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Abstract

We discuss ways in which technology can be used in the calculus learn-

ing process. In particular, five matlab programs are detailed for use by

instructors or students that demonstrate important concepts in introduc-

tory calculus: Newton’s method, differentiation and integration. Two of

the programs are animated. The programs and the graphical user inter-

face have been specifically designed to help the student understand the

processes behind these important introductory concepts. Each program

has a series of demonstrations that show unusual, difficult or important

cases.

1 Introduction

The use of technology in teaching calculus has become a popular component
of most introductory calculus classes. The University of Southern Queensland
has chosen to use matlab in its introductory algebra and calculus units. In
their first years, students learn algebra and calculus by incorporating matlab

as a numerical and graphical tool, and they learn the basics of its language and
graphical commands.

A recently conducted research project [1, 2] analysed the influences on at-
titudes and learning, and found that almost all students responded positively
to matlab for ease of computation and graphing. In addition, the use of the
software as a tool was found to have had a strong impact on the learning strate-
gies adopted and on their confidence towards mathematics. Others have found
similar effects of the influence of computing methods on learning mathematics.
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For example, [3] found that “Students with high computer-mathematics inter-
action feel that computers enhance mathematics learning by providing many
examples, enable the user to focus on major ideas by reducing mechanical toil,
. . . and find computers helpful in linking algebraic and geometric ideas”.

In most other courses reported in the literature that use a computer package
(an algebraic one like Mathematica, Maple or Derive, or a numerical one
like Matlab), the software is mainly used to do the work for the student. The
software is used to save the student time in fiddly or prone-to-error calculations,
or to do more complex problems that are impossible to do ‘by hand’. This is,
of course, an important use of computers in the classroom.

The programs discussed in this paper, however, focus more on using the
computer to show what is happening, rather than to do a particular task. It is
stated in [4, p 81] that

It is just about impossible to illustrate Newton’s method adequately
with freehand sketches using a piece of chalk. A computer printout
on a transparency, or even an animation using a PC, can be a great
help. Likewise Simpson’s rule, the Runge-Kutta method, and other
numerical techniques can be best illustrated with a computer and
an attractive display.

He also says that “new technology should be layered atop a traditional founda-
tion” ([4], p 28). The programs discussed herein are therefore aids to learning
the topics, and cannot possibly be effective without adequate teaching around
them. We would certainly not advocate that the programs be used as the sole
method of teaching the topics.

It can be argued that matlab can be incorporated into learning in three
main ways.

Firstly, it can be used as a numerical and graphical tool to enable faster
illustration of the applications and better visualisation of complex ideas such
as three dimensional graphical representations. The approach in this case is to
just use command line instructions in matlab to help develop the ideas [1, 2].
No programming skills are required.

Secondly, matlab can be incorporated into the material by using appro-
priate programs which can be used by the student to aid the learning of ideas
and concepts. The programs are usually available to the student for their use
or modification. This approach has been used in several books such as [5] and
[6], and also by [7], where a subject based around matlab is discussed and
many excellent ideas for incorporating matlab into teaching are presented. A
rudimentary knowledge of programming is helpful or necessary in this approach.

Thirdly, matlab software can be used to show the procedure or concept in a
more sophisticated way by using larger, stand-alone and robust programs with
well designed graphical user interfaces. No programming skills are required in
this approach. Of course, these three approaches can effectively complement
one another.

In this paper, we discuss five matlab functions that use this third approach.
The programs were developed for student use and for use in lectures to graphi-
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cally demonstrate Newton’s method, differentiation and integration techniques.
Two of the programs are animated, showing each step of the algorithm so that
the algorithm is more easily understood.

First, some general comments. In each of the programs, any function com-
patible with matlab requirements can be used. The ability to use any func-
tion makes the programs generically interesting and useful. The functions
must be written in standard matlab code when entered, so the matlab ‘dot’-
notation is used. That is, we would write (x.^2) .* (x+1) rather than
(x^2) * (x+1). This dot notation implies element-by-element calculation,

meaning matlab performs the calculations on corresponding elements of vec-
tors or matrices, rather than using matrix operations.

Naturally, using incomplete or invalid matlab code can cause errors. Also,
unstable or difficult functions may also cause the programs to behave strangely.

Each of the programs use larger than standard labels on the figures, and
thicker than standard lines. This has been done to enable the programs to be
used in a lecture situation by the instructor, so that the students can still see
the details on the screen.

2 Newton’s Method

The matlab function numnewton shows an animated demonstration of Newton’s
method. The initial screen is shown in Figure 1.

The top part of the screen is the display, where the action takes place. At
the bottom of the screen are parameters that can be set. At the left, we have
entry boxes for the function in matlab notation, the derivative of the function
(also in matlab notation), the limits of the display, and an estimate of the zero
to be found. By default, the function solves f(x) = x2 = 0 near x = 0.5, and
displays between x = −0.4 and x = 0.6. Any (legitimate) matlab functions
can be used in this entry box using the matlab ‘dot’-operators.

Note that the inclusion of the derivative is optional. If a derivative is not
supplied, a numerical (central) derivative is calculated. While not as accurate,
it enables the program to be used in any case, even when the function is com-
plicated, or the derivative is difficult or impossible to find.

To the right of these entry boxes is a slider that determines the speed of
the animation. The slider can be moved using a mouse or the keyboard up and
down arrows. Slow gives the instructor time to talk about the animation as it
proceeds, and Fast quickly runs the animation.

The buttons to the far right are fairly clear: OPTIONS sets convergence
criteria (discussed later); GO starts the animation; PAUSE pauses for the in-
structor to talk about what is happening (it changes to RESUME after being
pressed); QUIT shuts down the program.

[Figure 1 about here.]
Figure 2 shows the program in action, after three iterations using the default

settings. Colours are employed for clarity: The initial estimate for the solution
is shown as a green square; the current solution is shown in red, and previous
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iterations are shown in gray. The program demonstrates the approach of the
method by showing the tangent lines giving the next approximate zero of the
function. In the matlab command window, a summary of the iterations is
provided, giving the estimate of the root, the function value and the derivative
at each iteration. For the default screen, the output is:

X-Value Function Derivative

~~~~~~~ ~~~~~~~~ ~~~~~~~~~~

0.50000 0.2500000 1.00000

0.25000 0.0625000 0.50000

0.12500 0.0156250 0.25000

0.06250 0.0039062 0.12500

0.03125 0.0009766 0.06250

0.01562 0.0002441 0.03125

0.00781 0.0000610 0.01562

0.00391 0.0000153 0.00781

0.00195 0.0000038 0.00391

0.00098 0.0000010

Convergence detected: Function value close to zero.

Note that the OPTIONS button can be used to set the convergence criteria
to other values.

[Figure 2 about here.]
The numnewton program can be used to demonstrate many of the problems

with Newton’s method, such as the necessity of a good starting point, cycling,
a zero derivative, or an infinite derivative. To facilitate this, a menu item above
the figure is included (called DEMONSTRATIONS) which sets parameters that
show these situations. (A good discussion of these is found in [8], page 79, from
where some of the examples are drawn.) The user selects the DEMONSTRA-
TIONS menu item, and then selects the situation to be shown. The program
demonstrates the situation by going through the animation.

It has been pointed out (see, for example, [9, p 67]) that the use of tech-
nology has its ‘snags’. They point out that software that glosses over inherent
complications in algorithms can leave the student “blissfully unaware that such
problems are present and have been overcome”. By specifically including some
demonstrations of the problems inherent in Newton’s method, we hope to have
avoided this problem. Both [9, p 98] and [4, p 26] mention problems with using
the computer to do calculations. In [4], the author states that “a computer
does things so fast that it trivialises them. When something is trivialised, then
understanding is lost.” For example, some of these problems are discussed in
[6, p 161], but not in [5]. We hope that the use of the program showing what
the algorithm is doing, explicitly demonstrating shortcomings and allowing the
instructor the capacity to slow the demonstration down to talk about the steps
will address these concerns.

The demonstrations available are as follows:
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• Cycling: This option sets the function as f(x) = x3 − x − 3, and starts
iterations at x = 0. This sets the algorithm into a loop which never
converges, but continues to revisit the same estimates over and over again.

• Cycling (2): This option sets the function as f(x) =
√

|x|, and starts
iterations at x = 1. The algorithm continues to oscillate between x = −1
and x = 1.

• No root exists: This option sets the function as f(x) = x2 − 4x + 4.5 and
the starting estimate at x = 0.5. This function has no zeros at all, but a
minimum at x = 2 for which f(2) = 0.5. The algorithm attempts to find
a zero near x = 2 in vain.

• No root exists (2): This option sets the function as f(x) = exp(−x) and the
starting estimate at x = 4. Obviously, no zeros exist, but since f(x) is very
small, convergence is (incorrectly) reported with the default convergence
options set. This is useful for demonstrating that the computer doesn’t
always give the correct answer!

• Divergence: This option sets the functions as f(x) = arctan(x) and the
starting point at x = 1.4 for which arctan(1.4) ≈ 0.95. While this may
not seem unreasonable, the algorithm actually diverges from the root.

• Divergence (2): This option sets the functions as f(x) = erf(x) and the
starting point at x = 1. The derivative is left blank, so that numerical
derivatives are calculated. The algorithm diverges from the root at x = 0.
(Note that erf(x) is a special function—the matlab error function.)

• Bad starting value: This option sets the function as f(x) = x3 − x − 1
and the starting point as x = −0.5 for which f(x) = −0.625. Again, this
doesn’t seem unreasonable, but the algorithm wanders far and wide in
search of the root at x ≈ 1.32. It can be eventually found after about 18
iterations.

• Zero derivative: This option sets the function as f(x) = sin x and the
starting value as x = 4.36918237257240. After one iteration, the algorithm
is evaluating the derivative at x = π/2 which is, of course, zero.

• Zero derivative (2): This option sets the function as f(x) = x3 − 3x2 + 3x
and the starting value as x = 1.7937. After one iteration, the algorithm
is evaluating the derivative at x = 1 where the derivative is zero.

• Convergence to wrong root: This option sets the function as f(x) = sin x
and the starting point to x = 1.25. The function converges to the zero at
x = −2π, probably not the zero being sought.

• Convergence to wrong root (2): This option sets the matlab function
f(x) = humps(x) and the starting point to x = −0.55, near the zero
at x ≈ −1.1316. This matlab function has ‘two strong maxima’ near
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x = 0.3 and x = 0.9, and zeros at x ≈ −0.13162 and x ≈ 1.3. Numerical
derivatives are used. Despite starting at x = −0.55, the function converges
to the zero at x = 1.3, probably not the zero being sought.

• Infinite derivative: This option sets the function as the (obviously con-
trived) function f(x) = sign(x)

√

|x|+0.5 with a starting value of x = −1.
After one iteration, the derivative is evaluated at x = 0, for which the
derivative is infinite.

As an example of cycling, the final screen from the first demonstration is
shown in Figure 3.

[Figure 3 about here.]
A graphical user interface can be used to alter the convergence criteria for

f(x), the absolute error |xn − xn−1| and the maximum number of iterations.
The default values for these parameters are 0.0001, 0.00001 and 10 respectively.
These criteria can be set using the OPTIONS button or the OPTIONS menu
item above the figure. A second menu-only option under the OPTIONS menu
item sets the convergence options back to the default values.

3 Differentiation

The matlab function numdiff shows an animated demonstration of differenti-
ation. The initial screen is shown in Figure 4.

[Figure 4 about here.]
The top part of the screen is the display, where the action takes place. At the

bottom of the screen are parameters that can be set. At the left, we have entry
boxes for the function in matlab notation, the limits of the display, and the
point at which to differentiate. By default, the function differentiates f(x) = x2

at x = 1, and displays between x = 0 and x = 2. Any (legitimate) matlab

functions can be used.
To the right of these entry boxes is a slider that determines the speed of the

animation as discussed before. The three buttons that appear to the far right
also appear in the program numnewton, and perform the same jobs.

After pressing GO, the animation beings. The function itself is plotted in
blue, and the program demonstrates the definition of differentiation

df

dx
= lim

∆x→0

f(x + ∆x) − f(x)

∆x

by calculating and showing the secant passing through f(x) and f(x + ∆x) as
∆x → 0. This secant line is plotted in red, and is shown to approach the tangent.
In the matlab command window, the values of ∆x are shown together with
the approximate (numerical) derivative for each ∆x. For the default function
f(x) = x2, the matlab command window gives the following:

Delta-x Approximate Derivative

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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1 3

0.8 2.8

0.5 2.5

0.3 2.3

0.1 2.1

0.01 2.01

0.001 2.001

1e-05 2

1e-09 2

A diagram of the animation after three iterations is given in Figure 5.
[Figure 5 about here.]
As with numnewton, there is also a DEMONSTRATIONS menu item above

the figure for interesting cases. The demonstrations available are as follows:

• Infinite Derivative: This option numerically differentiates f(x) = sign(x)
√

|x|
at x = 0, where the derivative is infinite.

• Infinite Derivative (2): This option numerically differentiates the modified
Bessel function of the first kind, f(x) = I0.2(x) at x = 0, where the
derivative is infinite.

• Zero Derivative: This option numerically differentiates f(x) = 1 − x2 at
x = 0, where the derivative is 0.

• Zero Derivative (2): This option numerically differentiates f(x) = sin x at
x = π/2, where the derivative is 0.

• Difficult Derivative: This option numerically differentiates f(x) = sin(1/x)
at x = 0.09. Because this function has rapid oscillations as x → 0, good
estimates are only found for very small ∆x. Indeed, even though the
derivative is negative, the numerical derivatives are positive until ∆x =
0.001.

• Difficult Derivative (2): This option numerically differentiates f(x) = humps(x)
at x = 0.3. humps is a matlab function with a strong maximum near
x = 0.3, and so small ∆x are required to give a good estimate of the
derivative. Indeed, even though the derivative is positive, the numerical
derivatives are negative until ∆x = 0.00001.

4 Approximating Integrals

The remaining three programs are, in many ways, very similar: They all demon-
strate numerical methods of approximating integrals. Consequently, they con-
tain many similar components that can be discussed together. There are some
differences, however, that will be addressed as necessary.

The three programs are numrect, numtrap and numsimpson.
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• numrect: This program approximates an integral with rectangles. It uses
the concepts of a right sum and a left sum to approximate the integral (as
used in [10], Chapters 3 and 7, and similar to the concepts of upper sum
and lower sum used by, for example, [11], page 262). The right sum uses
the right value of the function on each interval, while the left sum uses
the left value of the function on each interval. The area under the curve
can be seen to be sandwiched between the two sums. The screen is shown
in Figure 6.

The left and right sums are given in different colours so that they are
easily distinguished. On the figure, the values of the left and right sums
are both given, calculated from the displayed rectangles.

• numtrap: The second program uses the trapezoidal rule to approximate
integrals. The screen is shown in Figure 7. The program plots the function
of interest in green, and then the trapezoids used to approximate the
integral in red.

• numsimpson: This program uses Simpson’s 1/3 rule to approximate inte-
grals. The screen is shown in Figure 8. Again, the function is plotted in
green, and the parabolas used to approximate the integral are shown in
red.

In each program, the top part of the screen shows the graphics, and the
bottom again contains the parameters. The function is given (again in standard
matlab notation), plus the limits of integration and the number of regions for
which to calculate. The number of regions to use can also be set by a slider,
from 2 up to 50 (for larger intervals, the programs can become slow, and the
graphics become too cluttered). For Simpson’s method, the program ensures an
even number of intervals is used.

The buttons to the right are again clear: GO draws the picture after any
changes have been made, and QUIT quits the program.

[Figure 6 about here.]
[Figure 7 about here.]
[Figure 8 about here.]
The programs can be used by setting all the required parameters and press-

ing the GO button. Alternatively, after changing the number of intervals with
the slider, the program immediately is activated. This enables the student or
instructor to see the effect of increasing (or decreasing) the number of inter-
vals on the integral by using the mouse (or keyboard arrow keys) to move the
slider. For each program, output is given in the matlab command window,
indicating the approximation to the integral with the given number of regions.
As an example, the output from numsimpson is given for approximating one
of the demonstrations. Convergence seems to be occurring. Similar output is
generated for numrect and numtrap also.

Integrating 1 ./ ( 1 + x.^6 ) between -3 and 4
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Number of Approximate

Panels Integral

~~~~~~~~~ ~~~~~~~~~~~~

2 4.5967547

6 2.3248453

10 2.1666795

14 2.1038790

18 2.0784916

22 2.0943325

26 2.0899679

30 2.0928144

34 2.0935154

38 2.0933077

42 2.0934796

46 2.0933896

50 2.0933810

As in the Newton’s method program, some demonstrations are included in
the DEMONSTRATIONS menu item for interesting cases. The following demon-
strations appear in all three programs:

• Difficult Regions: sqrt(x): This option approximates
∫ 2

0

√
x dx. Most meth-

ods have trouble with accuracy near x = 0.

• Difficult Regions: exp( abs(x) ): This option approximates
∫ 2

−2
exp(|x|) dx.

Most methods have trouble at x = 0, where the function is not smooth.

• Difficult Regions: 1 ./ ( 1 + x.^6 ): This option approximates
∫ 4

−3
1/(1 +

x6) dx. Most methods struggle with this function because of the sharp
changes at x = ±1.

• Difficult Regions: besselj(0.2, x): This option integrates the modified Bessel

function of the first kind,
∫ 1

0
I0.2(x) dx. Most methods have trouble near

x = 0.

• Difficult Regions: sin( 1./ x): This option approximates
∫ 1

0.1
sin(1/x) dx.

This function is well-known to be difficult to integrate, as the number of
zeros in the function increases rapidly as x → 0.

Each of the three functions share these demonstrations. In addition, numtrap
includes two other demonstrations:

• Under Estimation: x.^2 + 4: This option approximates
∫ 2

−1
x2 + 4 dx. The

trapezoidal rule will always under -estimate this integral.

• Over Estimation: exp( -x ): This option approximates
∫ 1

−4
exp(−x) dx. The

trapezoidal rule will always over -estimate this integral.
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The program numsimpson also includes an extra demonstration:

• Exact Answer: x.^3 - x - 1. This option approximates
∫ 2

−1
x3 − x + 1 dx.

For any number of regions, Simpson’s rule will give an exact answer for
any cubic.

5 Obtaining and Using the Programs

The programs are all free, and operate under matlab versions 5 and 6. Each
program requires just one (text) file, and all are very easy to install. The user
must place a copy of the files anywhere on the matlab path. The current
matlab path can be established by typing path at the matlab prompt. In
addition, making changes to the matlab path can be done by typing pathtool

at the matlab prompt. The local documentation should be consulted for setting
the matlab path, since the details may be different for different platforms and
different matlab versions.

The functions are then run by simply typing the function name (for example,
numnewton) at the matlab prompt.

The files are stored at the first author’s Web pages. They can be downloaded
from
http://www.sci.usq.edu.au/staff/dunn/matlabprograms.html

The programs are copyright by the author and can be used freely, but cannot
be exploited for commercial reasons.
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Figure Captions:

These are the figure captions, on a separate page at the end as required.
Figure 1: The initial screen for the numnewton program
Figure 2: After three iterations of the numnewton program solving f(x) =

x2, starting at x = 0.5. The program numerically determines the root using
Newton’s method, and animates the solution-finding algorithm.

Figure 3: A demonstration of Newton’s method cycling through iterations
when solving f(x) = x3 − x − 3 and starting at x = 0.

Figure 4: The initial screen for the numdiff program. The default is to
differentiate f(x) = x2 at x = 1.

Figure 5: After three iterations of the numdiff program. The program
numerically differentiates f(x) = x2 at x = 1, and animates the secant lines
approaching the tangent line.

Figure 6: The numrect program, approximating
∫ 2

0
sin(x2) dx using six in-

tervals.
Figure 7: The numtrap program approximating

∫ 2

0
sin(x2) dx using six in-

tervals.
Figure 8: The numsimpson program approximating

∫ 2

0
sin(x2) dx using six

intervals.
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