness to agonist-induced receptor internalisation: 

Binding affinities were determined by competition binding assay.  Since tritiated AVP was the only the tracer ligand available to study V1bR, 

mutants with largely decreased affinity to AVP could not be characterised further.  The results of the cell-surface expression were analysed using 

ANOVA with a Dunnett’s multiple comparison test with the Wt as control.  The data showed significant differences from the Wt are indicated in 

pale red (P < 0.01), or pale orange (0.01 < P < 0.05). The binding affinity obtained as Ki in nM are shown using the colour code above (top left). 

Each experiment was performed in triplicate, and the average values of three experiments were shown plus/minus SEM. Dash (-) means untested. 
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Figure 3.4 a-c AVP binding, the cell-surface expression and agonist induced internalisation of 

the mutant constructs:  

a. The competition binding of [
3
H]AVP and AVP observed for the Wt V1bR, [R1.27A]V1bR and 

[E1.35Q]V1bR.  

b. The cell-surface expression levels of the mutant constructs relative to the Wt.  

c. The cell- surface expression after stimulation with either AVP or dDAVP as indicated (1κM, 30 

min).  The data which showed significant differences after one-way ANOVA with Dunette’s 

post test with the Wt as control, are indicated in pale red with two asterisks (P < 0.01) or pale 

orange with one asterisk (0.01 < P < 0.05). 

The error bars represent SEM of three experiments each performed in triplicate.

a 

b c 
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AVP binding was undetectable for the constructs containing Glu
1.35 

substitution, with an 

exception of [E1.35Q]V1bR which displayed approximately 20-fold reduction in the affinity of 

AVP; however the total [
3
H]AVP binding by the construct was low.  Since [

3
H]AVP was the 

only tracer ligand available to study the V1bR, the constructs were not further characterised for 

other ligands.   

Two possible interactions occurring between Glu
1.35

 and AVP were predicted based on the 

AVP-docked molecular model of V1aR provided by Simms.  Firstly, it may be possible that 

there is an ionic interaction occurring between Arg
8
 of AVP and Glu

1.35
.  Secondary, the amide 

group of glycinamide of AVP could possibly form a hydrogen bond with carbonyl oxygen of 

Glu
1.35

.  Both interactions have been established in the V1aR by Wootten and Wheatley 

(manuscript in preparation).  In order to investigate these interactions in the V1bR, three 

modified AVP-ligands were used.  The interaction between Arg
8
 of AVP and Glu

1.35
 were tested 

by reversing the charged groups between AVP and V1bR, using [E1.35R]V1bR and 

[Glu
8
]vasopressin.  The potential hydrogen bonding between the glycinamide of AVP and 

Glu
1.35

 were investigated in two ways: firstly using [β-Ala
9
NH2]AVP and [E1.35D]V1bR; and 

secondly using AVP-free acid and [E1.35Q]V1bR.  Figure 3.5 describes the proposed interaction 

between Glu
1.35

 and glycinamide, and also the interactions between the two alternatives.  The 

potency of the ligands at each appropriate construct was measured by InsP-InsP3 assay.  
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Figure 3.5 The rationale of the use of modified AVPs in specifying the interaction between Glu
.1.35

 

and the C-terminal glycinamide of AVP: 

   

The plausible interactions proposed to occur between AVP and Glu
1.35

 can be determined by using 

modified AVP appropriately.  In Wt receptor, Glu
1.35 

can be interacting with glycinamide of AVP (top).  

This interaction can be confirmed if AVP-free acid retains agonism upon binding to [E1.35Q]V1bR.  The 

carboxylic acid moiety and amidated C-terminal were reciprocally exchanged (middle).  Alternatively, 

[β-Ala
9
NH2]AVP may also induce agonism in [E1.35D]V1bR in which the amino acid side chain at 1.35 

was shortened one carbon length.  The loss in length may be compensated by increasing the length of 

AVP glycinamide (bottom).  

 

WT side-chain and C-terminus 

of AVP.  The length and 

charge of the side chain at 

position 1.35 are crucial for 

interaction with AVP. 

Decreasing the side chain length 

(E1.35D) and extending the tail 

of the ligand by one CH2 group 

([ß-Ala9]AVP) should bring the 

C-terminus of the ligand close 

enough to interact with the side 

chain whereas AVP is too short. 

Glu
1.35 

 

TM1 

CH2 CH2 C 

 

O 

O
-
 

HN H2C C 

O 

H2N 

Gln
1.35 

 

TM1 

CH2 CH2 C 

 

O 

NH2 

HN H2C C 

O 

-
O 

Asp
1.35 

 

TM1 

CH2 

 

C 

O 

O
-
 

HN H2C C 

O 

H2N 

H2C 

E1.35Q side chain and C-

terminus of AVP free acid could 

interact. AVP side chain would 

be unlikely to interact with 

E1.35Q. 
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Construct 

InsP-P3 accumulation   

(EC50 nM ±S.E.M.) 

InsP-P3 accumulation 

Emax (% Wt) 

AVP dDAVP dAVP AVP dDAVP dAVP 

WT V1bR 2.8 (± 0.6) 12 (± 2) 4 (± 1) 100 100 100 

[R1.27A]V1bR 59 (± 4) * 12 (± 0.5) - 76 (± 3) * 34 (± 4) - 

[E1.35A]V1bR 55 (± 5) * 383 (± 93) - 82 (± 2) * 46 (± 14) - 

[E1.35R]V1bR Undetectable - - Undetectable - - 

[R1.27E/E1.35R]V1bR Undetectable - - Undetectable - - 

[E1.35Q]V1bR 19 (± 4) 90 (± 37) 105 (± 39) 50 (± 15) 31 (± 4) 70 (± 29) 

[E1.35D]V1bR Undetectable - - Undetectable - - 

Construct 

InsP-P3 accumulation   

(EC50 nM ±S.E.M.) 

InsP-P3 accumulation 

Emax (% Wt ,+AVP) 

[βAla
9
]-AVP AVP-free acid Glu

8
VP [βAla

9
]-AVP AVP-free acid Glu

8
VP 

WT V1bR Undetectable Undetectable Undetectable Undetectable Undetectable Undetectable 

[E1.35R]V1bR - - 13 (± 6) - - 22 (± 3) 

[R1.27E/E1.35R]V1bR - - Undetectable - - Undetectable 

[E1.35Q]V1bR - Undetectable - - Undetectable - 

[E1.35D]V1bR Undetectable - - Undetectable - - 

 

Table 3.3. InsP3 signalling properties of the V1bR mutant constructs: EC50 values were determined by non-linear regression and 

Emax values were obtained as a percentage of the maximum signal produced by the Wt V1bR.  Data shown are the mean ± SEM of three 

experiments each of which was performed in triplicate.  Dashes (-) indicate where experiments were omitted.  Data indicated with 

asterisk (*) was taken from doctoral thesis of Denise Wootten (Wootten D.L. 2007, University of Birmingham). 
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Figure 3.6  ab The InsP3-signalling properties of V1bR Wt and the mutant constrcts: The percentage accumulations of InsP-InsP3 

fractions produced by the HEK293T cells transiently transfected with the mutant constructs and the Wt following agonist stimulation.   

a. InsP-InsP3  accumulation in response to AVP.  

b. InsP-InsP3 accumulation induced by dDAVP. 

The error bars represent SEM of three experiments each performed in triplicate. 

a b 
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Figure 3.7 ab The InsP3-signalling properties of V1bR Wt and the mutant constructs: 

The InsP-InsP3 accumulation was noramalised to the Wt data.   

a. [E1.35R]V1bR stimulated with [Glu
8
]vasopressin; the values were nomalised to Wt stimulated with AVP to allow direct comparison.   

b. Comparisons of the the signalling properties of [E1.35Q]V1bR initiated by dAVP or dDAVP. 

The error bar represents SEM of three experiments each performed in triplicate. 

a 
b 
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Alanine substitution of Arg
1.27 

was reasonably well-tolerated in [R1.27A]V1bR.  The affinity of 

AVP for the construct was reduced about 10-fold compared to the Wt, and internalised in 

response to AVP stimulation at 1κM in a similar manner to the Wt.  However, no detectable 

binding of dDAVP was observed, and only 15% of the construct was internalised following 

dDAVP stimulation.  Although EC50 value obtained was similar to the Wt, the Emax value was 

dramatically reduced to 22 % compared to the Wt. 

 Glu
1.35 

appeared more crucial in the V1bR function.  No detectable AVP binding was 

observed with [E1.35A]V1bR, and the cell-surface expression was reduced dramatically to about 

25% relative to the Wt.  The construct, however, was capable of activating the PLC-induced 

signalling pathway but EC50 increased approximately 20-fold for AVP, and 30-fold for dDAVP.  

The construct at the cell-surface was internalised following agonist stimulation with either AVP 

or dDAVP.   

The conservative substitution of Glu by Asp at position 1.35 was poorly tolerated with 

complete loss of binding and signalling.  The cell-surface expression of the construct was also 

reduced to 25% relative to the Wt.  The proposed interaction between [E1.35D]V1bR and [β-

Ala
9
]AVP was not confirmed by the InsP3 assay.  In contrast, the substitution of Glu

1.35 
with Gln 

supported receptor function.  The cell-surface expression level was restored to 75%, and 

[E1.35Q]V1bR internalised in response to either AVP or dDAVP stimulation.  The affinity of 

AVP was decreased 20-fold approximately and the potency decreased with 6-fold increase in 

EC50 value and the lower efficacy with Emax value 50% relative to the Wt.  The potency and the 

efficacy of dDAVP were lower with 10-fold increase in EC50 value and Emax value 30% of the 

Wt.  The signalling property of the construct induced by dAVP was apparently less affected 

with a high Emax of 70% to the Wt; however the EC50 value obtained was about 100nM, in a 
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similar range of the value obtained for dDAVP.  InsP3 signalling in response to AVP-free acid 

was not detected in [E1.35Q]V1bR.  

InsP3 signalling was detected in [E1.35R]V1bR in response to [Glu
8
]VP with a high 

potency but with a low efficacy of Emax value 30% compared to the endogenous AVP signalling 

by the Wt.  A reciprocal double mutant [R1.27E/E1.35R]V1bR was made to investigate any 

interaction between these two residues, but the construct was not functional with no detectable 

binding nor signalling.  The cell-surface expression of the construct was also compromised, ≈ 

50% of the Wt.  No signalling was detected by the double mutant following the [Glu
8
]VP 

stimulation despite the presence of Arg side chain located at position 1.35.  No detectable AVP 

binding was obtained for each single mutant [R1.27E]V1bR and [E1.35R]V1bR.  
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3.2.3 .  The participation of TM2 residues in the ligand binding to the V1bR  

In this section, Gln
2.61

 and Asp
2.65

 which have been proven to be important for AVP binding to 

the V1aR (Wootten D.L. Doctoral thesis, 2007, University of Birmingham) were investigated in 

the V1bR.  In addition, the conserved Phe
2.56

, Gln
2.57

, Pro
2.60

 and Trp
2.64

 of the FQVLPQXXW 

motif within the neurohypophysial hormone receptors family (figure 3.2), located at the upper 

region of TM2, were studied.  Each residue was replaced with alanine.  Pro
2.60

 may possibly 

provide a kink in the TM2 which is functionally relevant; therefore Pro
2.60

 was also substituted 

with glycine which allows the TM some degrees of flexibility.  Usually, constructs contained a 

single alanine substitution; occasionally double mutants were produced to assess interaction 

between two different residues. Located at the juxtamembrane, [W2.64A/D2.65A]V1bR, and 

also two reciprocal double mutants [Q2.61D/D2.65Q]V1bR and [W2.64D/D2.65W]V1bR were 

produced for further investigation. 

 The ligand binding properties of the constructs for AVP and the ligands with selectivity 

for V1bR were investigated.  A non-peptide antagonist 5234B with selectivity for V1bR, 

synthesised by Schering-Plough Research Institute, was used to identify the contacting residues.  

Another V1bR-selective non-peptide antagonist SSR149415, developed by Sanofi-Aventis, and 

also a V1bR-selective peptide agonist d[Cha
4
]AVP, were also used in some constructs to further 

investigate the residues responsible for the ligand-selectivity of V1bR.  A peptide agonist 

dDAVP with selectivity for V1bR and V2R, and a peptide antagonist LA with selectivity for 

V1bR and V1aR, and a V1aR-selective peptide antagonist CA were also used for further 

characterisations of some constructs.         

The results of the radioligand binding assays are presented with a colour coding based on 

the fold-increase or -decrease observed.  The cell-surface expression and the agonist-induced 
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internalisation of the receptor constructs are indicated with two colours depending on the 

significance of differences: pale red for P < 0.01 and pale orange for P < 0.05 in comparison to 

the WT, determined by ANOVA with a post-hoc Dunnett’s test analysis.  For a few constructs 

and the Wt, time-course study of up to one hour was performed to estimate the half-life of the 

cell-surface expression following exposure to the full agonist AVP.      
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Colour code used for the binding affinity 

 Over 20 fold increase in affinity 

 5 ~ 19 fold increase in affinity 

 2 ~ 4.9 fold increase in affinity 

 2 ~ 4.9 fold decrease in affinity 

 5 ~ 19 fold decrease in affinity 

 20 ~ 999 fold decrease in affinity 

 Over 1000 fold decrease in affinity 

 

Construct 

Binding Affinity  (Ki, nM ±S.E.M.) Cell-Surface 
Expression 

(% Wt) AVP dDAVP 5234B 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.0) 7.18 (± 1.82) 100 

[F2.56A]V1bR 0.33 (± 0.03) -  7.00 (± 2.26) 17 (±  1) 

[Q2.57A]V1bR 0.81 (± 0.29) 1.06 (± 0.22) 38.7 (± 4.8) 64 (± 2) 

[P2.60A]V1bR Undetectable [3H]AVP binding 19 (±  1) 

[P2.60G]V1bR Undetectable [3H]AVP binding  16 (±  1) 

[Q2.61A]V1bR Undetectable [3H]AVP binding 34 (±  9) 

[W2.64A]V1bR 5.06 (± 0.07) 10.6 (± 1.1) 10.1 (± 1.4) 119 (±  6) 

[D2.65A]V1bR 8.66 (± 0.13) 2.87 (± 0.59) 3.47 (± 0.40) 132 (±  12) 

[D2.65Q]V1bR 4.10 (± 1.51) 6.38 (± 1.05)  - 120 (±  3) 

[D2.65R]V1bR 3.82 (± 0.98) - - 132 (±  5) 

[Q2.61D/D2.65Q]V1bR Undetectable [3H]AVP binding 19 (±  1) 

[W2.64A/D2.65A]V1bR Undetectable [3H]AVP binding 114 (±  7) 

[W2.64D/D2.65W]V1bR Undetectable [3H]AVP binding 30 (±  1) 

 

 

Table 3.4 The binding characteristics of the mutant constructs in TM2 domain of V1bR: 

The binding affinity (Ki) was determined by competition binding assay using [
3
H]AVP as a tracer ligand.  

Ligands are AVP, peptide agonist dDAVP, and non-peptide antagonist 5234B.  Cell-surface expression 

of the constructs relative to the Wt was determined by ELISA.  The constructs with severely 

compromised cell-surface expression are shown in pale red.  The values shown as mean plus/minus SEM 

of three experiments each performed in triplicate.  Dashes (-) indicates where experiments were omitted.   

 

  



 

90 

[F2.56A]V1bR

-12 -11 -10 -9 -8 -7 -6 -5

0

25

50

75

100

125
AVP

5234B

[Ligand] (Log M)

S
p

e
c
if

ic
 B

in
d

in
g

 (
%

)

[D2.65A]V1bR

-12 -11 -10 -9 -8 -7 -6 -5

0

25

50

75

100

125
AVP

5234B

dDAVP

[Ligand] (Log M)

S
p

e
c
if

ic
 B

in
d

in
g

 (
%

)

[D2.65Q]V1bR

-12 -11 -10 -9 -8 -7 -6

0

25

50

75

100

125
AVP

dDAVP

[Ligand] (Log M)

S
p

e
c
if

ic
 B

in
d

in
g

 (
%

)

[D2.65R]V1bR

-12 -11 -10 -9 -8 -7 -6

0

25

50

75

100

125
AVP

[Ligand] (Log M)

S
p

e
c
if

ic
 B

in
d

in
g

 (
%

)

 

 

Figure 3.8 a-d  Ligand binding profile of the TM2 mutant constructs:   
Graphs show the competition binding of [

3
H]AVP and various ligands as indicated, in each construct: a. [F2.56A]V1bR; b. [D2.56A]V1bR; c. 

[D2.56Q]V1bR; and d. [D2.56R]V1bR.  The values were normalised to show the percentage-specific bindings of [
3
H]AVP.  The error bars 

represent SEM of three experiments each performed in triplicate.     

 

 

  

a b 

c d 
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Construct 
Binding Affinity  (Ki, nM ±S.E.M.) Cell-Surface 

Expression 
(% Wt) AVP dDAVP d[Cha

4
]AVP SSR149415 5234B LA CA 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.0) 1.35 (± 0.02) 3.36 (± 0.93) 7.18 (± 1.82) 6.25 (± 1.86) 159 (±  72)  100 

[Q2.57A]V1bR 0.81 (± 0.29) 1.06 (± 0.22) 1.07 (± 0.15) 2.30 (± 0.49) 38.7 (± 4.8) 0.67 (± 0.15) 3.58 (± 0.48) 64 (± 2) 

b a 

Table 3.5 The binding characteristics of the Wt V1bR and [Q2.57A]V1bR: The Ki values of various ligands binding to [Q2.57A]V1bR 

are compared with the Wt.  Peptide ligands: V1bR-selective agonist dDAVP, d[Cha
4
]AVP, V1aR/V1bR-selective LA, V1aR-selective CA.  Non-

peptide ligands: V1bR-selective antagonist SSR149415, 5234B. The colour code applied as previous.  The values were determined from three 

experiments each performed in triplicate.  

 

Figure 3.9 ab The ligand binding properties of the Wt and [Q2.57A]V1bR:  

a. Wt V1bR The competition binding of [
3
H]AVP with various ligands as indicated.   

b. [Q2.57A]V1bR The competition binding of [
3
H]AVP and various ligands as in the Wt. 

The error bars represent SEM of three experiments each performed in triplicate.  
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Construct 
Binding Affinity  (Ki, nM ±S.E.M.) Cell-Surface 

Expression 
(% Wt) AVP dDAVP LA 5234B SSR149415 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.0) 6.25 (± 1.86) 7.18 (± 1.82) 3.36 (± 0.93) 100 

[W2.64A]V1bR 5.06 (± 0.07) 10.6 (± 1.1) 4.64 (± 0.54) 10.1 (± 1.4) 2.82 (± 0.41) 119 (±  6) 
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Table 3.6 The binding characteristics of the Wt V1bR and [W2.64A]V1bR: The Ki values of various ligands binding to [W2.64A]V1bR 

are compared with the Wt.  Peptide ligands: V1bR-selective agonist dDAVP and V1aR/V1bR-selective LA.  Non-peptide ligands: V1bR-selective 

antagonist SSR149415 and 5234B.  The values were obtained from three experiments each performed in triplicate.  

 

Figure 3.10 ab The ligand binding properties of the Wt and [W2.64A]V1bR:  

a. Wt V1bR The competition binding of [
3
H]AVP and various ligands as indicated.   

b. [W2.64A]V1bR The competition binding of [
3
H]AVP and various ligands as in the Wt. 

The error bars represent SEM of three experiments each of which was performed in triplicate. 

 

a b 
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Construct 
Cell-Surface 
Expression 

(% Wt) 

AVP-induced 
internalisation 

(% unstimulated) 

WT V1bR 100 46 (±  3) 

[F2.56A]V1bR 17 (±  1) 52 (±  4) 

[Q2.57A]V1bR 64 (± 2) 48 (±  3) 

[P2.60A]V1bR 19 (±  1) 55 (±  10) 

[P2.60G]V1bR  16 (±  1) 16 (±  4) 

[Q2.61A]V1bR 34 (±  9) 66 (±  13) 

[W2.64A]V1bR 119 (±  6) 45 (±  2) 

[D2.65A]V1bR 132 (±  12) 65 (±  5) 

[D2.65Q]V1bR 120 (±  3) 39 (±  3) 

[D2.65R]V1bR 132 (±  5) 31 (±  7) 

[Q2.61D/D2.65Q]V1bR 19 (±  1) 18 (±  5) 

[W2.64A/D2.65A]V1bR 114 (±  7) 24 (±  3) 

[W2.64D/D2.65W]V1bR 30 (±  1) 33 (±  6) 

Figure 3.11 ab  The cell-surface expression of the mutant constructs and the V1bR Wt:  

a. The cell-surface expression of each mutant construct was shown relative to the Wt 

b. The cell-surface expression after AVP-stimulation (1κM).  The results were analysed statistically by one-way ANOVA with Dunett’s 

post-test (P < 0.01 shown as pale-red, P < 0.05 shown as pale orange).   

The error bars represent SEM of three experiments each performed in triplicate. 

 

Table 3.7 The cell-surface expression and internalisation of the mutant constructs:   
The cell-surface expression of the mutant constructs relative to the Wt, and the proportion of the constructs internalised are shown plus/minus 

SEM of three separate experiments each of which was in triplicate. 

a 

b 

*
*

 *  

*
*

 *  

*
*

 *  

 *
*

*

*

 *  

 *
*

*
*

 *  

 *
*

*

*

 *  

 *
*

*
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 *  

 *
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 *  
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Time-course study of the agonist-induced internalisation  

The cell-surface expression of [Q2.61A]V1bR was significantly lower than that of the Wt, and 

the construct internalised proportionally more than the Wt in response to AVP stimulation.  In 

contrast, a slightly higher cell-surface expression level was observed in [W2.64A/D2.65A]V1bR 

compared to the Wt, and the construct internalised less proportionally to the Wt, in response to 

AVP stimulation.  In order to investigate a possible link between the cell-surface expression 

level and the responsiveness of the receptors to the agonist-induced internalisation, the two 

constructs were subjected to a time-course study.  The rate of internalisation was determined for 

these constructs in terms of the receptor half-life at the cell-surface, and the values were 

compared to that of the Wt. 
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Constructs 

(n. replicates) 

 

 

t1/2 

(min) 

 

WT (4) 7.75 

Q2.61A (3) 6.17 

W2.64A/D2.65A (3) 6.74 
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Table 3.8 The rate of internalisation of [Q2.61A]V1bR, [W2.64A/D2.65A]V1bR and the Wt 

V1bR: The rate of AVP-induced internalisation of the mutant constructs and the Wt were 

determined over one hour period.  The cell-surface half-lives of the receptor constructs in 

HEK293T cell-line obtained are shown in minutes.  

 

Figure 3.12 The time-course of the AVP-induced internalisation of the mutant constructs 

and the V1bR Wt: The percentage cell-surface expression after AVP-stimulation (1κM) relative 

to the unstimulated.  Each set of values obtained were fitted with the one-phase exponential decay 

curve.  Each curve represents mean plus/minus SEM of three or four separate experiments (as 

indicated in Table 3.8), each performed in triplicate.   
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3.2.3.i The summary of the results for the juxtamembrane Trp
2.64 

and Asp
2.65 

 

Both Trp
2.64 

and Asp
2.65 

were shown to participate in AVP-binding as the alanine mutagenesis of 

either one of the residues resulted in a moderate decrease in the affinity to the V1bR: ≈ 5-fold 

decrease in [W2.64A]V1bR, and ≈ 10-fold decrease for [D2.65A]V1bR.  The substitution of 

Asp
2.65

 with Gln or Arg was tolerated equally well as Ala, and the affinity of AVP for 

[D2.65Q]V1bR and [D2.65R]V1bR are similar regardless of the differences in the polarities of 

the Gln and Arg side chains.  Specific binding of [
3
H]AVP was undetectable in the double 

alanine mutant [W2.64A/D2.65A]V1bR.  Specific binding of [
3
H]AVP was not detected in the 

reciprocal double mutant [W2.64D/D2.65W]V1bR.  

The cell-surface expression was slightly but consistently elevated in the mutant constructs 

replacing either Trp
2.64

or Asp
2.65

, with an exception of [W2.64D/D2.65W]V1bR.  The reciprocal 

double mutant displayed dramatically reduced level of the cell-surface expression.  Although the 

double alanine mutant retained the high cell-surface expression level, it showed a significantly 

reduced responsiveness to the agonist-induced internalisation.  [D2.65A]V1bR was on the other 

hand more responsive to the AVP-induced internalisation compared to the Wt.  When the time-

course study was applied to compare the rate of the internalisation between 

[W2.64A/D2.65A]V1bR and Wt, no significant difference was recognised after t-test analysis.  

The cell-surface half-life of the Wt and [W2.64D/D2.65W]V1bR following AVP-stimulation 

were both estimated to be approximately 7 minutes in HEK293T cell-line.              
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3.2.3.ii The summary of the results for Phe
2.56

, Gln
2.57

, Pro
2.60

, and Gln
2.61 

of the 

conserved FQVLPQ motif 

[F2.56A]V1bR displayed dramatically reduced cell-surface expression.  However, the mutant 

construct appeared to have retained binding characteristics similar to the Wt, and the receptors 

expressed on the cell-surface were internalised following exposure to AVP.   

[Q2.57A]V1bR retained Wt-like cell-surface expression and the receptor internalisation 

in response to AVP stimulation.  The construct bound AVP, V1bR-selective d[Cha
4
]AVP and 

V1bR-selective non-peptide antagonist SSR149415 with similar affinities as the Wt. However, 

the affinity of the other V1bR-selective antagonist 5234B to the construct was slightly 

compromised, with about 5-fold decrease in the Ki in comparison to the Wt.  On the other hand, 

the relatively V1bR-selective dDAVP and LA bound to [Q2.57A]V1bR with increased affinities 

of ≈ 10-fold.  Moreover, a highly V1aR-selective peptide antagonist CA bound to the construct 

with a dramatically increased affinity of approximately 40-fold.  These results suggest the 

involvement of Gln
2.57 

in constructing binding cavities characteristic of the V1bR at least for the 

ligands which showed differences in this study. 

The absence of Pro
2.60 

had detrimental effect on the V1bR, as a dramatic decrease in the 

cell-surface expression was seen in [P2.60A]V1bR, and the specific binding of AVP to the 

construct was undetectable with the concentration of [
3
H]AVP used.  The construct was 

however internalised after incubating with AVP.  In order to assess the role of Pro
2.60

, 

[P2.60G]V1bR was produced to allow the region of TM2 flexibility.  Neither the cell-surface 

expression nor the AVP binding were recovered in [P2.60G]V1bR compared to [P2.60A]V1bR, 

and the AVP-induced internalisation was also compromised in this construct.  These 

observations suggest that in the V1bR, the cyclic structure of Pro
2.60

 with the relevant 
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hydrophobicity is important in this region as well as the proline-induced kink at an appropriate 

angle, in comparison to a mere flexibility which can also be induced by the Gly residue. 

Gln
2.61 

also has a critical role in the V1bR, as [Q2.61A]V1bR showed a low level of the 

cell-surface expression and AVP binding was undetectable.  However, the construct appeared to 

internalise more readily following AVP stimulation.  Time-course study of the internalisation of 

[Q2.61A]V1bR was carried out, and the construct appeared to internalise slightly faster with a 

reduced half-life of about 1.5 minutes compared to the Wt.  However, t-test analysis of the 

results established that the difference was insignificant.  The reciprocal mutant 

[Q2.61D/D2.65Q]V1bR was produced to investigate whether the two residue were located 

closely and the roles could be inter-changeable.  The construct did not appear to be functional 

with no detectable AVP binding, dramatically reduced levels of cell-surface expression and the 

internalisation.  This suggests that both residues are likely to function independently, and the 

exact position of the residues is crucial in AVP binding as well as in maintaining structural 

integrity at the cell-surface.              
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3.2.3. The roles of the highly conserved residues of TM3 in the 

juxtamembrane region and the putative ligand binding site 

Four residues of TM3 were selected for study, and these are: Arg
3.26

, Val
3.28

, and Gln
3.32

 which 

are located towards the extracellular terminal of TM3; and a core transmembrane residues 

Phe
3.37

.  Arg
3.26

 at the juxtamembrane is highly conserved in peptide GPCRs.  Molecular 

modelling study on V1aR by Simms predicted that Arg
3.26

 may interact with the phosphate group 

of phospholipids [428].  [R3.26D]V1bR, in which the charge of the residue was reversed, was 

made to test whether the similar observation applies to the V1bR. 

 Val
3.28 

and Gln
3.36

 are both conserved in the vasopressin receptors and OTR.  Gln
3.36

 has 

been predicted to interact with AVP in V1aR, V2R and OTR based on the molecular modelling 

study by Ślusarz et al..  The same study has also predicted Val
3.28 

to be involved in the 

interaction with AVP in V1aR [427].  Val
3.28 

and Gln
3.36

 were also predicted to participate in a 

V1bR-selective antagonist Org52186 binding by molecular modelling study by Dr. Wishart in 

Schering-Plough (personal communication).  [V3.28A]V1bR and [Q3.32A]V1bR were made to 

investigate the involvement of these residues in ligand binding by the V1bR.   

           The aromatic residue Phe
3.37 

is conserved in vasopressin receptors and OTR with an 

exception of V2R in which Tyr
3.37 

is found instead.  Phe
3.37

 was suggested to be involved in AVP 

binding in OTR by Ślusarz et al.[427].  [F3.37A]V1bR was made to study the involvement of 

this residue in the ligand binding of V1bR.   
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Colour code applied to indicate fold-changes in binding affinity 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.9 The binding characteristics of the mutant constructs and the Wt V1bR:   

The values of Ki of various ligands, determined from three experiments each performed in triplicate, are shown plus/minus SEM.  Peptide 

ligands: V1bR-selective agonist dDAVP; peptide linear antagonists LA; V1aR-selective cyclic antagonist CA.  Non-peptide ligands: V1bR-selective 

antagonist SSR149415, 5234B. The colour code applied as above.  The cell-surface expression levels of the mutant and the Wt constructs were 

determined by ELISA.  The figures in percentage relative to the Wt are shown on the far right column.  The values shown are mean plus/minus 

SEM obtained from three experiments each performed in triplicate.   

 Over 20 fold increase in affinity 

 5 ~ 19 fold increase in affinity 

 2 ~ 4.9 fold increase in affinity 

 2 ~ 4.9 fold decrease in affinity 

 5 ~ 19 fold decrease in affinity 

 20 ~ 999 fold decrease in affinity 

 Over 1000 fold decrease in affinity 

Construct 

 
Binding Affinity  (Ki, nM ±S.E.M.) 

 

 
Cell-Surface 
Expression  

(% Wt) 
AVP dDAVP SSR149415 5234B LA 

Wt V1bR 0.90 (± 0.13) 10.5 (± 2.7) 3.36 (± 0.93) 7.18 (± 1.82) 6.25 (± 1.86) 100 

[R3.26D] V1bR Undetectable [3H]AVP binding 49 (± 2) 

[V3.28A]V1bR 0.72 (± 0.22) 32.3 (± 6.0) 8.41 (± 0.40)  4.35 (± 0.36) 7.69 (± 2.08) 94 (± 7) 

[Q3.32A]V1bR 0.90 (± 0.23) 18.1 (± 2.4) 5.65 (± 0.91) 5.93 (± 0.94) 18.9 (± 3.0) 76 (± 9) 

[F3.37A]V1bR 0.97 (± 0.22) 11.2 (± 3.7) 1.97 (± 0.23) 6.23 (± 1.73) 0.67 (± 0.20) 21 (± 1) 

[Y3.41A]V1bR 0.92 (± 0.30) 757 (± 22) 55.0 (± 0.02) 4637 (± 685) 1.69 (± 0.23) 108 (± 3) 
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Figure 3.13.a-d Ligand binding profile of the Ala-substituted TM3 constructs: 

Graphs show the competition binding of [
3
H]AVP and various ligands as indicated in each construct: a [V3.28A]V1bR; b [Q3.32A]V1bR; 

c [F3.37A]V1bR; and d [Y3.41A]V1bR.  The values were normalised to show the percentage specific binding. 
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Construct 
Cell-Surface 
Expression 

(% Wt) 

AVP-induced 
internalisation 

(% unstimulated) 

WT V1bR 100 54 (± 3) 

[R3.26A]V1bR 49 (± 2) 69 (± 4) 

[V3.28A]V1bR 94 (± 7) 50 (± 4) 

[Q3.32A]V1bR 76 (± 9) 51 (± 11) 

[F3.37A]V1bR 21 (± 1) 42 (± 6) 

[Y3.41A]V1bR 108  (± 3) 53 (± 4) 

Figure 3.14 ab  The cell-surface expression of the mutant constructs and the V1bR Wt:  

a. The cell-surface expression of each mutant construct was shown relative to the Wt 

b. The cell-surface expression after AVP-stimulation (1κM, 30 min).  The results were analysed using ANOVA with Dunett’s post-test 

using the Wt as control (P <  0.01 indicated as pale-red with asterisks). 
 

Table 3.10 The cell-surface expression and internalisation of the mutant constructs: The cell-surface expression of the mutant constructs 

relative to the Wt and the proportion of the constructs internalised in percentage are shown plus/minus SEM of three separate experiments each 

performed in triplicate. 

a 

b 

 *
*

*

*

 *  

 *
*

*

*

 *  
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3.2.4.i  The summary of the results 

Arg
3.26

 is highly conserved in peptide-GPCRs, located at the top of TM3 immediately next to 

Cys
3.25 

which forms the disulfide bond conserved throughout Family A GPCRs.  The effect of 

charge reversal at this locus was investigated by studying [R3.26D]V1bR.  The construct did not 

bind to [
3
H]AVP.  The cell-surface expression level of this construct was approximately 50% 

relative to the Wt.    

The other three constructs, [V3.28A]V1bR, [Q3.32A]V1bR, and [F3.37A]V1bR, all retained 

a high affinity binding to AVP, and that allowed further characterisations of these  constructs 

with other ligands.  [V3.28A]V1bR displayed a slight decrease in affinity towards dDAVP and 

SSR149415, with increases in the Ki values 2 ~3 folds approximately.  The affinity of LA to 

[Q3.32A]V1bR was decreased with a 3-fold increase in the Ki, but this was the only effect 

observed in this construct.  The cell-surface expression level of [F3.37A]V1bR was reduced 

dramatically to 21% relative to the Wt, but the construct retained similar affinities for most 

ligands as Wt, with an exception of LA which increased affinity 9-fold. 

 The most notably, the binding characteristics of [Y3.41A]V1bR were distinct from 

the Wt.  The binding affinity of V1bR-selective ligands, the agonist dDAVP and the antagonists 

5234B and SSR149415, were reduced dramatically.  The binding affinity of its native agonist 

AVP was unaffected, and the construct was internalised in a manner similar to the Wt.     
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3.2.5. The role of conserved aromatic, or polar residues of TM4 and TM5 in 

the ligand binding and receptor stability of V1bR 

Gln
4.60 

is a well-conserved residue in neurohypophysial hormone receptors (figure 3.1).  The 

involvement of this residue in AVP binding to V1aR, V2R and OTR was predicted by the 

computational modelling study by Ślusarz et al. [427].  Two residues ahead of Gln
4.60

, there is a 

semi-conserved Phe
4.62

.  The residue is conserved in vasopressin receptors.  The OTR has a 

slightly smaller residue, His in place of Phe
4.62

. 

 Three aromatic residues in TM5, Tyr
5.38

, Phe
5.47

, and Tyr
5.58

, were subjected to Ala 

substitution.  Phe
5.47

 is conserved in vasopressin receptors and also among many Family A 

GPCRs including rhodopsin (figure 3.1), while in a few GPCRs, including OTR, Tyr
5.47 

is found 

instead.  The residue has been predicted by computational studies to be a contact site for AVP in 

V1aR, V2R and OTR by Ślusarz et al. [427], and also to be a site of interaction for SSR149415 

in V1bR by Derick et al. [434].  Tyr
5.58 

has been shown to interact with the Arg
3.50

 when the 

‘ionic lock’ breaks during the rhodopsin activation [295].  To determine the ligand binding 

profiles of agonists and antagonists in the absence of the proposed interaction between Arg
3.50

 

and Tyr
5.58

, Tyr
5.58

 was substituted with Ala.  In this section, the total of five receptor constructs 

[Q4.60A]V1bR, [F4.62A]V1bR, [Y5.38A]V1bR, [F5.47A]V1bR and [Y5.58A]V1bR were made 

and characterised.  The results obtained for these constructs are summarised in the first part of 

this section 3.2.5.I. 

 In transmembrane domains, aromatic or bulky hydrophobic side chains may have 

stabilising effects on the overall conformation of TM assembly.  The constructs which did not 

tolerate Ala substitution were subsequently subjected to further substitution with a range of 

amino acids with various degrees of hydrophobicity.  The results obtained for these constructs 
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are shown in the second part of this section 3.2.5.II.  The mutant constructs were characterised 

for ligand binding, the cell-surface expression, and AVP-induced internalisation.  The constructs 

containing amino acid substitution at 5.47 were also subjected to thermostability assays to assess 

the structural stability of these constructs.   
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3.2.5. I.  Alanine mutagenesis 

 
Colour code used to indicate fold-changes in binding affinity 

Construct 
Binding Affinity  (Ki, nM ± S.E.M.) 

 
Cell-Surface 
Expression 

(% Wt) AVP dDAVP d[Cha
4
]AVP LA 5234B SSR149415 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.7) 1.35 (± 0.02) 6.25 (± 1.86) 7.18 (± 1.82) 3.36 (± 0.93) 100 

[Q4.60A]V1bR 2.54 (± 0.77) 8.88 (± 1.27) 1.22 (± 0.23) 34.5 (± 6.6) 105 (± 33) 1.85 (± 0.10) 126 (± 4) 

[F4.62A]V1bR 0.45 (± 0.18) 11.7 (± 2.3) - 6.30 (± 0.97) 3.36 (± 1.00) 4.74 (± 0.52) 95 (± 11) 

[Y5.38A]V1bR Undetectable [3H]AVP binding 38 (± 2) 

[F5.47A]V1bR Undetectable [3H]AVP binding 9 (± 1) 

[Y5.58A]V1bR 1.85 (± 0.11) 9.48 (± 1.07) - 6.21 (± 0.18) 16.1 (± 1.4) 5.01 (± 0.07) 113 (± 6) 

 Over 20 fold increase in affinity 

 5 ~ 19 fold increase in affinity 

 2 ~ 4.9 fold increase in affinity 

 2 ~ 4.9 fold decrease in affinity 

 5 ~ 19 fold decrease in affinity 

 20 ~ 999 fold decrease in affinity 

 Over 1000 fold decrease in affinity 

 

Table 3.11 The binding characteristics of the mutant constructs and the Wt V1bR: The values of Ki of various ligands are 

shown plus/minus SEM.  Peptide ligands: V1bR-selective agonist dDAVP and d[Cha
4
]AVP; peptide linear antagonists LA.  Non-

peptide ligands: V1bR-selective antagonist SSR149415, 5234B. The colour code applied as above.  The cell-surface expression levels 

of the mutant and the Wt constructs were determined by ELISA: the figures in percentage relative to the Wt are shown on the far 

right column.  The values shown are mean plus/minus SEM of three experiments each performed in triplicate.   
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Figure 3.15.a-c  Ligand binding profiles of [F4.62A]V1bR, [Q4.60A]V1bR and [Y5.58A]V1bR: 
Graphs show competition binding of [

3
H]AVP and various ligands as indicated, for mutant constructs each 

containing an alanine substitution: a. [F4.62A]V1bR; b. [Q4.60A]V1bR; c. [Y5.58A]V1bR. The values were 

normalised to show the percentage-specific bindings.  The error bars represent SEM of three experiments 

performed in triplicate except dDAVP binding curves in [F4.62A]V1bR and [Y5.58A]V1bR where mean 

plus/minus SEM of single triplicated experiments are shown.     
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Construct 
Cell-Surface 
Expression 

(% Wt) 

AVP-induced 
internalisation 

(% unstimulated) 

WT V1bR 100 45 (± 2) 

[Q4.60A]V1bR 126 (± 4) 45 (± 2) 

[F4.62A]V1bR 95 (± 11) 46 (± 5) 

[Y5.38A]V1bR 38 (± 2) 2 (± 4) 

[F5.47A]V1bR 9 (± 1) 25 (± 6) 

[Y5.58A]V1bR 113 (± 6) 51 (± 4) 

a 

b 

Figure 3.16 ab The cell-surface expression of the mutant constructs and the V1bR Wt: 

a. The cell-surface expression of each mutant construct was shown relative to the Wt 

b. The cell-surface expression after AVP-stimulation (1κM, 30 min).   

 The results were analysed by one-way ANOVA with Dunnett’s post-test with Wt as control (P < 0.01 indicated as pale-red with asterisks). 

 

Table 3.12 The cell-surface expression and internalisation of the mutant constructs:   
The cell-surface expression of the mutant constructs relative to the Wt and the proportion of the constructs internalised in percentage are 

shown as mean plus/minus SEM of three separate experiments each of which was performed in triplicate. 

 *
*

*
*

 *  

 *
*

*
*

 *  

 *
*

*

*

 *  

 *
*

*
*

 *  
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3.2.5. II. Hydrophobicity Substitutions 

 

 

 

 

 

 

 

 

 

 

   

 Over 20 fold increase in affinity 

 5 ~ 19 fold increase in affinity 

 2 ~ 4.9 fold increase in affinity 

 2 ~ 4.9 fold decrease in affinity 

 5 ~ 19 fold decrease in affinity 

 20 ~ 999 fold decrease in affinity 

 Over 1000 fold decrease in affinity 

Construct 
Binding Affinity  (Ki, nM ± S.E.M.) 

 

Cell-Surface 

Expression  

(% Wt) 

 
AVP-induced 

internalisation 

(% unstimulated) AVP LA 5234B 

WT V1bR 0.90 (± 0.13) 6.25 (± 1.86) 7.18 (± 1.82) 100 50 (± 3) 

[Y5.38F]V1bR 0.50 (± 0.06) 5.95 (± 1.34) 72.7 (± 11.8) 82 (± 2) 50 (± 3) 

[Y5.38W]V1bR 1.58 (± 0.11) 4.93 (± 1.60) 9.92 (± 0.02) 59 (± 5) 65 (± 2) 

[F5.47V]V1bR 0.23 (± 0.05)  - 8.70 (± 2.24) 27 (± 3) 53 (± 13) 

[F5.47I]V1bR 0.93 (± 0.18)  - 7.05 (± 1.06) 27 (± 5) 57 (± 6) 

[F5.47K]V1bR Undetectable [3H]AVP binding 5 (± 1) undetectable 

[F5.47W]V1bR 0.12 (± 0.04)  -  - 54 (± 2) 53 (± 4) 

[F5.47Y]V1bR 0.53 (± 0.02)  - - 104 (± 11) 46 (± 3) 

 

Table 3.13 The characterisation of the mutant constructs each containing a hydrophobicity substitution at residue 5.47 or 5.38: 

Binding affinities are shown as Ki obtained from competition binding assays using [
3
H]AVP as a tracer ligand.  On the column on the far 

right, the cell-surface expression of the mutant constructs relative to the Wt and the proportion of the constructs internalised in percentage are 

shown plus/minus SEM of three separate experiments each of which was in triplicate. 
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Figure 3.18 ab Ligand Binding Profile of the constructs with aromatic substitution at 5.38: 

 

Graphs show the competition binding of [
3
H]AVP and various ligands as indicated, in mutant 

constructs each containing a substitution of amino acid at 5.38:  

 

a. [Y5.38F]V1bR, in which the terminal hydroxyl group was removed from the side chain 

b. [Y5.38W]V1bR.   

The values were normalised to show the percentage-specific bindings.  The error bars represent 

SEM of values obtained from three independent experiments each performed in triplicate.     

 

 

  



 

111 

[F5.47V]V1bR

-12 -11 -10 -9 -8 -7 -6 -5

0

25

50

75

100

125
AVP

5234B

[Lignd] (Log M)

S
p

e
c
if

ic
 B

in
d

in
g

 (
%

)

[F5.47I]V1bR

-12 -11 -10 -9 -8 -7 -6 -5

0

25

50

75

100

125
AVP

5234B

[Lignd] (Log M)

S
p

e
c
if

ic
 B

in
d

in
g

 (
%

)

[F5.47W]V1bR

-12 -11 -10 -9 -8 -7 -6 -5

0

25

50

75

100

125
AVP

[Lignd] (Log M)

S
p

e
c
if

ic
 B

in
d

in
g

 (
%

)

[F5.47Y]V1bR

-12 -11 -10 -9 -8 -7 -6 -5

0

25

50

75

100

125
AVP

[Lignd] (Log M)

S
p

e
c
if

ic
 B

in
d

in
g

 (
%

)

 

Figure 3.17.a-d  Ligand Binding Profile of the constructs with modified hydrophobicity at 5.47: Graphs show the competition 

binding of [
3
H]AVP and various ligands as indicated, in mutant constructs each containing a substitution of amino acid at 5.47: a. [F5.47V]V1bR; 

b. [F5.47I]V1bR; c. [F5.47W]V1bR; and d. [F5.47Y]V1bR.  The values were normalised to show the percentage-specific bindings.  The error bars 

represent SEM of three experiments each performed in triplicate.     
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Construct 

 

Cell-Surface 

Expression  

(% Wt) 

 
AVP-induced 

internalisation 

(% unstimulated) 

WT V1bR 100 50 (± 3) 

[Y5.38F]V1bR 82 (± 2) 50 (± 3) 

[Y5.38W]V1bR 59 (± 5) 65 (± 2) 

[F5.47V]V1bR 27 (± 3) 53 (± 13) 

[F5.47I]V1bR 27 (± 5) 57 (± 6) 

[F5.47K]V1bR 5 (± 1) Undetectable 

[F5.47W]V1bR 54 (± 2) 53 (± 4) 

[F5.47Y]V1bR 104 (± 11) 46 (± 3) 

a 

b 

Figure 3.19 ab The cell-surface expression levels of the mutant constructs and the V1bR Wt: 

a. The cell-surface expression of each mutant construct was shown relative to the Wt;  

b.  The cell-surface expression after AVP-stimulation (1κM) for 30 min.  The figures were normalised to the cell-surface expression 

levels of the same construct in the absence of AVP, derived from the experiments performed in parallel.  The results were analysed 

statistically by one-way ANOVA and Dunnett’s post-test with Wt as control (P < 0.01 indicated as pale-red with asterisks). 

 

Table 3.13  The cell-surface expression of the mutant constructs relative to the Wt and the proportion of the constructs internalised in 

percentage are shown plus/minus SEM of three separate experiments each of which was in triplicate. 

 

 *
*

*

*

 *  

 *
*

*
*

 *  

 *
*

*

*

 *  

 *
*

*

*

 *  

 *
*

*

*

 *  

 *
*

*

*

 *  
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The effect of hydrophobicity substitutions at position 5.47 on the structural stability of the 

V1bR 

 

The substitution of Phe
5.47 

with other relatively hydrophobic residues resulted in recovery of 

cell-surface expression to varying degrees.  From the results, it was hypothesised that the 

increase in the receptor expression at the cell-surface observed was due to its structural stability 

partially restored by increasing hydrophobicity required at the local environment.  Therefore, the 

constructs containing hydrophobicity substitution at position 5.47 were studied further to 

investigate the effect of the residue substitutions on thermal stability of the V1bR.  The 

membrane preparations of [F5.47A]V1bR, [F5.47V]V1bR, [F5.47I]V1bR, [F5.47W]V1bR, 

[F5.47Y]V1bR and the Wt V1bR were pre-treated at a mildly denaturing temperature of 53 °C at 

various time-periods.  The structural stability of the constructs was quantified as half-life of 

functional receptors, based on their capability in binding specifically to [
3
H]AVP. 
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Construct 

 

Half-life 

(min) 

 

Wt V1bR 8.42 

[F5.47V]V1bR   1.61 * 

[F5.47I]V1bR   3.06 * 

[F5.47W]V1bR   1.80 *  

[F5.47Y]V1bR 6.40 
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Table 3.14   The cell-surface half-life of the V1bR constructs after heat-treatment: 

The half-life of the functional receptors were shown in minutes, determined by capability of 

specific binding to [
3
H]AVP following heat-treatment at 53 ºC.  Asterisk (*) indicates results 

which differ significantly from the Wt (P < 0.05) indicated by two-tailed paired t-test. 

    

Figure 3.19    Thermal stability of the mutant constructs and the V1bR Wt: 

The DPM values were plotted against time in minutes after subtracting non-specific binding.  

Non-linear regression curves were fitted optimised for one-phase exponential decay, using Prism 

4.0.  Each curve represents mean plus/minus SEM (error bars) of three experiments each was 

performed in triplicate. 

 

 



 

115 

The pharmacological chaperone activity of a non-peptide antagonist 5234B 

Some constructs, [F5.47A]V1bR, [F5.47V]V1bR, [F5.47I]V1bR, [F5.47K]V1bR and 

[F5.47W]V1bR, were treated with the V1bR-selective non-peptide antagonist 5234B to test 

whether the compound can act as a chaperone assisting receptor folding.  Several studies have 

shown that non-peptide antagonists of GPCRs can increase the cell-surface expression levels of 

the receptors.  A notable example was seen with a 5-HT2AR antagonist pipamperone, which 

increased the cell-surface expression of the Wt 5-HT2AR, dopamine D4 receptor (D4R), and also 

a D4R mutant with compromised folding [435].  Among vasopressin receptors, a V1bR-selective 

non-peptide antagonist SSR149415 has been demonstrated for its pharmaco-chaperone activity 

on a misfolding mutant [436]; and a V1aR-selective antagonist SR49059 has been shown to 

restore the cell-surface expression of a mutant constract with compromised cell-surface 

expression [437].  The exact mechanisms in which certain ligands restore the cell-surface 

expression are yet to be established.  The hydrophibic nature of non-peptide ligands may explain 

how these compounds act as a chaperone in assisting misfolding mutants, as these may prevent 

random water molecules accessing to disrupt the folding process at the core of the receptor 

particularly at vulnerable stages of folding intermediates.  Reduced constitutive internalisation 

of a population of antagonist-occupied receptors is thought to be a contributing factor with a 

particular relevance to the increased cell-surface expression of the Wt receptors.      

In each assay, a control group without treatment and two experimental groups treated with 

5234B were made for each construct.  One of the experimental groups was also treated 

additionally with AVP, to test the responsiveness of the 5234B pre-treated receptors to the 

AVP-induced internalisation.  
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Construct 

 

 

Cell-Surface 

Expression  

 

 

(% Wt) 

 

 

Cell-Surface 

Expression 

 

5234B pre-treated 

(% Wt untreated) 

 

Cell-Surface 

Expression 

Post-AVP stimulation 

 

5234B pre-treated 

(% Wt untreated) 

WT V1bR 100 163 (± 5) 103 (± 3) 

[F5.47A]V1bR 8 (± 2) 30 (± 2) 15 (± 1) 

[F5.47V]V1bR 15 (± 1) 44 (± 1) 16 (± 1) 

[F5.47I]V1bR 18 (± 3) 43 (± 4) 16 (± 4) 

[F5.47K]V1bR 5 (± 1) 15 (± 1) 6 (± 1) 

[F5.47W]V1bR 76 (± 6) 159 (± 6) 101 (± 9) 

 

Table 3.15   The effect of a non-peptide ligand 5234B on the cell-surface expression:  

The receptor constructs were treated with a V1bR-selective non-peptide antagonsit 5234B (1 κM) 

24 h prior to the assay.  The cell-surface expression level was quantified relative to the Wt 

untreated (the untreated group on the right, the treated group on the middle column).  In each 

experiment one of the treatment group was stimulated with AVP for 30 min to test responsiveness 

of these treated constructs to the AVP-induced internalisation (right column). 

     

Figure 3.20 The cell-surface expression of the constructs after 5234B treatment: Each 

experiment was performed to contain three groups: 5234B-pretreated (+), 5234B-pretreated and 

AVP-stimulated (+(+AVP)), and untreated.  The values are normalised to the Wt untreated as 

100%.  The error bars represent SEM of three experiments each performed in triplicate. 
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3.2.5.i The summary of the results for the constructs with Ala substitution 

AVP binding to [Q4.60A]V1bR was reduced slightly, with about 2.5-fold increase in Ki.  The 

affinity of the construct for LA was also reduced with 5-fold increased Ki.  The affinity of 

5234B was most largely affected with Ki rising from 7 nM in the Wt to 105 nM, showing 15-

fold increase.  These changes were selective relatively as the affinities of V1bR-selective agonist 

d[Cha
4
]AVP and a non-peptide antagonist SSR149415 were unaffected.      [Q4.60A]V1bR 

expressed on the cell-surface well with a slight increase of 126% relative to the Wt. 

[Y5.58A]V1bR also displayed a slight reduction in affinities towards AVP and 5234B, 

with about 2-fold increase in Ki.   Tyr
5.58 

is located at the lower part of the TM5 and the residue 

has been indicated to be involved in the activation process by interacting Arg
3.50 

in an active 

state of opsin.  It is yet uncertain whether this residue has a similar role in the V1bR; 

nevertheless the loss of Tyr
5.58

 resulted in a slight impairment (2-fold increase in Ki) of ligand 

binding for the agonist AVP and also the antagonist 5234B.  The cell-surface expression of this 

construct was reduced to 38% relative to the Wt. 

 Ala substitution of Tyr
5.38 

or Phe
5.47 

was not tolerated in the V1bR.  The binding of 

[
3
H]AVP to [Y5.38A]V1bR and [F5.47A]V1bR were undetectable, and both constructs showed 

dramatic reduction in the cell-surface expression.  In contrast, Phe
4.62 

appeared not to be 

essential in the V1bR structure and function, and alanine substitution of the residue was well-

tolerated as [F4.62A]V1bR retained Wt-like characteristics in both ligand binding properties and 

the cell-surface expression. 
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3.2.5.ii The summary of the results for the constructs with altered hydrophobicity at 

5.38 or 5.47 

As Ala substitution of Tyr
5.38 

and Phe
5.47 

disrupted receptor function, additional substitutions 

were engineered to probe the role of these residues.  The Phe substitution of Tyr
5.38 

recovered 

the receptor functionality on AVP binding and the cell-surface expression to the Wt level.  

However, this substitution resulted in a selective reduction of 5234B affinity to the receptor, 

with 10-fold increase in the Ki value.  This implies a role of the terminal hydroxyl group in 

constructing the ligand binding cavity of 5234B.  Substitution by Trp in [Y5.38W]V1bR was 

well-tolerated with essentially the Wt binding profile for peptide agonist (AVP), peptide 

antagonist (LA) and non-peptide antagonist (5234B). 

 The substitution of Phe
5.47 

with Val or Ile resulted in a slight recovery of the receptor 

function.  The cell-surface expression levels were still low relatively, but high affinity AVP 

binding to [F5.47V]V1bR and [F5.47I]V1bR was detected.  Trp substitution resulted in an 8-fold 

increase in AVP affinity compared to the Wt. Cell-surface expression of [F5.47W]V1bR was still 

compromised (54% of the Wt).  The cell-surface level equivalent to the Wt was achieved by Tyr 

substitution.  Lys substitution was not tolerated in [F5.47K]V1bR, suggesting the charged nature 

of the residue was not suitable to be accommodated at this location of the V1bR.   

The mutant constructs of Phe
5.47 

were tested for their structural stability by thermal 

challenge as described in section 2.2.15.  Half-life of [F5.47V]V1bR, [F5.47I]V1bR and 

[F5.47W]V1bR were reduced to 2 - 3 min compared to the 8 min of the Wt, suggesting that the 

decrease in cell-surface expression was due, at least partly, to decreased receptor stability.  

[F5.47Y]V1bR which has expressed at Wt-level at the cell-surface, unlike [F5.47V]V1bR, 



 

119 

[F5.47I]V1bR and [F5.47W]V1bR, had an intermediate stability with half-life of approximately 6 

min. 

 The pre-treatment with a V1bR-selective non-peptide antagonist 5234B resulted in 

increased cell-surface expression levels of over 50% in all the constructs including the Wt V1bR.  

The receptors presented on the cell-surface with aid of 5234B were internalised in response to 

AVP stimulation.  With uncertainty in the exact mechanism of the pharmaco-chaperone activity 

of 5234B, it is unknown whether AVP binds to the receptor containing pharmaco-chaperone to 

induce internalisation, or AVP binding displaces 5234B, assuming the pharmaco-chaperone is 

incorporated into the receptor during the synthesis.  It may also be possible that the compound 

may be subjected to a slow degradation by hydrolysis or other means, losing its affinity to the 

receptor gradually, and dissociate from it eventually over a certain period.                         
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3.2.6. The role of conserved residues in TM6 

TM6 of Family A GPCRs contain CWXP motif which has been proposed to be vital in the 

activation process [309].  The motif contains Cys
6.47 

and Trp
6.48

 of ‘rotamer toggle switch’ of the 

receptor activation.  In addition, a hydrophobic residue is relatively conserved at position 6.40.  

In this study, [I6.40A]V1bR was produced and the ligand binding affinities of agonist and 

antagonist to the construct were determined.  To study the involvement of Cys
6.47 

and Trp
6.48 

of 

the rotamer toggle switch motif in ligand binding of the V1bR, [C6.47A]V1bR, [W6.48A]V1bR 

and [W6.48F]V1bR were produced.   

[F6.51A]V1bR, [F6.52A]V1bR and [Q6.55A]V1bR were also made to investigate their 

participation in ligand binding.  The three residues were previously predicted by molecular 

modelling study to be involved in AVP binding to V1aR, V2R and OTR by Ślusarz et al. [427].  

The three residues and also Val
6.59 

were predicted to interact with certain V1bR-selective non-

peptide antagonists by Dr. Wishart in Schering-Plough Research Institute (Personal 

communication).  [V6.59A]V1bR was made and characterised for ligand binding properties.  In 

addition, Ser
6.58

 next to Val
6.59 

was also substituted with Ala to make comparison between these 

two residues in ligand binding, as the two residues are both semi-conserved (i.e. conserved in 

V1aR, V1bR and OTR but not in V2R).  In addition, at the extracellular end of TM6, there is a 

WD pair (Trp
6.60

 and Asp
6.61

) somewhat resembling the TM2 juxtamembrane region (Trp
2.64

 and 

Asp
2.65

). [W6.60A]V1bR and [D6.61A]V1bR were made to compare the role of the WD pair at 

the exofacial surface of TM2 and TM6.   
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Construct 

 
Binding Affinity  (Ki, nM ±S.E.M.) 

 

Cell-Surface 
Expression 

(% Wt) 
AVP dDAVP d[Cha

4
]AVP LA 5234B SSR149415 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.7) 1.35 (± 0.02) 6.25 (± 1.86) 7.18 (± 1.82) 3.36 (± 0.93) 100 

[I6.40A]V1bR 0.29 (± 0.05) 4.75 (± 0.97) - 1.14 (± 0.22) 4.86 (± 1.06) - 24 (± 3) 

[C6.47A]V1bR 0.50 (± 0.18) - - 1.96 (± 0.23) 3.59 (± 0.69) 2.52 (± 0.27) 42 (± 4) 

[W6.48A]V1bR 0.27 (± 0.07) 0.40 (± 0.06) 0.82 (± 0.07) 1.26 (± 0.21) 152 (± 14) 85.0 (± 17.1) 43 (± 4) 

[F6.51A]V1bR 2.84 (± 0.37) 109 (± 19) 1.04 (± 0.20) 1.10 (± 0.25) 336 (± 26) 184 (± 22) 64 (± 7) 

[F6.52A]V1bR 1.10 (± 0.13) 1.02 (± 0.70) - 5.08 (± 0.31) 12.0 (± 3.8) 82.4 (± 12.0) 82 (± 13) 

[Q6.55A]V1bR 1.37 (± 0.16) 41.1 (± 8.3) - 6.87  (± 1.67)  23.2 (± 4.0) 4.86 (± 1.26) 134 (± 6) 

[S6.58A]V1bR 1.10 (±0.26) 6.01 (± 1.31) - - 3.58 (± 0.53) - 66 (± 2) 

[V6.59A]V1bR 0.93 (± 0.29) 33.7 (± 11.8) - - 14.5 (± 0.9) 11.7 (± 2.3) 99 (± 14) 

[W6.60A]V1bR 0.59 (± 0.26) 15.5 (± 3.3) - 8.36 (± 3.77) 12.2 (± 1.0) - 56 (± 5) 

[D6.61A]V1bR 1.53 (± 0.17) 31.1 (± 6.8) - 12.3 (± 0.8) 5.47 (± 0.25) - 93 (± 6) 

 Over 20 fold increase in affinity 

 5 ~ 19 fold increase in affinity 

 2 ~ 4.9 fold increase in affinity 

 2 ~ 4.9 fold decrease in affinity 

 5 ~ 19 fold decrease in affinity 

 20 ~ 999 fold decrease in affinity 

 Over 1000 fold decrease in affinity 

Table 3.16 The characterisation of the TM6 mutant constructs containing Ala substitution: 

Binding affinities are shown as Ki obtained from competition binding assays using [
3
H]AVP as a tracer ligand.  The colour code was applied, 

as indicated in the box above, to highlight changes in binding affinity relative to the Wt.  The column on the far right shows cell-surface 

expression levels of the mutant constructs relative to the Wt, determined by ELISA.  The data presented are mean values plus/minus SEM of 

three separate experiments, each performed in triplicate.  Dash (-) means value was undetermined. 
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Figure 3.21 a-c  Ligand Binding Profile of the TM6 constructs with Ala substitution: 
Graphs show the competition binding of [

3
H]AVP and various ligands as indicated, in the mutant 

constructs each containing an alanine substitution at the specified position:  

a. [I6.40A]V1bR  with AVP, dDAVP, LA and 5234B; 

b. [C6.47A]V1bR with AVP, 5234B and LA; 

c. [W6.48A]V1bR  with AVP, dDAVP, LA, 5234B, d[Cha
4
]AVP, and SSR149415. 

The values plotted are normalised to show the relative specific binding of each construct. 
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Figure 3.22 a-c Ligand Binding Profiles of the TM6 constructs with Ala-substitution: 
Graphs show the competition binding of [

3
H]AVP and various ligands in the mutant constructs each 

containing an alanine substitution at the specified position.  The values plotted are normalised to show the 

relative specific binding of each construct.  

a. [F6.51A]V1bR  with AVP, dDAVP, LA d[Cha
4
]AVP, 5234B and SSR149415; 

b. [F6.52A]V1bR with AVP, dDAVP, LA, 5234B and SSR149415; 

c. [Q6.55A]V1bR with AVP, dDAVP, LA, 5234B, and SSR149415 
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Figure 3.22 ab Ligand Binding Profiles of the TM6 constructs with Ala-substitution: 
Graphs show competition binding of [

3
H]AVP and various ligands in the mutant constructs each 

containing an alanine substitution at the specified position.  The values plotted are normalised to show 

the relative specific binding of each construct.  The error bars represent SEM of three experiments 

each performed in triplicates.  

 

a. [S6.58A]V1bR with AVP, dDAVP, and 5234B; 

b. [V6.59A]V1bR with AVP, dDAVP, 5234B ans SSR149415. 
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Figure 3.23 ab   Ligand Binding Profiles of the TM6 constructs with Ala-substitution: 
Graphs show competition binding of [

3
H]AVP and various ligands in the mutant constructs each 

containing an alanine substitution at the specified position.  The values plotted are normalised to show 

the relative specific binding of each construct.  The error bars represent SEM of three experiments 

each performed in triplicates.  

 

a. [W6.60A]V1bR with AVP, dDAVP, LA and 5234B; 

b. [D6.61A]V1bR with AVP, dDAVP, LA and 5234B. 
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Construct 

 

Cell-Surface 

Expression  

(% Wt) 

 

 

AVP-induced 

Internalisation 

(% unstimulated) 

WT V1bR 100 52 (± 4) 

[I6.40A]V1bR 24 (± 3) 71 (± 6) 

[C6.47A]V1bR 42 (± 4) 52 (± 2) 

[W6.48A]V1bR 43 (± 4) 55 (±7) 

[F6.51A]V1bR 64 (± 7) 47 (± 8) 

[F6.52A]V1bR 82 (± 13) 53 (± 8) 

[Q6.55A]V1bR 134 (± 6) 52 (± 9) 

[S6.58A]V1bR 66 (± 2) 53 (± 1) 

[V6.59A]V1bR 99 (± 14) 54 (± 6) 

[W6.60A]V1bR 56 (± 5) 55 (± 10) 

[D6.61A]V1bR 105 (± 6) 51 (± 3) 

Figure 3.24 ab  The cell-surface expression levels of the mutant constructs and the V1bR Wt: 

a. The cell-surface expression of each mutant construct was shown relative to the Wt as 100%;  

b.  The cell-surface expression determined after AVP-stimulation (1κM, 30 min).  The figures were normalised to the expression levels of the 

same construct in the absence of AVP, determined in parallele experiments.  

The results were analysed statistically by one-way ANOVA and Dunnett’s post-test with Wt as control (P < 0.05 shown in orange with asterisk, 

P < 0.01 in pale-red with two asterisks). 

 

Table 3.17  The cell-surface expression of the mutant constructs relative to the Wt and the proportion of the constructs internalised in percentage are 

shown plus/minus SEM of three separate experiments each of which was in triplicate. 
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3.2.5.i The summary of the results for the constructs of TM6 

Most constructs studied in this section retained a high affinity binding to AVP regardless the 

levels of the cell-surface expression, and this allowed the use of [
3
H]AVP as a tracer ligand in 

determining binding affinity of these constructs for other ligands.  Three constructs, 

[I6.40A]V1bR, [C6.47A]V1bR and [W6.48A]V1bR retained high affinity binding to AVP.  The 

affinity of both agonists AVP and dDAVP was increased about 2 - 3-fold to [I6.40A]V1bR.  LA 

also increased affinity to [I6.40A]V1bR with 5-fold decrease in Ki.  In V1aR, the increase in 

affinities observed for [I6.40A]V1aR were associated specifically with agonist (Wootten, D.L. 

Doctoral thesis, 2007. University of Birmingham).  The descrepancy in the results in the V1bR 

may possibly be an indication of LA to be as not an effective antagonist as in V1aR.  Increase in 

agonist affinity was also seen with [W6.48A]V1bR.  A 3-fold increase in AVP affinity, and even 

a larger shift of 25-fold increased affinity of dDAVP was observed.  The affinity of the peptide 

antagonist LA was also increased about 5-fold.  In contrast, both non-peptide antagonists 

displayed reduced affinity to the construct with Ki value increased 20-fold for 5234B and 40-

fold for SSR149415. 

 The affinity of many ligands was affected by the Ala substitution of Phe
6.51 

regardless of 

the ligands actions.  The affinity of AVP was decreased 3-fold, and also that of dDAVP 10-fold.  

The affinity of non-peptide antagonists were affected dramatically, with a 50-fold increase in Ki 

for 5234B and ≈ 100-fold increase in Ki for SSR149415.  A selective increase in dDAVP 

affinity was observed with [F6.52A]V1bR and a selective 25-fold decrease in the non-peptide 

antagonist SSR149415.  In contrast, the affinity of the other non-peptide antagonist 5234B was 

unaffected. 
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 Small increases of Ki between three- and four-fold were associated with dDAVP binding 

to [Q6.55A]V1bR, [V6.59A]V1bR and [D6.61A]V1bR.  Similar levels of decreases in affinities of 

5234B and SSR149415 to [Q6.55A]V1bR, and 5234B binding to [V6.59A]V1bR, were also 

observed.  The affinity of LA to [D6.61A]V1bR was reduced slightly ≈ 2-fold. 

 All constructs were internalised in response to AVP stimulation, in a similar manner to the 

Wt.  About 50 % of the receptor expressed on the cell-surface were internalised 30 minutes 

following exposure to 1κM AVP.  [I6.40A]V1bR appeared to be internalised slightly more than 

other constructs, but statistical analysis by one-way ANOVA and paired t-test did not indicate 

any significance in differences. 
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3.3 Discussions 

3.3.1. The residues required for the AVP binding to the V1bR 

Several residues have been identified as critical requirements in V1bR for AVP binding.  These 

are charged residues located at the N-terminus region close to TM1 and the juxtamembrane 

positions by TM2 and TM3.  As demonstrated in V1aR and OTR by Hawtin, Wesley and 

Wootten [428, 429, 438], Glu
1.35

 located at the juxtamembrane region of TM1, was involved 

critically in AVP binding of V1bR.  The other residue Arg
1.27

, which was also shown to be 

involved critically in AVP binding of V1aR and OTR, appeared also to be important in the 

agonist binding and activation of V1bR, in particular of dDAVP.  However, Arg
1.27 

is thought to 

be relatively less crucial in AVP binding in the V1bR, since AVP binding by [R1.29A]V1bR was 

detectable unlike in V1aR and OTR. 

As in V1aR, Glu
1.35

 was shown to interact with Arg
8
 of AVP.  Although efficacy was low, 

InsP3 signalling was detected with a high potency by [E1.35R]V1bR in response to 

[Glu
8
]vasopressin challenge.  The interaction between Arg

1.35
 in the receptor and Glu

8
 of the 

ligand is thought possibility to have mimicked a direct interaction occurring between Arg
8
 and 

Glu
1.35

 in AVP binding to V1bR.  A high potency may also indicate that the locus at which 

Glu
1.35

 is present is relatively accessible by AVP.  A low efficacy may possibly indicate the 

involvement of local residues which participate in effective activation of the V1bR, and such 

functional interactions require the exact positioning of Arg
8
 and Glu

1.35
 in AVP and V1bR.  This 

finding is also supported by the notable reduction in AVP binding affinity observed for 

[E1.35Q]V1bR.  Glu and Gln are structurally very similar, as the only difference between the 

two is the atom with different electronegativity at the terminal side chain (O for Glu, N for Gln).  

Hence, the reduced AVP affinity observed for [E1.35Q]V1bR can also be interpreted that the 
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high affinity binding requires a stronger ionic interaction involving the negative charge of 

Glu
1.35

 and a positively charged group of AVP, which is Arg
8
.   

The other interaction mimicking glycinamide of AVP and Glu
1.35

 was demonstrated in 

V1aR by Wootten using [E1.35Q]V1aR and AVP-free acid, and also [E1.35D]V1aR and [β-

Ala
9
]AVP (Wootten and Wheatley, manuscript in preparation).  However, this interaction was 

not observed in the V1bR, indicating that AVP binds differently to V1bR and V1aR consistent 

with the slight difference noted above for Arg
1.27

.     

To investigate the possible mutual interactions between Arg
1.27 

and Glu
1.35

 in a double 

reciprocal mutant, the two residues were exchanged positionally.  However, no recovery of AVP 

binding was observed in the [R1.27E/E1.35R]V1bR, indicating the requirement of specific 

orientation for both charged groups for AVP binding at the membrane interface of the N-

terminus and TM1.  It is also possible that the residues participate independently in interactions 

in this vicinity upon activation.  InsP3 signalling was undetectable for the double mutant 

following the [Glu
8
]vasopressin stimulation despite the presence of Arg side chain located at 

position 1.35.  This may suggest that the induced Glu at 1.27 was causing either a electric 

repulsive force or a structural obstacle to block the interaction between Arg
1.35 

and 

[Glu
8
]vasopressin; or alternatively the two residues Arg

1.35 
and Glu

1.27 
were forming a salt 

bridge which is thermodynamically more favourable than the interaction between Arg
1.35

 with 

Glu
8
 of the ligand. 

The substitution of Asp
2.65

 with Gln or Arg was equally well-tolerated in the V1bR.  This 

observation is different from the previous studies on rat V1aR, as [D2.65R]rV1aR displayed a 

drastic fall in the receptor affinity to AVP [439], again confirming the existing differences 

among subtypes in the binding profiles to the mutual agonist.  In the V1bR, Trp
2.64

 and Asp
2.65 
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are thought to participate together in constructing the AVP-binding cavity in the V1bR, since 

AVP binding was undetectable in the double alanine mutant [W2.64A/D2.65A]V1bR and also in 

the reciprocal mutant [W2.64D/D2.65W]V1bR.  The loss of AVP binding in the latter mutant 

suggests that the positioning of the two residues at this vicinity is fundamental in constructing a 

binding cavity for AVP in the V1bR.  It is also plaucible that the reciprocal positional change of 

the two residues might have caused a severe structural disruption in the V1bR.  The dramatically 

reduced cell-surface expression of [W2.64D/D2.65W]V1bR observed may suggest that the large 

proportion of receptors might have folded incompletely and retained in the ER.  In contrast, 

alanine substitution of either residue resulted in increased cell-surface expression of the 

receptor.  Altogether these results suggest the importance of the two residues in the V1bR 

architecture: at the juxtamembrane position the two residues, aromatic Trp and Asp carrying 

negative charge, could be responsible for keeping appropriate orientations of the upper TM2 

relative to the membranes and the other TMs.      

The other residues shown to be involved critically in AVP binding to V1bR in this study 

are Pro
2.60

, Gln
2.61

, Arg
3.26

 and Tyr
5.38

.  The importance of Gln
2.61 

in AVP binding was also 

demonstrated in the other vasopressin receptors and OTR (Wootten and Wheatley, manuscript 

in preparation).  Pro
2.60

and Gln
2.61

are the two residues at the end of the conserved FQVLPQ 

motif found in all the neurohypophysial hormone receptors identified in various species.  These 

receptors might possibly share a similar mechanism in neurohypophysial hormone binding and 

the activation utilising this region, possibly involving the glycinamide terminal of the 

neurohypophysial hormones.  The role of this motif in the agonist binding and the activation of 

the other neurohypophysial receptors are to be elucidated to confirm this assumption.   
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From the above results, the interactions between AVP and the TM1 and TM2 

juxtamembrane region of V1bR can be hypothesised: AVP has a tripeptide tail moiety Pro
7
-Arg

8
-

Gly
9
 which ends with an amide group; Pro

7
 is probably there to induce a necessary angle in the 

AVP backbone, allowing the tripeptide tail to fit into the agonist binding cavity of V1bR to 

induce activation;  Arg
8 

of AVP is probably attracted to electrons on Glu
1.35

 as a driving force in 

this binding, while possibly the terminal amino group of AVP may become a hydrogen bond 

donor to carbonyl oxygen of Gln
2.61 

while a kink induced by Pro
2.60

, as well as a Pro
7
-induced 

kink in AVP, make this interaction possible.   

The exact angle in the Pro
2.60

-induced kink, or Pro
2.60

 itself, is thought also to have a key 

role in maintaining the structural integrity of the receptor; and the point was reflected in the 

observation made on [P2.60G]V1bR which displayed one of the most disrupted phenotype 

observed in the entire study.  Two mutants involving substitution of Gln
2.61

 resulted in 

dramatically reduced cell-surface expression, implying that the residue may also have a role in 

stabilising the receptor structure by a dipole-dipole interaction involving a neighbouring residue 

along with Pro
2.60

.  This region of the exofacial end of TM2 is likely to be in a relatively 

unstable environment for their proximity to the N-terminal domain which is probably less 

restrained in their movement.  This point is, however, purely speculative and it needs to be 

supported by MD simulation study of solvated receptor.  Being involved in the agonist binding 

directly, this region comprising the N-terminal/TM1/TM2 is also likely to undergo structural 

change upon the activation.       

The role of Arg
3.26 

at the juxtamembrane region of TM3 is thought to maintain the 

interaction between the ECL2 to the membrane plane.  The residue is positioned immediately 

below the cysteine residue that forms a conserved disulfide bond with another cysteine residue 
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in ECL2.  The experimental data obtained for [R3.26D]V1bR matches with the findings reported 

for the V1aR [439].  The study on rat V1aR showed that the Ala substitution of Arg
3.26 

and also 

the charge-retained substitution with Lys did not significantly deteriorate the ligand binding 

properties of the receptor construct.  However, the charge-reversed substitution of Arg
3.26 

with 

Asp resulted in the loss of the tracer ligands bindings for [
3
H]AVP, [

3
H]LA, and [

3
H]CA, while 

the cell-surface expression of the construct was detected at a compromised level of about 50% 

to the Wt.  Molecular modelling study predicted that the substitution of Arg
3.26 

with Asp resulted 

in re-ordering of the phospholipids nearby due to an increase in the solvent-accessible surface at 

the position [439].  A similar situation is thought to apply to the V1bR: in the absence of Arg
3.26

, 

the AVP binding cavity involving ECL2 may not be formed appropriately as ECL2 becomes de-

stabilised. 

Tyr
5.38

, also shown to be necessary in AVP binding in V1bR, is located at the 

extracellular terminal of TM5 and at the top of a cluster of aromatic residues found between 

TM5 and TM6.  Within the cluster, there is Phe
6.51 

which was also found to be involved in AVP 

binding to V1bR.  Phe
6.51

 may interact favourably with a hydrophobic region of AVP, Tyr
2
-Phe

3
, 

by van der Waal’s interactions, and the hydroxyl terminal of Tyr
5.38

 may form a hydrogen bond 

with one of polar residues Gln
4
 or Asn

5
.  

 

There is a few residues which were shown to be involved in AVP binding at magnitudes in 

which [
3
H]AVP binding was detectable.  These are Arg

1.27
, Trp

2.64
, Asp

2.65
, Gln

4.60 
and Phe

6.51 

mentioned above.  Arg
1.27

 on the N-terminal domain is often omitted from comparative models, 

and so it is hard to predict in silico the exact role which this residue plays in AVP binding.  The 

residue may be involved in AVP binding in an indirect manner as seen in Arg
3.26

 for instance.  A 
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possibility is that Arg
1.27

 might be interacting with charged or polar residues neaby, for instance 

on an ECL domain, in forming AVP binding cavity, as an introduction of the opposite charge in 

[R1.27E]V1bR diminished AVP binding.   

In the V1bR, Asp
2.65

 appears to interact with Arg
8
 of AVP along with Glu

1.35
.  The 

models of V1bR at active and inactive states showed an alteration in the position of Asp
2.65 

which 

points upwards in the active state (figure 3.25).  The interaction between Asp
2.65 

and Arg
8 

was 

also predicted by molecular modelling study by Rodrigo et al [431].  This is a different 

mechanism from the molecular model of AVP binding to the V1aR, in which Asp
2.65 

has been 

suggested to interact with the glycinamide end of AVP, along with Glu
1.35

.  The molecular 

model of V1aR with AVP docked predicted the three residues Glu
1.35

, Gln
2.61 

and Asp
2.65

 to 

interact with the glycinamide terminal of AVP (Simms J., unpublished study: figure 3.26a).  In 

the models of both subtypes made by Simms, Trp
2.64 

faces towards the ligand binding cavity of 

AVP.  The residue may assist AVP binding in the V1bR by interacting with the ring structure of 

Pro
7
.  Gln

4.60 
and Tyr

5.38 
were also shown to point towards the core of the TM bundles in the 

both V1aR and V1bR (figure 3.25).  The model agrees with the finding of this mutagenesis study, 

which showed involvement of these residues in the AVP binding. 

The mutagenesis study also revealed existing differences in the binding between AVP 

and dDAVP to the V1bR.  The reduction in affinity which was seen in [W2.64A]V1bR and 

[D2.65A]V1bR was not observed with dDAVP binding.  In contrast, Ala substitution of Val
3.28

 

and TM6 residues had more damaging effects in dDAVP binding but not in AVP binding.  The 

results of this study suggest that in binding to V1bR, dDAVP adopts a different mechanism in 

which the hydrophobic residues in TM6 are more important than for AVP binding to V1bR.            
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Figure 3.25 ab  The molecular models of active and inactive states of V1bR (side views facing TM1 and TM2): 

 

a. At the active state;  

b. At the inactive state. 

 

Colour code on the figures: TM1 (blue), TM2 (pale blue), TM3 (turquoise), TM4 (green), TM5 (lime green), TM6 (yellow) and TM7 (orange). 

A few residues were also colour coded: Glu (red), Asp (pink), Gln (lavender).  The black line encircles Glu
1.35

, Asp
2.65 

and Gln
2.61

.  In the active 

state (a), Asp
2.65 

appears to tilt upwards. 

 

The models were constructed by Dr. John Simms.  The figures were visualised using Chimera (UCSF Computer Graphics Laboratory).  

a b 
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Figure 3.26 ab  The molecular model of V1aR with AVP docked and V1bR undocked  

(Viewed from the extracellular side): 

 

a. V1aR with bound AVP.  Colour code on the figures: TM1 (blue), TM2 (pale blue), TM3 

(turquoise), TM4 (green), TM5 (lime green), TM6 (yellow) and TM7 (orange).  The AVP is 

shown in dark grey.  A few residues were also colour coded: Glu (red), Asp (purple), Gln (pink).    

The black line encircles Glu
1.35

, Asp
2.65

, Trp
2.64 

and Gln
2.61

 around the glycinamide of AVP.  

Hydrogen bonds are shown in pale blue. 

b. V1bR at inactive state.  Glu
1.35

, Gln
4.60

, Trp
2.64

 Tyr
5.83

 are all pointing inwards towards the core of 

7-TM bundles as seen in the AVP-bound V1aR.  

 

The model was constructed by Dr. John Simms.  The figures were visualised using Chimera (UCSF 

Computer Graphics Laboratory).  

Gln4.60 

Gln4.60 

Trp2.64 

a 

b 

Trp2.64 

Tyr5.83 

Tyr5.83 

Glu1.35 

Glu1.35 
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 3.3.2. The roles of TM Gln
 
residues in the ligand binding of V1bR 

Gln
2.57

 is the second residue of the conserved FQVLPQ motif of neurohypophysial hormone 

receptors, and this study revealed the involvement of this residue in constructing the ligand 

binding cavity of V1bR.  Although the binding properties of AVP, a V1bR-selective agonist 

d[Cha
4
]AVP and a V1bR-selective non-peptide antagonist SSR149415 were unaffected by the 

Ala substitution of the residue, another non-peptide antagonist 5234B exhibited decreased 

affinity; whereas the affinity of peptide ligands dDAVP and LA to [Q2.57A]V1bR were 

increased significantly.  Moreover, a highly V1aR-selective antagonist CA was capable of 

binding to [Q2.57A]V1bR with a high affinity unlike the V1bR Wt (Ki = 3.5 nM and 159 nM 

respectively).    

Gln
2.57

 is located one α-helical turn below Gln
2.61

.  The molecular models by Simms 

showed that the both residues are pointing inward towards the TM core, forming a cluster of a 

polar network along with Gln
3.32 

(figure 3.27).  The upper region of TM2 is bent towards TM1, 

making Gln
2.61

, Gln
2.57

, and Gln
3.32 

almost align with Gln
2.57

 at the centre of the cluster.  In the 

model, Gln
2.57

 in the centre appears to be holding the two other Gln residues towards TM2.  The 

absence of Gln
2.57

 is thought to widen the ligand binding cavity as the upper region of TM2 may 

incline more towards TM1, and the central TM3 may tilt backwards away from the core as the 

interaction between TM2 and TM3 may become weaker.  It should be noted that models do not 

include water molecules; therefore the speculation is made on incomplete assumptions.  The role 

of Gln
2.57

 in the polar cluster may probably become clearer in the presence of water molecules.  

Nevertheless, the above explanation may explain why the affinity of some ligands were 

markedly increased for [Q2.57A]V1bR.    
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Figure 3.27 ab  The molecular model of V1bR : 

 

c. The side view from the side of TM2 and TM3.  Colour code on the figures: TM1 (blue), TM2 

(pale blue), TM3 (turquoise), TM4 (green), TM5 (lime green), TM6 (yellow) and TM7 (orange).   

Gln residues are shown in pink. Gln
2.61

, Gln
2.58

, Gln
3.32

 are all pointing inwards in the helical 

bundle core. 

d. Viewed from the extracellular side. 

 

The model was constructed by Dr. John Simms.  The figures were visualised using Chimera (UCSF 

Computer Graphics Laboratory).  

a 

b 

Gln2.57 

Gln2.61 

Gln3.32 

Gln4.60 

Gln6.55 
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Gln2.61 

Gln2.57 
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Gln
2.57

 was shown also to participate in the binding of a V1bR-selective non-peptide antagonist 

5234B, suggesting the involvement of the TM2 portion from the polar cluster in the binding of 

5234B to the V1bR.  Gln
3.32

 was found to be less important in binding of both non-peptide 

antagonists to the V1bR. 

The residue at position 3.32 has been reported to be involved in agonist binding of some 

other Family A GPCRs.  Asp
3.32 

has been shown to be critically involved in the binding of 

acetylcholine to M3 muscarinic receptor [440].  Asp
3.32 

in H4 histamine receptor was shown to 

involve directly in histamine binding [441], and also 5-HT was shown to make direct contact 

with the corresponding residue in 5-HT2BR [442].  In contrast, Gln
3.32

 was found not to be 

involved in AVP binding, suggesting differences between binding mode of a nonapeptide AVP 

and that of the biological amines named above.    

In this study, Gln
4.60 

was shown to be involved in 5234B binding as well as in AVP 

binding.  At the corresponding position, Phe
4.60

 in neuropeptide Y receptor was shown also to 

participate in binding of a non-peptide antagonist to the receptor but not of the endogenous 

peptide agonist [443].  In the model of V1bR by Simms, the residue is pointing inwards to the 

helical bundle core, located on almost the same plane as the three Gln residues described above 

(figure 3.27a).  Gln
6.55

, which has been predicted by molecular modelling to interact with non-

peptide antagonists, was shown to be required for a high affinity binding of 5234B.  Gln
6.55

 

points inwards towards the core of TM bundle, and is located virtually on the same plane as the 

Gln residues discussed above.  The three Gln residues on TM2, TM4 and TM6 on this plane 

were all found to be involved in 5234B binding to the V1bR, either directly or indirectly by 

constructing a suitable binding cavity.              
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3.3.3  The involvement of Tyr
 
in the ligand binding of V1bR 

Tyr
5.38

, located in the TM5 was shown to participate in both AVP and 5234B binding to the 

V1bR.  AVP binding appears to require bulky hydrophobic group at this position, as the loss of 

AVP binding resulted from Ala substitution of Tyr
5.38 

was restored by either Phe or Trp 

substitution.  Although the high affinity binding of 5234B was restored by the Trp substitution, 

the Phe substitution resulted in less recovery of the affinity. This result suggests that the 

hydroxyl group of Tyr
5.38

 is critically important in the interaction between 5234B and the 

receptor.  Similarly in V1aR, Tyr
5.38 

was identified to be an important residue in ligand binding, 

and the Ala substitution reduced binding of AVP, CA and SR49059 while only LA retained a 

high affinity binding (Wootten D.L. Doctoral thesis, 2007. University of Birmingham). 

 

This study identified Tyr
3.41 

as a signature residue which determines the unique binding 

characteristics of the V1bR.  The absence of this residue did not affect the binding affinity of the 

endogenous agonist AVP; however, the loss of the residue resulted in decreased binding affinity 

of all V1bR-selective ligands used in this study.  In the model, the aromatic ring of Tyr
3.41 

is 

positioned between TM4 and TM5, possibly orienting the two TMs towards TM3 by 

hydrophobic interactions, stabilising the local environment (Figure 3.28).  Since the interhelical 

interactions involving Tyr
3.41 

appear to be important in constructing the ligand binding cavity 

unique to the V1bR, further molecular docking studies using the V1bR-selective ligands may 

clarify the exact role of Tyr
3.41

 in facilitating the formation of this unique V1bR binding cavity.   

The role of residue at 3.41 in stabilising the conformation of β2AR has been demonstrated 

by Roth et al. by hydrophobic substitutions of Glu
3.41

.  The study showed that the stability of 

β2AR can be increased by substituting the charged Glu with bulky hydrophobic Trp or Tyr 
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[444].  Their findings and this study altogether confirm the structural significance of 

hydrophobic residues at this position in Family A GPCRs.  In Family A GPCRs, the D(E)RY 

motif found at the bottom of TM3, is known to function as an activation switch.  Tyr
3.41 

is 

located approximately two α-helical turns above this motif, and so the stabilising effect induced 

by hydrophobic residues in this vicinity is thought to participate in maintaining fidelity of 

receptors with less agonist-independent G-protein activity.  β2AR bearing a charged Glu
3.41

 is 

known to have a certain level of constitutive activity independent of agonist-stimulation.  On the 

other hand, rhodopsin with Trp
3.41

, and vasopressin receptors with Tyr
3.41

, lack constitutive 

activity.  The findings of these mutagenesis studies provide at least partially explanation for why 

differences in constitutive activity exist among Family A GPCRs.   
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Figure 3.28   The molecular model of V1bR : 

 

The molecular model of V1bR at an inactive state, viewed from the extracellular side.  Colour code on 

the figures: TM1 (blue), TM2 (pale blue), TM3 (turquoise), TM4 (green), TM5 (lime green), TM6 

(yellow) and TM7 (orange).   Tyr residues are shown in magenta. Tyr
5.38

 is pointing inwards to the 

helical bundle core.  Tyr
3.41

 pointing slightly upwards is also indicated in this figure. 

 

The model was constructed by Dr. John Simms.  The figures were visualised using Chimera (UCSF 

Computer Graphics Laboratory).  

Tyr5.38 

Tyr3.41 
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3.3.4  The participation of Ile
6.40 

and Trp
6.48 

in the V1bR ligand binding 

The increase in agonist affinity, both AVP and dDAVP, was seen in [I6.40A]V1bR.  The role of 

Ile
6.40 

in V1aR was previously investigated by Wootten.  In the study, Ile
6.40 

was shown to be 

important in sustaining an inactive conformation in V1aR, as Ala substitution of the residue 

resulted in a constitutively active mutant (CAM) with an increase in AVP affinity (Wootten 

D.L. Doctoral thesis, 2007. University of Birmingham).  Similarly in opsin, Ala substitution of 

Met
6.40 

resulted in CAM [445].  The increased affinity of agonists to [I6.40A]V1bR was thought 

to suggest the involvement of this residue in sustaining inactive conformation of V1bR.  

However, agonist-independent activity of this mutant was undetectable by InsP3 assay (results 

not shown), indicating that [I6.40A]V1bR is not a CAM at a significant level, and thereby Ile
6.40

 

may have distinctive roles in the two subtypes.  

Trp
6.48

 of the functional CWxP motif was shown in this study to be involved in bindings 

of both non-peptide antagonists 5234B and SSR149415.  On the other hand, the affinity of 

agonists to [W6.48A]V1bR were increased, notably for dDAVP.  The loss of Trp
6.48

 might have 

enlarged accessibility of dDAVP to these residues dDAVP favours interacting.  The facts of the 

affinity increase of agonists and the decrease of antagonists may altogether reflect the shift of 

conformational equilibrium in this construct.  The construct might have favoured active states 

due to the loss of Trp
6.48 

which forms stabilising interaction in inactive receptors as well as 

initiating the activation process.  However, the relatively large shift of Ki observed in the study 

may suggest direct interactions occurring between Trp
6.48 

and the both antagonists studied.  As 

non-peptide antagonists usually have hydrophobic ring-based structures, the antagonists might 

interact with Trp
6.48

 by hydrophobic interactions.  It is plausible that antagonists prevent the 
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rotameric change of Trp
6.48

 by direct interaction, thereby holding the receptor at an inactive 

state. 

 

3.3.5  The roles of conserved Phe residues in TM domains of the V1bR 

Two Phe residues located at the upper TM6 above CWxP motif, Phe
6.51 

and Phe
6.52

 were 

proposed as interacting points for non-peptide antagonists by molecular modelling.  Ala 

substitution of Phe
6.51 

confirmed the requirement of this residue by both 5234B and SSR149415.  

Ala substitution of Phe
6.52 

also affected SSR149415 binding.
 
 Similarly in V1aR, the residues 

were shown to be required in bindings of AVP and a non-peptide antagonist SR49059 (Wootten 

D.L. Doctoral thesis, 2007. University of Birmingham).    

In some constructs containing Ala substitution of Phe, the levels of cell-surface 

expression were notably decreased: in particular in receptors lacking Phe
2.56

, Phe
3.37

, and Phe
5.47

.  

In vasopressin receptors, the upper regions of TM1 and TM2 appear to participate in agonist-

induced activation, and so this region may have a certain level of conformational freedom which 

allows a certain structural change induced by agonist binding.  Therefore Phe
2.56 

at this vicinity 

might have a critical role in providing temporal conformational stability of the inactive state.  

Although moderate decreases in cell-surface expression were seen in the absence of Phe
6.51

, Ala-

substitution of this Phe residue was relatively well-tolerated in TM6.  This might be due to the 

nature of TM6, which undergoes relatively large conformational changes upon activation, and 

so the TM6 region may have a mechanism of compensating for small changes in hydrophobicity 

in the local vicinity.    

The loss of the cell-surface expression was particularly prominent in [F5.47A]V1bR. The 

role of Phe
5.47 

was investigated by substituting with residues of varied hydrophobicity.  
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Although the substitution with Val, Ile, and Trp recovered some aspect of the receptor 

functionality, an equivalent hydrophobicity to Phe was required for restoring the cell-surface 

expression level similar to the Wt, while amphipathic Lys was not tolerated at this location.  The 

results of thermostability assay showed shorter half-lives associated with the mutant constructs, 

confirming the critical structural role of Phe
5.47

.  Since TM5 of Family A GPCRs appears 

elongated and relatively flexible, as seen in the opsin crystal structure obtained by Park et al. 

[285], the stabilising effect induced by the aromaticity of Phe
5.47 

in the middle of TM5 is thought 

to be critical in sustaining the receptor conformation.  Biophysical studies on A2AR have also 

shown that TM5 could self-associate, indicating that TM5 may possibly become part of a 

dimerisation interface [194]; hence could be assumed that Phe
5.47

 may have stabilising effect by 

facilitating homo-dimerisation.  As Phe
5.47 

is highly conserved among the Family A GPCRs, the 

role of this residue might be universal amongst all family members, though this remains 

speculation until examined experimentally.  Phe
5.47

 appears to face towards Phe
6.52

 in a 

molecular model generated by Simms (figure 3.29).  The model also predicted that the two 

residues Phe
5.47 

and Phe
6.52 

are present at the edge of the receptor, rather than towards the helical 

bundle cores.  These two residues may possibly be involved in hydrophobic interactions with 

the acyl chains of phospholipids in the membrane.  The residues may also possibly involve in 

inter-molecular hydrophobic interactions when heterologous hydrophobic residues come close 

sufficiently, to facillitate dimerisation.  I would also speculate that the interaction between 

Phe
5.47 

and Phe
6.52

 may bring the upper middle region of TM5 and TM6 into close proximity in 

the inactive state.  The involvement of Phe
6.52

 in stabilising an inactive conformation may 

explain why the affinity of agonist dDAVP was increased in the absence of Phe
6.52

 as well as in 

the absence of Trp
6.48

.    
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3.3.6. Pharmaco-chaperone activity of the selective antagonist 5234B 

The increase in cell-surface expression observed in all the constructs, including the Wt, was 

thought to be due to the hydrophobic nature of the ligand with a high selectivity for the receptor.  

Since the mutant constructs lacking Phe
5.47 

increased the cell-surface expression following the 

treatment with the antagonist, the residue is said to be unlikely to have a key role in 5234B 

binding to the V1bR. 

The study on H2R by Smit et al. revealed that inverse agonists can up-regulate the surface 

expression of the receptors while a competitive antagonist did not increase the receptor density 

[221].  Since vasopressin receptors lack constitutive activity, 5234B is categorically a 

competitive antagonist in this context.  The results of this study suggest that in the receptors 

lacking constitutive activity, competitive antagonists can up-regulate the receptor density via yet 

unconfirmed mechanisms; but possibly by prolonging the cell-surface residency because of an 

increase in the structural stability of the receptor.  It could also be assumed that a population of 

antagonist-bound receptors retaining the inactive state resists the process of endocytosis.      

 

 

  



 

147 

 

 

 

 

 

Figure 3.29 ab  The molecular model of V1bR, focused on Phe
5.47

 and Phe
6.52

: 

 

a. The edge of the TM5 and TM6, showing the location of the two residues. 

b. The side view from the side of TM4, TM5 and TM6.  Colour code on the figures: TM1 (blue), 

TM2 (pale blue), TM3 (turquoise), TM4 (green), TM5 (lime green), TM6 (yellow) and TM7 

(orange).   Phe residues are shown in purple. 

 

The model was constructed by Dr. John Simms.  The figures were visualised using Chimera (UCSF 

Computer Graphics Laboratory).  

a 

b 

Phe6.52 

Phe5.47 

Phe5.47 

Phe6.52 
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3.4 Future Work 

In addition to the above work, a further characterisation of the mutant constructs to quantify 

their capacities of initiating intracellular signalling cascades may give more depth to our 

understanding in the roles of each residue studied.  The results of these experiments would 

likely to assist refininment of molecular models and docked ligand structures; thereby providing 

detailed pictures of the receptor architecture closer to reality.   

By constructing a docked model of dDAVP bound to the V1bR along with additional 

mutagenesis studies as required, differences and similarities between AVP and dDAVP in 

binding to the V1bR could be clarified.  Such investigations may possibly reveal an alternative 

mode of the V1bR activation if differences were found to exist.  Since V1bR and V2R 

preferentially couple to different G-protein types, establishing and comparing agonist binding 

and activation of V1bR, V1aR and V2R in detail may allow correlating the ligand preferences of 

the receptor subtypes with each activation mechanism with different G-protein types.   

This study has identified Try
3.41 

to be an important residue in constructing the ligand 

binding cavity which is a characteristic of the V1bR.  A series of mutagenesis study substituting 

this residue may reveal the role of this residue in detail, and provide a clearer picture of the 

subtype differences between the V1bR and the V1aR.  Morover, Tyr at 3.41 was identified to be 

structurally sustaining in the V1bR, and also in β2AR by Roth et al. as Tyr-substitution of Glu
3.41 

yielded higher surface expression of the receptor [444].  As the differences in nature of the 

residues at 3.41 may well relate to varied degrees of constitutive acitivity of these receptors, 

protein sequence analysis of the Family A GPCRs followed by investigating constitutive activity 

of some of these receptors to confirm the correlation could be useful.  By establishing the 
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correlation, in future the degrees of constitutive activity of Family A GPCRs, if unknown, could 

be predicted by the nature of residue at 3.41.           

As Phe/Tyr
5.47 

is highly conserved among Family A GPCRs, cell-surface half-life 

measured for mutant constructs containing varied hydrophobicity at position 5.47 could be used 

as a guidance parameter in computational studies simulating denaturing or possibly folding 

process of Family A GPCRs.  This study has demonstrated the pharmaco-chaperone activity of 

5234B in assisting the cell-surface expression of the structurally unstable mutants and the Wt.  

As for the Wt, the observed increase could be due to the decreased constitutive internalisation of 

receptor recycling.  The mechanisms involving internalisation and recycling of the V1bR could 

be investigated by mutagenesis studies to find the phosphorylation sites, ubiquitination sites, 

and also by a co-transfection with dominant negative dynamin-1 (Dyn-K44A) or using a 

dynamin-inhibitor dynasore.  If a comparable increase in the cell-surface expression was 

observed for the internalisation-defective mutants, it would confirm the increase in the cell-

surface expression of the Wt observed in this study to be due to the decrease in the constitutive 

internalisation.  Alternatively, the internalisation process and the fate of the Wt and the folding 

defective mutant in the absence and presence of a pharmacol-chaperone could be investigated 

by visualising the receptor constructs using a fluorescence microscopy.   
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Chapter 4  Exploring the molecular basis for ligand 

selectivity between V1bR and V1aR 

 

4.1. Introduction 

One of the key processes in developing a novel compound for therapeutic use is to ensure the 

compound binds selectively to the target receptor.  The aim of this study is to probe the putative 

binding cavity of the V1bR with subtype-selective compounds in order to identify residues which 

distinguish between the V1bR and a closely related subtype V1aR in ligand binding.  This study 

used three non-peptide antagonists: V1aR-selective SR49059 and V1bR-selective SSR149415 

both with known structures; and also V1bR-selective 5234B with structure undisclosed.  The 

structures of the antagonists SR49059 and SSR149415 are presented in figure 4.23 belonging to 

discussion section 4.3.     

The strategy adopted was to identify individual residues in the V1bR which had potential 

to interact with bound ligands, using a combination of molecular modelling and knowledge of 

Family A GPCRs in general.  Residues suspected of contributing to the discrimination of 

subtype-selective ligands were investigated by studying V1bR and V1aR in parallel.  In this 

study, each reciprocal mutation was introduced into both receptor subtypes, with each 

containing the corresponding residue from the other subtype.  This approach provided more 

complete information than studying only the V1bR.  Mutation of any residue important for high 

affinity binding of a selective ligand would produce a reciprocal gain, and loss, of affinity 

respectively, in the two subtypes.  A series of residues was selected for investigation.  11 
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residues which may confer selectivity between V1bR and V1aR were selected based on a 

computational molecular modelling study by Dr. Grant Wishart (Schering-Plough Research 

Institute, Newhouse).  These are Tyr
3.30

/His
3.30

, Phe
4.56

/Leu
4.56

, Val
4.61

/Tyr
4.61

, Leu
5.39

/Ile
5.39

, 

Thr
5.42

/Met
5.42

, Val
6.54

/Ile
6.54

, Ala
7.34

/Thr
7.34

, Phe
7.35

/Ile
7.35

, Ser
7.38

/Thr
7.38

, Met
7.39

/Ala
7.39 

and 

Asn
7.43

/Ser
7.43

 of V1bR/V1aR.  Three residues were also additionally studied due to their location, 

geometrical or functional interests.  These are Thr
2.49

/Ala
2.49

, Phe
4.54

/Ala
4.54

, and Ala
6.46

/Val
6.46 

of V1bR/V1aR.  Thr
2.49

/Ala
2.49

 was chosen as it is next to the highly conserved Asp
2.50 

and TM2 is 

heavily involved in AVP binding.  Phe
4.54

/Ala
4.54

 was chosen for its proximity to Phe
4.56

.  

Ala
6.46

/Val
6.46 

was selected due to its proximity to the CWxP motif which is functionally 

important.  Total of 14 residues were targeted for mutagenesis in V1bR and V1aR to produce 28 

mutant receptor constructs.  The residues studied in this section are indicated in schematic 

diagrams of V1bR and V1aR in figure 4.1. 
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4.2 Results 

The characteristics of the mutant constructs determined in this study are presented in three 

sections.  The first section contains results obtained for V1bR constructs which were engineered 

to incorporate the corresponding residue from the V1aR, and these are [A2.49T]V1bR, 

[Y3.30H]V1bR, [A4.54F]V1bR, [F4.56L]V1bR, [V4.61Y]V1bR, [L5.39V]V1bR, [T5.42M]V1bR, 

[A6.46V]V1bR, [V6.54I]V1bR, [A7.34T]V1bR, [F7.35I]V1bR, [S7.38T]V1bR, [M7.39A]V1bR and 

[N7.43S]V1bR.  The second section contains results obtained for V1aR constructs which were 

engineered to incorporate the corresponding residue from the V1bR, and these are 

[A2.49T]V1aR, [H3.30Y]V1aR, [F4.54A]V1aR, [L4.56F]V1aR, [V4.61Y]V1aR, [V5.39L]V1aR, 

[M5.42T]V1aR, [V6.46A]V1aR, [I6.54V]V1aR, [T7.34A]V1aR, [I7.35F]V1aR, [T7.38S]V1aR, 

[A7.39M]V1aR and [S7.43N]V1aR.  Some of the residues targeted were predicted as potentially 

contacting sites of non-peptide antagonists in the V1bR by Dr. Grant Wishart (Personal 

communication).  Hence these residues were also substituted with Ala in the V1bR to generate 

[F4.56A]V1bR, [L5.39A]V1bR, [T5.42A]V1bR and [N7.43A]V1bR.  In addition [V6.54A]V1bR 

was also made as it is located in TM6 which go under conformational changes upon receptor 

activation.  The results obtained for these five V1bR constructs are presented in the third section 

of results.  All mutant receptor constructs were expressed in HEK293T cells and their ligand 

binding profiles were characterised.   
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Figure 4.1 The scematic diagrams of V1aR and V1bR indicating the positions targeted for 

mutagenesis: a. V1bR; b. V1aR.  The residues targeted for mutagenesis are shown in yellow.  Orange 

lines encircle reference residues used in Ballesteros-Weinstein numbering scheme.   

a 

b 
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Table 4.1 The mutagenic oligonucleotide primers for mutagenesis:  
Codon altered shown underlined, and the nucleotides changed shown in BOLD.  
  

Construct Direction Nucleotide Sequence 

[T2.49A]V1bR 
(S) 

(AS) 

5’-G-CAC-TTA-GCC-CTG-GCA-GAC-CTG-GCC-G-3’ 

5’-C-GGC-CAG-GTC-TGC-CAG-GGC-TAA-GTG-C-3’ 

[Y3.30H]V1bR 
(S) 

(AS) 

5’-GG-GCC-GTC-AAG-CAC-CTG-CAG-GTG-CTC-AGC-3’ 

5’-GCT-GAG-CAC-CTG-CAG-GTG-CTT-GAC-GGC-CC-3’ 

[A4.54F]V1bR 
(S) 

(AS) 

5’-C-TGG-CTG-CTG-GCC-TTC-ATC-TTC-AGC-CTC-CC-3’ 

5’-GG-GAG-GCT-GAA-GAT-GAA-GGC-CAG-CAG-CCA-G-3’ 

[F4.56L]V1bR 
(S) 

(AS) 

5’-G-CTG-GCC-GCC-ATC-TTG-AGC-CTC-CCT-CAA-G-3’  

5’-C-TTG-AGG-GAG-GCT-CAA-GAT-GGC-GGC-CAG-C-3’ 

[V4.61Y]V1bR 
(S) 

(AS) 

5’-C-AGC-CTC-CCT-CAA-TAC-TTC-ATT-TTT-TCC-CTG-CGG-G-3’ 

5’-C-CCG-CAG-GGA-AAA-AAT-GAA-GTA-TTG-AGG-GAG-GCT-G-3’ 

[L5.39V]V1bR 
(S) 

(AS) 

5’-GGG-CCA-CGG-GCC-TAC-GTC-ACC-TGG-ACC-ACC-3’  

5’-GGT-GGT-CCA-GGT-GAC-GTA-GGC-CCG-TGG-CCC-3’ 

[T5.42M]V1bR 
(S) 

(AS) 

5’-GCC-TAC-CTC-ACC-TGG-ATG-ACC-CTG-GCT-ATC-TTC-G-3’  

5’-C-GAA-GAT-AGC-CAG-GGT-CAT-CCA-GGT-GAG-GTA-GGC-3’ 

[A6.46V]V1bR 
(S) 

(AS) 

5’-G-CTG-GCC-TAC-ATC-GTT-TGC-TGG-GCT-CC-3’  

5’-GG-AGC-CCA-GCA-AAC-GAT-GTA-GGC-CAG-C-3’ 

[V6.54I]V1bR 
(S) 

(AS) 

5’-GCT-CCC-TTC-TTC-AGT-ATC-CAG-ATG-TGG-TCC-G-3’  

5’-C-GGA-CCA-CAT-CTG-GAT-ACT-GAA-GAA-GGG-AGC-3’ 

[A7.34T]V1bR 
(S) 

(AS) 

5’-GAA-GAT-TCC-ACC-AAT-GTG-ACT-TTC-ACC-ATC-TCT-ATG-C-3’  

5’-G-CAT-AGA-GAT-GGT-GAA-AGT-CAC-ATT-GGT-GGA-ATC-TTC-3’ 

[F7.35I]V1bR 
(S) 

(AS) 

5’-CC-ACC-AAT-GTG-GCT-ATC-ACC-ATC-TCT-ATG-CTT-TTG-G-3’ 

5’-C-CAA-AAG-CAT-AGA-GAT-GGT-GAT-AGC-CAC-ATT-GGT-GG-3’ 

[S7.38T]V1bR 
(S) 

(AS) 

5’-G-GCT-TTC-ACC-ATC-ACT-ATG-CTT-TTG-GGC-AAC-C-3’  

5’-G-GTT-GCC-CAA-AAG-CAT-AGT-GAT-GGT-GAA-AGC-C-3’ 

[M7.39A]V1bR 
(S) 

(AS) 

5’-G-GCT-TTC-ACC-ATC-TCT-GCG-CTT-TTG-GGC-AAC-CTC-3’  

5’-GAG-GTT-GCC-CAA-AAG-CGC-AGA-GAT-GGT-GAA-AGC-C-3’ 

[N7.43S]V1bR 
(S) 

(AS) 

5’-CT-ATG-CTT-TTG-GGC-AGC-CTC-AAC-AGC-TGC-TGC-3’  

5’-GCA-GCA-GCT-GTT-GAG-GCT-GCC-CAA-AAG-CAT-AG-3’ 

[A2.49T]V1aR 
(S) 

(AS) 

5’-CAC-CTCAGC-CTG-ACC-GAC-CTG-GCC-GTG-3’  

5’-CAC-GGC-CAG-GTC-GGT-CAG-GCT-GCG-GTG-3’ 

[H3.30Y]V1aR 
(S) 

(AS) 

5’-CGC-GTG-GTG-AAG-TAC-CTG-CAG-GTG-TTC-G-3’  

5’-C-GAA-CAC-CTG-CAG-GTA-CTT-CAC-CAC-GCG-3’ 

[F4.54A]V1aR 
(S) 

(AS) 

5’-GG-GTG-CTG-AGC-GCC-GTG-CTG-AGC-ACG-C-3’  

5’-G-CGT-GCT-CAG-CAC-GGC-GCT-CAG-CAC-CC-3’ 

[Y4.61V]V1aR 
(S) 

(AS) 

5’-G-CTG-AGC-ACG-CCG-CAG-GTC-TTC-GTC-TTC-TCC-3’  

5’-GGA-GAA-GAC-GAA-GAC-CTG-CGG-CGT-GCT-CAG-C-3’ 

[V5.39L]V1aR 
(S) 

(AS) 

5’-GT-TCT-CGT-GCC-TAC-CTG-ACC-TGG-ATG-ACG-G-3’ 

5’-C-CGT-CAT-CCA-GGT-CAG-GTA-GGC-ACG-AGA-AC-3’ 

[M5.42T]V1aR 
(S) 

(AS) 

5’-CC-TAC-GTG-ACC-TGG-ACG-ACG-GGC-GGC-ATC-3’  

5’-GAT-GCC-GCC-CGT-CGT-CCA-GGT-CAC-GTA-GG-3’ 

[V6.46A]V1aR 
(S) 

(AS) 

5’-CG-GCT-TAC-ATC-GCC-TGC-TGG-GCG-CC-3’  

5’-GG-CGC-CCA-GCA-GGC-GAT-GTA-AGC-CG-3’ 

[I6.54V]V1aR 
(S) 

(AS) 

5’-CG-CCT-TTC-TTC-ATC-GTC-CAG-ATG-TGG-TCT-GTC-3’  

5’-GAC-AGA-CCA-CAT-CTG-GAC-GAT-GAA-GAA-AGG-3’ 



 

155 

 

Construct Direction Nucleotide Sequence 

[T7.34A]V1aR 
(S) 

(AS) 

5’-C-GAA-TCG-GAA-AAC-CCT-GCC-ATC-ACC-ATC-ACT-GC-3’  

5’-GC-AGT-GAT-GGT-GAT-GGC-AGG-GTT-TTC-CGA-TTC-G-3’ 

[I7.35F]V1aR 
(S) 

(AS) 

5’-G-GAA-AAC-CCT-ACC-TTC-ACC-ATC-ACT-GCA-TTA-CTG-3’  

5’-CAG-TAA-TGC-AGT-GAT-GGT-GAA-GGT-AGG-GTT-TTC-C-3’ 

[T7.38S]V1aR 
(S) 

(AS) 

5’-CCT-ACC-ATC-ACC-ATC-TCT-GCA-TTA-CTG-GGT-TCC-3’  

5’-GGA-ACC-CAG-TAA-TGC-AGA-GAT-GGT-GAT-GGT-AGG-3’ 

[A7.39M]V1aR 
(S) 

(AS) 

5’-CC-ATC-ACC-ATC-ACT-ATG-TTA-CTG-GGT-TCC-3’  

5’-GGA-ACC-CAG-TAA-CAT-AGT-GAT-GGT-GAT-GG-3’ 

[S7.34N]V1aR 
(S) 

(AS) 

5’-GCA-TTA-CTG-GGT-AAC-TTG-AAT-AGC-TGC-3’  

5’-GCA-GCT-ATT-CAA-GTT-ACC-CAG-TAA-TGC-3’ 

[F4.56A]V1bR 
(S) 

(AS) 

5’-G-CTG-GCC-GCC-ATC-GCC-AGC-CTC-CCT-CAA-G-3’  

5’-C-TTG-AGG-GAG-GCT-CGG-GAT-GGC-GGC-CAG-C-3’ 

[L5.39A]V1bR 
(S) 

(AS) 

5’-GGG-CCA-CGG-GCC-TAC-GCC-ACC-TGG-ACC-ACC-3’  

5’-GGT-GGT-CCA-GGT-GGC-GTA-GGC-CCG-TGG-CCC-3’ 

[T5.42A]V1bR 
(S) 

(AS) 

5’-GCC-TAC-CTC-ACC-TGG-GCC-ACC-CTG-GCT-ATC-TTC-G-3’  

5’-C-GAA-GAT-AGC-CAG-GGT-GGC-CCA-GGT-GAG-GTA-GGC-3’ 

[V6.54A]V1bR 
(S) 

(AS) 

5’-CCC-TTC-TTC-AGT-GCC-CAG-ATG-TGG-TCC-G-3’  

5’-C-GGA-CCA-CAT-CTG-GGC-ACT-GAA-GAA-GGG-3 

[N7.43A]V1bR 
(S) 

(AS) 

5’-CT-ATG-CTT-TTG-GGC-GCC-CTC-AAC-AGC-TGC-TGC-3’  

5’-GCA-GCA-GCT-GTT-GAG-GGC-GCC-CAA-AAG-CAT-AG-3’ 
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Figure 4.2  ab The binding profiles of Wt V1bR and V1aR: 

a. Wt V1bR; 

b. Wt V1aR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 

a 

b 
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4.2.1. The characteristics of the V1bR constructs containing the corresponding V1aR residue 

Construct 

 

Binding Affinity  (Ki, nM ±S.E.M.) 

 

 

Cell-Surface 

Expression 

(% Wt) 

 
AVP d[Cha

4
]AVP 5234B SSR149415 SR49059 LA 

WT V1bR 0.90 (± 0.13) 1.35 (± 0.02) 7.18 (± 1.82) 3.36 (± 0.93) 670 (± 147) 6.25 (± 1.86) 100 

WT V1aR 1.02 (± 0.12) 81.9 (± 1.3) 6392 (± 655)  70.4 (± 15.3) 1.76 (± 0.54) 0.57 (± 0.05) - 

[T2.49A]V1bR 0.63 (± 0.10) - 6.75 (± 1.42) - 343 (± 6) 4.74 (± 1.55) 95 (± 4) 

[Y3.30H]V1bR 0.37 (± 0.04) - 4.21 (± 1.05) 16.6 (± 5.0) 54.0 (± 3.9) - 25 (± 1) 

[A4.54F]V1bR 0.24 (± 0.08) - 4.10 (± 1.70) 2.26  (± 0.05) 104 (± 19) 1.26 (± 0.10) 89 (± 7) 

[F4.56L]V1bR 0.70 (± 0.09) 1.80 (± 0.50) 7.47 (± 1.54) 10.4 (± 2.3) 155 (± 43) 4.34 (± 0.66) 71 (± 4) 

[V4.61Y]V1bR 0.92 (± 0.37) - 9.01 (± 1.43) 6.95 (± 0.83) 340 (± 109) 5.13 (± 0.32) 51 (± 9) 

[L5.39V]V1bR 0.40 (± 0.14) 1.15 (± 0.25) 21.5 (± 1.9) 6.90 (± 1.02) 119 (± 38) 1.53 (± 0.28) 85 (± 5) 

[T5.42M]V1bR 0.73 (± 0.08) 2.54 (± 0.12) 69.8 (± 19.1) 35.71 (± 1.28) 1.43 (± 0.24) 7.25 (± 0.90) 101 (± 3) 

[A6.46V]V1bR 0.33 (± 0.12) - 4.59 (± 1.26) - 369 (± 27) 3.31 (± 0.35) 91 (± 5) 

[V6.54I]V1bR 0.46 (± 0.14) - 5.56 (± 0.42) - 187 (± 33) 2.42 (± 0.30) 89 (± 9) 

[A7.34T]V1bR 0.47 (± 0.15) - 17.5 (± 0.4) 2.36 (± 1.11) 86.3 (± 17.3) 1.77 (± 0.50) 45(± 2) 

[F7.35I ]V1bR 0.93 (± 0.26) 0.70 (± 0.04) 229 (± 41) 3.47 (± 0.69) 568 (± 49) 2.08 (± 0.11) 84 (± 8) 

[S7.38T]V1bR 1.00 (± 0.30) - 7.19 (± 2.90) 1.90 (± 0.19) 328 (± 89) 4.25 (± 0.75) 109 (± 1) 

[M7.39A]V1bR 1.05 (± 0.12) 0.56 (± 0.04) 10.5 (± 1.6) 32.6 (± 0.3) 52.4 (± 9.2) 3.61 (± 1.00) 81 (± 3) 

[N7.43S]V1bR 0.75 (± 0.25) - 12.84 (± 0.72) 9.07 (± 0.12) 465 (± 14) 2.04 (± 0.28) 80 (± 3) 

Table 4.2 Ligand binding profiles of the constructs containing V1aR residues introduced in the corresponding position of the V1bR: 

Binding affinities of V1bR-selective antagonists 5234B, SSR149415, and V1aR-selective antagonist SR49059 to various V1bR constructs were 

determined by competition binding assay using [
3
H]AVP as a tracer ligand.  Binding affinity of peptide ligands to some constructs was also 

investigated.  The values presented are mean plus/minus SEM of three experiments each performed in triplicate. The colour code applied as 

previous to show relative gain or loss of the affinity of each ligand in comparison to the Wt V1bR.  In essence, darker colours indicate larger 

shift: increase in affinity is shown in blue; loss of the affinity shown in orange/red and yellow indicates small shifts below 10-fold.  Cell-surface 

expression levels of constructs relative to the Wt V1bR were determined by ELISA. 
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Figure 4.3  ab The binding profiles of [T2.49A]V1bR modified in TM2, and [Y3.30H]V1bR 

modified in TM3 to contain the corresponding residues of V1aR: 

a. [T2.49A]V1bR;  

b. [Y3.30H]V1bR. 

 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 

 

b 

a 



 

159 
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Figure 4.4  a-c The binding profiles of V1bR constructs modified in TM4 to contain the 

corresponding residues of V1aR: 

a. [A4.54F]V1bR;  

b. [F4.56L]V1bR;   

c. [V4.61Y]V1bR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Figure 4.5  ab The binding profiles of V1bR constructs modified in TM5 to contain the 

corresponding residues of V1aR: 

a. [L5.39V]V1bR;  

b. [T5.42M]V1bR. 

 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Figure 4.6  ab The binding profiles of V1bR constructs modified in TM6 to contain the 

corresponding residues of V1aR: 

a. [A6.46V]V1bR;  

b. [V6.54I]V1bR. 

 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Figure 4.7  a-c The binding profiles of V1bR constructs modified in TM7 to contain the 

corresponding residues of V1aR: 

a. [A7.34T]V1bR;  

b. [F7.35I]V1bR;   

c. [S7.38T]V1bR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Figure 4.7  ab The binding profiles of V1bR constructs modified in TM7 to contain the 

corresponding residues of V1aR: 

a. [M7.39A]V1bR;  

b. [N7.43S]V1bR;   

 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Construct 

 

Cell-Surface 

Expression  

(% Wt) 

 

 

AVP-induced 

Internalisation 

(% Unstimulated) 

WT V1bR 100 52 (± 5) 

[T2.49A]V1bR 95 (± 4) 43(± 2) 

[Y3.30H]V1bR 25 (± 1) 60 (± 7) 

[A4.54F]V1bR 89 (± 7) 55 (± 3) 

[F4.56L]V1bR 71 (± 4) 60 (± 3) 

[V4.61Y]V1bR 51 (± 9) 59 (± 12) 

[L5.39V]V1bR 85 (± 5) 59 (± 5) 

[T5.42M]V1bR 101 (± 3) 56 (± 1) 

[A6.46V]V1bR 91 (± 5) 47 (± 2) 

[V6.54I]V1bR 89 (± 9) 58 (± 4) 

[A7.34T]V1bR 45(± 2) 55 (± 5) 

[F7.35I ]V1bR 84 (± 8) 63 (± 4) 

[S7.38T]V1bR 107 (± 1) 51 (± 3) 

[M7.39A]V1bR 81 (± 3) 59 (± 5) 

[N7.43S]V1bR 80 (± 3) 58 (± 7) 

Figure 4.8 ab  The cell-surface expression levels of the mutant constructs and the V1bR Wt: 

a. The cell-surface expression of each mutant construct was shown relative to the Wt as 100%;  

b. The cell-surface expression after AVP-stimulation (1κM, 30min). The figures were normalised to the cell-surface expression levels of the 

same construct in the absence of AVP.   

The error bars represent SEM of three experiments each was in triplicate.  The significance of results was assessed by one-way ANOVA and 

Dunnett’s post-test with Wt as a control group (P < 0.01 indicated in pale-red and asterisks). 

 

Table 4.3  The cell-surface expression of the mutant constructs relative to the Wt and the proportion of the constructs internalised in percentage 

are shown plus/minus SEM of three separate experiments each of which was in triplicate. 
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4.2.2. The characteristics of the V1aR constructs containing the corresponding V1bR residue 
 

 

Construct 

 

Binding Affinity  (Ki, nM ± S.E.M.) 
 

 

Cell-Surface 

Expression  

(% Wt) 
AVP d[Cha

4
]AVP 5234B SSR149415 SR49059 LA 

WT V1bR 0.90 (± 0.13) 1.35 (± 0.02) 7.18 (± 1.82) 3.36 (± 0.93) 670 (± 147) 6.25 (± 1.86) - 

WT V1aR 1.02 (± 0.12) 81.9 (± 1.3) 6392 (± 655) 70.4 (± 15.3) 1.76 (± 0.54) 0.57 (± 0.05) 100 

[A2.49T]V1aR 0.48 (± 0.20) - 3469 (± 436)  104 (± 7)  2.23(± 0.61) 0.27 (± 0.07) 54 (± 2) 

[H3.30Y]V1aR 0.69 (± 0.25) 66.2 (± 7.2) 8150 (± 1227) 3.64 (± 0.18) 1.46 (± 0.04) 0.29 (± 0.02) 65 (± 3) 

[F4.54A]V1aR 0.39 (± 0.10) - 8183(± 1233) 63.7 (± 8.4) 3.92 (± 1.11)* 0.55 (± 0.22) 105 (± 2) 

[L4.56F]V1aR 1.49 (± 0.31) - 13466 (± 415) 129 (± 6.4) 2.35 (± 0.09) - 109 (± 7) 

[Y4.61V]V1aR 1.07 (± 0.02) - 10389 (± 1228) 30.1 (± 3.7) 1.21 (± 0.69) - 71 (± 2) 

[V5.39L]V1aR 0.30 (± 0.06) 27.9 (± 2.0) 1244 (± 156) 26.9 (± 5.0) 0.49 (± 0.03) 0.50  (± 0.10)  67 (± 11) 

[M5.42T]V1aR 0.95 (± 0.13) 152 (± 23) 7568 (± 760) 6.11 (± 0.99) 9.62 (± 0.74) 0.27 (± 0.04) 57 (± 3) 

[V6.46A]V1aR 0.43 (± 0.06) - 7160 (± 486) - 0.84 (± 0.08)  0.43 (± 0.04)  43 (± 1) 

[I6.54V]V1aR 0.96 (± 0.36) - 8194 (± 242) 123 (± 34) 1.65 (± 0.12) - 108 (± 3) 

[T7.34A]V1aR 0.76 (± 0.10) - 4725 (± 203) - 0.86 (± 0.08) 0.63 (± 0.17)  92 (± 2) 

[I7.35F ]V1aR 0.62 (± 0.08) 133 (± 21) 293 (± 69) 48.0 (± 3.5) 1.37 (± 0.05) 0.38 (± 0.04) 112 (± 2) 

[T7.38S]V1aR 1.00 (± 0.08)  - 12449 (± 997) - 1.09 (± 0.21) 0.78 (± 0.12) 104 (± 5) 

[A7.39M]V1aR 1.06 (± 0.49) 14.0 (± 2.9) 2416 (± 269) 19.4 (± 3.7) 3.17 (± 0.15) 0.39 (± 0.01) 109 (± 7) 

[S7.43N]V1aR 1.16 (± 0.42) - 6009 (± 900) 200 (± 14) 3.32 (± 0.25) - 101 (± 4) 

 

Table 4.4 Ligand binding characteristics of the constructs containing V1bR residues within the corresponding position of V1aR: 

Binding affinities of V1bR-selective antagonists 5234B, SSR149415, and V1aR-selective antagonist SR49059 to various V1aR constructs were 

determined by competition binding assay using [
3
H]AVP as a tracer ligand.  Binding affinity of peptide ligands to some constructs was also 

investigated.  The colour code applied as previous to show relative gain or loss of the affinity compared to the affinity of each ligand to the Wt 

V1aR.  In essence, darker colours indicate larger shift: increase in affinity is shown in blue; loss of the affinity indicated in orange; and yellow 

indicates small shift below 10-fold.  Cell-surface expression levels of constructs relative to the Wt V1aR were determined by ELISA.  The values 

are mean plus/minus SEM of three experiments each performed in triplicate. 
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Figure 4.9  ab The binding profiles of V1aR constructs modified in TM2/3 to contain the 

corresponding residues of V1bR: 

a. [A2.49T]V1aR;  

b. [H3.30Y]V1aR;   

 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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[F4.54A]V1aR
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 Figure 4.10  ab The binding profiles of V1aR constructs modified in TM4 to contain the 

corresponding residues of V1bR: 

a. [F4.54A]V1aR;  

b. [F4.56L]V1aR; 

c. [Y4.61V]V1aR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Figure 4.11  ab The binding profiles of V1aR constructs modified in TM5 to contain the 

corresponding residues of V1bR: 

a. [V5.39L]V1aR;  

b. [M5.42T]V1aR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Figure 4.12  ab The binding profiles of V1aR constructs modified in TM6 to contain the 

corresponding residues of V1bR: 

a. [V6.46A]V1aR;  

b. [I6.54V]V1aR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Figure 4.13  a-c The binding profiles of V1aR constructs modified in TM7 to contain the 

corresponding residues of V1bR: 

a. [T7.34A]V1aR;  

b. [I7.35F]V1aR; 

c. [T7.38S]V1aR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. 
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Figure 4.13  ab The binding profiles of V1aR constructs modified in TM7 to contain the 

corresponding residues of V1bR: 

a. [A7.39M]V1aR;  

b. [S7.43N]V1aR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Construct 

 

Cell-Surface 

Expression 

(% Wt) 

 

 

AVP-induced 

Internalisation  

(% Unstimulated) 

WT V1aR 100 53 (± 1) 

[A2.49T]V1aR 54 (± 2) 58 (± 1) 

[H3.30Y]V1aR 65 (± 3) 58 (± 3) 

[F4.54A]V1aR 105 (± 2) 43 (± 2) 

[L4.56F]V1aR 109 (± 7) 51 (± 3) 

[Y4.61V]V1aR 71 (± 2) 61 (± 2) 

[V5.39L]V1aR 67 (± 11) 57 (± 7) 

[M5.42T]V1aR 57 (± 3) 63 (± 11) 

[V6.46A]V1aR 43 (± 1) 53 (± 6) 

[I6.54V]V1aR 108 (± 3) 55 (± 6) 

[T7.34A]V1aR 92 (± 2) 46 (± 1) 

[I7.35F ]V1aR 112 (± 2) 54 (± 1) 

[T7.38S]V1aR 104 (± 5) 54 (± 4) 

[A7.39M]V1aR 109 (± 7) 49 (± 1) 

[S7.43N]V1aR 101 (± 4) 47 (± 1) 

Figure 4.14 ab  The cell-surface expression levels of the mutant constructs and the V1aR Wt: 

a. The cell-surface expression of each mutant construct was shown relative to the Wt;  

b. The cell-surface expression after AVP-stimulation (1κM) for 30 min.  The figures were normalised to the cell-surface expression levels of 

the same construct in the absence of AVP, determined from experiments performed in parallel. The results were analysed statistically by 

one-way ANOVA and Dunnett’s post-test with Wt as a control group (P < 0.01 indicated as pale-red with asterisks). 

 

Table 4.5  The cell-surface expression of the mutant constructs relative to the Wt and the proportion of the constructs internalised in percentage 

are shown plus/minus SEM of three separate experiments each of which was in triplicate. 
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4.2.3. Alanine Mutagenesis 

 
 

   Colour code indicates fold-changes in Ki 

 Over 20 fold increase in affinity 

 5 ~ 19 fold increase in affinity 

 2 ~ 4.9 fold increase in affinity 

 2 ~ 4.9 fold decrease in affinity 

 5 ~ 19 fold decrease in affinity 

 20 ~ 999 fold decrease in affinity 

 Over 1000 fold decrease in affinity 

 

Construct 

 

Binding Affinity  (Ki, nM ± S.E.M.) 

 

 

Cell-Surface 

Expression  

(% Wt) 
AVP dDAVP 5234B SSR149415 LA 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.7) 7.18 (± 1.82) 3.36 (± 0.93) 6.25 (± 1.86) 100 

[F4.56A]V1bR 0.98 (± 0.05) 12.6 (± 3.1) 6.87 (± 1.25) 8.89 (± 0.06) 6.72  n = 1 99 (± 9) 

[L5.39A]V1bR 1.36 (± 0.02) 58.0 (± 8.5) 103 (± 33) 20.7 (± 2.2) 32.8 (± 5.3) 85 (± 5) 

[T5.42A]V1bR 0.31 (± 0.09) 0.40 (± 0.04) 5.61 (± 0.64) 1.56 (± 0.13) 0.20 (± 0.01) 46 (± 2) 

[V6.54A]V1bR 0.12 (± 0.03) - 7.20 (± 0.85) - 1.59 (± 0.28) 51 (± 4) 

[N7.43A]V1bR 0.34 (± 0.02) - 6.72 (± 0.92) - 1.06  (± 0.11) 83 (± 3) 

Table 4.6 Ligand binding characteristics of the V1bR constructs containing Ala substitution: 

Binding affinity of V1bR-selective agonists and antagonists to V1bR constructs were determined by competition binding assay, using 

[
3
H]AVP as a tracer ligand.  The colour code applied, as indicated above, to show relative gain or loss of the affinity compared to the affinity 

of each ligand to the Wt V1bR.  The column on the far right shows cell-surface expression levels of each construct relative to the Wt V1bR, 

determined by ELISA utilising an engineered HA tag at the N-terminus of the receptor. 
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Figure 4.15  ab   The binding profiles of V1bR constructs with Ala substitution in TM4/TM5: 

a. [F4.56A]V1bR;  

b. [L5.39A]V1bR; 

c. [T5.42A]V1bR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Figure 4.16  ab The binding profiles of V1bR constructs with Ala substitution in 

TM6/TM7: 

a. [V6.54A]V1bR;  

b. [N7.43A]V1bR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were 

normalised to show percentage specific binding. The error bars represent SEM of three separate 

experiments each performed in triplicate. 
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Construct 

 

Cell-Surface 

Expression  

(% Wt) 

 

 

AVP-induced 

Internalisation  

(% Unstimulated) 

WT V1bR 100 49 (± 5) 

[F4.56A]V1bR 99 (± 9) 51 (± 3) 

[L5.39A]V1aR 85 (± 5) 53 (± 5) 

[T5.42A]V1aR 46 (± 2) 62 (± 3) 

[V6.54A]V1aR 51 (± 4) 61 (± 7) 

[N7.43A]V1aR 83 (± 3) 56 (± 4) 

 

Table 4.6  The cell-surface expression of the Ala-substituted V1bR constructs:   The figures on the left 

column are  the percentage cell-surface expression of the constructs shown relative to the Wt. The 

proportion of the constructs internalised in percentage are shown relative to the unstimulated plus/minus 

SEM of three separate experiments each of which was in triplicate. 

 

Figure 4.17 ab The cell-surface expression levels of the mutant constructs and the V1bR Wt: 

a. The cell-surface expression of each mutant construct relative to the Wt;  

b. The cell-surface expression after AVP-stimulation (1κM) for 30 min.  The figures were 

normalised to the cell-surface expression levels of the same construct in the absence of AVP, 

determined from experiments performed in parallel. The results were analysed by one-way 

ANOVA followed by Dunnett’s post-test with Wt as a control group.  The results significantly 

different (P < 0.01) are shown in pale-red and asterisks. 

c.  
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The reciprocal mutant constructs between V1bR and V1baR were made to contain the 

corresponding residue of the other subtype.  All the constructs bound AVP with Wt-like affinity 

(Table 4.2 and Table 4.4).  This was important as it showed that the mutant receptors were 

folded appropriately, and it allowed the use of [
3
H]AVP as a tracer ligand in quantifying 

changes in the binding affinity of subtype-selective ligands.  Some constructs displayed altered 

binding profiles to subtype-selective ligands to various degrees, whilst others retained Wt-like 

affinity towards the compounds used.   

A few pairs of the V1bR and V1aR constructs showed altered affinity to a particular 

subtype-selective ligand correspondingly.  The largest change in the affinity were seen in 

[F7.35I]V1bR, which displayed ≈ 30-fold decrease in the binding affinity for 5234B while the 

corresponding [I7.35F]V1aR was associated with ≈ 20-fold increase in its affinity for 5234B.  

[V4.61Y]V1bR showed 10-fold reduction in affinity towards SSR149415, and 2-fold increase in 

the affinity of the compound to [Y4.61V]V1aR was observed.  The binding affinity of 5234B 

with [L5.39V]V1bR was decreased about 3-fold, and correspondingly the affinity of the 

compound with [V5.39L]V1aR was increased about 5-fold.  Similarly, the affinity of 

SSR149415 to the same V1bR construct was decreased about 2-fold while it was increased about 

3-fold in the corresponding V1aR construct.  The binding affinity of SR49059 for [A4.54F]V1bR 

was increased ≈ 6-fold.  This is supported by the previous finding by Wootten on [F4.54A]V1aR, 

which was associated with 3-fold increase in Ki values to the same compound.   

The affinity of [M5.42T]V1aR for SSR149415 was increased about 10-fold, and also the 

corresponding [T5.42M]V1bR showed reduced affinity towards the compound about 10-fold.  

Moreover, the affinity of SR49059 to [T5.42M]V1bR was increased about 450-fold, resembling 

the affinity similar to the Wt V1aR to the compound.  However, the change in the affinity of the 
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corresponding [M5.42T]V1aR was only about 5-fold.  Although about 10-fold reduction in the 

affinity of 5234B with [T5.42M]V1bR was observed, a corresponding increase in the affinity of 

the compound with [M5.42T]V1aR was not observed.  [A7.39M]V1aR also displayed about 4-

fold increase in the affinity for SSR149415, while the corresponding [M7.39A]V1bR showed 

about 10-fold reduction in its binding affinity with the compound.  Also the binding affinity of 

SR49059 with [M7.39A]V1bR was increased about 10-fold, while the affinity with 

[A7.39M]V1aR was decreased slightly about 2-fold.  The increase in the binding affinity of two 

V1aR constructs, [M5.42T]V1aR and [A7.39M]V1aR, for SSR149415 agrees with the 

mutagenesis study by Derick et al. [426].   

Several pairs of the reciprocal constructs showed altered binding affinity in a biased 

manner in which a change in affinity for a ligand was limited to only one of the subtypes.  

[Y3.30H]V1bR showed about 10-fold reduction in the affinity with SR49059 whereas no 

significant difference was observed for the affinity of SR49059 at [H3.30Y]V1aR.  However, the 

latter construct showed about 20-fold increase in the binding affinity for SSR149415, whereas 

the corresponding decrease in the binding affinity of [Y3.30H]V1bR for SSR149415 was not 

observed.  The binding affinity of SSR149415 to [N7.43S]V1bR and [S7.43N]V1aR was slightly 

decreased ≈ 3-fold for both constructs.  The binding affinity of LA with [N7.43S]V1bR was 

increased about 3-fold.  The Ala-substitution of the residue in [N7.43A]V1bR resulted in a larger 

6-fold increase in the binding affinity for LA. 
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Further characterisation of [L5.39A]V1bR and the constructs modified at the residue 

position 5.42 

The reciprocal mutagenesis between V1aR and V1bR has shown that the residues at 5.39 (Leu in 

V1bR, Val in V1aR) and the residues at 5.42 (Thr in V1bR, Met in V1aR), both found in the upper 

region of TM5, are involved in ligand binding of the both subtypes.  A further study showed that 

Ala-substitution of Leu
5.39

 in V1bR resulted in decreased affinity of the receptor to both peptide 

and non-peptide ligands.  In contrast, Ala-substitution of Thr
5.42 

in V1bR increased the affinity of 

the receptor for the peptide ligands dDAVP and LA over 20-fold, while the affinity of non-

peptide antagonists are relatively unaffected.  Therefore, both constructs were characterised 

using ligands selective for the other subtype: V1bR-selective peptide agonist d[Cha
4
]AVP for 

[L5.39A]V1bR; and a V1aR-selective peptide antagonist CA for [T5.42A]V1bR, to test if the 

tendency of either decreasing or increasing affinity also apply to these ligands.  Since CA is a 

highly selective ligand to V1aR, the binding affinity of CA to [T5.42M]V1bR and [M5.42T]V1aR 

was also tested to make comparisons with [T5.42A]V1bR. 
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Construct 
Binding Affinity  (Ki, nM ±S.E.M.) 

AVP dDAVP d[Cha
4
]AVP SSR149415 5234B LA CA 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.0) 1.35 (± 0.02) 3.36 (± 0.93) 7.18 (± 1.82) 6.25 (± 1.86) 159 (±  72)  

[L5.39A]V1bR 1.36 (± 0.02) 58.0 (± 8.5) 1.24 (± 0.38) 20.7 (± 2.2) 103 (± 33) 32.8 (± 5.3) - 

[T5.42A]V1bR 0.31 (± 0.09) 0.40 (± 0.04) - 1.56 (± 0.13) 5.61 (± 0.64) 0.20 (± 0.01) 8.51(± 1.19)  

Table 4.7   The binding affinity of [L5.39A]V1bR and [T5.42A]V1bR:   The binding affinity of various peptide and non-peptide ligands to the 

constructs are shown in Ki obtained from the competition binding assay. 

 

Figure 4.18 ab  The ligand binding profiles of [L5.39A]V1bR and [T5.42A]V1bR: 

a. [L5.39A]V1bR;  

b. [T5.42A] V1bR.  

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values were normalised to show percentage specific binding. The 

error bars represent SEM of three separate experiments each performed in triplicate 

a 
b 
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Construct 

 

Binding Affinity  (Ki, nM ± S.E.M.) 

 

AVP d[Cha
4
]AVP SSR149415 5234B SR49059 LA CA 

WT V1bR 0.90 (± 0.13) 1.35 (± 0.02) 3.36 (± 0.93) 7.18 (± 1.82) 670 (± 147) 6.25 (± 1.86) 159 (±  72)  

WT V1aR 1.02 (± 0.12) 81.9 (± 1.3) 70.4 (± 15.3) 6392 (± 655) 1.76 (± 0.54) 0.57 (± 0.05) 1.15 (± 0.03)* 

[M5.42T]V1aR 0.95 (± 0.13) 152 (± 23) 6.11 (± 0.99) 7568 (± 760) 9.62 (± 0.74) 0.27 (± 0.04) 7.34 (± 0.35)  

[T5.42M]V1bR 0.73 (± 0.08) 2.54 (± 0.12) 35.71 (± 1.28) 69.8 (± 19.1) 1.43 (± 0.24) 7.25 (± 0.90) 1096 (± 20) 

Table 4.8   The binding affinity of [T5.42M]V1bR and [M5.42T]V1aR:   The binding affinity of various peptide and non-peptide ligands to the 

constructs are shown in Ki obtained from the competition binding assay. 

 

Figure 4.19 ab  The ligand binding profiles of [T5.42M]V1bR and [M5.42T]V1aR: 

a. [T5.42M]V1bR;  

b. [M5.42T]V1aR.  

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values plotted were normalised to show percentage specific binding. 

The error bars represent SEM of three separate experiments each performed in triplicate 

a b 
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The binding affinity of both peptide and non-peptide ligands for [L5.39A]V1bR were reduced 

compared to the Wt V1bR with the exception of the endogenous agonist AVP.  Likewise, the 

affinity of d[Cha
4
]AVP did not change. 

The affinity of a V1aR-selective peptide antagonist CA to [T5.42A]V1bR was markedly 

increased (≈ 18-fold).  In contrast, a decrease (≈ 7-fold) in the affinity of CA to [T5.42M]V1bR 

was observed.  The affinity of [M5.42T]V1aR to CA was decreased about 10-fold. 
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4.3 Discussion 

4.3.1  Phe
7.35

 and Leu
5.39

 are involved in 5234B binding to V1bR 

Two residues were identified to be responsible for distinguishing V1bR and V1aR in ligand 

binding of a V1bR-selective antagonist 5234B.  The mutagenesis study showed that Phe
7.35 

residue located on the top of TM7 is likely to make direct contact with 5234B during the 

association between the ligand and the receptor.  Regarding this compound, the largest gain and 

loss of the binding affinity observed in this study was consistent between the pair of reciprocal 

mutant constructs of V1bR and V1aR.  This finding suggests that the ligand selectivity to V1bR 

over V1aR could be increased by targeting specifically to interact favourably with this aromatic 

residue.  The molecular model of V1bR by Simms revealed the location of Phe
7.35 

to be at a 

ligand accessible area, with the phenol ring facing the extracellular side.  The residue types at 

the position 7.35 vary amongst GPCRs; however participation of the residues in ligand binding 

have been confirmed in some receptors: Tyr
7.35

 was identified to participate in both agonist and 

antagonist binding of purinergic P2Y1 receptor [446]; and Arg
7.35 

in free fatty acid receptor 1 

(FFAR1) was found to involve directly in binding of synthethic agonist [447].  These findings 

support the models of some GPCRs in which the residues at 7.35 are present at ligand accessible 

surfaces.
 

Another residue identified to be involved in 5234B binding to V1bR is Leu
5.39

, located at 

the exofacial terminal of TM5.  A small but consistent change in the binding affinity to 5234B 

was observed for the reciprocal mutants involving this residue.  The results of Leu
5.39

 and 

Tyr
5.38

, which was identified to be involved in 5234B binding in the previous chapter, altogether 

suggest that the exofacial end of TM5 is a contact site for this ligand upon binding.  Upon 

binding to GPCRs, it makes a sense for an antagonist to have key contacting residues at TM5 
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and TM7, because occupying the area of TM5-TM6-TM7 interface is likely to restrict the 

movement of TM6, which is a critical for the receptor activation.   Tyr
5.38

, Leu
5.39

, and Phe
7.35

 

are thought to form a ligand binding cavity for 5234B along with two Gln residues Gln
4.60 

and 

Gln
6.55 

described in the previous chapter.  Figure 4.20 shows the locations of these residues in 

the molecular model of V1bR at an inactive state. 
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Tyr5.38 

Leu5.39 

Phe7.35 

Gln6.55 

Gln4.60 

 

Figure 4.20 The molecular model of V1bR showing the residues identified in this study to be 

involved in 5234B binding (view from the extracellular side): 

 

The figure summarises the residues involved in 5234B binding to V1bR, including findings from 

the previous chapter.  A part of V1bR, is shown above, including TM3 (turquoise), TM4 (green), 

TM5 (lime green), TM6 (yellow) and TM7 (dark orange). 

 

A few residues were also shown colour coded: Gln (pink), Phe (magenta), Tyr (purple) and Leu 

(black).   

 

The models were created by Dr. John Simms.  The figures were visualised using Chimera 

(UCSF Computer Graphics Laboratory).  
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4.3.2. The residues possibly contributing indirectly in constructing the 

binding cavity of 5234B in V1bR 

Thr
5.42 

located at the upper region of TM5 is thought to engage indirectly in 5234B binding.  

Although the affinity of 5234B was decreased in [T5.42M]V1bR, the gain of affinity was not 

observed in [M5.42T]V1bR.  In agreement with this inconsistency, [T5.42A]V1bR retained a 

high affinity for 5234B equivalent to the Wt.  This suggests that Thr
5.42 

is unlikely to make a 

direct contact with 5234B.  The loss of the affinity observed with [T5.42M]V1bR is thought to 

be caused by the introduction of Met, which is relatively large, in the vicinity, rather than the 

loss of Thr.  The residue is located one α-helical turn below Leu
5.39 

and Tyr
5.38

 both of which 

were shown to be involved in the binding.  The introduction of a large hydrophobic Met could 

alter the positioning of the Tyr
5.38 

and Leu
5.39 

above.  Met
5.42 

may also interact favourably with 

the two residues in V1bR via induced-dipole or van der Waal’s interactions, thereby in turn 

making the interaction between the ligand and the two residues less favourable. 

Ala
7.34 

is also thought to contribute in the 5234B binding indirectly.  Although a 2-fold 

decrease in 5234B affinity to [A7.34T]V1bR was observed, the reverse did not apply to 

[T7.34A]V1aR.  The reason for the slight decrease in 5234B affinity to [A7.34T]V1bR is likely to 

be due to the introduction of Thr at the location.  The residue is located next to Phe
7.35 

which 

appeared to be directly involved in the 5234B binding process.  It is plausible that the presence 

of Thr may make the interaction slightly less favourable, hence the observed [A7.34T]V1bR 

phenotype for the 5234B binding.  Therefore these are environmental effects contributed by 

local residues surrounding the ligand-contacting residues.  These observations made on the V1bR 

constructs containing Met
5.42

 or Thr
7.34

 support the importance of Tyr
5.38

, Leu
5.39

, and Phe
7.35

 in 

5234B binding. 
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4.3.3 The residues interacting SSR149415 and SR49059 

Met
7.39 

and Thr
5.42 

were identified to be involved in SSR149415 binding.  This is consistent with 

the findings by Derick et al. in 2004.  Both residues were found also to be involved in SR49059 

binding.  A gain of affinity for SR49059 was observed with [T5.42M]V1bR and [M7.39A]V1bR 

while the reverse was seen with [A7.39M]V1aR and [M5.42T]V1aR.  However, greater shifts in 

the binding affinity were observed in the V1bR constructs compared to the corresponding V1aR 

constructs.  Notably, the introduction of Met in V1bR to substitute Thr
5.42 

was enough to gain the 

Wt-like high affinity to SR49059, suggesting that the residue is a key contacting residue of 

SR49059.  Other residues identified to be involved in SSR149415 binding to the V1bR are 

Tyr
3.30

, Val
4.61 

and Leu
5.39

, with a gain of affinity observed for the V1aR constructs containing 

each of these introduced residues.   

 

A docking study using SR49059 and V1aR was previously performed by Tahtaoui et al. in 2003.  

The model predicted that potentially interacting residues are mainly in TM3 and TM7, although 

some may also be in TM5, TM4 and in ECL2.  About 70% of those residues are hydrophobic in 

nature, while some are charged, potentially forming dipole-dipole interactions [448].   

The model of the V1bR with docked SSR149415 has been made by Derick et al.  The 

study revealed that the compound was suggested to interact between TM3, 5, 6 and 7 [434]. 

When the obtained structure was compared to the SR49059 bound structure of V1aR, differences 

in orientation of those compounds were large, despite the two antagonists sharing structural 

similarities.  The indole ring of SSR149415 was shown to be embedded in a hydrophobic 

crevice between TM6 and TM3 while SR49059 interacts mainly with TM5 and TM6. The 

dimethoxyphenyl moiety of SSR149415 seemed directed towards TM7 while the same moiety 
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of SR49059 appeared interacting with TM5 and TM6.  Moreover, the prolinamide moieties of 

both antagonists were directed to opposite directions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23  Non-peptide antagonists developed by Sanofi-Aventis: 

 

V1a selective SR49059 (left) and V1b selective SSR149415 (right) are shown. 
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Figure 4.24   The ligand-docked model of predicted binding cavities: 

 

Upper panel: SSR149415 in a binding cavity of V1bR, taken from Derick et al., 2004 [434]  

Lower panel: SR49059 in V1aR, taken from Tahtaoui et al., 2003 [448].   

In both models, nonpeptide antagonists are shown in turquoise. 
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Derrick et al. also investigated the subtype differences by producing a series of mutant V1aRs in 

which some residues were substituted to the corresponding residues of V1bR. Among the 

mutants, M5.42T and A7.39M exhibited increased affinities to SSR149415 [434].   

 

4.3.4. The role of Thr
5.42 

in the ligand binding of V1bR  

Thr
5.42 

is thought to be an important contributor in constructing the ligand binding cavity of 

V1bR.  A neutralising Ala substitution of Thr
5.42 

resulted in dramatic increases in the binding 

affinity for peptide ligands, including CA which is highly selective to V1aR.  This study showed 

that Thr
5.42

 distinguishes between V1bR and V1aR also in peptide ligand bindings with subtype-

selectivity.  The molecular model of V1bR showed that the residue points inwards to the helical 

bundle core.  The residue may have a crucial structural role, such as determining the location of 

water molecules within the TM domains, possibly in conjunction with the proceeding Thr
5.43

, 

which appears to point slightly outwards.  Similarly polar residues Ser
5.42 

and Ser
5.43 

are present 

in catecholamine receptors such as dopamine D4R and α2AR; and these polar residues may 

possibly engage in similar intramolecular or intermolecular interactions.  However, these 

residues were found to be involved in agonist-binding and activation [449, 450] unlike the V1bR 

in which agonists retained a high affinity binding in the absence of Thr
5.42

.  The differences may 

account for overall similarities in receptor architectures among Family A GPCRs, while 

indicating certain differences in receptor function existing in detail.            

 

4.3.5. The mode of LA binding to V1bR and V1aR 

There is little correlation in this study regarding LA binding to the V1bR and V1aR pairs of 

reciprocal substitution mutants.  This may suggest that LA binds to each subtype V1aR and V1bR 
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in different manners.  In its linear structure, it is plausible that LA may be capable of adopting 

alternative conformations more easily than a partially cyclic AVP and analogues which are 

restrained by the intramolecular disulfide bond.  Conformational flexibility and better 

adaptability to slight changes in the receptor binding site are likely reasons to explain why gain 

of affinity for LA was observed more frequently than loss of affinity.       

 

4.4 Future studies 

The sets of V1bR and V1aR reciprocal mutant constructs prepared in this study could be used to 

investigate interaction mechanisms between the receptors and other subtype-selective ligands in 

future development.   The results obtained by this mutagenesis study could be used to refine the 

molecular model of the V1bR and V1aR containing docked ligand.   Following refinement of the 

models, further mutagenesis studies could be carried out on the functional residues which 

become apparent as contacting residues.  The residues which have been identified to participate 

in ligand binding can also be studied in more details by substituting these with other functional 

residues, or by utilising ligand analogues which have been modified at potentially interacting 

side chains or moieties.  The quality of molecular model would improve with an addition of 

water molecules following molecular dynamic simulations and appropriate mutagenesis studies.  

By applying an iterative process of computational molecular docking, MD simulations, 

systematic mutagenesis and ligand modifications, more reliable models which approach a 

realistic representation of the receptor subtypes could be eventually derived.  Such models 

would not only facilitate the further development of the subtype-selective ligands, but also 

would be useful in obtaining detailed kinetics of the ligand association and dissociation in silico. 
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Chapter 5  The investigation on the variants of V1bR 

5.1 Introduction 

The majority of biochemical or pharmacological studies undertaken on the V1bR were carried 

out using recombinant human V1bRs which are overall identical in sequence, and represent the 

large majority of V1bR found in the human population.  Overall, the studies undertaken world-

wide provide descriptions highly relevant and applicable to the V1bR present in the majority of 

human individuals. 

Exceptional variants in sequence have been found in a few single nucleotide 

polymorphism (SNP) variants of V1bR which have been identified as sequencing of human V1bR 

was carried out on a global scale.  The differences which have been identified to date are usually 

limited to single codon changes in those SNP cases affecting the coding regions. Also, the 

associations between the carriers of such variant receptors and distinctive pathophysiologies 

may not be obvious.  Hence the effects of the codon change on the receptor pharmacology have 

often been assumed to be small or negligible.  However, during the development of novel 

compounds targeting the receptor, any existing differences need to be investigated for safety 

reasons for the individuals who are potentially affected.  Among several SNP variants of V1bR 

sequences identified to date, three variants were selected to be studied.  These are Lys
65

/Asn, 

Gly
191

/Arg, and Arg
364

/His, where the following residue in each case represents the polymorphic 

variants.  Among the three, two have been linked with psychological disorders.  The studies on a 

Hungarian population identified an association of Asn
65

 with childhood-onset mood disorders 

[451].  A correlation between His
364

 phenotype and panic disorders has also been reported by a 

study in Germany [452].  The prevalence of each phenotype has been reported to be: i) 4.8 % 
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homozygous Asn
65

 and 9.5 % for heterozygous Asn/Lys
65

 in Europeans; ii) 4.2 % homozygous 

Arg
191

, 25 % heterozygous Arg/Gly
191

 in the Sub-Saharan African population, while in 

Europeans no homozygous Arg
191 

were identified while 4.5 % were heterozygous Arg/Gly
191

 

carrier; and iii) 5 % homozygous His
364

 and 30 % heterozygous His/Arg
364

 in the European 

population. 

 

An important factor in drug development is differences in the receptor pharmacology between 

human and other species.  In the early stages of development, novel compounds are 

characterised on animals before being introduced into human volunteers.  Rat and other rodents 

have been employed traditionally as model organisms in the pharmaceutical industries.  

However, such studies can become pointless or hard to interpret if there are large differences in 

the pharmacology of the same receptor between the two species concerned.  For this reason, any 

potential differences between the relevant species need to be examined during development 

prior to the compounds entering clinical trials.  In this study, the residues which contribute to 

species differences between the rodent V1bR and human V1bR in the putative ligand binding 

sites were investigated.   
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5.2 Results 

5.2.1  SNP variants of human V1bR 

The polymorphisms of human V1bR gene (AVPR1B) were identified by using SNP database 

inbuilt within Entrez website.  Three SNPs subjected to study are: i) G to C nucleotide point 

mutation resulting in Lys
65

Asn substitution (rs35369693); ii) G to C change leading to 

Gly
191

Arg substitution (rs33990840); and iii) G to A  producing  Arg
364

His substitution 

(rs28632197).  The three residues are indicated in the schematic diagram of the V1bR (figure 

5.1).  Each residue was introduced into the human V1bR using site-directed mutagenesis.  Three 

mutant constructs [K65N]V1bR, [G191R]V1bR and [R364H]V1bR were produced.  The ligand 

binding properties, AVP-induced internalisation of the receptor and InsP-InsP3 production in 

response to AVP-stimulation were measured and compared to the Wt V1bR.    
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Figure 5.1 The SNP variants of human V1bR:  

The residues studied are indicated in blue.  Three residues are located at ICL1 (Lys
65

Asn), ECL2 

(Gly
191

Arg), and the C-terminal region (Arg
364

His).  The residues circled with orange are the most 

conserved residues among Family A GPCRs, and are used as reference points in Ballesteros-

Weinstein numbering schemes.  
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Table 5.1 The mutagenic oligonucleotide primers used for mutagenesis:  
Codon altered shown underlined, and the nucleotides changed shown in BOLD.  The direction (S) means 

sense, and (AS) means antisense.  

 

  

Construct 
Directio

n 
Nucleotide Sequence 

[K65N]V1bR 
(S) 

(AS) 

5’-CAG-CTG-GGC-CGC-AAC-CGC-TCC-CGC-ATG-3’  

5’-CAT-GCG-GGA-GCG-GTT-GCG-GCC-CAG-CTG-3’ 

[G191R]V1bR 
(S) 

(AS) 

5’-GG-GCA-GCA-GAC-TTC-CGC-TTC-CCT-TGG-GGG-3’  

5’-CCC-CCA-AGG-GAA-GCG-GAA-GTC-TGC-CC-3’ 

[R364H]V1bR 
(S) 

(AS) 

5’-CAG-CCC-AGG-ATG-CAC-CGG-CGG-CTC-TC-3’  

5’-GGA-GAG-CCG-CCG-GTG-CAT-CCT-GGG-CTG-3’ 

The above three sets of primers were used to produce SNP variants of V1bR constructs. 

[A2.52G]V1bR 
(S) 

(AS) 

5’-CTG-ACA-GAC-CTG-GGC-GTG-GCG-CTC-TTC-3’  

5’-GAA-GAG-CGC-CAC-GCC-CAG-GTC-TGT-CAG-3’ 

[L4.44P]V1bR 
(S) 

(AS) 

5’-CAG-TCC-ACC-TAC-CCG-CTC-ATC-GCT-GCT-C-3’  

5’-G-AGC-AGC-GAT-GAG-CGG-GTA-GGT-GGA-CTG-3’ 

[F4.56A]V1bR 
(S) 

(AS) 

5’-CTG-GCC-GCC-ATC-GCC-AGC-CTC-CCT-CAA-GTC-3’ 

5’-GAC-TTG-AGG-GAG-GCT-GGC-GAT-GGC-GGC-CAG-3’ 

[L5.39I]V1bR 
(S) 

(AS) 

5’-GGG-CCA-CGG-GCC-TAC-ATC-ACC-TGG-ACC-ACC-3’  

5’-GGT-GGT-CCA-GGT-GAT-GTA-GGC-CCG-TGG-CCC-3’ 

[T5.52A]V1bR 
(S) 

(AS) 

5’-C-GTT-CTG-CCG-GTG-GCC-ATG-CTC-ACG-GCC-3’ 

5’-GGC-CGT-GAG-CAT-GGC-CAC-CGG-CAG-AAC-G-3’ 

[S5.59G]V1bR 
(S) 

(AS) 

5’-C-ACG-GCC-TGC-TAC-GGC-CTC-ATC-TGC-C-3’  

5’-G-GCA-GAT-GAG-GCC-GTA-GCA-GGC-CGT-G-3’ 

[N7.45S]V1bR 
(S) 

(AS) 

5’- G-GGC-AAC-CTC-TCC-AGC-TGC-TGC-AAC-CCC-3’  

5’-GGG-GTT-GCA-GCA-GCT-GGA-GAG-GTT-GCC-C-3’ 

The above seven sets of primers were used to produce mutant constructs of human 

V1bR.containing the corresponding residues of rat V1bR. 
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5.2.2  Characterisation of the SNP variant V1bR constructs 

Construct 

 
Binding Affinity  (Ki, nM ±S.E.M.) 

 

 
Cell-Surface 
Expression  

(% Wt) 
AVP dDAVP SSR149415 5234B LA 

WT V1bR 0.90 (± 0.13) 10.5 (± 2.0) 3.36 (± 0.93) 7.18 (± 1.82) 6.25 (± 1.86) 100 

K
65

N 1.46 (± 0.05) 4.09 (± 0.39) 4.48 (± 0.90) 10.31 (± 0.47) 4.27 (± 0.79) 89 (± 2) 

G
191

R 1.05 (± 0.29) 8.10 (± 0.11) 7.51 (± 0.53) 6.49 (± 0.95) 6.94 (± 1.06) 157 (± 5) 

R
364

H 1.31 (± 0.21) 6.20 (± 0.83) 5.83 (± 0.48) 7.57  (± 1.20) 7.29 (± 2.39) 100 (± 12) 

 

Table 5.2 Ligand binding characteristics of the V1bR constructs representing the human SNP variants: 

Binding affinity of V1bR-selective agonists and antagonists to V1bR constructs were determined by competition binding assay, using 

[
3
H]AVP as a tracer ligand.  The pale blue indicates ≈ 2-fold increase in affinity, compared to the Wt V1bR.  Cell-surface expression 

levels of each construct relative to the Wt V1bR, determined by ELISA utilising an engineered HA tag at the N-terminus of the 

receptor. 
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Figure 5.2  a-c The binding profiles of SNP variant constructs of V1bR: 

a. [K65N]V1bR;  

b. [G191R]V1bR; 

c. [R364H]V1bR. 

Competition binding curves of [
3
H]AVP and various ligands as indicated.  The values were 

normalised to show percentage specific binding. 

a 

b 

c 
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Construct 
Cell-Surface 

Expression 

(% Wt) 

AVP-induced 

Internalisation 

(% unstimulated) 

dDAVP-induced 

Internalisation 

(% unstimulated) 

WT V1bR 100 49 (± 7) 53 (± 2) 

K
65

N 89 (± 2) 53 (± 1) 50 (± 2) 

G
191

R 157 (± 5) 28 (± 9) 35 (± 3) 

R
364

H 100 (± 12) 48 (± 12) 36 (± 7) 

Table 5.3  The cell-surface expression and the agonist-induced internalisation of the SNP variant constructs:   The percentage cell-surface 

expression of the constructs relative to the Wt, the proportions of constructs internalised in response to AVP-stimulation, and the internalisation induced 

by dDAVP.  The figures are shown plus/minus SEM of three experiments each was in triplicate. 

 

Figure 5.3 a-c The cell-surface expression of the SNP variants and the Wt V1bR: 

a. The cell-surface expression of each mutant construct relative to the Wt;  

b. The expression level after AVP-stimulation (1κM) for 30 min.  The figures were normalised to show the percentages relative to the unstimulated. 

c. The cell-surface expression after dDAVP-stimulation (1κM) for 30 min.  The figures were normalised as above. 

 The results were analysed by one-way ANOVA followed by Dunnett’s post-test with Wt as control (P < 0.01 indicated in pale red and asterisks). 

 

a b c 

* 

* 
 

 

 *  
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Construct 

 

AVP-induced InsP-InsP3 Accumulation 

EC50 (nM, ± SEM) Emax (% Wt, ± SEM) 

WT V1bR 1.69  (± 0.37) 100 

K
65

N 2.05 (± 0.27) 67 (± 4)  * 

G
191

R 2.59 (± 0.35)      170 (± 25)  * 

R
364

H 2.54 (± 0.23) 99 (± 20) 

a 

b 

Table 5.4   InsP-InsP3 productions by the SNP variant constructs:    

The InsP-InsP3 productions were measured 30 min after AVP-stimulation (1κM).  The Emax was determined 

relative to the maximum production measured in the Wt V1bR.  The values were determined from three 

experiments each performed in triplicate.  Significant differences were observed by one-tailed paired T-test (P 

< 0.05) as indicated in pale orange and asterisk.    

 

Figure 5.4 ab InsP-InsP3 productions by the SNP variants and the Wt V1bR: 

a. The InsP-InsP3 production relative to the Wt.  The values obtained for each construct was normalised to 

the Wt;  

b. The InsP-InsP3 production.  The values were normalised to the maximum (100%) for each construct. 
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Construct 

Agonist-induced InsP-InsP3 Accumulation 

EC50 (nM, ± SEM) Emax (% Wt, ± SEM) 

AVP dDAVP AVP dDAVP 

WT V1bR 1.78  (± 0.37) 11.9 (±1.9) 100 100 

K
65

N 2.05 (± 0.27) 8.74 (± 1.34) 67 (± 4)   60 (± 13) 

a 

b 

Table 5.5   InsP-InsP3 productions by [K65N]V1bR:   The InsP-InsP3 productions measured 30 mins 

after AVP-stimulation (1κM).  The effectiveness in the accumulation is presented as EC50 determined by 

non-linear regression curves.  The Emax was determined relative to the maximum production measured in 

the Wt.  The values were determined from three experiments each performed in triplicate. 

 

Figure 5.5 ab InsP-InsP3 productions by [K65N]V1bR in response to AVP or dDAVP: 

a. The InsP-InsP3 production relative to the Wt;  

b. The InsP-InsP3 production normalised to the maximum accumulation induced by each ligand. 



 

202 

All three SNP variant constructs of the V1bR produced in this study confirmed that any one of 

the codon substitutions does not abolish the V1bR functionality, and each variant retained high 

affinity binding to AVP.  In fact, the [K65N]V1bR variant increased the binding affinity fo 

dDAVP about 2-fold.  When the dDAVP induced InsP-InsP3 production by this construct was 

investigated, the EC50 value obtained was similar to the Wt.   In comparison to the Wt and the 

other two SNP variants, both AVP and dDAVP appeared slightly less effective in generating 

Ins-InsP3 by [K65N]V1bR, as seen in the relatively lower values of Emax obtained for this 

construct.  Lys
65

, located in the middle of the ICL1, is conserved among V1aR, V1bR and OTR, 

all of which preferentially couple to Gq/11α, whereas Asn
65

 is found in V2R which couples 

predominantly with Gsα.  Therefore, with an assumption that the Asn substitution of Lys
65

 may 

have increased the coupling preference of the V1bR to Gsα, the agonist induced cAMP 

production by [K65N]V1bR was also investigated; however no significant increase in cAMP 

generation by this mutant was observed (results not shown).   

A significant difference in the cell-surface expression level was observed for 

[G191R]V1bR.  The cell-surface expression of the construct was markedly increased to 157 % of 

the Wt V1bR, and a corresponding increase in Emax value was obtained by InsP-InsP3 assay.  The 

agonist induced-internalisation of the construct by both AVP and dDAVP appeared to be 

slightly compromised, though the differences were shown to be statistically insignificant by 

one-way ANOVA followed by Dunnett’s post-test against the Wt control.  The apparent 

reduction in the internalisation observed might possibly reflect a threshold of the internalisation 

process in the HEK293T system employed.  No significant difference from the Wt was observed 

for [R364H]V1bR in this study.  The pharmacological characteristics determined for this 

construct in this study were similar to the Wt. 
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5.2.3 Characterisation of the human V1bR constructs containing the 

equivalent residue of rat V1bR 

In order to identify residues which differ between human and rodent V1bR in the putative ligand 

binding cavity for non-peptide ligands, TM domains of V1bR of three species, rat, mouse and 

human were compared by means of protein sequence alignment (figure 5.6).  The residues 

identified to be non-conservative substitutions were targeted for mutagenesis.  The selected 

residues of the rat V1bR were then introduced into the human recombinant V1bR by site-directed 

mutagenesis.  Initially the residues located at the upper or middle TM region were selected as 

these are more likely candidate for interacting ligands.  However, a few residues located at the 

lower TM were also selected concerning indirect effects the residue could possibly have on the 

ligand binding cavity.  In total, seven residues were selected to study.  The location of these 

residues are indicated in a schematic diagram of human V1bR (figure 5.7).     

Seven human V1bR constructs: [A2.52G]V1bR, [L4.44P]V1bR, [F4.56L]V1bR, 

[L5.39I]V1bR, [T5.52A]V1bR, [S5.59G]V1bR, and [N7.45S]V1bR were made and characterised.  

The binding characteristics of three agonists AVP, dDAVP and d[Val
4
]DAVP, and also a  V1bR 

-selective non-peptide antagonists 5234B, were determined by competition binding assay.  

d[Val
4
]DAVP (dVDAVP) was used since the substitution of Gln

4
 of dAVP with relatively 

hydrophobic residues have been shown to increase selectivity to V1bR [353], and d[Leu
4
, 

Lys
8
]VP has been shown to be a V1bR -selective agonist in rat species [347].  The data from the 

above studies indicate that the modified peptides behave as high affinity agonists to both rat and 

human V1bRs but less efficacious at other subtypes.  dVDAVP was originally synthesised in 

1974 by Sawyer et al. as a V2R-selective agonist before V1bR was known to exist [453].  In this 

study, dVDAVP was used in search of the mutual ground between rat and human V1bRs, 

concerning conformations of the ligand binding cavities of V1bR from the two species.         
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Figure 5.6  Sequence alignment of V1bR from human, mouse and rat:  

 

The protein sequence alignment of human, mouse, and rat V1bR.  TM domains were shown in red.  

TM residues that differ between the rodents and human are shown in blue.  Bold letters in red 

indicate the most conserved residues in Family A GPCRs and are the reference residues used in 

Ballesteros-Weinstein’s numbering scheme.  
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Figure 5.7 Divergent TM residues in V1bRs between human and rat:  
 

The schematic representation of the human V1bR is shown with the residues chosen for mutagenesis 

in turquoise.  The residues circled with orange are the most conserved residues among Family A 

GPCRs, and are used as reference points in Ballesteros-Weinstein numbering scheme.  The putative 

sites for post-translational modifications are indicated as follows: hexagons on Asn residues of the 

N-terminal domain for glycosylation; purple lines on Cys residues of the C-terminal domain for 

palmitoylation.  The residues in grey represent HA epitope tag incorporated at the N-terminus.  
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Construct 
Binding Affinity  (Ki, nM ±S.E.M.) Cell-Surface 

Expression 
(% Wt) AVP dDAVP dVDAVP 5234B 

WTV1bR 0.90 (± 0.13) 10.5 (± 2.7) 6.00 (± 0.26) 7.61 (± 1.18) 100 

A2.52G 0.81 (± 0.29) 8.04 (± 0.85) 7.29 (± 1.54) 7.72 (± 1.27) 85 (± 1) 

L4.44P 0.25 (± 0.07) 3.03 (± 0.15)  2.49 (± 0.21) 2.11 (± 0.61) 45 (± 3) 

F4.56L 0.70 (± 0.09) 7.71 (± 2.79) 11.5 (± 0.1) 7.47 (± 1.54) 71 (± 4) 

L5.39I 1.22 (± 0.06) 16.0 (± 3.6) 9.00 (± 0.52) 4.55  (± 1.42) 109 (± 10) 

T5.52A 0.68 (± 0.31) 13.2 (± 0.7) 6.38 (± 0.72) 5.72 (± 1.89) 106 (± 4) 

S5.59G 1.08 (± 0.36) 7.73 (± 1.04) 8.04 (± 1.48) 12.9 (± 4.3) 102 (± 3) 

N7.45S 1.57 (± 0.32) 16.3 (± 1.6) 17.4 (± 4.8) 6.83 (± 1.23) 101 (± 1) 

 

Table 5.6 Ligand binding characteristics of the human V1bR constructs containing corresponding residues of rat V1bR: 

Binding affinity of V1bR-selective agonists and antagonists to V1bR constructs were determined by competition binding assay, using 

[
3
H]AVP as a tracer ligand.  The pale blue indicates small gain of affinity (≈ 2~3 fold) and yellow indicates ≈ 3-fold loss of affinity 

compared to the Wt V1bR.  Cell-surface expression levels of each construct relative to the Wt V1bR were determined by ELISA 

utilising an engineered HA tag at the N-terminus of the receptor.  The values presented are means plus/minus SEM of three 

experiments each performed in triplicate. 
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Figure 5.8  a-d The binding profiles of the Wt V1bR  and human V1bR constructs each containing a rat V1bR residue: 

a. Wt V1bR;     b.   [A2.52G]V1bR;     c.   [L4.44P]V1bR;     d.   [F4.56L]V1bR. 

 

Competition binding curves of [
3
H]AVP and various V1bR-selective ligands.  The values were normalised to show percentage specific 

binding.  The error bars represent SEM of three experiments each performed in triplicate. 

a b 

c d 
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Figure 5.9  a-d The binding profiles of the human V1bR constructs each containing a rat V1bR residue: 

a.  [L5.39I]V1bR;     b.  [T5.52A]V1bR;     c.  [S5.59G]V1bR;     d.  [N7.45S]V1bR. 

 

Competition binding curves of [
3
H]AVP and various V1bR-selective ligands.  The values were normalised to show percentage specific binding. 

The error bars represent SEM of three experiments each performed in triplicate. 
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Construct 

 

Binding Affinity  (Ki, nM ±S.E.M.) 

 

AVP 5234B SSR149415 

WT V1bR 0.90 (± 0.13) 7.18 (± 1.82) 3.36 (± 0.93) 

[L5.39V]V1bR 0.40 (± 0.14) 21.5 (± 1.9) 6.90 (± 1.02) 

[L5.39A]V1bR 1.36 (± 0.02) 103 (± 33) 20.7 (± 2.2) 

[L5.39I]V1bR 1.22 (± 0.06) 4.55  (± 1.42) 5.38 (± 0.38) 

 

Table 5.7   The binding affinity of non-peptide antagonists to [L5.39I]V1bR, [L5.39V]V1bR 

and [L5.39A]V1aR:    
The binding affinity of 5234B and SSR149415 to the constructs are shown in Ki obtained from 

three separate competition binding assays each performed in triplicate. 

 

Figure 5.9  The binding of 5234B and SSR1491415 to [L5.39I]V1bR:  
Competition binding curves of [

3
H]AVP and various V1bR-selective ligands.  The values plotted 

were normalised to show percentage specific binding.  The error bars represent SEM of three 

experiments each performed in triplicate. 
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Construct 
Cell-Surface 
Expression 

(% Wt) 

AVP-induced 
Internalisation 

(% unstimulated) 

WT V1bR 100 46 (± 6) 

A2.52G 85 (± 1) 48 (± 8) 

L4.44P 45 (± 3) 54 (± 3) 

F4.56L 72 (± 2) 59 (± 5) 

L5.39I 109 (± 10) 50 (± 4) 

T5.52A 106 (± 4) 43 (± 3) 

S5.59G 102 (± 3) 59 (± 7) 

N7.45S 101 (± 1) 47 (± 3) 

Table 5.8  The cell-surface expression and AVP-induced internalisation of the human V1bR constructs 

containing rat V1bR residues:  The percentage cell-surface expression relative to the Wt, and the 

proportions of internalised in response to AVP-stimulation (1 κM, 30 min).  The figures are shown 

plus/minus SEM of three experiments each was in triplicate. 

 

Figure 5.10 ab The cell-surface expression of the SNP variants and the Wt V1bR: 

a. The cell-surface expression of each mutant construct relative to the Wt;  

b. The expression level after AVP-stimulation (1κM) for 30 min.  The figures were normalised to 

show the percentages relative to the unstimulated. 

The results were analysed by one-way ANOVA followed by Dunnett’s post-test with Wt as control  

(P < 0.01 shown in pale red with asterisks). 
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5.2.4i  Summary of results 

Most mutant constructs produced in this section retained the Wt-like characteristics in ligand 

binding for the agonist and the antagonist used in this study.  [L4.44P]V1bR appeared to have 

shown slightly increased affinity overall, with about 2-fold decrease in Ki values obtained for all 

the ligands used.  The cell-surface expression level of [L4.44P] V1bR was 45 % relative to the 

Wt.  Although Pro
4.44 

is mutually found in the V1bR of rodents such as mouse and rat, the Pro 

was not well-tolerated in human V1bR, which prefers to have aliphatic Leu.  On the TM4, there 

is another hydrophobic substitution between the human and the rodents V1bR at position 4.56.  

[F4.56L]V1bR was also found to express on the cell-surface about 30% less than the Wt.  The 

results obtained for the two constructs suggest that there are differences regarding 

hydrophobicity at the middle/lower region of TM4 between human and rodent V1bRs. 

In the previous section of this study in Chapter 4, Leu
5.39 

was identified as involved in the 

ligand binding of dDAVP, LA, SSR149415 and 5234B to V1bR.  In rodent V1bRs, Ile
5.39 

is 

found.  [L5.39I]V1bR was produced to explore this slight difference between the species variant 

V1bRs.  The Ile substitution of Leu
5.39

 was relatively well-tolerated in human V1bR for agonists, 

though a slight reduction of the binding affinity remained for dDAVP.  The reduction in binding 

affinity of antagonists were also observed in both [L5.39V]V1bR and [L5.39A]V1bR, but high 

affinity binding was restored in [L5.39I]V1bR.   
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5.3.  Discussion 

5.3.1.  Characteristics of SNP variants distinct from the Wt V1bR 

Among the three SNP variants studied, the minor SNP variant of Lys
65

Asn displayed a slight 

but significant reduction in the cell-surface expression and reduced potency in InsP-InsP3 

generation in response to either AVP or dDAVP stimulation.  Since Asn is found at the 

corersponding position in the V2R which is coupled to Gαs, a possibility of altered coupling 

tendency of the variant towards Gαs was considered; however, the agonist-induced cAMP 

generation by this constract was not elevated (results not shown).  A genetic analysis study by 

Dempster et al. has previously identified that this minor variant may have a protective effect 

againist childhood-onset mood disorders in females [435].  The reduction in receptor 

functionality observed for this variant in this study support their finding, and provides an 

explanation at a molecular pharmacological level.  The exact role of Lys
65

 in the V1bR 

conformation remains uncertain, as the reliability in predicting conformations of loop regions by 

molecular modelling is currently limited.  The mutagenesis study of Lys residues in the 

intracellular domains of the V1aR by Wootten showed that the Lys
82

 residue at the 

corresponding position in ICL1 is not subjected to ubiquitination (Wootten D.L. 2007, Doctoral 

thesis, University of Birmingham).  This indicates that Lys
82

 is relatively unexposed and 

inaccessible by heterologous macromolecules in the V1aR; the residue might engage in 

intramolecular interactions with neibouring residues.  Therefore Lys
65

 at the corresponding 

position, as shown by multiple sequence alignment, might similarly participate in intramolecular 

interactions assisting conformational stability.   

The other notable finding from this study on the SNP variants was the variant of 

Gly
191

Arg, which displayed substantially increased cell-surface expression.  The result was 
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consistent with the large Emax value representing the effective generation of InsP-InsP3.  Several 

hypothesis can be made to explain why the cell-surface expression level was increased in 

[G191R]V1bR.  Firstly, the introduced Arg
191

 is likely to interact with neighbouring residues by 

virture of its charge, thereby making the receptor more stable.  Such interactions can be 

achieved most likely at the intramolecular level, or even at the intermolecular level with 

residues of another molecule present in the close vicinity to strengthen any dimeric association.  

The removal of glycine itself probably contributes to stabilising the local environment of ECL2 

thermodynamically as the loop would probably lose some degrees of conformational freedom in 

the absence of Gly.  The Arg substitution of Gly
191

 is thought to have stabilised the ECL2 

without distorting the ligand binding cavities, as [G191R]V1bR retained high affinity binding to 

both agonists and antagonists used in this study.   

The SNP variant carrying the Gly
191

Arg substitution is known to be relatively rare among 

European populations with no homozygous individual identified to date.  The incidence of SNP 

variant is known to be more frequent in Sub-Saharan African population.  It can be assumed that 

the SNP variant might have evolved in the Sub-Saharan African population as a coping strategy 

in the dry climate with high temperature, which makes individuals prone naturally to 

dehydration.  The population might have been affected by diseases such as diarrhoea when 

drinking contaminated water with bacteria, which in turn cause more dehydration.  Not only 

water but also minerals are excreted by sweating, whereas water, minerals and ACTH are also 

lost by excretion when affected by diarrhoea.  Therefore increasing ACTH production by the 

stable V1bR might have been a counteracting strategy in adapting to such a problematic 

environment.  It is also possible that a rapid induction of physiological ‘fight or flight’ response 

enhanced by cortisol (in addition to via adrenaline) was appropriate and beneficial among 
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ancestral hunter-gatherers in the environment of Sub-Saharan Africa, where a range of large 

carnivorous animals co-habit on the same land.  However, in the current modernised world, 

individuals possessing this SNP variant might possibly be susceptible to stress-related disorders 

due to the enhanced V1bR functionality, unless there are any counteracting function (e.g. under-

active CRFR, under-production of AVP etc.) simultaneously present. 

The molecular pharmacological characteristics of these minor variants determined in this 

study are more likely to represent the receptor functions in homologous individuals, as each 

construct was characterised by transfecting each construct alone.  Since V1bR can either form 

homo- or heterodimers, the effects of the variants in heterologous individuals could be less, 

unless these variants were found to exhibit dominant effects.  The heterodimerising nature of 

V1bR with CRFR1 may add another complication regarding the effect the variant has on the 

overall cellular events.        

 

5.3.2  Comparisons of TM domains between human and rat V1bRs  

The species differences between rat and human V1bRs in TM domains were investigated by 

incorporating corresponding residues of rat V1bR into human V1bR.  The results of this study 

suggest that the TM domains of rat V1bR and human V1bR are similar regarding ligand binding 

properties of these receptors, and reflect the fact that both receptors are thought to share very 

similar ligand binding cavities.  A slight difference may exist in property of TM4 and the 

consequential association of TM4 with neibouring helices, as TM4 of rat V1bR bears Pro
4.44 

which may introduce an additional kink.  The overall increase in ligand binding affinities to 

human V1bR containing Pro
4.44 

observed in this study could be the result of the altered 

conformation of TM4 resulting in increased accessibility of ligands to the binding cavity.    
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5.4 Future studies 

These variant constructs produced can be used in the future to explore binding properties of 

different high affinity ligands of the V1bR.  The SNP variant constructs will remain useful tools 

in testing any V1bR-selective agents for therapeutic purposes, prior to clinical trials in order to 

estimate the effect of the drugs on the affected individuals.  The species variant constructs can 

also be used to study species differences between rodents and human V1bRs, in confirming the 

relevance of results obtained from rodent studies to human application. 

One of SNP variants, Gly
191

Arg of the V1bR was shown to be functionally enhanced 

compared to the Wt V1bR.  Since the prevalence of the SNP variant is higher in the Sub-Saharan 

African population compared to European populations, the prevalence of the SNP variants of 

CRFR1 in the same populations could also be investigated.  The SNP variant of CRFR1 with 

enhanced function could be searched by the same approach used in this study.  The additional 

study on CRFR1 in conjunction with investigating the cAMP signalling properties of the V1bR 

SNP variants will provide a broader picture of the SNP variants associated with the stress 

response. 

 With considerations on both homo- and heterozygous individuals carrying the variant, the 

effect of homo- and hetero-dimerisation between the variant and the Wt on the functionality of 

the minor variant should also be investigated and quantified.  Such investigations could also be 

extended to include heterodimerisation between the variant V1bR and any other dimerisation 

partners such as CRFR1.  The visualisation of  each differentially labelled variant, the Wt, and 

CRFR1 upon co-expression may clarify the issue of the effect of the variant on the cell-surface 

expression of its dimerisation partners. 
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Chapter 6  Summary and concluding remarks 

The results of the experiments described in this thesis have provided advanced insight into the 

functional and pharmacological characteristics of vasopressin receptors, with a particular focus 

on the V1bR in molecular details.  In particular, the experiments were designed to examine in 

considerable depth the structure of ligand binding cavities of the V1bR and the similarities and 

differences of these sites to V1aR.  Additionally, because of its potential therapeutic and 

prognostic value, further studies on the molecular pharmacology of V1bR variants were carried 

out. 

 

In Chapter 3, conserved TM residues among vasopressin receptors were substituted with Ala.  

As shown in V1aR and OTR (Wootten and Wheatley, manuscript in preparation), Arg
1.27 

and 

Glu
1.35 

are necessary for a high affinity AVP binding to the V1bR, and the reciprocal 

mutagenesis between ligand and the receptor construct demonstrated the direct interaction 

occurring between Glu
1.35 

and Arg
8
.  The individual Ala substitution of FQVLPQ (studied 

residues) motif conserved among the neurohypophysial hormone receptor family revealed the 

importance of Pro
2.60 

and Gln
2.61 

in the AVP binding to the V1bR.  In addition, Phe
2.56

, Pro
2.60 

and 

Gln
2.61 

were found to be crucial for the V1bR in achieving a high level of cell-surface expression.  

The role of Gln
2.57

 was identified as to restrain the peptide ligand binding cavity of the V1bR.  

Continuing from the studies on V1aR by Hawtin and Simms in 2005, Arg
3.26 

in V1bR was also 

shown to be required to maintain the AVP binding cavity likely by the ionic interaction between 

Arg
3.26 

and phosphate groups of phospholipids.  A crucial structural role of Phe
5.47

, which is 

highly conserved among Family A GPCR, was also demonstrated in the V1bR.  The role of the 
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residue at position 5.47 in structural stabilisation was shown by thermal challenge on the mutant 

constructs each containing altered hydrophobicity at the position.  In conjunction with the study, 

pharmaco-chaperone activity of a non-peptide antagonist 5234B was demonstrated.  The 

participation of Tyr
5.38 

and Phe
6.51 

in ligand binding of both agonist and non-peptide antagonists 

was shown. The requirement of Trp
6.48 

of ‘rotamer toggle switch’ in non-peptide antagonists 

binding to the V1bR was demonstrated.  Chapter 3 also identified a few residues involved in 

dDAVP binding.  Most of these residues are hydrophobic in nature, present in the upper TM 

region of TM3, TM5 and TM6, except a charged Asp
6.61 

present at the exofacial surface of TM6.  

The residues identified in this study to be involved in agonist binding of V1bR are indicated in 

the schematic diagram (figure 6.1).   
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Figure 6.1. The schematic diagram of V1bR highlighting the residues involved in AVP and 

dDAVP binding:  

 

The residues involved in AVP binding are colour-filled, and the residues involved in dDAVP binding 

are circled with coloured lines.  Darker the colour, larger the loss of binding affinity observed by Ala-

substitution: binding undetected (red); 5 ~ 19 fold decrease in affinity (pale orange); and 2 ~ 4.9 fold 

decrease in affinity (yellow).  HA-epitope tag shown in grey, lavender hexagons indicate location of 

putative glycosylation sites, purple lines indicate putative palmitoylation sites, and resides in red bold 

type represents reference residues in Ballesteros-Weinstein numbering scheme.                  
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Chapter 4 discusses residues which may confer selectivity between V1bR and V1aR using pairs 

of reciprocal mutant construct each containing a corresponding residue of the other subtype.  

The ligands with selectivity to each subtype were used to identify potentially contacting 

residues.  The primary aim was to identify the residues participate in the V1bR-selective non-

peptide antagonists.  Several polar and hydrophobic residues located at the upper TM regions 

were found to be required for high affinity binding of 5234B, or the other V1bR-selective 

antagonist SSR149415.  The study identified Phe
7.35 

as a key residue in 5234B binding to the 

V1bR.  Including the findings from the Chapter 3, the residues participate in the V1bR-selective 

binding of 5234B and SSR149415 are summarised in a schematic diagram of the V1bR (figure 

6.2).   

Subsequent Ala-substitution identified that Thr
5.42 

has a role in restraining the ligand 

binding cavities of the V1bR, since the loss of residue resulted in increased affinity of the peptide 

ligands otherwise less specific to the V1bR.  Thr
5.42 

is also thought to be important in maintaining 

the structural integrity of the V1bR, as Ala substitution of Thr
5.42

 resulted in a significantly 

reduced cell-surface expression.   
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Figure 6.2. The schematic diagram of V1bR highlighting the residues involved in 5234B and 

SSR149415 binding:  

 

The residues involved in 5234B binding are colour-filled, and the residues involved in SSR149415 

binding are circled with coloured lines.  Darker the colour, larger the loss of binding affinity observed 

by Ala substitution or by substituting with the corresponding V1aR residue: > 20-fold decrease in 

affinity (dark orange); 5 ~ 19 fold decrease in affinity (pale orange); and 2 ~ 4.9 fold decrease in 

affinity (yellow).  Blue bold type indicates residues affecting both antagonists.  The residues 

conferring selectivity between V1bR and V1aR are indicated with pink circle.  The HA-epitope tag 

shown in grey, lavender hexagons indicate location of putative glycosylation sites, purple lines 

indicate putative palmitoylation sites, and resides in red bold type represents reference residues in 

Ballesteros-Weinstein numbering scheme.                  
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Chapter 5 explored variations existing within V1bRs.  Firstly, the SNP variants existing in 

human population were studied.  Three SNP variants affecting coding regions thereby resulting 

in substitutions of Lys
65

Asn, Gly
191

Arg, and Arg
364

His, were selected to study.  The each SNP 

variant was reproduced by mutagenesis, and characterised.  The SNP variants were shown to 

bind to AVP and both V1bR-selective non-peptide antagonists, 5234B and SSR149415, with a 

high affinity.  This study identified an enhancement in cell-surface expression of Gly
191

Arg.  A 

corresponding increase in AVP-induced InsP-InsP3 signalling by this SNP variant was observed. 

 In the second section of Chapter 5, inter-species differences of V1bRs were explored using 

human and rat V1bRs.  The TM residues which differ between the two species were studied.  

Using human V1bR as a template, reciprocal mutant constructs were made by introducing a 

corresponding rat V1bR residue one by one.  A slight structural difference was observed in TM4.  

TM4 of rat V1bR contains Pro
4.44

 instead of Leu in human and Leu
4.56

 instead of Phe in human.  

The Pro-substitution of Leu
4.44 

in human V1bR resulted in slight increase of binding affinity for 

both peptide and non-peptide ligands and decreased cell-surface expression.  Another 

substitution of TM4 residue, Phe
4.56

 of human V1bR with the corresponding Leu of rat V1bR, 

also resulted in reduced cell-surface expression significantly.              

 

To conclude, the results presented in this thesis have addressed some of the structural and 

functional characteristics of the V1bR, with clinical and therapeutic implications.  The results 

obtained from the investigation of the subtype differences between V1bR and V1aR will provide 

some useful information for current and future development of subtype-selective ligands for 

neurohypophysial hormone receptor subtypes.  Functional and structural roles of some residues 

located in the TM domains and the exofacial juxtamembrane region in the V1bR were 
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established.  Certain characteristics of the V1bR described in this thesis may also be applicable to 

other GPCRs belonging to Family A.  Elucidating further functional motifs and the rest of 

residues involved in agonist or antagonist binding of the V1bR will provide the complete picture 

of the V1bR functionality in detail.   

Possible future studies are proposed at the end of each chapter.  In general, a combination 

of mutagenesis, computational molecular modelling/simulations, and statistical methods, will 

likely remain as a useful tool in studying receptor pharmacology for a decade or so, but might be 

with a gradual inclination towards enhanced computing input as information technologies 

progress and material resources become less abundant.  The studies which have been made and 

ongoing currently in research laboratories of molecular pharmacology and biochemistry will, 

hopefully one day, provide the full information required for future computational studies with 

refined outputs of numerical analysis.       
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Appendix 

 

Table I: pEC50 values determined for the V1bR constructs by InsP-InsP3 assay 

 

 

 AVP dDAVP dAVP [Glu8]VP 

Wt V1bR 8.740 ± 0.021 7.942 ± 0.093 7.592 ± 0.128 Undetectable 

[R1.27A]V1bR 7.260 ± 0.042 7.924 ± 0.096 — — 

[E1.35A]V1bR 7.318 ± 0.045 6.417 ± 0.177 — — 

[E1.35Q]V1bR Undetectable 7.484 ± 0.111 7.133 ± 0.042 Undetectable 

[E1.35R]V1bR Undetectable — — 7.818 ± 0.115 

[K65N]V1bR 8.689 ± 0.037 8.213 ± 0.175 — — 

[G191R]V1bR 8.588 ± 0.124 — — — 

[R364H]V1bR 8.595 ± 0.106 — — — 

 




