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SUMMARY

This paper is concerned with the application of radial basis function networks (RBFNs)

for solving non-Newtonian fluid flow problems. Indirect RBFNs, which are based on an

integration process, are employed to represent the solution variables; the governing dif-

ferential equations are discretized by means of point collocation. To enhance numerical

stability, stress-splitting techniques are utilized. The proposed method is verified through

the computation of the rectilinear and non-rectilinear flows in a straight duct and the ax-

isymmetric flow in an undulating tube using Newtonian, power-law, Criminale-Ericksen-

Filbey (CEF) and Oldroyd-B models. The obtained results are in good agreement with

the analytic and benchmark solutions.

KEY WORDS: radial basis function network; non-Newtonian fluid; straight duct; sec-

ondary flow; undulating tube.

1 Introduction

Continuum mechanics problems often lead to a set of partial differential equations (PDEs)

together with a set of boundary conditions through the process of mathematical modelling.

For most problems, discretization techniques are required to reduce complex systems of

PDEs to systems of algebraic equations. Principal discretization methods include the

finite-difference method (FDM), the finite-element method (FEM), the boundary-element

method (BEM), the finite-volume method (FVM) and the spectral method. Each method

has advantages over the others for certain classes of problems. They have achieved a lot

of success in solving many engineering and science problems. In FEMs and FVMs, any

continuous quantity is approximated by a set of piecewise continuous functions defined

over a finite number of subdomains identified as elements or control volumes, i.e., mesh.

Generating a mesh is still a difficult task, especially for 3D problems or even for 2D
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problems with complex geometries, free surfaces or moving boundaries.

The development of numerical methods without using a mesh (meshless or meshfree meth-

ods) for the solution of PDEs has been an active research area recently. As the name

suggests, there may not be any connectivity requirements between data points, leading

to an easy process of numerical modelling. A comprehensive review of meshless methods

can be found in [1-4]. Based on the criterion of a computational formulation, they can be

divided into two categories: a) those based on the approximation of the strong form of

PDEs, e.g., the smoothed particle hydrodynamics [5] and b) those based on the approxi-

mation of the weak form/inverse statement of PDEs, e.g., the reproducing kernel particle

method [6]. On the other hand, based on the criterion of a mesh requirement, they can

be classified into a) the so-called truly meshless methods (no mesh is involved at all), e.g.,

the meshless local Petrov-Galerkin method [7] and the local radial point interpolation

method [8], and b) the so-called meshless methods (some mesh is still needed for either

the interpolation of solution variables or the integration of weak form/inverse statement),

e.g., the element free Galerkin method [9].

RBFNs, which can be regarded as scattered data approximation schemes, have found

applications in many disciplines. A function to be approximated and its derivatives can

be represented by direct RBFNs (DRBFNs) based on a differentiation process [10] or

by indirect RBFNs (IRBFNs) based on an integration process [11]. The application of

RBFNs for the numerical solution of PDEs was first reported by Kansa [12]. Since then,

it has received a great deal of attention from the research community. A great number

of publications are available in the literature, e.g., for a convergence proof and error

bound [13], the numerical solution of potential problems [14-18], high-order differential

equations [19,20], Kirchhoff plate bending problems [21] and viscous-fluid-flow problems

[22,23]. In a standard RBFN-based method, all dependent variables are first approximated

by global RBFNs, and the governing equations are then discretized in the strong form

by point collocation. RBFNs need only a set of discrete points—instead of a set of
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elements—throughout a volume, which can be randomly distributed, to approximate the

field variables; hence, they can be regarded as truly meshless methods. Since RBFNs fall

into the category of high-order approximation, another attractive feature lies in accuracy

for a given number of data points. Furthermore, they require only a minimum amount of

effort to implement.

This paper is concerned with the development of IRBFNs for the numerical solution

of non-Newtonian fluid flow problems. Unlike constitutive models of Newtonian fluids,

models of non-Newtonian fluids are nonlinear, making their computation difficult. For

generalized Newtonian fluids, e.g., power-law fluid, the viscosity function depends on the

rate of deformation of the fluid; while for viscoelastic fluids, e.g., CEF and Oldroyd-B

fluids, the stress in the liquid depends not only on the present boundary data, but also

on the history of the strain [24]. The present method is verified by its applications to the

simulation of Newtonian, power law, CEF and Oldroyd-B fluids flowing through ducts of

constant and variable cross sections that are induced by axial pressure drop. The obtained

results are in good agreement with the analytic and benchmark solutions.

The remainder of the paper is organized as follows. In section 2, the governing equations

are given. In section 3, the numerical formulation of non-Newtonian fluid flows using

RBFNs is presented. The rectilinear and non-rectilinear flows in a straight duct and the

axisymmetric flow through an indefinitely long undulating tube are simulated in section

4. Section 5 gives some concluding remarks.

2 Governing equations

Consider the flow of an incompressible fluid of density ρ and viscosity η. Any body forces

are assumed negligible. The equations for the conservation of momentum and mass take
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the forms

ρ

(
∂v

∂t
+ v.∇v

)
= ∇.σ, x ∈ Ω, (1)

∇.v = 0, x ∈ Ω, (2)

where x is the position vector, t the time, Ω the domain of interest, v the velocity vector

and σ the stress tensor. The stress tensor can be written as

σ = −pI + τ , (3)

where p is the pressure, I the unit tensor and τ the extra stress tensor. In the present

work, the Newtonian, power-law, CEF and Oldroyd-B models are considered with the

extra stress tensors defined as

τ = ηγ̇, (Newtonian model), (4)

τ = η(γ̇)γ̇, η(γ̇) = k|γ̇|n−1, (power-law model), (5)

τ = η(γ̇)γ̇ − 1

2
Ψ1

Δγ̇

Δt
+ Ψ2γ̇.γ̇, η(γ̇) = k|γ̇|n−1, (CEF model), (6)

τ = ηsγ̇ + S, S + λ
ΔS

Δt
= ηγ̇, (Oldroyd-B model), (7)

where γ̇ is the rate of deformation tensor,

γ̇ = ∇v + ∇vT ;

γ̇ is the scalar magnitude of γ̇,

γ̇ =
√

(1/2)tr(γ̇.γ̇),

in which “tr” denotes the trace operation; k the consistency factor; n the power-law

index; Ψ1 and Ψ2 the first and second normal stress coefficients, respectively; ηsγ̇ the
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solvent-contributed stress (ηs the solvent viscosity); S the polymer-contributed stress; λ

the relaxation time; and Δ[]
Δt

the upper convected derivative,

Δ[]

Δt
=

∂[]

∂t
+ (v.∇)[] −∇vT .[] − [].∇v.

3 Radial basis function networks

A function y, to be approximated, can be represented by an RBFN as follows [25]

y(x) ≈ f(x) =
m∑

i=1

w(i)g(i)(x), (8)

where superscript denotes the elements of an RBFN, x the input vector, m the number of

RBFs, {w(i)}m
i=1 the set of network weights to be found, and {g(i)(x)}m

i=1 the set of RBFs.

According to Micchelli’s theorem, there is a large class of RBFs, e.g., multiquadrics,

inverse multiquadrics and Gaussian functions, whose design matrices (interpolation ma-

trices) obtained from (8) are always invertible provided that the data points are distinct.

This is all that is required for nonsingularity of design matrices, whatever the number

of data points and the dimension of problem [26,25]. It has been proved that RBFNs

are capable of representing any continuous function to a prescribed degree of accuracy

in the Lp norm, p ∈ [1,∞] [27,25]. On the other hand, according to the Cover theorem,

the higher the number of neurons (RBFs) used, the more accurate the approximation

will be [28], indicating the property of “mesh convergence” of RBFNs. These important

theorems can be seen to provide the theoretical basis for the design of RBFNs to the field

of numerical solution of PDEs.

In solving PDEs with RBFNs, multiquadrics (MQ) and thin plate splines (TPS) are widely

applied. MQs are the most widely used since several experiments have shown that, in
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general, they tend to result in the most accurate approximation. The MQ-approximation

scheme gives exponential convergence with the refinement of spatial discretization. In

practice, the MQ-RBFN solution can be strongly influenced by the RBF width (shape

parameter), and how to choose the best value of this free parameter is still open. On the

other hand, TPSs do not involve the adjustable shape parameter. Like the MQ case, high

accuracy can be obtained using relatively low data densities. However, TPSs possess only

linear convergence [18]. In the present work, these RBFs are implemented, whose forms

are

g(i)(x) =
√

(x − c(i))T (x − c(i)) + a(i)2 (MQ), (9)

g(i)(x) = (x − c(i))T (x − c(i)) log

(√
(x − c(i))T (x − c(i))

)
(TPS), (10)

where c(i) and a(i) are the centre and the width of the ith RBF, respectively, and super-

script T denotes the transpose of a vector. To make the training process simple, the set of

centres is chosen to be the same as the set of collocation points, i.e., {c(i)}m
i=1 ≡ {x(i)}p

i=1

with m = p, and the width a(i) is computed using the following relation

a(i) = βd(i), (11)

where β is a positive scalar and d(i) is the minimum of distances from the ith center to

its neighbours. Relation (11) allows the MQ width a to be broader in the area of lower

data density and narrower in the area of higher data density in order to achieve a certain

amount of response overlap between each RBF and its neighbours (“P nearest neighbour”

heuristics) ([15] and references therein).
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3.1 Direct approach

In the DRBFN approach, the RBFN (8) is utilized to represent the original function y;

subsequently, its derivatives are computed by differentiating (8) as

y(x) ≈ f(x) =
m∑

i=1

w(i)g(i)(x), (12)

∂y(x)

∂xj

≈ ∂f(x)

∂xj

=
∂

(∑m
i=1 w(i)g(i)(x)

)
∂xj

=
m∑

i=1

w(i)h(i)(x), (13)

∂2y(x)

∂x2
j

≈ ∂2f(x)

∂x2
j

=
∂

(∑m
i=1 w(i)h(i)(x)

)
∂xj

=
m∑

i=1

w(i)h̄(i)(x), (14)

where subscript j denotes the scalar components of a vector; h(i)(x) = ∂g(i)(x)/∂xj and

h̄(i)(x) = ∂h(i)(x)/∂xj are new derived basis functions for the approximation of the first-

and the second-order derivatives of the original function y, respectively.

3.2 Indirect approach

In this approach, RBFNs are used to represent the highest-order derivatives of a function

y, e.g., ∂2y/∂x2
1 and ∂2y/∂x2

2—the highest ones under consideration here. Lower-order

derivatives and finally the function itself are then obtained by integrating those RBFNs

as follows

∂2y(x)

∂x2
j

≈ ∂2f(x)

∂x2
j

=
m∑

i=1

w
(i)
[xj ]

g(i)(x), (15)

∂y(x)

∂xj

≈ ∂f(x)

∂xj

=

m+q1∑
i=1

w
(i)
[xj ]

H
(i)
[xj ]

(x), (16)

y(x) ≈ f(x) =

m+q2∑
i=1

w
(i)
[xj ]

H̄
(i)
[xj ]

(x). (17)

where subscripts [xj] denote the quantities resulting from the process of integration in

the xj direction; q1 the number of new centres in a subnetwork that is employed to
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approximate a set of nodal integration constants; q2 = 2q1; H
(i)
[xj ]

=
∫

g(i)dxj and H̄
(i)
[xj ]

=∫
H(i)dxj (i = 1, 2, · · · , m) are new derived basis functions for the approximation of

the first-order derivative and the original function y, respectively. For convenience of

presentation, the new centres and their associated known basis functions in subnetworks

are also denoted by the notations w(i) and H(i)(x) (H̄(i)(x)), respectively, but with i > m.

Since integration is a smoothing operation, the approximating functions obtained by the

IRBFN method are expected to be much smoother than those by the DRBFN method.

Previous findings showed that the former performs better than the latter in terms of

accuracy and convergence rate [11].

The theoretical justification for applying RBFNs to solve general PDEs with RBFNs has

not been established yet [17]. Recently, Franke and Schaback [13] gave a convergence

proof and error bound for methods solving constant-coefficient PDEs by collocation using

DRBFNs. A formal theoretical proof of the superior accuracy of the IRBFN method and

the non-singularity of IRBFN matrices cannot be offered at this stage.

Unlike FEMs and BEMs, where the integration process is used to reduce the order of

the continuity required for the variables, the integration process in the IRBFN method

is employed solely to obtain new basis functions from RBFs. In the context of meshless

methods, all relevant integrals in the IRBFN method using MQs and TPSs are determined

analytically, leading directly to a truly meshless method; while the integration of the

weak form associated with FEM or the inverse statement associated with BEM must be

computed numerically, and hence they require some special treatments, e.g., using local

weak form/local inverse statement, to achieve a mesh-free feature.

When the problem dimension N is greater than 1, the size of a system of equations

obtained by the IRBFN approach is about N times as big as that by the DRBFN approach.

Thus, it is necessary to make a prior conversion of the multiple spaces of network weights

into the single space of function values to overcome this drawback.
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The evaluation of (15)-(17) at a set of collocation points {x(k)}m
k=1 yields

f,jj = Gw[xj ], (18)

f,j = H[xj ]w[xj ], (19)

f = H̄[xj ]w[xj ], (20)

where G, H and H̄, whose rows can be seen in (28), (27) and (26), are the design

matrices associated with the approximation of the second-order derivative, the first-order

derivative, and the function, respectively; w[xj ] the set of network weights in the xj

direction to be found; f = {f(x(k))}m
k=1; f,j = {∂f(x(k))

∂xj
}m

k=1 and f,jj = {∂2f(x(k))

∂x2
j

}m
k=1.

For the purpose of computation, the two matrices G and H are augmented using zero-

submatrices so that they have the same size as the matrix H̄. By solving (20) using the

general linear least squares method, the set of network weights can be expressed in terms

of the nodal function values as

w[xj ] = H̄−1
[xj ]

f , (21)

where H̄−1
[xj ]

is the Moore-Penrose pseudoinverse, and the dimensions of w, H̄−1
[xj ]

and f are

respectively (m + q2) × 1, (m + q2) × m and m × 1. Substitution of (21) into (18)-(20)

yields

f,jj = GH̄−1
[xj ]

f , (22)

f,j = H[xj ]H̄
−1
[xj ]

f , (23)

f = H̄[xj ]H̄
−1
[xj ]

f . (24)

Cross derivatives ∂f 2(x)/∂xi∂xj can be straightforwardly computed by using the design

matrices associated with the first-order derivatives (23). Although the order of differ-

entiation makes no difference, it would be better to take the average due to numerical
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error,

∂2f

∂xi∂xj

=
1

2

(
∂

∂xi

(
∂f

∂xj

)
+

∂

∂xj

(
∂f

∂xi

))
,

f,ij =
1

2

(
H[xi]H̄

−1
[xi]

(
H[xj ]H̄

−1
[xj ]

f
)

+ H[xj ]H̄
−1
[xj ]

(
H[xi]H̄

−1
[xi]

f
))

. (25)

Expressions of f and its derivatives at an arbitrary point x can be given by

f(x) =
1

N

N∑
j=1

([
H̄

(1)
[xj ]

(x), · · · , H̄
(m+1)
[xj ]

(x), · · · , H̄
(m+q1+1)
[xj ]

(x), · · ·
]
H̄−1

[xj ]
f
)

, (26)

∂f(x)

∂xj

=
[
H

(1)
[xj ]

(x), · · · , H
(m+1)
[xj ]

(x), · · · , 0, · · ·
]
H̄−1

[xj ]
f , (27)

∂2f(x)

∂x2
j

=
[
g

(1)
[xj ]

(x), · · · , 0, · · · , 0, · · ·
]
H̄−1

[xj ]
f , (28)

∂2f(x)

∂xi∂xj

=
1

2
(
[
H

(1)
[xi]

(x), · · · , H
(m+1)
[xi]

(x), · · · , 0, · · ·
]
H̄−1

[xi]

(
H[xj ]H̄

−1
[xj ]

f
)

+
[
H

(1)
[xj ]

(x), · · · , H
(m+1)
[xj ]

(x), · · · , 0, · · ·
]
H̄−1

[xj ]

(
H[xi]H̄

−1
[xi]

f
)
), (29)

where N is the dimension of the problem. In (26), the approximate function f at x is

taken to be the average value of f[xj ](x)’s due to numerical error.

From (26)-(29), a function y and its derivatives are now expressed in terms of function

values rather than in terms of network weights. As a result, in solving PDEs, the present

IRBFN method leads to a system of equations whose size is approximately equal to that of

the DRBFN method, irrespective of the problem dimension. The process of transforming

network-weight space into physical space completely eliminates the problem of the large

system/final-matrix size of the IRBFN method. However, the IRBFN method requires

more work than the DRBFN method.

11



3.3 The numerical IRBFN formulation

Each dependent variable and its derivatives in the governing equations (1)-(7) can be

approximated by RBFNs using either (12)-(14) for the DRBFN approach or (26)-(29)

for the IRBFN approach. The closed-form representations obtained are substituted into

the governing equations, and the system of PDEs is then discretized by means of point

collocation. The RBFN solution thus satisfies the governing equations pointwise rather

than in an average sense. In the present work, only the IRBFN approach is employed. In

contrast to previous works dealing with potential and viscous flow problems [15,22], the

present IRBFN formulation is expressed in terms of the nodal variable values. For the

elliptic momentum equations, one only needs to enforce these equations at interior points

because the velocity boundary conditions are prescribed along the entire boundary. For

the hyperbolic constitutive equations, the IRBFN formulation is demonstrated through

one equation in (7), e.g., for Szz,

nip∑
i=1

{S(i)
zz + λ(v(i)

r

m∑
j=1

(
H[r]H̄

−1
[r]

)
[i,j]

S(j)
zz + v(i)

z

m∑
j=1

(
H[z]H̄

−1
[z]

)
[i,j]

S(j)
zz

− 2S(i)
rz

m∑
j=1

(
H[r]H̄

−1
[r]

)
[i,j]

v(j)
z − 2S(i)

zz

m∑
j=1

(
H[z]H̄

−1
[z]

)
[i,j]

v(j)
z )

− 2η
m∑

j=1

(
H[z]H̄

−1
[z]

)
[i,j]

v(j)
z }2 → 0, (30)

where (r, θ, z) denotes the cylindrical polar coordinates, nip the number of interior points,

m the number of centres excluding centres on the tube wall and [i, j] the element located

at row i and column j of a matrix. On the tube wall, (7) is reduced to a set of algebraic

equations because of ΔS/Δt = 0; consequently, the stress components can be easily

computed. In this regard, for solving hyperbolic equations, one may not need to include

the tube-wall points in the set of centres. Other equations in (7) can be discretized in a

similar fashion. The IRBFN discretization leads to a square system of equations.
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4 Numerical examples

Axial-pressure-drop-induced flows in a straight duct and in a “wiggly” tube using Newto-

nian, power-law, CEF and Oldroyd-B fluid models are simulated to study the performance

of the IRBFN method,.

4.1 Rectilinear and non-rectilinear flows in a straight duct

MQs are employed to compute flows of a power-law fluid through circular and non-circular

tubes, while TPSs are used to simulate the flow of a viscoelastic fluid through a square

duct. For simplicity, in the MQ-based approximation scheme, the factor β is chosen to

be unity. To enhance numerical stability, a stress-splitting formulation is employed. The

resulting nonlinear system of equations is solved by a decoupled approach, where a Picard-

type iteration scheme is utilized to render nonlinear terms linear. At each iteration, a

perturbed Newtonian problem and a constitutive model are solved in two sequential steps.

For a given kinematics, a pseudo-body force field is obtained by solving the constitutive

model. The kinematics are then updated by solving the momentum and the continuity

equations. The procedure is iterated until a stopping criterion is satisfied. Hence, an

attractive feature of this technique lies in the small requirement of computer memory.

For low values of n, it is necessary to relax the iterative process by applying a relaxation

factor to the field variables according to, e.g., for a component velocity vj,

vj = αv
(k)
j + (1 − α)v

(k−1)
j , (31)
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where α is the relaxation factor (0 < α ≤ 1) and superscript k indicates the current

iteration. Convergence measure (CM) at the kth iteration is defined as

CM =

√√√√∑N
j=1

∑m
i=1

[
vk

j (x(i)) − vk−1
j (x(i))

]2

∑N
j=1

∑m
i=1

[
vk

j (x(i)))
]2 ,

where N is the problem dimension and m the number of collocation points.

4.1.1 Fully developed laminar flow of power-law fluid in a straight circular

pipe

For the flow of a power-law fluid in a straight circular pipe (vr = 0; vθ = 0; vz = vz(r)),

the continuity equation (2) is automatically satisfied, and the momentum equation (1)

can be reduced to

1

r

∂

∂r

(
ηr

∂vz

∂r

)
− ∂p

∂z
= 0, (32)

η = k

∣∣∣∣∂vz

∂r

∣∣∣∣
n−1

, (33)

on the domain 0 < r < R, which is solved subject to the boundary conditions

∂vz

∂r
= 0, at r = 0, (34)

vz = 0, at r = R. (35)

The exact solution of this problem is

vze =
n

n + 1

(−∂p/∂z

2k

)1/n

R(n+1)/n

[
1 −

( r

R

)(n+1)/n
]

.
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Since the exact solution is available, the accuracy of a numerical solution can be measured

via the norm of relative errors of the solution as follows

Ne =

√∑m
i=1 [vze(x(i)) − vz(x(i))]

2∑m
i=1 vze(x(i))2

, (36)

where vz and vze are the calculated and the exact solutions, respectively.

The governing equation (32) can be rewritten as

η
∂2vz

∂r2
+

∂η

∂r

∂vz

∂r
− ∂p

∂z
+

η

r

∂vz

∂r
= 0. (37)

This equation is widely used in FDMs. For generalized Newtonian fluids, the viscosity η

is a function of the velocity field. As a result, a system matrix obtained from (37) varies

and needs to be inverted at each iteration.

The power-law fluid implies an infinite viscosity when the shear rate γ̇ vanishes; some

special treatments for terms involving η are required. Young and Wheeler [29] treated

this infinity by using a truncation procedure. A large value of the viscosity, namely ηmax,

is given. If η does not exceed ηmax, then the computed value is accepted. Otherwise, η is

set equal to ηmax. For collocation methods, one can simply treat this singularity by not

applying the governing equations at points of infinite viscosity. In the present work, the

extra stress tensor is decomposed into two components

τ = ([η − η0] + η0) γ̇ = [η − η0]γ̇ + η0γ̇. (38)

It is obvious that η0 can be chosen arbitrarily. Substitution of (38) into (32) yields

η0

(
∂2vz

∂r2
+

1

r

∂vz

∂r

)
− ∂p

∂z
+

(
∂

∂r

(
[η − η0]

∂vz

∂r

)
+

[η − η0]

r

∂vz

∂r

)
= 0, (39)

in which the last two terms on the left-hand side can be regarded as a pseudo-body force.
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A system matrix obtained from (39) depends only on the geometry and hence needs to

be inverted only once.

The question here is how to choose an optimum η0. Two studies are conducted. Firstly,

η0 is chosen to be the Newtonian-like viscosity corresponding to n = 1 (η0 = ηN =

k); secondly, η0 is taken to be the average viscosity of the previous iteration (η0 = η̄).

Numerical experience shows that the case η0 = η̄ outperforms the case η0 = ηN regarding

the convergence behaviour of an iterative procedure (Figure 1) and the achievement of a

low-power-law-index solution.

A wide range of n varying from 1 to 1/5 is considered. All values of k, −∂p/∂z and R

are chosen to be unity. The obtained results are displayed in Figure 2, where the velocity

component vz is normalized with the average velocity v̄z = 2π
∫ 1

0
rvz(r)dr in which the

integral is computed using Simpson rule. Good agreement is seen between the exact and

the computed solutions. For example, at n = 1/5, the method achieves a small error-

norm, Ne = 6.4e− 4, using 13 collocation points. “Mesh convergence” is shown in Figure

3, where the IRBFN solution converges apparently as O(h3.85) in which h is the centre

spacing. As mentioned earlier, the MQ width can critically affect the performance of MQ-

RBFNs. However, there is no general theory yet for determining the best value of the

MQ width. Consequently, in practice, it is difficult to achieve exponential convergence,

even for the case of function approximation.

4.1.2 Fully developed laminar flow of power-law fluid in a square duct

Computing the flow in a square duct is known to be more complicated than comput-

ing the flow in a circular pipe flow. A two-dimensional computation is required. For

non-Newtonian fluids, exact solutions are not available; one needs to resort to numerical

methods. Hartnett and Kostic [30] gave a comprehensive review on the heat transfer

behaviour and the friction factor of the generalized-Newtonian-fluid flow through a rect-
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angular duct. The flow was simulated by a number of numerical methods, for example,

a variational principle [31], FDM [32] and FEM[33]. It was indicated that convergence

often fails for n < 0.4.

It is plausible to assume that the flow of an inelastic fluid in a straight duct is rectilinear,

i.e., vx = 0, vy = 0 and vz = vz(x, y). The governing equations (1)-(3) and (5) can be

reduced to

∂

∂x

(
η
∂vz

∂x

)
+

∂

∂y

(
η
∂vz

∂y

)
− ∂p

∂z
= 0, (40)

η = k

[(
∂vz

∂x

)2

+

(
∂vz

∂y

)2
]n−1

2

. (41)

A stress-splitting formulation is employed here to enhance numerical stability and reduce

computational effort. Owing to the symmetry, only a quarter of the 2D domain is consid-

ered (Figure 4). The domain of interest, ∂p/∂z and k are chosen to be 0.5 × 0.5, -1 and

1, respectively. Special attention is given to the treatment for the Neumann condition

∂vz/∂n̄ (n̄ the coordinate normal to the boundary). The present method implements this

type of boundary condition as follows. Along the two sides x = 0 and y = 0, normal

derivatives ∂vz/∂n̄ are given, and hence the task now is to express the nodal values of vz

along these sides in terms of the interior nodal variable values. This can be achieved by

solving the following subsystem of equations

∂vz(x
(i))

∂n̄
=

m∑
j=1

(
H[xn]H̄

−1
[xn]

)
[i,j]

v(j)
z , (42)

where x(i) = {(x = 0, y), (x, y = 0)}. Making use of the results obtained from (42) and

the Dirichlet condition (vz = 0 along the wall), a square system of equations is obtained

with the unknowns being only the interior variable values. Once the system of equations

is solved, a numerical solution vz along these two sides (x = 0 and y = 0) may be found

from (42).
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Again, the case η0 = η̄ yields faster convergence than the case η0 = ηN . For example,

at n = 0.8 and α = 0.1, it takes about 10 and 35 iterations to obtain convergence

(CM < 1.e − 6) for η0 = η̄ and η0 = ηN , respectively. Furthermore, low values of n, at

least 1/5, are simulated successfully with the former, while the latter is only able to obtain

convergence for 1 ≥ n ≥ 0.4. Due to the fact that the solving procedure is Picard-type

iterative, an initial solution can greatly affect convergence behaviour. Here, the computed

solutions at greater values of n are chosen to be initial solutions. Figure 5 presents the

plot of convergence measure versus iteration for several initial solutions. It can be seen

that a closer initial solution yields faster convergence.

Another important quantity associated with this type of flow is the friction factor-Reynolds

number product, termed fRe, which describes the relationship between flow rate and

pressure drop. For the problem under consideration, the quantity fRe has the form

fRe =
1

2v̄n
z

, (43)

where v̄z is the average velocity in the flow direction, defined as

v̄z = 4

∫ 0.5

0

∫ 0.5

0

vz(x, y)dxdy,

in which the double integral can be evaluated using Simpson quadrature. Based on

the Rabinowitsch-Mooney equation, Kozicki, Chou and Tiu [34] derived an approximate

expression of the friction factor defined as, e.g., for a square duct,

fRe = 23n+1

(
0.6771 +

0.2121

n

)n

.

Results for the friction factor obtained by the present method and other methods [31-34]

are summarized in Table 1. These predictions are in good agreement over a wide range

of n. The maximum relative error between IRBFN and FEM is less than 0.7%.
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4.1.3 Fully developed flow of viscoelastic fluid in a square duct

Viscoelastic fluids possess both viscous and elastic properties. For the fully developed

flow of a viscoelastic fluid through a straight duct, the second normal stress difference is

expected to generate some secondary flow which is transverse to the main flow along the

axis of a duct. However, it does not happen for all cases [24]. For example, the flow is

still rectilinear if the slip surfaces are parallel planes or coaxial circular cylinders; or if

the second normal stress coefficient (Ψ2) is a constant multiple of the viscosity function.

Nevertheless, the appearance of transverse circulations can be seen as a distinguishing

feature of viscoelastic fluids relative to inelastic fluids. As a result, much attention is

paid to the investigation of the development of secondary motions. In earlier studies,

Green and Rivlin [35] examined the flow in a tube of elliptical cross-section, using a

special constitutive equation, and found a weak secondary circulation in each quadrant,

whereas Langlois and Rivlin [36] extended this work for a more general class of fluids.

The secondary flow in a rectangular duct was then studied extensively, for example, using

perturbation approximation [37], FVM [38,39], FDM [40] and FEM [41].

For the purpose of validating the IRBFN method, the present work considers the flow of

a 2% viscarin solution in distilled water through a straight duct of square cross-section

that was studied numerically and experimentally by Gervang and Larson [38]. In view

of the fact that the secondary flow is weak, i.e., the transverse velocity components are

small relative to the main axial velocity component, the fluid can be modelled by the

CEF equation for which rheometric functions are available:

η = kγ̇n−1, k = 8.5 Pasn, n = 0.37,

Ψ1 = k1γ̇
n1 , k1 = 5.96 Pasn1+2, n1 = −1.35,

Ψ2 = −0.15Ψ1.
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Since the fully developed flow is independent of the streamwise coordinate, the governing

equations in a stress-splitting form can be reduced to

ρ

(
vx

∂vx

∂x
+ vy

∂vx

∂y

)
= −∂p

∂x
+ η0

(
∂2vx

∂x2
+

∂2vx

∂y2

)
+

∂Sxx

∂x
+

∂Sxy

∂y
, (44)

ρ

(
vx

∂vy

∂x
+ vy

∂vy

∂y

)
= −∂p

∂y
+ η0

(
∂2vy

∂x2
+

∂2vy

∂y2

)
+

∂Syx

∂x
+

∂Syy

∂y
, (45)

ρ

(
vx

∂vz

∂x
+ vy

∂vz

∂y

)
= −∂p

∂z
+ η0

(
∂2vz

∂x2
+

∂2vz

∂y2

)
+

∂Szx

∂x
+

∂Szy

∂y
, (46)

where

S = (η(γ̇) − η0)γ̇ − 1

2
Ψ1

Δγ̇

Δt
+ Ψ2γ̇.γ̇.

The domain of interest can be reduced to a two-dimensional space and in addition, for

symmetry reasons, only a quarter of the 2D-domain, [0, l/2]×[0, l/2], is considered (Figure

4).

The pressure variable appearing in (44) and (45) is simply treated here by converting the

x and y components of the velocity vector into the stream function φ and the vorticity ω

as

ω =
∂vy

∂x
− ∂vx

∂y
, (47)

∂φ

∂y
= vx,

∂φ

∂x
= −vy. (48)

The governing equations (44)-(46) can be reformulated into

∂2φ

∂x2
+

∂2φ

∂y2
+ ω = 0, (49)

ρ

(
∂φ

∂y

∂ω

∂x
− ∂φ

∂x

∂ω

∂y

)
= η0

(
∂2ω

∂x2
+

∂2ω

∂y2

)
+

∂2Sxy

∂x2
− ∂2(Sxx − Syy)

∂x∂y
− ∂2Sxy

∂y2
, (50)

ρ

(
∂φ

∂y

∂vz

∂x
− ∂φ

∂x

∂vz

∂y

)
= −∂p

∂z
+ η0

(
∂2vz

∂x2
+

∂2vz

∂y2

)
+

∂Szx

∂x
+

∂Szy

∂y
. (51)

20



The boundary conditions for φ, ω and vz are

φ = 0, ω = 0,
∂vz

∂y
= 0, on the line y = 0, (52)

φ = 0, ω = 0,
∂vz

∂x
= 0, on the line x = 0, (53)

φ = 0,
∂φ

∂y
= 0, vz = 0, on the line y =

l

2
, (54)

φ = 0,
∂φ

∂x
= 0, vz = 0, on the line x =

l

2
. (55)

The implementation of the Neumann condition ∂vz/∂n̄ is similar to the previous problem.

It is necessary to generate a computational boundary condition for ω at the walls x = l/2

and y = l/2 using the prescribed boundary conditions (∂φ/∂n̄). The process is as follows.

In the first step, the vorticity in (49) can be simplified to be

ω = −∂2φ

∂x2
− ∂2φ

∂y2
= −∂2φ

∂x2
at the line x =

l

2
, (56)

ω = −∂2φ

∂x2
− ∂2φ

∂y2
= −∂2φ

∂y2
at the line y =

l

2
. (57)

In the second step, they are written in terms of the first-order derivatives of φ

ω(i) = = −∂2φ(i)

∂x2
=

m∑
j=1

(
GH−1

[x]

)
[i,j]

∂φ

∂x

(j)

at the line x =
l

2
, (58)

ω(i) = = −∂2φ(i)

∂y2
=

m∑
j=1

(
GH−1

[y]

)
[i,j]

∂φ

∂y

(j)

at the line y =
l

2
, (59)

and the resulting expressions (58) and (59) are then simplified by taking into account

the Neumann condition ∂φ/∂n̄. In the third step, the remainder of the nodal first-order

derivatives of φ on the right-hand sides of (58) and (59) are expressed in terms of the
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nodal stream function values, for example, at the boundary point x(i),

∂φ

∂x

(i)

=
m∑

j=1

(
H[x]H̄

−1
[x]

)
[i,j]

φ(j), (60)

∂φ

∂y

(i)

=
m∑

j=1

(
H[y]H̄

−1
[y]

)
[i,j]

φ(j). (61)

A computational Dirichlet condition for ω is thus generated and written in terms of the

nodal values of φ.

Three sets of uniformly distributed data points, 21 × 21, 26 × 26 and 31 × 31 are em-

ployed. The parameters ∂p/∂z, ρ and l are chosen to be 1.0e5 (Pa/m), 0 and 0.004 (m),

respectively. The obtained results including the axial velocity, vorticity, secondary ve-

locity vector and second normal stress difference are displayed in Figure 6, which look

feasible when compared to the available solutions in the literature. To study convergence

behaviour of the method, the results at the finest discretization are regarded as the “ex-

act solutions” and the errors at coarser discretizations are then computed relative to the

exact ones. Table 2 shows that errors consistently reduce with an increase in data density.

It can be seen that the transverse velocity components are much smaller than the axial

velocity component.

4.2 Corrugated tube flow

The steady-state axisymmetric non-Newtonian fluid flow through an undulating tube has

received much attention over recent decades for a number of reasons: a) for the evaluation

of constitutive equations, b) for the testing of numerical methods in non-Newtonian flow

calculations and c) for the understanding of viscoelastic effects in flow through porous

media [42]. In the context of numerical computation, this problem was studied by a vari-

ety of numerical methods, for example, the mixed spectral finite-difference methods (the

pseudospectral/finite-difference method (PSFD), the pseudospectral cylindrical/finite-
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difference method (PCFD)) [43,42,44], the full pseudospectral method (the Fourier-Chebyshev

collocation method (FCC)) [45], FEM [46] and BEM [47]. The comprehensive results ob-

tained by PSFD, PCFD and FCC can be regarded as the benchmark solutions. There is

no limit point in Weissenberg number for PCFD and PSFD; their numerical calculations

have shown no substantial increase of the flow resistance with increasing flow elasticity.

The local radius of an infinitely long corrugated tube is given by

rw(z) = R(1 − ε sin(2πz/L)), (62)

where rw is the radius at the wall, ε the dimensionless amplitude of the corrugation, L

the wavelength and R the mean radius of the tube (Figure 7). In addition to ε, another

characteristic dimensionless number is the aspect ratio N , related to the dimensionless

wave number l by N = R/L = l/(2π). Owing to the fact that the flow is axisymmetric

and periodic, only a reduced domain needs to be considered as shown in Figure 7.

Of interest to the experiments is the flow resistance (friction factor f times Reynolds

number in the limit Re → 0) defined as

fRe =
2πΔPR4

L(η + ηs)Q
, (63)

where ΔP is the pressure drop per unit cell.

The φ–ω formulation is adopted, where the full governing equations can be found in [48].

The Newtonian, power-law and Oldroyd-B fluid models are considered. For a power-law

fluid, the stress-splitting formulation is employed.

The boundary conditions for flow in a corrugated tube are a) symmetric conditions on

the centreline, b) no-slip boundary conditions on the wall and c) periodic conditions for
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each dependent variable and its normal derivative on the inlet and outlet, i.e.,

φ = 0, ω = 0 (the centreline) (64)

φ =
Q

2π
,

∂φ

∂n̄
= 0

(
∂φ

∂z
= 0,

∂φ

∂r
= 0

)
(the wall) (65)

φi = φo,
∂φi

∂n̄
=

∂φo

∂n̄
, ωi = ωo,

∂ωi

∂n̄
=

∂ωo

∂n̄
(inlet and outlet), (66)

where n̄ is the coordinate normal to the boundary, Q the flow rate, subscripts i and o

the inlet and outlet, respectively. The implementation of boundary conditions for ω on

the tube wall is similar to the previous problem (flow in a square duct) and will not be

repeated here.

Three data densities, namely 17× 17, 21× 21 and 25× 25, are employed (Figure 8). Only

MQs with β = 1 are implemented to study this problem.

4.2.1 Newtonian flow

Creeping flow

The unsymmetric IRBFN collocation method is first tested with the creeping flow of a

Newtonian fluid. Several tube geometries are considered. The flow resistance computed

by the present method is given in Table 3. Results by other methods such as FCC, PSFD,

PCFD and BEM are also included for comparison. Good agreement is obtained for all

test cases.

Inertial flow

Consider the inertial flow of a Newtonian fluid through a tube of ε = 0.3 and N = 0.16.

This flow was studied by Lahbabi and Chang [49] using the global Galerkin/spectral

method and by Pilitsis and Beris [45] using the Galerkin finite element method (GFE)
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and FCC for a wide range of Re from 0 to 783. For a Newtonian fluid, the nonlinearity

is due to the convective term only.

Table 4 shows that errors at coarser densities, which are computed relative to the finest

density, reduce with an increase in data density. The flow resistance obtained by the

present method at the finest density (25×25) and those obtained by the spectral method

and FEM for the above range of Re are presented in Table 5. The present results agree

well with the FCC ones. Contour plots of the stream function and the vorticity fields at

Re = {0, 22.6, 73, 397.2} are displayed in Figure 9. The creeping flow field is symmetric

about the widest cross section. When a Reynolds number is introduced, the symmetry

is broken. Recirculation starts at a finite Reynolds number. The vortex increases in size

and shifts downstream with an increase in Re.

4.2.2 Inertial flow of power-law fluid

Consider dilute aqueous solution of a polyacrylamide (Dow Separan AP-30) corresponding

to 0.05% polyacrylamide concentrations by weight. The power-law parameters are given

by Deiber and Schowalter [50] as n = 0.54 and k = 1Psn−1. Due to the shear-thinning

form of the viscosity, there are steep boundary layers near solid boundaries, leading to

difficulty in computation [42]. The flow of a power-law fluid through an undulating tube

(ε = 0.3, N = 0.1592), which was simulated by PCFD [42], is considered here.

The Reynolds number and the flow resistance for this problem are respectively defined as

[42]

Re =
2nπn−2ρQ2−nR3n−4

k
, (67)

fRe =
2nπnΔPR3n+1

kLQn
. (68)
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A decoupled approach is adopted to solve the governing equations; the nonlinearity, which

arises from the viscosity function and the convective term, is treated by using a Picard’s

iterative scheme. Results for the flow resistance obtained by the present method are given

in Table 6 together with those obtained by PCFD. The two numerical predictions show

good agreement.

4.2.3 Creeping flow of Oldroyd-B fluid

A coupled approach is adopted. The nonlinearity, which arises from the convected stress

derivatives, is handled by using trust region methods that retain two attractive features,

namely rapid local convergence of the Newtonian iteration method and strong global

convergence of the Cauchy method [51]. The boundary conditions for the stress tensor

are

∂Szz

∂r
= 0, Srz = 0,

∂Srr

∂r
= 0,

∂Sθθ

∂r
= 0 (the centreline) (69)

Si
zz = So

zz,
∂Si

zz

∂n̄
=

∂So
zz

∂n̄
, Si

rz = So
rz,

∂Si
rz

∂n̄
=

∂So
rz

∂n̄
· · · (inlet and outlet). (70)

A Weissenberg number is defined as [43]

We =
λQ

R3
. (71)

Along the wall of a tube, all convected stress derivatives vanish, and hence the constitutive

equations are reduced to algebraic equations which can be easily solved pointwise for the

unknown stress tensor.

Along the centreline, the dependent variables will be determined here by imposing the

symmetric conditions directly on the corresponding networks rather than using the usual

L’Hopital’s rule or a simplified form of the governing equations. The detailed implemen-

tation is as follows.
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As mentioned earlier, all variables and their derivatives in the present procedure are

expressed as linear combinations of the nodal variable values over the whole domain. Let

f be a dependent variable. The first-order derivative of f with respect to r along the

centreline can be written as

f,r
c = Hc

[r]H̄
−1
[r] f , (72)

where subscript c denotes the centreline. Making use of the symmetric conditions, (72)

becomes

0 = Hc
[r]H̄

−1
[r] f . (73)

By solving (73), the centreline values of f can be expressed in terms of the remainder of

the nodal values of f . A variable f can be vz, Szz, Srr or Sθθ. With this treatment, one can

avoid to solve ordinary differential equations that are associated with a simplified form

of constitutive equations or to compute higher-order derivatives that are associated with

L’Hopital’s rule. Note that higher-order derivatives lead to larger errors in the context of

function approximation.

Moderate corrugation amplitude and moderate wavelength (ε = 0.1, N = 0.16)

The retardation defined as α = η/(ηs + η) is chosen to be 0.15, which was used in [43].

Convergence can be obtained up to high values of the Weissenberg number, at least of

about 30 (Figure 10). For the range of We from 0 to 20, the flow resistance does not differ

substantially from that obtained at We = 0 (Newtonian fluid), which looks feasible when

compared to the available results in the literature. However, the present flow resistance

is observed to increase quickly when We > 20. The reason could be that data densities

become too coarse to accurately capture the solution, especially for the stress fields near

boundaries.

Moderate corrugation amplitude and small wavelength (ε = 0.1, N = 0.5)

The flow of an Oldroyd-B fluid through an undulating tube (ε = 0.1, N = 0.5) was
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simulated by FCC [45], where the flow resistance values were tabulated at two Weissenberg

numbers, We = 1.2071 and We = 3.6213. They are used here for comparison. Numerical

predictions by FCC and IRBFN are in good agreement as shown in Figure 11. Like the

previous case (ε = 0.1, N = 0.16), there is a substantial increase in the present fRe when

the Weissenberg number is greater than a certain value (about of 5 here). Thus, this We

value is considered as a limit of the IRBFN approach using the present data densities.

4.2.4 Comparison with FCC

In an effort to ease the large computational costs that are required by PSFD and PCFD,

Pilitsis and Beris [45] developed a full pseudospectral method, namely the Fourier-Chebyshev

collocation (FCC) technique, for computing the steady-state axisymmetric non-Newtonian

fluid flow in a periodically constricted tube. In FCC, the radial dependence of the vari-

ables are approximated by using Chebyshev polynomials, while the dependence on the

axial coordinate are approximated by Fourier sine and cosine functions. The FCC yielded

highly accurate solutions using low numbers of data points. The computational costs are

relatively low for coarse discretizations, but become very expensive for fine discretizations

due to the full structure of large Jacobian matrices.

The present IRBFN method appears to be close to the FCC method in the sense a) they

are global high-order methods, b) the governing equations are approximated in the strong

form by point collocation and c) the resultant matrices are dense.

In contrast to the FCC method, the present method uses only IRBFNs to represent

the field variables and their derivatives in the radial and axial directions. Furthermore,

collocation points in the IRBFN method can be chosen randomly, while the coordinates

of data points in the radial direction in the FCC method should be chosen as the roots

of Chebyshev polynomials (Note that the use of cosine-type points in FCC allows a fast

Fourier transform to be used to shift between spectral space and physical space; the
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IRBFN method has no such rapid matrix computations). The present method can be

extended to non-periodic flows or irregular domains straightforwardly.

5 Concluding remarks

This paper reports a numerical method based on RBFNs for solving non-Newtonian fluid

flow problems. The main advantages of the present method are its mesh-free nature and

easy implementation. IRBFNs are employed to represent the solution variables; the mul-

tiple spaces of network weights are converted into the single space of nodal variable values.

In the case that the viscosity function depends on the rate of deformation, stress-splitting

techniques are utilized to enhance numerical stability. Stabler and faster convergence is

obtained with the chosen viscosity being the average value of the viscosity field of the

previous iteration. The method is verified through the simulation of flows of inelastic and

viscoelastic fluids in a straight duct and in an undulating tube that are induced by axial

pressure drop. The results are compared with the analytic and benchmark solutions; good

agreement is achieved. The main disadvantage of the method is the large computational

requirement imposed because of the involvement of dense matrices. The implementation

of a local meshless version and how to treat convected stress derivatives effectively with

IRBFNs will be investigated in future studies.
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Table 1: Rectilinear flow of power-law fluid in a square duct: comparison of the friction
factor fRe between the IRBFN method using 27 × 27 data points and other methods.
All predictions are in good agreement over a wide range of n.

fRe

n IRBFN Variational FDM General expression FEM
[31] [32] [34] [33]

1.0 14.22 14.27 14.22 14.21 14.22
0.9 11.88 11.90 11.96 11.88
0.8 9.91 9.91 10.06 9.91
0.7 8.26 8.26 8.45 8.26
0.6 6.88 6.88 7.08 6.88
0.5 5.72 5.755 5.72 5.93 5.72
0.4 4.74 4.74 4.95 4.74
0.3 3.91 4.11 3.91
0.2 3.17 3.38 3.19
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Table 2: Non-rectilinear flow of CEF fluid in a square duct: the extreme values of the
velocity components and the stream function.

Density (vz)max(error) (
√

v2
x + v2

y)max (φ)min(error) (φ)max(error)

21 × 21 567.8(0.33%) 4.1 -1.245(1.03%) 1.245(1.03%)
26 × 26 569.5(0.03%) 4.1 -1.256(0.15%) 1.256(0.15%)
31 × 31 569.7 4.1 -1.258 1.258
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Table 3: “Wiggly” tube problem, Newtonian fluid, Re = 0.0, 25 × 25: the computed
flow resistance by the present method and other methods for several geometries. Good
agreement is achieved for all cases. Note that Pertb. denotes Perturbation analysis;
GSM—Galerkin spectral method; a—[47]; b—[43]; c—[49].

fRe

Method ε = 0.1 ε = 0.2 ε = 0.2 ε = 0.3 ε = 0.286
N = 0.5 N = 0.1042 N = 0.5 N = 0.1592 N = 0.2333

IRBFN 17.7480 19.7582 23.2883 26.4331 26.3814
BEMa 17.7346 19.7268 23.2253 26.3759 26.3285
FCCb · · · 19.7655 · · · 26.437 26.383
PSFDb 17.75 19.765 · · · 26.436 26.383
PCFDb 17.75 17.761 23.28 26.432 26.377
FEMb · · · 19.756 · · · 26.385 26.293
Pertb.a 17.85 19.38 23.41 24.16 24.42
GSMc · · · 19.76 · · · 26.40 25.85
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Table 4: “Wiggly” tube problem (ε = 0.3; N = 0.16), Newtonian fluid: the computed
flow resistance by the IRBFN method for a wide range of Re.

Re fRe (Error %)

17 × 17 21 × 21 25 × 25
0.0 26.4548 (0.0389) 26.4462 (0.0064) 26.4445

0.012 26.4548 (0.0389) 26.4462 (0.0064) 26.4445
12.0 27.1968 (0.0718) 27.1814 (0.0151) 27.1773
22.6 28.5797 (0.0918) 28.5594 (0.0207) 28.5535
51.0 31.7581 (0.0220) 31.7569 (0.0183) 31.7511
73.0 33.4312 (0.0676) 33.4583 (0.0135) 33.4538
132.0 36.4210 (0.3322) 36.5485 (0.0167) 36.5424
207.4 38.6855 (0.8054) 39.0200 (0.0523) 38.9996
264.0 39.7736 (1.3170) 40.3439 (0.0980) 40.3044
397.2 41.1336 (3.1227) 42.5737 (0.2690) 42.4595
783.0 — 46.0876 (0.7595) 45.7402
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Table 5: “Wiggly” tube problem (ε = 0.3; N = 0.16), Newtonian fluid: comparison of the
flow resistance for a wide range of Re between the present method and other methods.
Good agreement is shown for the whole range of Re. The IRBFN method has better
agreement with the FCC. Note that GFE denotes the Galerkin finite element method;
GSM—Galerkin spectral method; a—[45]; Nx, Nc—the number of Fourier, Chebyshev
modes in the axial and stretched radial directions, respectively; and Nr, Nz—the number
of elements in the r and z directions, respectively.

fRe

IRBFN GSMa FCCa GFEa

Re 25 × 25 Nx = 16, Nc = 33 Nr = 40, Nz = 40
0.0 26.4445 26.4 26.4484 26.4193

0.012 26.4445 26.4 26.4484 26.4193
12.0 27.1773 27.1 27.1791 27.0911
22.6 28.5535 28.5 28.5536 28.4433
51.0 31.7511 31.7 31.7484 31.6984
73.0 33.4538 33.4 33.4488 33.4039
132.0 36.5424 36.7 36.5264 36.5392
207.4 38.9996 38.9 38.9607 38.9330
264.0 40.3044 39.7 40.2446 40.1544
397.2 42.4595 40.6 42.3479 42.1112
783.0 45.7402 41.2 45.5828 45.0734
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Table 6: “Wiggly” tube problem (ε = 0.3; N = 0.1592), power-law model (n = 0.54; k =
1.0): the computed flow resistance by IRBFN and PCFD for a wide range of Re. The
IRBFN results agree well with the PCFD results. Note that Nx, Np denote the numbers
of Fourier mode and finite difference points in the axial and stretched radial directions,
respectively and a—[42].

fRe

Re IRBFN PCFDa

25 × 25 Nx = 16, Np = 100
0.0 9.1268 9.1052

1.528 9.1434 9.1240
12.484 9.8270 9.8508
21.581 10.3788 10.3885
36.912 11.0120 11.0083
50.430 11.4189 11.3988
62.905 11.7202 11.6876
85.934 12.1586 12.1067
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Figure 1: Rectilinear flow of power-law fluid in a straight pipe, k = 1, ∂p/∂z = −1,
n = 0.75, α = 1, 13 data points: comparison of convergence behaviour of the iterative
procedure between two cases η0 = η̄ (solid line) and η0 = ηN (dashed line). The former
converges much faster and is stabler than the latter.
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Figure 2: Rectilinear flow of power-law fluid in a straight pipe, k = 1, ∂p/∂z = −1:
the computed velocity profiles for a wide range of n using 13 collocation points. Good
agreement is shown between the computed and the exact (solid line) solutions for all
values of n.
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Figure 3: Rectilinear flow of power-law fluid in a straight pipe, k = 1, ∂p/∂z = −1,
n = 1/5: convergence rate. The IRBFN solution converges apparently as O(h3.85), where
h is the data point spacing.
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Figure 4: Power law and CEF fluids flowing through a square duct: domain of interest, dis-
cretization and boundary conditions (vz: power law fluid, rectilinear flow; vz, φ, ω, ∂φ/∂n̄:
CEF fluid, non-rectilinear flow). The problem domain is simply represented by a set of
discrete points instead of a set of elements.
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Figure 5: Rectilinear flow of power-law fluid in a square duct, k = 1, ∂p/∂z = −1,
n = 1/5, α = 0.3, data density of 11 × 11: effect of an initial solution on convergence.
The computed solutions at higher values of n are used as initial solutions (solid line:
n = 1, dashed line: n = 1/2, and dashdot line: n = 1/4). It is relatively difficult to
obtain convergence for n = 1/5 as a large number of iteration is required. A closer initial
solution yields faster convergence.
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a) Primary flow (vz) b) Secondary flow (ω)

c) Secondary flow (�v = (vx, vy)) d) Second normal stress difference

Figure 6: Non-rectilinear flow of CEF fluid in a square duct, data density of 31×31: some
contour plots.
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Figure 7: “Wiggly” tube problem: geometry. The shaded area represents a unit compu-
tation cell.
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a) 17 × 17 data points

c) 21 × 21 data points

b) 25 × 25 data points

Figure 8: “Wiggly” tube problem: computational domain and discretizations. Legends:
(+) boundary point, (.) interior point. The problem domain is simply represented by a
set of discrete points instead of a set of elements.
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Figure 9: “Wiggly” tube problem, ε = 0.3, N = 0.16, 25 × 25, Newtonian fluid: contour
plots of the stream function φ and the vorticity ω for several Res.
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Figure 10: “Wiggly” tube problem, ε = 0.1, N = 0.16, Oldroyd-B fluid: the plot of
flow resistance (fRe) versus Weissenberg number (We) for three discretizations (17× 17,
21 × 21 and 25 × 25).
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Figure 11: “Wiggly” tube problem, ε = 0.1, N = 0.5, Oldroyd-B fluid: Comparison of
the flow resistance obtained by IRBFN and FCC [45]. The two numerical predictions are
in good agreement.
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