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Abstract 

The El Niño-Southern Oscillation (ENSO) phenomenon significantly impacts rainfall 

and ensuing crop yields in many parts of the world.  In Australia, El Niño events are 

often associated with severe drought conditions. However, El Niño events differ 

spatially and temporally in their manifestations and impacts, reducing the relevance of 

ENSO-based seasonal forecasts.  In this analysis we identify three putative types of El 

Niño among the 24 occurrences since the beginning of the 20th century.  The three types 

are based on coherent spatial patterns (‘footprints’) found in El Niño impact on 

Australian wheat yield.  This bio-indicator reveals aligned spatial patterns in rainfall 

anomalies, indicating linkage to atmospheric drivers.  Analysis of the associated 

ocean/atmosphere dynamics identifies three types of El Niño differing in timing of onset 

and location of major ocean temperature and atmospheric pressure anomalies.  Potential 

causal mechanisms associated with these differences in anomaly patterns need to be 

investigated further using the increasing capabilities of general circulation models.  Any 

improved predictability would be extremely valuable in forecasting effects of individual 

El Niño events on agricultural systems. 

 

1. Introduction 

The El Niño-Southern Oscillation (ENSO) is a dynamic ocean/atmosphere 

phenomenon with a genesis region in the tropical Pacific (Cane, 2000).  It affects 

rainfall and crop yield in many parts of the world (Ropeleswki and Halpert, 1987; 

Garnett and Khandekar, 1992).  Understanding of ENSO has provided some 

predictability for ensuing seasonal rainfall (Stone et al., 1996) and crop yield (Nicholls, 

1985).  The extreme warm phase of ENSO (i.e. El Niño) recurs approximately every 2-

to-7 years and is often associated with severe droughts in Australia and elsewhere 
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(Allan, 2000).  Various studies have investigated the relationship between ENSO and 

Australian rainfall and found it to be significant particularly in eastern parts of Australia 

(Pittock, 1975; Ropeleswski and Halpert, 1987; McBride and Nicholls, 1983; Stone et 

al., 1996, Mason and Goddard, 2001).  However, although the phases of ENSO are 

often classified as either El Niño (EN), La Niña (LN) or neutral (NT), individual EN or 

LN events are never exactly the same, either in terms of ocean/atmosphere anomalies or 

their consequences on rainfall and ecosystems. They vary at a spatio-temporal scale in 

terms of their intensity, spatial extent, onset, duration and cessation (Allan et al., 1996).   

Rainfall variability is the dominant factor causing year-to-year fluctuations in 

Australian wheat yield (Nix, 1975).  Previous research has examined the relationships 

among rainfall variability, indicators of ENSO and observed Australian wheat yields 

and found them to be significant at a national scale (Rimmington and Nicholls, 1993; 

Hill et al., 2001; Potgieter et al., 2002).  Crop simulation models can be used to assess 

the overall effect of the interactions between climate and other factors contributing to 

yield variability (e.g. soil type, cultivar).  They have been successfully applied to 

generate long time sequences of wheat yields to quantify the impact of rainfall 

variability on production risk at farm (Nelson et al., 2002) or at regional scale (Stephens 

and Lyons, 1998; Stephens et al., 2000).  We have shown previously, using the full time 

series generated from a regional modelling approach (Potgieter et al., 2002), that 

indicators of ENSO (Stone et al., 1996) significantly affect wheat yield throughout the 

major production zones in the Australian wheat belt.  However, the relationship is not 

temporally coherent across the zones.  While in aggregate the relationship for each zone 

is similar (e.g. on average the EN phase is associated with reduced yield in all zones), 

the effects differ across zones in any particular year.   

ENSO-related droughts not only impact severely on regional ecosystems, farm 

income and enterprise viability, they also affect macroeconomic indicators such as 
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employment and economic growth (White, 2000).  Severe drought can cause reduction 

in Australia’s Gross National Product of up to 2% (Anderson, 1979; Hogan et. al, 

1995).  In September 2002 (an EN year) the economic growth for 2002/2003 was 

reduced by 0.5 percentage points, which reflected flow-on effects from the adverse 

effect of drought in rural Australia (ABARE, 2002). 

The objective of this study was to examine the spatial variability of wheat yields 

within EN years and assess likely global climate drivers associated with any coherent 

patterns of variability across the Australian wheat-belt.  Although prediction of EN 

years has improved considerably over the last decade, the features of EN events that 

generate this spatial variability in impact on ecosystems (i.e. wheat yield) remains to be 

elucidated.  Here, we investigate the extent and intensity of wheat yield anomalies 

during the extreme warm phase of ENSO and consider the broad ocean/atmosphere 

dynamics related to the wheat yield anomaly patterns. 

 

2. Methods 

a. Simulated shire wheat yields 

To identify spatial patterns in Australian wheat yield, we used a simple agro-

climatic model (Stephens, 1998) to simulate shire wheat yield for each year from the 

beginning of the 20th century for each of the 284 main wheat producing shires in 

Australia.  The model was trained on 19 years of recent (1975-1993) shire production 

and rainfall records and explained 90% of the temporal variation in yield at national 

scale.  The model reproduced spatial patterns of shire yield with a spatial correlation 

averaging 0.86 over the training period (Potgieter et al., 2002).   By applying this model 

using historical rainfall data for the period 1900-2002, we generated a time series of 
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yield data that reflects realistically what the wheat crop throughout the Australian wheat 

belt would have yielded given current technology (i.e. 2002) and production distribution 

for any season experienced since the beginning of the 20th century.   

 

b. El Niño occurrences.   

EN events in the period 1901-2002 were derived from a classification system 

based on the combination of ocean and atmospheric data sets.  The extended 

reconstructed SST (ERSST) (Smith and Reynolds, 2003) and Troup Southern 

Oscillation Index (SOI) (Troup, 1965) data sets were used. Using the SST time series 

for Niño 3.4, a year was classified as EN if the 5-month running mean was greater than 

or equal to 0.5 for 6 or more months between April and December (Trenberth, 1997).  

Using the SOI time series, a year was classified as EN if the 3-month running mean was 

less than or equal to –5.5 for 6 or more months between April and December 

(Ropelewski and Jones, 1987).  The period April to December is concurrent with the 

wheat-growing season and almost always encompasses the start (i.e. April to May) and 

peak (October to December) of an EN event.  The threshold value for the classification 

of EN years based solely on SST for Niño 3.4 or based solely on SOI yielded near 25% 

occurrence in either case.  Accepting either criterion resulted in 24 EN years in the 102 

years used in this analysis (Table 1). 

 

c. Principal components analysis and clustering of wheat yields.   

Principal component analysis was performed on the wheat yield data matrix (284 

shires x 24 EN years) to identify the significant orthogonal factors that retained the 

spatial variability among years.  Factors were retained if associated eigenvalues were 
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greater than one (Kaiser, 1958).  Cluster analysis was conducted on the factor loadings 

for each EN year to form objectively defined year groups.  Clustering was performed 

using an agglomerative hierarchical approach and Ward’s minimum variance linking 

method (Gong and Richman, 1995) with Euclidean distance as the similarity measure 

(Mimmack et al., 2001).   

 

d. Rainfall anomaly maps 

Rainfall variability is the predominate cause of shire wheat yield variability in 

Australia (Potgieter et al., 2002).  Wheat yield represents the integrated consequence of 

variation in amount, frequency, timing and intensity of rainfall events over long periods. 

This integrative quality makes the simulated wheat yield footprints an ideal diagnostic 

tool for identifying broadly based seasonal to annual climatic drivers.  Rainfall anomaly 

patterns were generated and mapped for growing season (May-Oct) rainfall across the 

Australian wheat belt.  Average anomalies from the associated climatological mean 

were determined for the groups of years defined in the cluster analysis of the wheat 

yield data.    Maps of the weighted standardised shire rainfall anomalies were created 

for each footprint.   This enabled inspection of alignment of rainfall during this period 

(i.e. May to October) with the wheat footprints and consequently with the associated 

climate dynamics during the associated footprint years.  It should be noted that this 

approach is contrary to traditional climatic analyses that investigate climatic drivers 

first, then attempt to identify similarities of rainfall patterns and finally try to link such 

similarities to agricultural impacts. 

 

e. Global SST and MSLP anomaly maps.   
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Composite maps of the ERSST (1901-2002) and MSLP (1901-1994) anomalies 

were created for 3-monthly intervals before (JFM (Jan to Mar)) and during (AMJ (Apr 

to Jun), JAS (Jul to Sep) and OND (Oct to Dec)) the wheat-growing season.  Average 

anomalies from the associated climatological mean were determined for groups of years 

defined in the cluster analysis in a similar manner to that for the rainfall anomalies.  

Contours were shaded if consistency of anomalies among years within each cluster 

group reached significance at the 90% level (Mason and Goddard, 2001). 

 

3. Results and Discussion 

a. Wheat yield footprints in El Niño years 

Spatial variations in EN impact on wheat yield were analysed across the 284 

shires by isolating the data for the 24 EN events in the 102-year time series.  Principal 

components analysis extracted 2 distinct patterns that accounted for 89% of the total 

variation among the 24 years.  Cluster analysis of the rotated principal component 

loadings identified 4 possible groups of years among the EN years. However, as one of 

these 4 groups had only 2 members, the level of clustering yielding 3 groups was 

adopted to ensure adequate representation in each group for subsequent analysis (Fig. 

1).     

We mapped the average standardised shire wheat yield anomaly for each cluster 

of years to derive the associated spatial pattern of impact on wheat yield.  These yield 

impact patterns or El Niño ‘footprints’ differ in their extent and magnitude providing a 

sound bio-indicator of EN impact for each group (Fig. 2).  Footprint 1 (FP1, Fig. 2a), 

which contains 9 years in group 1 (Fig. 1), has below average shire wheat yield in 

Queensland (QLD) while the remainder of the wheat-belt experiences average (WA) to 
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above average (parts of VIC, NSW) shire wheat yield.  FP2 (Fig. 2b) consists of 6 years 

in group 2 with below average shire wheat yield in most of southern and eastern 

Australia while shires in Western Australia (WA) experience near average yield.  For 

the 9 years in group 3, which form FP3 nearly the whole of the Australian wheat belt 

experienced below average yield and anomalies were severe in many areas.  These years 

were associated with devastating consequences for the entire Australian wheat industry.  

It is noteworthy that only the QLD region is affected negatively in all 3 cases.  

 

b. Rainfall anomaly patterns associated with wheat yield footprints  

The May-Oct rainfall anomaly patterns were mapped for the same 3 clusters of 

years used in deriving the wheat yield footprints.  May-Oct represents the main growing 

season for wheat across the Australian wheat belt.  The patterns in rainfall anomalies 

(Fig. 3) aligned closely with those for wheat yield in the 3 FPs (Fig. 2).  Below average 

rainfall anomalies were evident in QLD for years in FP1 (Fig. 3a), whereas they 

occurred throughout southern and eastern Australia for years in FP2 (Fig. 3b).  For years 

in FP3, rainfall anomalies were more severe and spread across the entire wheat belt 

(Fig. 3c).  The significant spatial coherence of the shire wheat yields and weighted 

rainfall anomalies for each FP year group suggests a strong connection to atmospheric 

drivers that generate relatively persistent weather patterns.  This result also 

demonstrates the value of using an integrating biological system, like a wheat crop, to 

identify coherent patterns in climatic influences that might not have otherwise been 

uncovered.  Attempts to generate distinct FPs from the May to October rainfall period 

yielded 6 or more likely groups (data not shown) rather than the 3 groups resulted from 

the wheat model.  This could indicate a greater degree of complexity in rainfall data 
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versus the integrated effect of rainfall as measured by the wheat model (Meinke et al., 

2003). 

 

c. Connecting wheat yield footprints with global SST and MSLP patterns 

To investigate connections between yield impact footprints and climate drivers we 

examined dynamics of spatial patterns in average global sea surface temperature (SST) 

and mean sea level pressure (MSLP) anomalies for the years associated with each FP.  

As expected, SST and MSLP anomaly composites of all 3 FP year groups evolved into 

the classical EN pattern with warmer than normal water in the equatorial Pacific Ocean 

developing by mid-year along with the associated pressure anomaly dipole between 

eastern (low pressure) and western (high pressure) Pacific zones (Fig. 4).  However, 

there were differences in timing of onset, extent and location of the anomalies among 

the 3 groups.   

Composite anomaly patterns for years in FP1 showed slightly warmer than normal 

SSTs in the equatorial Pacific by the end of March (Fig. 4a).  During AMJ and JAS the 

warm SSTs in the tropics intensified in the central to eastern tropical Pacific region with 

very much above average SSTs further east closer to the South American coast.  At the 

same time a pool of anomalously cool water developed in the southern Pacific.  

Significant high-pressure (HP) anomalies developed in JFM over Indonesia and 

extended over north-eastern Australia by AMJ.  These HP anomalies remained over 

Indonesia and northern Australia during the second half of the growing season (JAS and 

OND) (Fig. 4a).  This coincided with low-pressure (LP) anomalies that formed in the 

central southern Pacific during JFM but were focussed over the eastern tropical Pacific 

during the remainder of the year.  The HP anomalies over northern Australia and LP 

anomalies over the Pacific Ocean create the well-known dipole pressure pattern, which 
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is the basis of the southern oscillation index that has been used widely as an indicator of 

phases of the ENSO phenomenon (Troup, 1965).  The centres of activity of the 

opposing components of the dipole were located near the equator and were widely 

separated for this group of years.   

HP anomalies are usually associated with reduced rainfall likelihood in their area 

of influence.  The persistence of HP anomalies over much of the far north of the 

continent may explain the very much below average shire wheat yields in QLD for 

years in FP1.  The associated anticyclonic cells (HP systems) exert an influence across 

large areas of the north bringing hot dry, stable conditions.  However, this also allows 

the inflow of cool and moist air masses across southern Australia (Nix, 1975).  This 

may explain the lack of effect on wheat yield in other parts of Australia during EN years 

in FP1.  

For years in FP2, consistently warmer than normal SSTs were not evident until 

JAS (Fig. 4b), but high magnitude anomalies were more widespread than for years in 

FP1, especially in the central tropical Pacific late in the season (OND).  In addition, a 

pool of anomalously cool water developed near the east coast of Australia in JAS.  At 

the same time, significant warm anomalies developed in the western Indian Ocean and 

propagated towards the WA coast during OND.  Concurrent MSLP anomalies (Fig. 4b) 

were not fully consistent among years but indicated a more proximal pressure dipole 

than in FP1, with LP anomalies in the central Pacific (more to the south-west than for 

FP1) and HP anomalies centred more to the south-east, especially late in the season 

(OND).  This difference likely explains extension of the impact zone to all of eastern 

Australia for years in FP2.  SST anomalies in the Indian Ocean may have moderated 

effects in south-western Australia.     

 10



11 

For years in FP3, warmer than normal SST anomalies appeared early (Fig. 4c) as 

for years in FP1, but the anomalies intensified more near the dateline and in the central 

tropical Pacific.  Significantly cooler than normal water also developed early near the 

east coast of Australia and intensified throughout the season.  The line of separation 

between the warm and cool pools represents the position of the south Pacific 

convergence zone (SPCZ) (Folland et al., 2002), which is more obvious in FP3 than 

either of the other 2 groups.  The associated MSLP anomalies (Fig. 4c) depicted a clear 

pressure dipole with HP anomalies widespread and centred over eastern Australia and 

LP anomalies centred in the central Pacific as early as AMJ.  The extremes of this 

pressure dipole were most proximal for this group and had the most southerly centres of 

action.  These features likely explain the widespread effect on wheat yield throughout 

the continent in years associated with this FP. 

The evolution of the EN events associated with years in each of the wheat FPs 

showed differences related to timing of onset and locations of the major SST and MSLP 

anomalies.  The pressure anomalies associated with the 3 FPs shifted southward and 

centres of action of dipoles became more proximal from FP1 to FP2 and FP3. These 

attributes likely influence the latitude of the sub-tropical ridge, which has significant 

association with rainfall variability in eastern Australia (Pittock, 1975).  Furthermore, 

the shift in tilt of the line of separation between warm and cool SST pools from years in 

FP1 and FP2 to those in FP3 suggests linkage to the location of the SPCZ (Folland et 

al., 2002), which has significant association with decadal variability in rainfall (Meinke 

et al., In press).  Decadal rainfall variability is known to have significant effects on 

rainfall and crop yields in Australia (Power et al., 1999).  The SST anomaly patterns for 

years in FP3 had features similar to known decadal patterns (Allan, 2000).  The 

association was confirmed when we examined average decadal (9-to-13 years) annual 

EOF component scores (Allan, 2000) associated with years in each FP.  Average values 

for years in FP1 and FP2 were close to zero while years in FP3 had an average of 0.8. 
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This is the first analysis, to our knowledge, that identifies the most significant 

physical features associated with the evolution of EN events that could explain 

variability in their impact.  The associations suggest that variability in impact is most 

likely forced by differences in the temporal evolution and spatial extent of the 

ocean/atmosphere patterns.  Features outside the tropical Pacific are also contributing as 

also found by Drosdowsky and Chambers (2001).   Although we used Australian wheat 

yields as a bio-indicator to elucidate variations in EN impacts, the insights gained from 

this study are potentially globally significant.  The primary use of an integrative 

biological indicator has generated insight not uncovered to date by traditional climate 

analyses.  The results suggest climate system drivers responsible for variation in EN 

events and decadal rainfall patterns.  However, predictability of such drivers may be 

limited due to the internal chaotic dynamics of the atmosphere or of the ENSO system 

itself (Cobb et al., 2003).  The variability among years making up the average anomaly 

composites may reflect this.  However, it would be useful to examine the potential 

climate system drivers using the increasing capabilities of general circulation models 

(Goddard et al., 2001).  Any consequent improvement in discrimination among putative 

types of EN would be extremely valuable because spatial variation in impacts may 

become better predicted.    

 

4. Conclusion 

The analysis of relationships between shire wheat yields, shire rainfall, and global 

SSTs and MSLPs suggested three putative types of EN within the 24 EN events since 

the beginning of the last century.   Three spatial modes of wheat yield variability were 

identified within the EN years.   The first mode affected the north-eastern region of 

Australia, the second mode the southern and north-eastern regions and the third mode 
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the entire wheat cropping region of Australia.  Associated rainfall anomalies (during 

May to October) aligned very strongly in magnitude and spatial coherence with the 

yield footprints, which suggested a relatively strong connection to the persistent weather 

patterns caused by the ocean/atmosphere dynamics. The associated ocean/atmosphere 

dynamics differed in timing of onset and location of major ocean temperature and 

atmospheric pressure anomalies among the three groups.  The analysis highlighted the 

importance of both a whole-Pacific basin (or near-global) approach and the temporal 

dynamics of ENSO in relation to ENSO impact forecasting.  The use of wheat as an 

integrative biological quantity in deriving broad spatial climatic patterns demonstrates 

its suitability as an additional diagnostic tool in determining plausible climatic 

mechanisms.  The causal mechanisms for these putative EN types need to be 

investigated further using the increasing capabilities of general circulation models. 
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Table 1: The 24 EN years identified when the criterion 

based on either SOI or SST in Niño 3.4 was accepted.   

Year SOI SST Year SOI SST Year SOI SST

1901 1935 1969 3 
1902 3 1936 1970

1903 1937 1971
1904 1938 1972 3 3 
1905 3 3 1939 1973
1906 1940 3 3 1974
1907 1941 3 3 1975

1908 1942 1976
1909 1943 1977 3 3 

1910 1944 1978
1911 3 1945 1979
1912 1946 3 1980

1913 1947 1981
1914 3 1948 1982 3 3 

1915 1949 1983
1916 1950 1984
1917 1951 3 1985

1918 1952 1986
1919 3 1953 3 3 1987 3 3 

1920 1954 1988
1921 1955 1989
1922 1956 1990
1923 1957 3 1991 3 3 
1924 1958 1992 3 3 
1925 3 1959 1993 3 3 
1926 1960 1994 3 3 

1927 1961 1995
1928 1962 1996
1929 1963 1997 3 3 

1930 1964 1998
1931 1965 3 3 1999

1932 1966 2000
1933 1967 2001
1934 1968 2002 3 3  
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Figure 1: Clustering of the 24 El Niño years based on their factor loadings from the 

principle components analysis.  The dotted line indicates the cut-off used to form the 

three groups.  Group 1 contains 9 years, group 2 has 6 years and group 3 has 9 years. 

Figure 2: Average standardised (relative to all years) shire wheat yield anomalies or 

impact footprints (FP) during EN years for (a) cluster 1 EN years - FP1, (b) cluster 2 EN 

years – FP2, and (c) cluster 3 EN years – FP3.  Categories represent number of standard 

deviations of the average anomaly from the long term mean. 

Figure 3: Weighted standardised (relative to all years) shire rainfall anomalies for May 

to October rainfall during EN years associated with (a) FP1, (b) FP2, and (c) FP 3.  

Categories represent number of standard deviations of the average anomaly from the 

long term mean. 

Figure 4:  Composite maps of 3-month averaged SST anomalies (left panels) and MSLP 

anomalies (right panels) for the years in each EN impact footprint (FP);  (a) years in 

FP1 for seasons JFM to OND; (b) similarly for FP2; (c) similarly for FP3.  Shaded areas 

indicate where the anomalies of the composite members share the same sign as the 

composite in a statistically significant (90% level) number of cases relative to the 

sample size.   This level of significance is reached if 7 of 9 years match the sign of the 

composite for FP1 and FP3 SST composites, and 5 of 6 years for FP2 SST composites. 

The requirement for the MSLP composites is 7 of 9 years for FP1, 5 of 5 years for FP2, 

and 7 of 8 years for FP3.   
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Figure 2 
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Figure 4 (c) 

 

 

 

 

 

 

 


