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This paper reports on attempt to integrate history of mathematics in discovery-based learning 

using technology. Theoretical grounding of the idea is discussed. An exploratory environment on 

triangle geometry is described. It is designed to support and motivate students’ activities in 

learning through inquiry. Conjectures about properties of Lemoine point and Simson line are 

produced and proved by students using  e-learning textbook. 

Introduction 

History of mathematics has always been a special branch of mathematics that actually all those 

concerned with the process of learning and teaching mathematics demonstrated their interest to. 

That interest was from primary school students to outstanding mathematicians, according to their 

level of understanding. The same situation remains nowadays. Lectures and seminars in which 

mathematical discoveries, even local and insignificant, could be traced with analysis of historical 

information about them, provide for students better understanding different ideas and theories, 

motivation for further learning, and show brilliant richness of human activities in mathematics. 

Unfortunately, in our time we cannot speak about full integration of history of mathematics in 

learning process, it is yet prematurely now, though indisputable advantages of that step at any 

stage of learning mathematics are out of doubt. At the same time, in discovery-based learning 

history of mathematics is most naturally integrated in mathematics education. Learning through 

inquiry a certain property of mathematical object, every student can trace how it happened for the 

first time in mathematics, which directions in research were more preferable in certain time, what 

questions had been left out of consideration due to some reasons. In the paper we will attempt to 

show a great potential of such integration for mathematics education. What tools can be used to 

help students learn and teachers teach through inquiry? In what way can the history of 

mathematics be integrated in discovery-based learning? Is inquiry supported with materials from 

the history of mathematics really an effective way to learn and teach new mathematical content? 

Our paper addresses these questions. 

Theoretical grounding of the idea 

In the twentieth century calls for an increased emphasis on discovery and inquiry in learning 

moved into the educational research limelight at least three times (Cuban, 1986, 1988; Cohen, 

1988). Intense, although periodic, interest in discovery learning was based on a belief that this kind 

of learning has several advantages not shared by learning through instruction (Dewey, 1916). 

Bruner (1961) and Suchman (1961) stressed the importance of learning through discovery and 

offered some empirical evidence of its efficacy.  

In mathematics education initial ideas of discovery-based learning had arisen long before Polya 

(1962), but he was the first, who had made the theoretical foundation for this method of teaching 

and attracted the interest of broad mathematical community to it. More recently, there was a 

consensus that students should learn through inquiry and through the construction of their own 

mathematics (Davis, 1991; Harel & Papert, 1990; NCTM, 1989). 

In the way of forming and developing mathematics resembles other branches of human 

knowledge: we ought to reveal properties before proving them, we are not only to prove, but also 
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to predict, therefore process of teaching mathematics (as well as teaching individual topics of 

various mathematical subjects) should, to a certain extent, initiate the process of mathematical 

discovery. Stolyar (1981) pointed out that it is easier for a student, under appropriate arrangement 

of teaching, to act as a mathematician, in other words, to reveal the truth, than to learn a “ready-

made” system of statements and proofs without understanding their origin, meaning and 

interrelations. 

At the same time, every next problem is an unsolved one for a student, therefore the same 

student gets additional motivation to make a “small” discovery for himself, solving this problem 

(Yevdokimov, 2003). Undoubtedly, students’ mathematical activity will become much narrower, 

when they have to find solution of the problem, which is already formulated in the final form. But 

we have the opposite situation in discovery-based learning, where students have to reveal this 

property. 

When solution is carried out at the process of learning, in other words, a student reveals for 

himself/herself properties, which were discovered in mathematics long before, he/she thinks of 

them as a pioneer. It’s one of the key points in this method of teaching. However, in any teaching 

process students need textbooks. Of course, any textbooks will depend on the methods of teaching 

that are applied to, but we would like to point out that any textbook on mathematics designed for a 

student having an inquiring mind, is usually oriented towards lengthy usage. It is presupposed that 

a student studies the content of such books, various properties and theorems with pencil and paper, 

as they used to write in prefaces to many textbooks on mathematics as early as twenty and more 

years ago. The same is true for the problems suggested for students’ work on their own. However, 

it is necessary to note that content of the overwhelming majority of textbooks are composed in 

such a way that the student obtains “ready-made” statements of various properties in the form of 

already proved theorems or problems for independent solving. By all means, in mathematics 

education it remains a very difficult task to compile a textbook in a way that students might 

independently come to discovery of a certain property, i.e. statement of any property wouldn’t be 

necessarily present in a clear form as a problem. However, use of teaching methods aimed on the 

stimulating students’ research activities in practice (in particular, geometry) is not unique. This is 

greatly facilitated by the use of ICT and dynamic geometry software (Elsom-Cook, 1990; Mariotti 

et al., 1997; Arzarello et al., 1998; Furinghetti, Olivero & Paola, 2001). Santos et al. (2003, p.120) 

note that 

‘Geometric and dynamic approaches to the problem might provide a means for students to 

visualize and examine relationships that are part of the depth structure of the task’. 

As didactical support for conception of discovery-based learning with materials from the 

history of mathematics we would like to describe two fragments of the e-learning textbook in 

history of mathematics on triangle geometry. Following Lewis et al (1993) our aim is to show that 

students can learn effectively through appropriately designed inquiry environment using materials 

from the history of mathematics. We chose triangle geometry as a topic for such environment for 

the following reasons: 

• first of all, this is rich historical material, which necessarily should be used in teaching to 

promote advanced mathematical thinking in the topic (in the USA triangle geometry was 

known as advanced geometry or college geometry, Davis, 1995); 

• most of problems in triangle geometry are the pearls of Euclid geometry (see, for example, 

Coxeter & Greitzer, 1967). At the same time, even students with high mathematical 

abilities often experience significant difficulties in solving some problems despite their 

simple statements; 



  

• most of problems can be successfully investigated and posed by students using geometry 

software; 

• research work of students can be easily structured within each discovered property; 

• all problems have plenty of links to each other (Altshiller Court, 1969). 

Summing up the reasons above we would like to quote the well-known Crelle’s words: 

‘It is indeed wonderful that so simple a figure as the triangle is so inexhaustible in its 

properties. How many as yet unknown properties of other figures may there not be?’(1821, p.176). 

Description of the e-learning textbook 

Concerning the structure of the e-learning textbook we hold the following order: The e-learning 

textbook consists of separate small units, which, on the one hand, have numerous connections to 

each other. On the other hand, units can be studied by students according to their preference. It is 

supposed that students passed a standard course in Euclid geometry before studying the units. 

Within each small unit tasks are structured according to the following order: 

1. The structure of a unit is built on the basis of an initial problem with necessary 

mathematical explanation given on historical situation appropriate for a particular model 

(i.e. sequence of discoveries, use of certain mathematical apparatus, etc.). 

2. Guess, search for possible ways to construct a small mathematical theory that relates to 

the given model. 

3. Further development of students’ results for discovering other properties of mathematical 

objects of the model. 

Following Brown (1976), Lakatos (1976), Polya (1962), and Steen (1988), we suggest that 

studying e-textbook on history of mathematics students will be involved in the following learning 

discovery activities: gathering observations that can be transformed in conjectures or hypotheses, 

producing conjectures and hypotheses, their justification and verification, counterexamples or 

proof. 

We would like to emphasise that the proposed e-textbook (fragments will be described in the 

paper) shouldn’t be considered as multiple choice testing material despite some superficial 

similarity. Actually students can choose various versions of answers, find correct one(s) among 

them and go forward discovering and rediscovering various properties of different geometrical 

objects. This e-textbook is, first of all, a didactical tool, computer-based environment for 

integration history of mathematics into learning process. It is designed, like the above mentioned 

textbooks, for lengthy usage. 

However, in the teaching process we intentionally organise students’ combined work with e-

textbook and with pencil and paper. Indeed, 

‘There is a fundamental difference in the construction of the geometrical figure between doing 

it with paper-and-pencil and doing it in a dynamic geometry environment: whereas in the first one 

it is the construction of a particular case, in the latter one it is actually the construction of a 

“general case”’ (Sanchez & Sacristan, 2003, p.116). It is important for teaching that students 

should perceive and understand this difference. 

Also, we would like to emphasise that each next step from one link to the following one should 

be performed by students, if they are fully aware on the character of the process carried out. 

Like other exploratory environments (McArthur & Lewis, 1991) our e-textbook on history of 

mathematics combines initiative and control simultaneously. On the one hand, students are 

encouraged for self-controlled investigations. On the other hand, designed passive constraints and 

dynamic geometry software provide appropriate guidance for students. 



  

Before developing this e-textbook we observed, working with students, that while using history 

of mathematics and teaching methods through inquiry in learning geometry, students’ actions can 

be described by the scheme below. 

 

Geometrical situation 

is given for consideration 

by students 

 

 

Analysis of properties, 

which had already been 

known for students before 

 

 

Search of unknown  

properties for students 

 

 

 

                             Way of conjecture                                          Way of research 

 

                                     Posed problem                                      Investigation properties of some 

                                                                                                           mathematical objects 

 

                             Possible solution                                                         Posed property 

 

Scheme 1. 

 

Visual thinking of students was employed to a larger extent in the left part of the scheme, in the 

right one – analytic thinking of students was a dominating component. While working on 

structures of tasks for e-textbook we tried to achieve certain balance between visual and analytic 

thinking of students (Sierpinska, 2003) in their study using the e-textbook. We took into account 

that for some tasks and units priorities should be given to activation visual thinking, while for 

other tasks – analytic thinking can be more preferable. 

Turning to description and analysis of the e-learning textbook we would like to consider two 

units “Lemoine point” and “Simson line” in detail. At first, we concentrate on common comments 

to both units and after that we characterise special features for each of them. 

As we mentioned above at the beginning of each unit an initial problem is placed, in other 

words, a specific problem, which defines the specific focus of inquiry given with historical 

references. Using mathematical terminology we could say that we propose to consider a specific 

problem with its neighbourhood in historical-mathematical sense: when a certain problem was 

posed for the first time, who was the author, whether that author proved/solved a problem on 

his/her own, who of other mathematicians was interested in, for what reasons, how long a problem 

was an unsolved one, etc.  

Using computer-based environment students can choose one of two ways. They can 

solve a problem on their own and compare solution with the given one by clicking on the 



  

link Solution. However, if they have difficulties in solving on their own, the link Learning 

is more preferable. 

The most important thing for students, while solving a specific problem through the Learning 

link, is to perceive ideas and activities of discovery-based learning for their own inquiry work in 

the unit, though a certain property is already given in the form of a specific problem at the start of 

students’ investigations. After that the following questions arise for students in each unit, when 

solving/proving of a specific problem is over: 

• What are the other properties of certain geometrical object(s) that follow from a 

specific problem? 

• How could you use properties of geometrical object(s) from a specific problem for 

discovering other properties for the given geometrical object(s) or for other objects? 

Like Brown and Walter (1990) we propose "situation", an issue, which is a localised area of 

inquiry with features that can be taken as given or challenged and modified. We would like to note 

that there are no ready-posed problems for students starting from this stage in each unit. The rest 

of the properties for any mathematical object (that follow from a specific problem) were to be 

discovered by students with help of information communication technologies, i.e. using computer-

based environment and dynamic geometry software. And again, the questions above are to be 

considered with their neighbourhoods in historical-mathematical sense. 

Using computer-based environment students can choose one of two ways for further 

investigations: they can become acquainted with a certain property of geometrical object(s) 

including its proof, which was proposed by Euler (for example) by clicking on the link Euler’s 

property. However, students can take part in discovery of this property. They can accept this way 

by clicking on the link Discover Euler’s property. Using the latter link students receive a step-by-

step system of instructions (links), which consists of local discoveries (links Discover 1, Discover 

2 and so on) that follow to the final result – discovery of Euler’s property. In the similar way 

students have been asked to rediscover other results with help of computer-based environment. 

On the one hand students take active research participation in computer simulation of 

rediscovering process in triangle geometry. On the other hand, on each stage computer-based 

environment provides students help and guidance in choosing directions for inquiry. For example, 

after clicking the link Discover Aussart’s property students get short analysis of conditions with a 

hint ‘You have to construct additional objects for further investigation. Please give your 

propositions’ (with multiple choice answers). After choosing the correct answer students take the 

next step and so on. 

Characterising the units, in the case of “Lemoine point” we would like to show and analyse 

students’ work while they discovered Aussart’s property. When students successfully went 

through a specific problem of the unit, they had the following geometrical situation: 

There is a triangle ABC and a point K such that the sum of the squares of the distances from 

that point to the sides of the triangle is the least (see Figure 1). 

A

B

C

K

 
Figure 1. 



  

 

 It might be, of course, suggestion that three points lie on the same line (the similar idea is in 

the unit “Simson line”, it is true there, but for the other three points!). Or is it possible that the 

point K has the same property with respect to the vertices of that triangle, i.e. the sum of the 

squares of the distances from K to the vertices of the triangle is the least? There might be quite a 

lot of such questions, and the study is built on the search for the properties of the point K. 

Certainly, depth and broadness of students’ approaches to inquiry work depend, to a great extent, 

on the level of students’ mathematical training and their understanding of mathematics. 

Nevertheless, one of the most appropriate actions in this geometrical situation was to draw lines 

going through the point K and, respectively, through one of the vertices A, B and C of the triangle, 

and investigation the properties of line segments AD, BE and CF respectively (was discovered by 

Aussart in 1848, see Figure 2 below). Some students were able to find this on their own. 

A

B

C

K

D

E

F

 
Figure 2. 

 

 Due to students’ knowledge bisector properties of a triangle, most of the first suggestions were 

as follows: 

‘If the line segment BE were a bisector, then we would be able to assert that AE/EC=AB/BC. 

Perhaps, in this case there is some relationship too’. 

‘It is necessary to consider if there is relationship between the parts into which every side is 

divided by corresponding line segments and the sides of the triangle’. 

Thus, from the statements above we could see that the students had actually come closely to 

discovery of Aussart’s property. 

Concerning the other unit we would like to characterise some problems, which are connected 

with a line that is usually called the Simson line (though it was probably discovered by another 

mathematician Walles in 1798). The Simson line of the given triangle ABC corresponding to the 

point D of circumcircle, is called a line going through the base of perpendiculars M, N and L 

respectively, drawn from D to the sides of the triangle ABC (see Figure 3). 

A
B

C D

N

L

M

 
Figure 3. 

 



  

Among the different properties of this line, we would like to point out that an angle between 

Simson lines, corresponding to the points M and N of circumcircle, is measured by half of the arc 

MN of that circle. In most cases students were able to discover this property while they 

investigated location of two Simson lines with help of computer-based environment and dynamic 

geometry software. After that they could conclude immediately that Simson lines of opposite 

points on a circumcircle are mutually perpendicular (very useful property for further students’ 

investigations). We would like to add that the point of intersection of perpendicular Simson lines 

lies on the Feuerbach circle (circle of nine points). Therefore, it was possible, and some students 

did it successfully, to provide another definition of the Feuerbach circle as a geometrical place of 

points of intersection perpendicular Simson lines. 

Conclusions 

We would like to note that using any dynamic geometry software in addition to computer-based 

environment significantly enriches discovery learning with e-learning textbook. We used 

Cinderella (Richter-Gebert & Kortenkamp, 1999) in the work with students to support e-textbook 

activities. 

Using e-learning textbook of problems in history of mathematics gives students possibility for 

modelling a mathematical problem in its historical context, to carry out analysis of the learning 

materials and discover mathematical properties that are completely new for them as well as ways 

of their solving. Presented e-learning textbook is designed, first of all, for discovery-based 

learning, though it can be used with other methods of teaching too. 

Of course, verbal description of the computer-based environment does not look so attractive 

and effective as it is in tutorial work in labs, where the e-learning textbook seems to have a great 

potential. 

In my work I endeavoured to join three things that are very important in teaching mathematics: 

history of mathematics, discovery-based learning and using information communication 

technologies. By this moment the work on the e-learning textbook is not over, but the author hopes 

that the paper and presented fragments give possibility for teachers and educators to appreciate the 

author’s ideas. 
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