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Abstract: 
 
Prediction distribution is a basis for predictive inferences applied in many real world situations. It is a distribution of the unobserved 
future response(s) conditional on a set of realized responses from an informative experiment. Various statistical approaches can be 
used to obtain prediction distributions for different models. This study derives the prediction distribution(s) for multiple linear 
regression model using the Bayesian method when the error components of both the performed and future models have a multivariate 
Student-t distribution. The study observes that the prediction distribution(s) of future response(s) has a multivariate Student-t 
distribution whose degrees of freedom depends on the size of the realized sample and the dimension of the regression parameters’ 
vector but does not depend on the degrees of freedom of the errors distribution. 
 
Introduction 
 
The prediction distribution of future response(s) can be derived from the regression model for statistical 
predictive inferences. Predictive inference uses the observations from a realized experiment to make 
inference about the performance of the future observation(s) of a future experiment. Many authors have 
considered the linear regression model in prediction problems and they have been used different methods to 
derive the prediction distribution. General prediction problems have been discussed by Jeffreys (1961). 
Fraser and Haq (1970) used the structural distribution approach, Aitchison and Dunsmore (1975) and 
Geisser (1993) used the Bayesian approach, and  Haq (1982) and Haq and Khan (1990) used the structural 
relations approach to obtain the prediction distribution from the linear model to mention a few. For details 
of predictive inferences and applications of prediction distribution interested readers may refer to Geisser 
(1993) and Khan (2004), and references therein.   
Most of the authors have contributed to solving the prediction problem by using linear models with 
independent and normal errors. Unlike others Haq and Khan (1990) obtained prediction distribution for the 
linear regression model with multivariate Student-t error terms by using the structural relation approach. In 
real life situations when the underlying distributions have heavier tails, linear models with multivariate 
Student-t errors have been emphasized and used by Zellner (1976), and Sutradhar and Ali (1989) among 
others. This study assumes that the error terms of the performed as well as the future multiple regression 
models have a joint multivariate Student-t distribution, and obtains the prediction distribution(s) of future 
response(s) by the Bayesian method under a uniform prior distribution. 
 
The Multiple Regression model 
 
Consider the linear regression model for an 1×n dimensional responses vector y   
 y = X β  + e   (1) 

where X is the design matrix of order an kn×  ( kn > ); /
110 ),...,,( −= kββββ  is a vector of k  

regression parameters; and e is the  errors vector associated with the responses vector y. Assume that each 
elements of e is uncorrelated but not independent with others and has the same univariate Student-t 

distribution with location 0, scale 0>σ and ν  degrees of freedom (d.f.). Thus the joint probability 
density function (p.d.f.) of e is 

 f(e) ∝  222 [)( −−
+ σνσ

n

e / e] 2

n+
−

ν

  (2) 

It is noted that E(e) = 0, a vector of 0’s and Cov(e) = 21)2( νσν −− I n  for >ν  2 in which I n is an 

identity matrix .  Hence the p.d.f. of the realized responses vector y is y ~ t n (X β , νσ , ) with density  
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 f(y| 2,σβ ) ∝  222 [)( −−
+ σνσ

n

(y - X β ) / (y - X β )] 2

n+
−

ν

 (3) 
The posterior distribution of parameters for a set of sample observations is typically the major objective of 
the Bayesian statistical analysis. To obtain a posterior distribution using the Bayes’s Theorem a prior 
distribution of unknown parameters is essential. Adopting the invariance theory (Jeffreys, 1961), the joint 

uniform prior density of parameters can be written as g( 2,σβ ) ∝  2−σ . Under this uniform prior the 

joint posterior density of β  and 2σ for the realized responses y can be obtained as  

 f( 2,σβ | y) ∝  22

2
2 [)( −

+
−

+ σνσ
n

(y - X β ) / (y - X β )] 2

n+
−

ν

  (4) 

Inference about unknown parameters β  and 2σ from the above linear model has been considered in other 

studies (Zellner, 1976; Fraser and Ng, 1980). In this case, the study is concerned to derive the prediction 
distribution of future response(s) from the future model, conditional on the observed responses y from the 
realized model. 
 
The Bayesian Prediction rule 
 
If z*   be an unobserved future response from a future regression model with the same regression parameters 
and assumption of the realized model but with different design matrix, then under the Bayesian approach 
the prediction distribution of z*   given y can be obtained by solving the following integral 

 f(z*  | y) ∝  � � >β σ 02
 f( 2,σβ | y) f(z* ) 2σd βd  (5) 

where f( 2,σβ | y) is the joint posterior density of unknown parameters β  and 2σ that is provided in (4) 

and  f(z* ) is a probability density of the future response  z*   from the future model. This principle is 
appropriate when the future response z* is independently distributed from the observed responses y, that 
means z*  and y are not dependent to each other. However, in this study the responses from the realized as 
well as the future models are dependent but uncorrelated.   
        
Prediction distribution of a set of future responses 
 
Let y f  be a set of  fn  future responses from the model in (1) corresponding to the kn f ×  order design 

matrix X f  and 1×fn  dimensional errors vector e f .  Thus the future model can be expressed as 

 y f  = X f β  + e f  (6) 

where,  e f ~ t fn (0, νσ , ), and hence  y f ~ t fn ( X f β , νσ , ).  

According to the assumption, the observed errors vector e and the unobserved future errors vector e f  are 

uncorrelated but not independent then their respective observed responses y from the realized model and 

unobserved future responses y f  from the future model are also dependent but uncorrelated. Thus the 

combined joint p.d.f. of y and y f  is  

 f(y, y f | 2,σβ ) ∝  222 [)( −
+

−
+ σνσ

fnn

Q] 2
fnn++

−
ν

 (7) 

where Q = (y - X β ) / (y - X β ) + (y f  - X f β ) / (y f  - X f β ) and ν  is the d.f. of the errors distribution.  

Using the prior density g( 2,σβ ) ∝  2−σ  and the joint p.d.f. of the combined responses y f and y  in (7), 

the joint posterior density of β  and 2σ for the combined responses y f and y  can be easily obtained by the 

Bayes’s Theorem, as   
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 f( 2,σβ | y, y f ) ∝   22

2

2 [)( −
++

−
+ σνσ

fnn

Q] 2
fnn++

−
ν

 (8) 

As y f and y are not independent so they are not independently distributed. Thus the usual idea in (5) is not 

appropriate here. In this situation since the density function of a set of future responses y f from the future 

model is linked with the density function of the set of observed responses y from the realized model within 

the combined joint p.d.f. in equation (7), the prediction distribution of y f  can be obtained by solving the 

following integral 

 f(y f  | y) ∝  � � >β σ 02
 f(y, y f | 2,σβ )  g( 2,σβ ) 2σd βd     

  ∝  � � >β σ 02
 f( 2,σβ | y, y f )  2σd βd  (9) 

That means, in this case the prediction distribution of future responses can be derived from the joint 

posterior density function of the parameters for the combined responses y and y f . 

Now equation (8) can be expressed as the following convenient form 

 f( 2,σβ | y, y f ) ∝  (Q) 2
fnn+

−
  

2

1
21

]1[
fnn

C

CQ
++

−

−−

+
ν

ν

  (10) 

where C = 21νσ−Q  .  Considering the transformation r = 21 )( σfnnQ +−  in (10) and then after using 

the results, equation (9) can be written as 

 f(y f  | y) ∝  � �β r
(Q) 2

fnn+
−

  

2

1
2

1

fnn

f

r
nn

r
++

−

−

�
�
�

�

�
�
�

�

+
+

ν

ν

ν

        dr βd   (11)   

It is clear that r has an F distribution with ν  and fnn +  degrees of freedom that is, r ~ F
fnn+,ν .  

Employing the F integral in (11) to integrating over r, the prediction density of future responses becomes 

 f(y f  | y) ∝  �β (Q) 2
fnn+

−
  βd   (12) 

Now Q = (y - X β ) / (y - X β ) + (y f  - X f β ) / (y f  - X f β ) can be expressed as the following form   

 Q = A + ( β -P) / M ( β -P)   (13) 

where A = y / y  +  y /
f  y f  - (y / X +  y /

f  X f ) M 1− ( X / y + X /
f  y f ) is free from the parameters’  vector β , 

M = X / X + X /
f X f  and P =  M 1− ( X / y + X /

f  y f ). 

Using the expression of Q in (13) to equation (12) and then integrating over β  by using the multivariate 

Student-t integral, it is easy to obtain the following p.d.f. of y f  given y  

 f(y f  | y) ∝  [y / y  +  y /
f  y f  - (y / X +  y /

f  X f ) M 1− ( X / y + X /
f  y f )] 2

fnkn +−
−

 

Hence the prediction distribution of a set of future responses y f , conditional on a set of realized responses 

y, is obtained as  
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 f(y f  | y) = fΦ  [(n - k) + (y f - X f β̂ ) / H (y f - X f β̂ )] 2
fnkn +−

−
  (14) 

where H = s 2− (I
fn - X f M 1− X /

f ), β̂  = (X / X) 1− X / y is the OLS estimator of  the regression vector β , 

s2 = 1)( −− kn [(y - X β̂ ) / (y - X β̂ )] = y / [ I n  - X(X / X) 1− X /  ]y, and the normalizing constant of the 

prediction distribution is given by  fΦ = 

[ ]2

1
2

2

1
/1

)(
2

2

skn
kn

XMXI
nkn

f

f

n

ffn
f

−�
	



�
�


 −Γ

−��
	



��
�


 +−
Γ −

π
.  

Here, it is clear that y f , the vector of a set of future responses, has an fn -dimensional multivariate 

Student-t distribution with the location X f β̂ , scale [s 2− (I
fn - X f M 1− X /

f )] 2

1
−

, and the shape parameter 

kn − . This result is identical with the results obtained for the same model by Haq and Khan (1990), and 
for the multiple regression model with independent and normal errors by Zellner (1971) and Geisser (1993) 
among others.  Therefore, it is noted that the prediction distribution is unaffected by departures from the 
model with indepedent and normal errors to multivariate Student-t errors distribution.  
 
Prediction distribution of a single future response 
 

For  fn = 1 the set of future responses vector  y f  becomes a single future response, and hence if  y f  

denotes a single future response, then the future regression model in (6) becomes the following form    

 y f  = x f β  + e f   (15) 

where, x f is a k×1  order design vector, β  is the same regression coefficients vector of order 1×k  and 

e f is the error term associated with y f and e f has a univariate Student-t distribution as e f ~ t1  (0, νσ , ). 

By the same operations as used in previous section for the derivation of prediction distribution of a set of 
future responses, it can be easily obtained the joint posterior density of parameters for a single response 

y f and the realized responses vector y under the same prior distribution g( 2,σβ ) ∝  2−σ , as 

 f( 2,σβ | y, y f ) ∝   22

3
2 [)( −

+
−

+ σνσ
n

Q] 2

1++
−

nν

  (16) 

where Q = (y - X β ) / (y - X β ) + (y f  - x f β ) 2 in which y f is scalar.   

The prediction distribution of a single future response y f can be derived from the joint posterior density 

function for the combined responses y f  and y in (16) by integrating over the parameters β  and 2σ . For 

completing the derivation of prediction distribution of a single future response, the same operational steps 
is used as considered in the previous section. At first the joint posterior density can be expressed as its 

convenient form as like in equation (10), and then using an appropriate transformation r = 21 )1( σ+− nQ , 

the parameter 2σ can be eliminated by the F 1, +nν  integral. After that, Q can be expressed as a quadratic 

form of β  and then the properties of the multivariate Student-t distribution can be used to complete the 

integration over β . Finally, the prediction distribution of a single future response y f , conditional on a set 

of realized responses y, is obtained as 
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 f(y f  | y) = fΨ  [(n - k) + (y f - x f β̂ ) / H (y f -  x f β̂ )] 2

1+−
−

kn

  (17) 

where H = s 2− (1 - x f M 1− x /
f ) in which M = X / X + x /

f x f  , β̂  = (X / X) 1− X / y is the OLS estimator of  

the regression vector β , s2 = 1)( −− kn [(y - X β̂ ) / (y - X β̂ )] = y / [ I n  - X(X / X) 1− X /  ]y, and fΨ  

represents the normalizing constant which is given by  fΨ = 

[ ]2

1
2

2

1
/1

)(
2

1
2

1

skn
kn

xMx
kn

ff

−�
	



�
�


 −Γ

−�
	



�
�


 +−Γ −

π
.  

Thus, the prediction distribution of a single future response for the multiple regression model with 
multivariate Student-t error terms is a univariate Student-t distribution with appropriate parameters. 
 
Conclusion 
 
The prediction distribution of future response(s), conditional on a set of observed responses has been 
derived for the multiple linear regression model having multivariate Student-t errors by the improper 
Bayesian method. Results reveal that the prediction distribution of a single future response and a set of 
future responses are a univariate Student-t distribution and a multivariate Student-t distribution 
respectively. It has been shown that the prediction distributions for the multiple regression model remains 
identical by a change in the error distribution from normal to multivariate Student-t distribution. 
Furthermore, the prediction distribution depends on the observed responses and the design matrices of the 
realized model as well as the future model. The shape parameter of the prediction distribution depends on 
the size of the realized sample and the dimension of parameters vector of the model. However, the shape 
parameter of the prediction distribution does not depend on the d.f. of the errors distribution. 
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