

Short wavelength cut-offs and maximum spectral irradiance wavelengths comparison of the spectra for erythema and previtamin D_3 synthesis

A.V. Parisi, D.J. Turnbull, J. Turner

Faculty of Sciences Toowoomba, Australia

Introduction

- Minimisation of UV exposures necessary to reduce the risks of skin cancer and sunrelated eye disorders
- Beneficially, UVB exposures required to initiate the first stage of the synthesis of pre-vitamin D₃
- Requires optimisation of the solar UV exposures to humans
- Requires understanding of the complex interactions between the factors influencing the solar UV

The aims of this research were

- To compare the short wavelength cut-offs
 (λ_c) and
- the wavelengths of the maximum spectral irradiances (λ_{Max})
- for the spectral UV for the initiation of the formation of pre-vitamin D₃ (UVD₃) and for the erythemal UV (UV_{Ery})

Spectral Solar UV

- Integrated automated cloud and spectral UV measurement system employed
- UV spectroradiometer enclosed in a weather proof container:
 - double monochromator
 - 280 to 400 nm in 0.5 nm increments every 5 min
- Located on an unshaded roof at University of Southern Queensland, Toowoomba, Australia

Cloud Cover

 Total sky imager installed on a building roof

 Weatherproof installation with battery backup

 Every 5 min images acquired & processed to calculate fractional cloud cover

Spectral UVD₃

- Employed spectral UV data at 5 min intervals in first six months of 2003
- Example solar UV spectrum for solar zenith angle of 7.5°
- Action spectrum for the photolysis of 7-dehydrocholesterol (7-DHC) in skin to pre-vitamin D₃ (Webb, 1993)

Weighting the UV spectrum with the action spectrum gives the spectral UVD₃

Spectral UVD₃

- Compare to UV spectrum for SZA of 77.2°
- Short wavelength cut-off, λ_{CD3} defined as wavelength at which irradiance was 0.1% of the maximum

λ_c and λ_{Max} for the spectral UVD₃ shift to longer λ for higher SZA

Spectral UVD₃

- Comparison of spectral UV_{D3} and UV_{Erv}
- In this case SZA = 13.8°
 - The peak of the spectral UV_{D3} shifts to a longer wavelength compared to that for UV_{Erv}

Cut-off Wavelengths over a day
 Variation over a typical summer's day on 8 Jan
 The λ_c for the UV_{D3} are shifted to longer λ by an average of 1 nm compared to λ_c for the UV_{Ery}

UVD₃ Cut-off Wavelength
12,493 data points over first 6 months of 2003
Variation of the λ_{CD3} for the spectral UVD₃ for all the SZA and the atmospheric conditions

• λ_{CD3} ranges from 290 to 300 nm

UVD₃ Cut-off Wavelength

310

305

300

295

290

285

0

20

Cut-off wavelength (nm)

- Cloud free cases (<2% cloud)
- 2,460 cloud free cases
 - λ_{CD3} ranges from 290.5 to 298.5 nm
- Spread of data is less, but general variation with SZA is similar

40

SZA (degrees)

60

80

Ratios

Ratio of the λ_C for the UV_{D3} compared to those for the UV_{Ery}

Ratios

Ratio of the λ_{Max} for the UV_{D3} compared to those for the UV_{Ery}
 UV_{D3}/UV_{Ery} ≥ 1 for SZA up to ~ 60°

UVD₃ Cut-off Wavelength

- Classified data into SZA ranges and cloud cover into octas
- No effect on the cutoff wavelength with cloud cover
- Data point is mean
- Error bars are ± 1SD

Wavelength of Max Irradiance, λ_{MaxD3} λ_{MaxD3} remains relatively unchanged for the range of cloud cover and SZA Majority of values are 310.5 nm with an increase to

312.5 nm for larger SZA

UVD₃ Irradiances

- Effect of cloud considered on UVD₃ irradiances
- Data points are means of the irradiances in each SZA range for each octa category
- Error bars are ± 1
 SD
- Minimal effect of cloud for 0-5.5 octa
- Cloud effect for 5.5-8.0 octa range

Dosimeters for Previtamin D₃

 Action spectrum for the synthesis of previtamin D₃ (Webb, 1993) can be approximated by the spectral response of polysulphone

 Use of this action spectrum allows calibration of polysulphone dosimeters to measure UVD₃

Conclusions

- λ_c and λ_{Max} of the UVD₃ and UV_{Ery} have been compared for the SZA range of 4.7° to 80°
- Averaged over 6 months, the λ_c for UVD₃ is higher by 0.9 nm than that for UV_{Erv}
- The λ_{Max} is higher for the UVD₃ compared to the UV_{Ery} for SZA less than ~60° and less than that for UV_{Ery} for higher SZA
- λ_c of the UVD₃ is not influenced by clouds
- λ_{Max} is relatively unchanged by cloud cover and SZA
- The magnitude of the UVD₃ is influenced only for more than 5.5 octa cloud
- Polysulphone dosimeters can be used to measure UVD₃ in different environments