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Abstract—In this paper, the traffic matrix estimation problem  method is compared with the previously known methods,

is formulated as an nonlinear optimization problem based on \which are the LP methods [6][7]. the least squared [4], and
the generalized Kruithof approach which uses the Kullback the Information Theory approach [5].

distance to measure the probabilistic distance between two traffic Th i timizati bl . ved . th
matrices. In addition, an algorithm using the affine scaling € noniinear optimization problem IS solved using the

method is provided to solve the constraint optimization problem. affine scaling method which is one of the interior point

Index Terms— Traffic Matrix, Kruithof Method, Affine Scaling methods which cut across the interior of the feasible area to
Method, Kullback distance reach an optimum solution. The affine scaling method is the
simplest implementation of all interior point methods, as well
as it has the only interior point strategy which approaches a

A traffic matrix is defined as a matrix whose elementsolution by monotonically decreasing the original objective
represent the amount of traffic demand between a given origimction [3]. We do not provide the detail implementation of
to destination node pair in a network. It plays an importamhe method but a strategy to find a starting point for the affine
role in a variety of network applications such as networkcaling method by the geometric analysis.
dimensioning, planning, optimization, and traffic engineering. The rest of this paper is organized as follows: In Section
However, due to financial and technical difficulties in measul, we explain the under-constrained problem of traffic matrix
ing and determining the traffic matrix directly, an inferencestimation. Then, in Section 1ll, we explain the theory of
approach is the subject of great interest. The methods infair problem formulation. Section IV describes a strategy to
the traffic matrix with the given observed link loads that caaccelerate the convergency of the formulated problem by the
be obtained from routers using the SNMP protocol. geometric analysis of the problem. Section V provides the

Such inference methods rely upon solving systems obmparison result among deterministic methods. In Section
equations that are highly under-constrained. The number\af a simulation test-bed is proposed and an experiment is
unknown variables, which is the number of origin and destilescribed. Lastly, results and discussions are presented in
nation pairs in a network, increases in proportion to the squagection VII.
of the number of nodes while the number of constraints,
which is the number of links in a network, increases linearly. |l. UNDER CONSTRAINTS PROBLEM FOR TRAFFIC
Therefore, as the size of the traffic matrix increases, the MATRIX ESTIMATION
problem becomes increasingly under-constrained. When &stimating a traffic matrix can be described by the vector
problem is under-constrained, infinite numbers of solutioRguation (1).
satisfies the problem. The traffic matrix problem is to find Y = AX 1)
one solution among the infinite numbers of solutions.

Kruithof method [1] has been widely used in telephonwhereY is the vector of measured link loadd, is a routing
network to balance a given fraction matrix with the expectedatrix, and X is the vector of traffic demands. In an IP
row and column totals. However, the method lacks the abilityetwork, the routes can be obtained by noting that most intra-
to accommodate extra information because it was originaliipmain routing protocols (eg OSPF and IS-IS) are based on
introduced to cooperate with the row and column totals onlg. shortest path algorithm such as the well-known Dijkstra or
To address this problem, the Kruithof problem has bedellman-Ford algorithms; also, link volumes in an IP network
generalized as an nonlinear optimization problem [2] usirage typically available from SNMP data. The traffic demands
the Kullback distance. X are unknown, and need to be estimated from the giken

In this paper, the traffic matrix estimation problem isnd A. However, it turns out that there may be an infinite set
formulated as an nonlinear optimization problem based of traffic demands satisfying the given information because
the generalized Kruithof approach which uses the Kullbadinear equation (1) is an under-constrained system. This can
distance to measure the probabilistic distance between the illustrated by the following example.
traffic matrices. The idea of the approach is to select oneln Fig. 1, the three node network has two links with
solution among infinite numbers of solutions by minimizinghree flows. These three flows need to be estimated from
the Kullback distance from the prior solution. The proposedeasurements of the two link loads which are 12 and 16

I. INTRODUCTION
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The probabilistic distance betweem; and ¢;;, called
\A Kullback distanceK (p;;,¢;;), is defined below.

Plane (1)
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Plane (2)
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Then, z;;/Tx and m;;/Ty are replacingp;; and g¢;; re-
xi spectively. After all, the optimization problem is formulated
Fig. 1. 3 node network Fig. 2. Solution space by minimizing the _Kullback dls.tance .frc.)m the given prior
example. solution to the feasible area, which satisfies the constraint (5).
LIS T T
Minimize Zi fog . log =X 4
respectively. The sum of flows 1 and 2 are equal to the ZZTX{ gmij gTM @)

=1 j=1
measured link load which is 12 and the sum of flow 2 and 3 is ’

the same as the measured link loads 16. The two constral‘ﬁf@e
are illustrated in Fig. 2 based on equatiakis + X, = 12
and X, + X35 = 16 respectively. This is an under-constrained
problem because the number of unknown variables is more
than the number of constraints. Therefore, the problem defines
a solution planerather than giving an unique point for thewhere Y is the vector of measured link loads} is a
solution. In Fig. 2, the line AB represents the solutions whictputing matrix, andX is the vector of traffic demands.
satisfy both constraints. Whatever technique is used for traffid = {; 1y 1 2)s - Z( 1 n)» () @Nd, K and L are
matrix estimation, a solution from the method should lie offie number of flows and the number of links respectively.
the line AB to satisfy the inter-link measurement constraints.

ct to

K
> AuX® =y, (¢=1,.,L) vX® >0 (5)
k=1

IV. A CHOICE OF THESTARTING POINT FOR AFFINE
IIl. PROBLEM FORMULATION SCALING METHOD

As mentioned previously, there are infinite numbers of Any existing interior point method requires a feasible start-
solutions to satisfy the vector equation (1). The traffic matrikd Point, and the choice of the feasible starting point effects
estimation problem is to select one of the infinite solution§N the convergency speed of the interior point algorithm. In
The solution is chosen by calculating the closeness frdd4l implementation, the starting point is chosen as follows.
the given prior solution because it is assumed that the priorA Point z° is selected by minimizing the Euclidean norm
solution represents some characteristics of the real traffigm @ zero coordinat€® using the pseudo-inverse method
matrix. The closeness can be represented as the Euclidgan= A" (AA")~'Y. However, the point is far from the
distance [4], or the Kullback distance [5]. In other wordsOPtimum solution and does not have a physical meaning
when a prior solution is given, a solution is chosen froiXCept it is on the feasible region. The poirit needs to be
the feasible area by minimizing the Euclidean or Kullbackoved to the other feasible point which produces a smaller
distance. objective value. From the geometric analysis in Fig.3, the

We formulated the nonlinear optimization problem usingoving direction can be decided.
the Kullback distance. It minimizes the Kullback distance
between the prior solution and the feasible area, which sat- :\\.
isfies the constraint (5). The approach is different from the :
previously suggested method [5] using the Kullback distance.

The difference will be discussed in Section V.

Suppose that there are two traffic matridegsand X. The
former is a prior traffic matrix, and the latter is the unknown s
traffic matrix. The both matrices are x n matrices, and
elements of the traffic matrices are represented as lowercase

M5 andl’ij. Note thatpij = xij/TX andqij = mw/TM where o
Tx andT), are total demands denoted by, >°"_, =;; and
S ;;1 m;j. Therefore, the total sums of; andg;; are Fig. 3. Geometric Analysis

equal to one as follow. _ ' ' o
Assume that there is a prior solutidd“. The optimization

process is to find a “probabilistically” closest point on the

Z Zpij =1 and Z Zqij -1 (2) feasible region from the prior solutial/# in terms of calcu-
=1 j=1 i=1 j=1 lating the Kullback distance. The Kullback distance between



the prior solution)M# and any point on the line extendedstatistical data. Table 1 shows the problem formulation of

from line OWA, is zero. these deterministic approaches with their objective functions
For instance, if the coordinate of the prior solutiddi, and the constraints.

is m; (i=1,...,n), any point on the extended lir@nr”

can be represented as k times; (k x m;). Therefore, near —

the Kullback distance between the prior point and any | Program (Maz) 3 imy 2 wig ®ig

Objective Functions Constaint
Az <Y,

. A
point (k x m;) on the extended lin€M ~ becomes zero ;Z?Jztre (Min) 327y S0 (i — mij)?
n n km kmj kT, _ : ‘
03y ijl BT {log mi; — log ﬁf} = 0). If the ex- [Tnformation (Min) S0, X, ;;Z {log 2} Ap—Y
ij

iy . . Th
tended line O goes through the feasible region, the Ge?]%ré"ze

o] . n n o Tij T;j T
cross pointz™* between the extended lin@M " and the | Kruithof (Min) 2iz1 =1 7y (o8 s —log 7y,
feasible region becomes the optimum solution. Therefore, thgnle 1 Different deterministic approaches for the traffic matrix estimation
searching directionD to obtain the optimum solution™
from the pseudo point®, can be represented as follow.

D=PVz=[I—AT(AAT)"'A]Vz (6) The objective function of the LP approaches [6][7] uses

w;; as a weight for OD paiec;;. When thew;; represents
where P = I — AT(AA")~' A is the projection matrix into the hop counts of each OD pait;, the objective function is
the null space ofd and Vo = M# — 2 (M# is the prior parallel to the hyperplane which satisfies th& = Y. The
point andz" is the pseudo-inverse result). The directon:  hop counts of each OD pair is equivalent to the sum of each
is projected onto the hyperplane which is the feasible regiealumn of A. For instance, each column and each rowdof
formed byAX =Y so that any movement along the directioepresent each flow and each link respectively. Therefore, a
D can keep the feasibility. Then, the optimum solutioh®  column sum of the matrixt means how many links the flow,

is represented as follow. involved the column, goes through.
o When the objective function is parallel to the feasible region
™ =1" +aD (7) formed by AX = Y, infinite range of the same optimum

8PIutions are possible. To select one of them as an solution,
two main algorithms are available in the LP problem. One
is the Simplex Method which chooses an optimum solution
0 from the corner points of the feasible space. The other is the
M} (D; € (D; < 0)) (8) Interior Point Method (IPM) which cuts across the interior of
i the feasible area to reach an optimum solution.

From the basic calculation, minimizes the objective function In Fig. 3, while the Simplex Method selects a solution
f(z® + aD) when the directional derivativel f(z° + D) among the corner points, the iteration of the interior point
is equal to zero. In this case, the minimum of the objectivdethod starts from any point satisfying withe: < Y, then
function f(2° + aD) is zero so that the point™* becomes improves the objective value following a direction which is
the optimum solution (Only one iteration is required to fingonstant in a linear program (equal Yo, f(z) = w;;), since
the optimum solution). the objective value decreases most rapidly along this direction.

An another case exists to make the problem more compldhe interior point method chooses a solution which is a cross
Let's consider another prior solutiavf Z in Fig.3. In this time, point between a line extended from the prior solution to the
the extended lin@37" does not go through the feasible ares€arch direction and the feasible region.
The searching directioD and the line search are applied For the least square approach [4], after the prior solution
same as the previous case. Suppose that the pdifitis MA# is obtained, a line is drawn perpendicular to the feasible
the minimum point from the line search, then the paifitt  region from the prior solution)/#. The point ', which
can be a starting point for the affine scaling method if alé “geographically” closest to the prior solutiaW#, is the
elements of the point™ are positive. However, the point*® ~ solution of the least square method.
may contain some negative elements which have no physicaWhile the least square approach selects a geographically
meaning. To overcome the problem, lterative Proportionglosest point in the feasible region from the prior solution

« is decided by a line search which is one-dimension
minimization technique betwedh< o < a;nqz-

Qmaz = MIN{

Fitting (IPF) is applied as suggested in [4]. M 4, the information theory [5] and the generalized Kruithof
approach chooses a “probabilistically” closest point defined
V. DIFFERENCEFROM THE OTHER DETERMINISTIC as the Kullback distance.
APPROACHES

The difference between the information theory and the
The technique suggested by the authors belongs to theneralized Kruithof approach is that the nonlinear objective

deterministic techniques, which mean that the link load mefmnction of the Kruithof approach has zero Kullback distance

surements are regarded as solid constraints rather thanbesveen the prior solutiod/4 and any point on the line



extended from lineD M4, the information theory approach have been implemented.
Therefore, if the extended lin®@M4 goes through the Table 2. outlines the implementations. A simulation program,

feasible region, the Kruithof approach selects the peitit as using theC*++ language, was built to simulate a network and

an optimum solution. On the other hands, in the informatido generate traffic distributions for the network.

theory approach case, the point’* does not give zero

objective value, and also is not necessary to be the smallest Lo Implementations
objective value in the feasible area. In other words, tH¢ Program Simplex, and Interior Point Method (GLPK)
may not be chosen as the optimum solution. It was also [ Least SVD and IPF
mentioned in [5] that the result of the information theory Scfluafe
approach was similar that of the least square method with ?h‘;;“fy"" N1 VD and IPF with the square root weights
the square root weight._ _ _ Generalized | o o Scaling Method

Let's see the below Fig. 4 and Fig. 5, which demonstrate the [ Kruithof

variation of objective value of the Kruithof approach and the Table 2 Implementation of the deterministic methods
information theory respectively with the given prior solution
myp =1 andmsg = 1.

GLPK [8] (GNU Linear Programming Kit), which is an
open source libraries, offer§ and C** libraries to solve
linear programming and related problems.

The decomposition technique, Single Value Decomposition
(SVD), is used to obtain the inverse of the matuka”,
because the normal inversion 4fA” can be very numerically
inaccurate. The inverse of the matrixA” is required to
obtain the least square resuff and the square root weighted
least square:™'. In [5], the information theory approach can
be approximated using the square root weighted least square

'll ..mlll".',',‘iil
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Fig. 4. Generalized Kruithof - Fig. 5. Infomation theory - the method.

the objective value by varying two objective value by varying two ele-

elements x1 and x2 with the given ments x1 and x2 with the given prior 1 T 1

prior solution (m1:1,m2:1) solution (m1:1,m2:1) ¥ = M4+ A (AA") (Y — AM) 9)
2 = M+ w(Aw)T ((Aw)(Bw)T)"H(Y — AM)

In the Kruithof case in Fig. 4, the objective values are
zero along the lin® P because the probabilistic distributiongvhere

of each point along the Iinéﬁ_((1,1),(2,2),...,(n,p)) is the wy =M, (i=])
same as that of the prior solution (1,1). If the figure is cut —0 .
vertically following the lineAA’ or BB’ which represents a Wij = (i # 5)

possible feasible region, the parabola contour defined by the is the given point, and the point is projected on the
intersection is observed in each case and the parabola contgyierplane formed bydX = Y. As mentioned previously,
has the minimum poinfZ which is one of points on the line the pointz!* andz“!* may contain some negative elements.
OP. In that case, IPF is applied to overcome the problem.
However, in the information theory case in Fig. 5, while To validate those methods, the RMSE (Root Mean Squared
the minimum point of the parabola contour by cutting thgrror) and RMSRE (Root Mean Square Relative Error) were
line AA’ is a pointE on the lineO P, the minimum point of used, which provide an overall metric for the errors in the
the parabola contour by cutting the lif@B’ is not a point estimates. RMSRE was calculated on the largest 75% of the
E but a point somewhere betweéh and E. It means that flows as suggested in [4]. The reason is to protect the RMSRE
the information theory does not choose the palfitas an from being dominated by small flows.
optimum solution even though the poiat has the minimum
probabilistic distance to the prior solution. In addition, the 1 X
objective value of the information theory seems to increase in RMSE=, |+ > Z Tij — @ij)? (10)
proportion to the Euclidian distance from the prior point(1,1), i=1 j=1
then it indicates the objective function of the information
theory behaves similar to that of the least square method. RMSRE — Z {xm :v” 12 (11)
1j=1

VI. SIMULATION TOOLS& NETWORK TOPOLOGY 1=

To judge the performance of the proposed method, theOne network topology (containing 16 nodes) was created
linear programming approach, the least squared method, asdshown in Fig. 6. The sixteen node network had the same



topology as that used in [9]. The topology represents the :“
Sprint PoP-level network consisting 70 links. “,
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Fig. 8. The variation of RMSE as the prior point approaches to the feasible
region.

Fig. 6. Network Topologies

gMatVec [10] was used to manipulate matrices in theolution follows the extended lin®@M4, while the RMSE

implementation of the affine scaling method. gMatvec is @'d RMSRE of the least square and the information theory
small C++ matrix/vector template library provided by gNudecreases, and then increases again after the prior solution

Free Software Foundation. passes through the feasible region. The accuracies of the three
methods becomes trivial as the prior solution gets closer to the
VII. RESULTSAND DISCUSSION feasible region. It can be seen from the Fig.3, the prior solution
A. Accuracies of the methods with the variation of the priok/*, the least square solutiari* and the generalized Kruithof
solution solutionz** form a triangle. The triangle becomes smaller as

The accuracy of each method is dependent on how t is why the diff fih hods b vial
prior solution represents the characteristic of the real trafflg'at 'S Why the difference of those methods becomes trivia

matrix. For instance, if an old traffic matrix is used as the priét® the prior solution is close to the feasible region.

solution, each element of the current traffic matrix is likely t@ Comparison among the deterministic approaches
increase proportionally. However, if an estimating technique The figures 9,10,11,12, and 13 plot the estimated traffic

;:mh als t(j,hm%e model [1|l] Is used t% ptrootlrtjce a ﬁmorls,?lu“%atrix elements against the synthetic traffic matrix, which is
€ solution becomes close enough 1o the real SOUNON, 30,q teq artificially according to [7]. The results are obtained

that the solutlton rej“'fets to be refined to satisfy the inter-li hen the prior solution ha8.3 distance from the feasible
mt?ra;]surferlrfevr\}incor;is ra:m ' 7 and 8 show the variation fegion in Fig 7 and 8. The solid diagonal line shows where
€ foflowing ngures 7 a Sho € varialions Oy,q synthetic traffic matrix is estimated exactly and the dotted

RMSE and RMSRE of t_he three_ different approaches NaM§i¥es showst20% of the RMSRE (Root Mean Squared Error)
the least square, the information theory approach and t the estimated flows

generalized Kruithof approach, as the prior solution moves
on the extended lin®A/4 in Fig.3. NI —— ==

%e prior solutionM# is getting closer to the feasible region.
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Figures 9 and 10 show that the two LP methods produce
Fig. 7. The variation of RMSE as the prior point approaches to the feasibf€"Y dlﬁerent resu_lts n te_rms of estimating the_d|5tr|bUtlon of
region. the synthetic traffic matrix — although the optimal values of

both methods are the same. The Simplex Method estimates

The X-axis of the figures 7 and 8 represent the ratimany elements as zeros. In Fig. 9, many estimates lie on the

between the lengthes 6fA//4 andOX ™« in Fig.3. Therefore, X-axis, however, the rest of the elements are over-estimated

when the prior solution is on the feasible regi@n)/4 and to compensate for the zero estimates. This result explains why

OXm™e are matched (The ratio becomes one). The residedina et al reported in [11] that the errors with the LP
of the generalized Kruithof does not change as the priorethod are so high that it could not be used in practical
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VIII. CONCLUSIONS

el A new non-linear optimization problem was formulated
L based on the generalized Kruithof method, which uses the
S Kullback distance as the measurement of closeness between
’ the given prior solution and a point in the feasible region.
wof s, The non-linear optimization problem was solved using the

,,,,,,,,,,,,,, =,  affine scaling method which is the simplest implementation of

all interior point methods, as well as it has the only interior

Fig. 11. Least Squared Method Fig. 12. Information Theory Ap- point strategy which approaches a solution by monotonically
proach decreasing the original objective function.

o A strategy to accelerate the convergency of the affine
scaling method was developed by the geometric analysis of
the problem. The strategy finds a starting point and a searching
direction since the choice of these effect the convergency
speed of the interior point algorithm.

Four deterministic approaches, which are the simplex
method, the interior point method, the least square method,
and the information theory approach, have been implemented
to compare with the proposed approach. The first two LP ap-
proaches show very different results each other (Simplex had

12000
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6000

Estimated traffic matrix

400

2000

CEe W ww ol e e an average error of 107.3% while interior point method had
' _ _ 26.4% only) although both use the same problem formulation.
Fig. 13.  Generalized Kruithof Approach The next three methods do not have much different when the

given prior solution is close to the feasible region, however

networks. However. the estimates from the interior poiﬁ'i‘e difference becomes noticeable as the prior solution moves
method are scattered along the solid roughly without zef@" away from the feasible region.
estimation. The interior point method was implemented using
the GLPK [8], and it uses a priori solution obtained by [12].

Figures 11, 12, and 13 represent the results of the lea@i J. Kruitohf, “Telefoonverkeersrekening. De Ingenieur ('s Gravenhage),”

: : ; In ACM SIGMETRICSno. 8, 19 Feb 1937.

Squ.are' the information the.ory appl’OE_iCh, and. the generallz(fzq R. Krupp, “Properties of Kruithof’s projection method;he Bell System
Kruithof approach rgspectlvely. The mforlmatlon theory an Technical Journalpp. vol. 58, no. 2, pp. 517538, Feb 1979.
the generalized Kruithof approaches estimate the large elg] T. Coleman and L. Yuying, “A trust region and affine scaling interior

ments more accurately than the least square method. Specially, point method for nonconvex minimization with linear inequality con-
y d P y straints,”Math Prog pp. A 88: 1-31, 2000.

in the generalized Kruithof case, large estimated elements &i8 v. zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate
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