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Abstract5

Statistical tools are discussed for the analysis of data collected from tractor guid-6

ance systems. The importance of both accuracy and precision is discussed, and sta-7

tistical tools for analysis are considered which incorporate important features of the8

data. In particular, accuracy is modelled using a generalized least squares model in-9

corporating autocorrelation, and precision using a gamma generalized linear model.10

The methods are applied to data collected during an experiment conducted with a11

Trimble receiver used with a Beeline tractor guidance system. Three different sce-12

narios are considered, then compared: a tractor simulating ploughing a field; the13

tractor pulling a plough with the receivers on the tractor; the tractor pulling a plough14

with the Trimble receiver on the plough. The change in the precision and accuracy15

between the scenarios is discussed. Data was collected over repeated swaths for each16

scenario. After discussing specific statistical techniques for analysis of this type of17

data, the collected data are analysed; major conclusions are: the data collected from18

the Trimble receiver showed evidence of autocorrelation in the offsets; the implement19

recorded a variance about three times that recorded by the tractor.20
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Introduction1

Agricultural guidance systems have attracted a growing band of supporters, both opera-2

tional and in research. Wilson (2000) gave an overview of the research invested in the3

guidance systems, and forecasts the interest to continue. Supporters of guidance system4

technology claim advantages such as:5

• reducing driver fatigue: guidance systems reduce the effort associated with main-6

taining accurate vehicle paths (Thuilot et al., 2002; Wilson, 2000); Kocher et al.7

(2000a) cited a study in which 80% of respondents noted fatigue as the greatest hin-8

drance to performance using non-guided tractors; likewise, Kaminika et al. (1981)9

showed, in a laboratory experiment, a degradation in steering accuracy when the10

operator had to share attention between tasks.11

• reducing costs: accuracy is increased by reducing ‘skip’ (missed sections) and12

‘double-up’ (repeated application) in sections of the field (Thuilot et al., 2002);13

• increasing productivity: higher operating speeds are possible (Thuilot et al., 2002);14

• improved quality: the driver can focus attention elsewhere to ensure better quality15

(Thuilot et al., 2002);16

• improved safety (Zhang, Reid and Noguchi, 1999);17

• less impact on the environment (Bongiovanni and Lowenberg-Deboer, 2004; Wil-18

son, 2000);19

• enabling night work with some systems (Wilson, 2000).20

Guidance systems are used for planting, hoeing, application of fertilizer, application of21

pesticides, tillage, etc.22

In this paper, we specifically focus on data gathered from using an agricultural guid-23

ance system based on Global Positioning Systems (GPS) to maintain accuracy. For such24
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systems, two GPS receivers are required, each requiring an antenna, a controller box con-1

taining a computer, and cables. One GPS receiver is located on the tractor, and is called a2

roving receiver. The second is stationary at a known position, and located near the pad-3

dock; this is called the base (or reference) station, and is used to eliminate errors occuring4

in the roving receiver and hence enhancing accuracy. This is called ‘differential GPS’,5

or DGPS. The roving receiver determines the location of the tractor, applying corrections6

received from the base receiver. In autonomous systems, the information received by the7

controller is used to automatically steer the tractor. In semi-autonomous systems, these8

corrections are displayed on an in-cabin screen; the tractor driver uses these visual cues9

to adjust the heading of the tractor to maintain the required path.10

GPS is crucial to these guidance systems. Wilson (2000) identified two limitations with11

GPS in tractor guidance systems which he anticipated would be overcome eventually with12

technological developments: the range of field conditions for which accurate methods are13

needed (such as steep terrain, or interruption of satellite or differential corrections) is di-14

verse; and the time delay for signal processing at high speeds. In a more general study of15

precision agriculture technology, Robert (2002) identified several barriers—categorized16

as socio-economic, agronomic and technological—limiting the mainstream use of guid-17

ance systems. These include: inadequate skills of farmers unfamiliar with, and possibly18

skeptical or afraid of, technology; inefficient use, or misinterpretation of, the information;19

the potential need for using agroconsultants; and incorrect calibration of the equipment.20

Other practical impediments exist to the uptake of tractor guidance technology:21

• Understanding the different claims of the manufacturers makes it hard to compare22

systems directly;23

• No international standards are available for comparing accuracy (White, 2003);24

• Little independent analysis of performance claimed by manufacturers is available25

(Kocher et al., 2000a), especially in an operational setting;26
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• The human-factor still exists (ease-of-use; callibration; driver fatigue is still an issue1

with semi-autonomous systems).2

In White (2003), an attempt to provide test protocols for studying accuracy of agriculture3

guidance systems was developed with engineers, GPS experts and manufacturers. Kocher4

et al. (2000a) developed a systematic procedure for testing systems in a variety of condi-5

tions.6

Others have discussed statistical analysis also. For example, Taylor et al. (2003) used7

a complex Voronoi step interpolation method to analyse correlated data; Kocher et al.8

(2000b) considered statistical methods based on linear models.9

In this study, we are interested in the accuracy of the final path of travel using the10

GPS-based agricultural guidance technology discussed. The distance between the actual11

and desired path of travel is called the ‘offset’ (or ‘lateral distance’). Using a commer-12

cially available tractor guidance system in conjunction with an additional receiver to log13

offsets, we compare the accuracy and precision of the specification of the manufacturers;14

and compare the accuracy and precision of the results in three scenarios (given below)15

statistically. Thus, the accuracy inherently incorporates the accuracy of the GPS used, and16

the physical tractor guidance itself. Others have studied guidance systems performance17

from a physical viewpoint (for example, Cordess et al., 2000; and Thuilot et al., 2002,18

who examined curved paths).19

We focus, in particular, on the accuracy and precision of the systems. By accuracy,20

we mean the tendency to travel on the desired (target) path on average; by precision, we21

mean the tendency to be close to the desired path at all times. Both issues are jointly22

relevant: having a mean accuracy of 0 mm is meaningless if the tractor misses the target23

by 1000 mm half the time, and −1000 mm the other half; in this case, the accuracy is24

good while the precision is bad. In general, accuracy is measured using means; precision25

using standard deviations and variances.26
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The next section discusses the experiment and the three scenarios; the methods of1

analysis are then considered, some of which have never been used in the context of this2

type of data. Then the data is summarized and examined; then accuracy and precision are3

analyzed.4

Materials and methods5

The data were collected during simulated ploughing of a paddock on September 2002 in6

‘Irri South’, an irrigation farm at Macalister, Queensland, Australia. The paddock had a7

previous crop of cotton sown on raised beds and harvested in March 2002. The remaining8

stubble was ploughed into the soil for the (southern hemisphere) winter. A 27 mm rainfall9

event prior to data collection caused the soil to be moist during testing. The simulated10

ploughing considered here ran diagonally across the raised beds.11

A Beeline Navigator (hereafter just Beeline) autonomous tractor guidance system was12

used to automatically steer the tractor on a predefined path. The Beeline system deter-13

mines the coordinates of the tractor and adjusts the path of the tractor accordingly. In this14

study, a Caterpillar 95E tractor was used; the Beeline electronically actuates the tractor’s15

steering system based on positional information received from the DGPS.16

To record the actual path of travel, a Trimble MS750 RTK (real time kinematic) re-17

ceiver (hereafter just Trimble) was used, operating at 5 Hz. Differential corrections for18

post-processing were recorded by a Trimble 4700 MSi and logged to a separate TSC 119

controller. Both the Trimble and Beeline base stations were sited together about 500 m20

from the test paddock.21

There were three aspects of the experiment:22

• In the first scenario, the Trimble receiver was placed on the tractor and it travelled23

up and down the paddock (‘parallel swathing’);24
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• In the second scenario, the Trimble receiver remained on the tractor which pulled1

an implement (an 8.5 m chisel plough) up and down the paddock;2

• In the third scenario, the Trimble receiver was relocated to the center-line of the3

implement (a chisel plough) pulled by the tractor up and down the paddock.4

For the first two scenarios, the Beeline antenna was centred laterally on the tractor cabin5

(2.5m above the ground), and the Trimble antenna was mounted 376 mm to the left of the6

Beeline antenna. (This lateral displacement was known, and the data suitably adjusted7

before this analysis.) For scenario three, the Trimble receiver was relocated to the imple-8

ment 5.7 m from the towing point of the tractor and centred laterally. The third scenario is9

of ultimate interest: the path of the implement. The other two scenarios allow quantitative10

comparisons of this path to the unencumbered tractor (scenario one) and the path of the11

tractor while pulling the implement (scenario two).12

Each swath was between two fixed coordinates about 900 m apart. (A swath is a run13

up or down the paddock between turns of the tractor at either end.) The same coordinates14

were used for each scenario and the tractor driven at about 8 km h−1 for each scenario,15

up the paddock, then back down, and so on. The swaths were 8.5 m apart, which was the16

width of the implement used in scenarios two and three.17

The desired path of travel was identified as follows. The tractor was located at a ref-18

erence coordinate (waypoint A) at one end of the paddock, and this coordinate logged19

onto the Trimble and Beeline controllers. The tractor was then driven to the other end of20

the paddock (about 900m); the tractor was stopped and this reference coordinate (way-21

point B) logged into the Trimble and Beeline controllers. The Beeline tractor guidance22

system was then used to autonomously guide the tractor between waypoints A and B, and23

subsequent swaths successively 8.5m apart, while the Trimble receiver logged offsets.24

The data from the Trimble receiver for each scenario was processed and the offset25

given in millimetres. In this paper, we consider the offset in two, rather than three, dimen-26
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sions (see Cordess et al., 2000).1

The Trimble receiver logged data about every second to give some 400 observations2

per swath for most of the data collection, but at about every 0.7 second for swaths 1 and 23

of scenario two (despite the epoch recording rate being set to one second intervals) giving4

about 580 observations per swath; see Table 1. There was no obvious explanation for this5

change in recording frequency. This change in frequency of recording does not detract6

from the analysis since the analysis fits separate models within each swath. In all cases,7

data corresponding to turns of the tractor at the end of each swath were edited out of the8

collected data.9

The data recorded by the instruments were analysed after the experiment, based on10

two broad objectives:11

1. A suitable statistical model was identified for modelling the accuracy (using means)12

of each tractor guidance system in the three scenarios;13

2. A suitable statistical model was identified for modelling the precision (using vari-14

ances) of each tractor guidance system in the three scenarios.15

For more information on the experiment, see Hill (2002). The data are available from16

http://www.sci.usq.edu.au/staff/dunn/Datasets/applications/science/17

guide.html18

The manufacturers’ claims for the accuracy of the Beeline tractor guidance system are19

that the offsets will be between ±20mm 95% of the time. The claim appears to be based20

on the offsets having a normal distribution around the ideal mean of zero, and effectively21

state the standard deviations are 10 mm. (For normal distributions, 95% of observations22

are within two standard deviations either side of the mean, and 68% within one standard23

deviation.) The data collected for the paper suggest the normality assumption is quite24

reasonable; see the Q–Q plots (also called rankit plots, or normal probability plots; see25

Weisberg, 1985) in Figure 1 for scenario one; the plots are similar for the other two26
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scenarios.1

— FIGURE 1 ABOUT HERE—2

The Trimble receiver used to record locations claims an accuracy of about ± 20 mm3

95% of the time. This additional Trimble receiver, rather than the offsets logged by the4

Beeline receiver forming part of the Beeline tractor guidance system, was used to record5

locations for two reasons. Firstly, the offsets logged by the Beeline receiver automatically6

have potential outiers deleted (removing the time-series feature); secondly, we are ulti-7

mately interested in the path of travel of the implement placed on the tractor, which can8

only be determined by an additional receiver (the Beeline receiver must remain located on9

the tractor to enable automatic guidance).10

Each scenario uses the Beeline automatic guidance system to steer the tractor and11

a Trimble receiver to record offsets. Each of these components has associated errors;12

since the same combination is used in each scenario, the variance of this combined error13

remains approximately constant. This means that any changes in the variances of the14

recorded offsets from one scenario to another is due to the change in the setup of the15

scenarios, as discussed above.16

The statistical models17

In their comparison of an autonomous GPS and three DGPS guidance systems, Coyne et18

al., (2003) identified the presence of autocorrelation in the recorded offsets.19

Their study considered four receivers, four tractor speeds, and three different paths20

(curved, straight and flattened Figure 8). They modelled the mean of each treatment21

group rather than the individual logged offsets; thus standard techniques (such as analysis22

of variance, or ANOVA) assuming independence could be used for analysis. The use of23

data summaries could potentially conceal vital information. Kocher et al. (2000a) also24

noted autocorrelations, but Kocher et al. (2000b) appeared to use general linear models25
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for analysis, hence ignoring autocorrelation. Here, we were interested in the individual1

logged offsets and the modelling techniques were chosen to reflect this.2

Model accuracy using a generalized least squares model3

In this study, the mean offsets (accuracy) were modelled using generalized least squares4

(GLS) if significant autocorrelation was detected, or a standard regression model other-5

wise. Arguably, swath is a random effect and direction a fixed effect. However, we6

were particularly interested in the differences between the given swaths in terms of re-7

producibility; accordingly, swath and direction were both treated as fixed effects in what8

follows.9

A generalized least squares (GLS) model takes the form10

y = Xβ + ε (1)11

where β is an p × 1 vector of unknown parameters, X is a n × p design matrix, y is the12

n×1 response vector, and ε is the n×1 error vector. In standard regression, ε ∼ N(0, σ2),13

so that var(ε) = σ2In for σ2 > 0 and an n × n identity matrix In. The GLS model allows14

for autocorrelation in the errors. Let Σ be a symmetric positive-definite matrix; then15

var(ε) = σ2Σ. The estimate of β is then16

β̂ = (XTΣ−1X)−1XTΣ−1y (2)17

(for example, see Weisberg, 1985). Many different structures of the autocorrelation can18

be used by changing the form of the correlation matrix Σ. A common structure of Σ is the19

autoregressive form of order 1 (written AR(1)). In this case, consider two observations20
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recorded at discrete times i and j. The correlation matrix is1

Σ =




1 ρ ρ2 . . . ρ|i−j|

ρ 1 ρ . . . ρ|i−j|−1

...
...

. . .
...

...

ρ|i−j| ρ|i−j|−1 ρ|i−j|−2 . . . 1




. (3)2

In practice, an estimate of ρ, say ρ̂, must be used (see Pinhiero and Bates (2000) for3

details). Other autocorrelation structures are also possible, including an exchangeable4

correlation (each off-diagonal entry of Σ is ρ) and unstructured (each off-diagonal entry5

of Σ is unrelated to any other off-diagonal entry). If Σ = In, we have independence,6

equivalent to regression.7

Model precision using a generalized linear model8

The variances of the offsets around the modelled mean (precision) were modelled using9

generalized linear models (or GLMs; see McCullagh and Nelder, 1989). A GLM may be10

defined as follows. Independent responses Y1, . . . , Yn (here the variances of the offsets11

about swath means) are observed such that12

Yi ∼ ED(µi, φ/wi) (4)13

where the wi are known prior weights; and ED(µ, φ) indicates the observations are from14

an exponential dispersion model distribution (see Jørgensen, 1997), such as the gamma15

used here, with mean µi and dispersion parameter φ > 0. In this application, these prior16

weights were the sample sizes from which the variances were computed; effectively, these17

prior weights give relatively more importance to observations based on more data.18

The means µi are related to linear predictors through a known monotonic link function19
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g,1

g(µi) = xT
i β (5)2

where xi is a vector of covariates and β is a vector of unknown regression parameters.3

Here we use the log-link g(µi) = log µi. Let q be the dimension of β. To avoid unnec-4

essary complications, we assumed the design matrix X with rows xT had full column5

rank. The maximum likelihood estimator β̂ of β was computed using the well-known it-6

eratively reweighted least squares algorithm proposed by Nelder and Wedderburn (1972).7

This iteration uses working weights given by8

wi

V (µi)ġ(µi)2
(6)

where, for the gamma distribution considered here, V (µi) = µ2

i . The special case of the9

gamma distribution used here (the χ2 distribution) sets φ = 2.10

Let σ2

i represent the estimated variance of the offsets about the modelled mean in11

scenario i (for each receiver, we use as replications the estimate from each swath). A12

suitable model for the variances is13

log(σ2

i ) = β0 + β1S, (7)14

where S is a dummy variable for the scenario number. The logarithm ensures the vari-15

ances remain positive, and is the link function in the language of GLMs.16

Using treatment contrasts—as we do throughout for all categorical variables—means17

β0 is the level of precision in the base level (scenario one unless otherwise stated). Rewrite18

σ2

i = exp(β0) exp(β1S); (8)19

thus, exp(β0) is the modelled variance in the first scenario, and exp(β1S) represents the20

13



loss in precision (increase in variance) in later scenarios compared to the baseline.1

The variances are modelled using the form above, based on a gamma GLM. The2

error variances from a model based on a normal distribution (as used here) have a χ2
3

distribution, a special case of a gamma distribution. The idea of modelling the variances4

using the gamma distribution and with a logarithm link function is seen, for example, in5

Smyth (1988).6

All the analyses in this study were done in R (2005), using the R package nlme7

(Pinhiero and Bates, 2000) to fit the GLS models.8

Results9

General10

In scenario one, the tractor covered five swaths; four swaths were done for the other two11

scenarios. The number of observations was almost equal within each swath (see Table 1),12

except that the frequency data logged by the Trimble receiver changed (inexplicably) in13

scenario two between swaths 2 and 3.14

— TABLE 1 ABOUT HERE —15

The tendency to record positive offsets possibly suggests a calibration problem with16

the equipment. As a typical example, the data from scenario one are plotted over time17

in Figure 2. The data show evidence of autocorrelation (see swaths 2 and 3 in Figure 2).18

A typical autocorrelation function for the offsets by swath are shown in Figure 3, where19

strong autocorrelation is evident. Considering the partial autocorrelation function (not20

shown) in conjunction with the autocorrelation function suggests an AR(1) model (see,21

for example, Chatfield, 1996) within swath is appropriate.22

— FIGURE 2 ABOUT HERE —23

— FIGURE 3 ABOUT HERE —24
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Boxplots of the offsets by swath are given in Figure 4 for scenario one. The offsets1

are symmetrically distributed about the medians within each swath (and are approximately2

normally distributed on closer inspection; see Figure 1).3

— FIGURE 4 ABOUT HERE —4

Analysis of accuracy5

Swath and direction effects are usually both important features, but neither consistently6

the most important feature. Swath is arguably a random effect and not a fixed effect;7

since we are particularly interested in the variations across the given swaths, swaths will8

be treated as fixed effects here. The fitted models are summarized in Table 2. Consider an9

example of a fitted model; the fitted model for the offsets recorded by the Trimble receiver10

in scenario one is11

y = 10.71
(0.54)

+ 2.46
(1.22)

S2 − 3.99
(1.21)

S3 + 1.51
(1.21)

S4 + 1.39
(1.20)

S5 (9)12

with the AR(1) term ρ̂ = 0.58, where Si is 1 in swath i, and is zero otherwise. (The figures13

in parentheses under the estimated parameters are the computed standard errors.) The first14

estimated parameter is the estimated mean straight-line path (allowing for the autocorre-15

lation) in swath 1; the subsequent estimated parameters are the differences between the16

swath 1 mean and the mean in the others swaths, after allowing for the effects of modelled17

autocorrelation. For example, swath 3 is about 4 mm further to the left of the mean path18

of swath 1 (after accounting for autocorrelation).19

— TABLE 2 ABOUT HERE —20

The results from the Trimble receiver consistently show signs of autocorrelation in the21

offsets. This is probably a result of the Beeline autonomous guidance system requiring a22

finite time to correct the tractor path. The autocorrelation terms for the Trimble models23

are large; ignoring this autocorrelation when modelling the offsets would lead to different24
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(and incorrect) models.1

A plot of the modelled path over the data (not shown) indicates that the models fit2

well, and taking account of autocorrelation in the model substantially improves the fit (as3

expected). For model diagnostics, normalized residuals are used; these residuals are the4

standardized residuals pre-multiplied by the inverse square-root factor of the estimated5

error correlation matrix. Q–Q plots (also called normal probability plots) show that the6

normalized residuals are normally distributed; as an example, Figure 5 shows the Q–7

Q plots and autocorrelation function of the normalized residuals from the swath 1 in8

scenario one. The plots show the distribution of the residuals closely resemble a normal9

model with little autocorrelation.10

— FIGURE 5 ABOUT HERE —11

Analysis of precision12

In this section, we compare the variances of the errors (the inverse of precision) computed13

from the offsets about the swath means, a proxy for the ideal path of travel for the tractor.14

The summary data are given in Table 1 where the ‘variance’ column is of interest here.15

A gamma GLM with a log-link was used to model the variances for each scenario, as16

previously discussed, using the sample size from which the variances were computed as17

a prior weight. The fitted model for the Trimble receiver is:18

log(σ2) = 5.00
(0.032)

− 0.1058
(0.054)

S2 + 1.11
(0.048)

S3 (10)19

where the standard errors of the parameters are in parentheses; S2 is one for scenario20

two and is zero otherwise; S3 is one for scenario three and is zero otherwise. The model21

shows the difference in variance between scenarios one and two is slightly significant22

(z = −2.33; P = 0.020); however, the significance of the difference is large between the23

variances in scenarios one and three (z = 23.2, P ≈ 0). Following the methods developed24
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earlier, the variances have increased by a factor of about exp(1.11) = 3.0 from scenario1

one to three.2

In all the above, the dispersion parameter is set to φ = 2 as required for the χ2
3

distribution. The usual estimates of φ suggest φ = 2 might be too small. However, with4

such small sample sizes (the model is based on just 13 variances across three scenarios),5

the results from the small sample sizes do not suggest changing this in light of the theory.6

In summary, the Trimble results indicate the implement has significantly reduced pre-7

cision; more specifically, the variances of the offsets of the implement compared to that8

of the tractor increased threefold.9

Conclusions10

In this paper, we take data from three scenarios as recorded by a Trimble receiver when11

the tractor is autonomously guided by a Beeline autonomous tractor guidance system. The12

accuracy and precision of each scenario is analysed using statistical techniques.13

We used a generalized least squares model for modelling accuracy using an AR(1)14

correlation structure. The autocorrelation was very evident in the data probably because15

the autonomous guidance system took a finite time to correct the tractor path.16

The precision (inverse of variance) was analysed using a gamma generalized linear17

model with φ = 2 (effectively a χ2 model). The variance of the path of implement is18

about three times that of the path of the tractor itself, comparing scenarios one and three19

for the Trimble receiver data.20
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Figure 1: Q–Q plots of the data for scenario one. The solid lines are the target normal
distribution. In every case, there is no evidence of non-normality in the data.
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Figure 2: Plots over time of the offsets recorded by the Trimble receiver for each scenario.
The swaths are separated by vertical lines, and the mean for each swath shown by a
horizontal line. The same vertical scale is used on each plot.
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Figure 3: The autocorrelation function for offsets by swath as recorded by the Trimble
receiver for scenario one. The dashed lines are the nominal 95% confidence intervals for
detecting significant autocorrelations. There is strong evidence of low-order autocorrela-
tion.
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Figure 4: Boxplots of the offsets recorded by each receiver by swath for each scenario.
The thick horizontal dashed lines are the target offsets of zero millimetres; the thick hor-
izontal solid lines are the mean offsets computed as the overall mean offset for each
receiver. The middle line in each box represents the median offset within each swath.
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Figure 5: Two residual plots from the fitted models. As examples, swath 1 from scenario
one is used. Left, a Q–Q plot of the residuals suggesting the distribution of residuals
closely follows a normal distribution; right, the autocorrelation function showing the re-
duction in autocorrelation evident in the residuals. Both plots indicate the fitted model is
adequate.
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Table 1: The number of observations, the means, standard deviations (both in millimeters)
and variance (in millimetres-squared) of the recorded offsets by swath for each scenario.
(Note the frequency data logged by the Trimble receiver changes from swath 1 and 2 to
swath 3 and 4 in scenario two.)

Swath Obs. Mean Std Dev Variance
Scenario 1

1 394 6.72 12.10 146.23
2 386 11.33 11.10 123.03
3 397 13.91 11.77 138.57
4 393 10.90 14.38 206.67
5 360 10.72 11.08 122.73

Overall 1930 10.71 12.37 153.08
Scenario 2

1 574 18.7 11.0 101.46
2 584 1.6 10.1 164.74
3 399 17.5 12.8 160.29
4 388 3.3 12.7 102.49

Overall 1945 10.24 14.00 196.01
Scenario 3

1 420 36.41 17.37 301.86
2 380 30.67 22.35 499.60
3 398 23.54 22.92 525.20
4 394 36.62 22.05 486.09

Overall 1592 31.88 21.87 478.39
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Table 2: The models fitted to the offsets for each receiver in each scenario. Scenarios 2
and 3 are the same for the Beeline receiver4.

Scenario Model P -value
1 swath effect P ≈ 0.0011

AR(1) autocorrelation:
ρ̂ = 0.58 (0.546, 0.620) P < 0.0001

2 direction effect P ≈ 0
AR(1) autocorrelation:
ρ̂ = 0.68 (0.646, 0.712) P ≈ 0

3 swath effect P ≈ 0
AR(1) autocorrelation:
ρ̂ = 0.78 (0.749, 0.812) P < 0.0001
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