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Abstract— In this paper, the traffic matrix estimation problem
is formulated as an nonlinear optimization problem based on
the generalized Kruithof approach which uses the Kullback
distance to measure the probabilistic distance between two traffic
matrices. In addition, an algorithm using the affine scaling
method is provided to solve the constraint optimization problem.

Index Terms— Traffic Matrix, Kruithof Method, Affine Scaling
Method, Kullback distance

I. I NTRODUCTION

A traffic matrix is defined as a matrix whose elements
represent the amount of traffic demand between a given origin
to destination node pair in a network. It plays an important
role in a variety of network applications such as network
dimensioning, planning, optimization, and traffic engineering.
However, due to financial and technical difficulties in measur-
ing and determining the traffic matrix directly, an inference
approach is the subject of great interest. The methods infer
the traffic matrix with the given observed link loads that can
be obtained from routers using the SNMP protocol.

Such inference methods rely upon solving systems of
equations that are highly under-constrained. The number of
unknown variables, which is the number of origin and desti-
nation pairs in a network, increases in proportion to the square
of the number of nodes while the number of constraints,
which is the number of links in a network, increases linearly.
Therefore, as the size of the traffic matrix increases, the
problem becomes increasingly under-constrained. When a
problem is under-constrained, infinite numbers of solutions
satisfies the problem. The traffic matrix problem is to find
one solution among the infinite numbers of solutions.

Kruithof method [1] has been widely used in telephony
network to balance a given fraction matrix with the expected
row and column totals. However, the method lacks the ability
to accommodate extra information because it was originally
introduced to cooperate with the row and column totals only.
To address this problem, the Kruithof problem has been
generalized as an nonlinear optimization problem [2] using
the Kullback distance.

In this paper, the traffic matrix estimation problem is
formulated as an nonlinear optimization problem based on
the generalized Kruithof approach which uses the Kullback
distance to measure the probabilistic distance between two
traffic matrices. The idea of the approach is to select one
solution among infinite numbers of solutions by minimizing
the Kullback distance from the prior solution. The proposed

method is compared with the previously known methods,
which are the LP methods [6][7], the least squared [4], and
the Information Theory approach [5].

The nonlinear optimization problem is solved using the
affine scaling method which is one of the interior point
methods which cut across the interior of the feasible area to
reach an optimum solution. The affine scaling method is the
simplest implementation of all interior point methods, as well
as it has the only interior point strategy which approaches a
solution by monotonically decreasing the original objective
function [3]. We do not provide the detail implementation of
the method but a strategy to find a starting point for the affine
scaling method by the geometric analysis.

The rest of this paper is organized as follows: In Section
II, we explain the under-constrained problem of traffic matrix
estimation. Then, in Section III, we explain the theory of
our problem formulation. Section IV describes a strategy to
accelerate the convergency of the formulated problem by the
geometric analysis of the problem. Section V provides the
comparison result among deterministic methods. In Section
VI, a simulation test-bed is proposed and an experiment is
described. Lastly, results and discussions are presented in
Section VII.

II. U NDER CONSTRAINTSPROBLEM FOR TRAFFIC

MATRIX ESTIMATION

Estimating a traffic matrix can be described by the vector
equation (1).

Y = AX (1)

whereY is the vector of measured link loads,A is a routing
matrix, and X is the vector of traffic demands. In an IP
network, the routes can be obtained by noting that most intra-
domain routing protocols (eg OSPF and IS-IS) are based on
a shortest path algorithm such as the well-known Dijkstra or
Bellman-Ford algorithms; also, link volumes in an IP network
are typically available from SNMP data. The traffic demands
X are unknown, and need to be estimated from the givenY
andA. However, it turns out that there may be an infinite set
of traffic demands satisfying the given information because
linear equation (1) is an under-constrained system. This can
be illustrated by the following example.

In Fig. 1, the three node network has two links with
three flows. These three flows need to be estimated from
measurements of the two link loads which are 12 and 16
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Fig. 1. 3 node network
example.

Fig. 2. Solution space

respectively. The sum of flows 1 and 2 are equal to the
measured link load which is 12 and the sum of flow 2 and 3 is
the same as the measured link loads 16. The two constraints
are illustrated in Fig. 2 based on equationsX1 + X2 = 12
andX2 + X3 = 16 respectively. This is an under-constrained
problem because the number of unknown variables is more
than the number of constraints. Therefore, the problem defines
a solution planerather than giving an unique point for the
solution. In Fig. 2, the line AB represents the solutions which
satisfy both constraints. Whatever technique is used for traffic
matrix estimation, a solution from the method should lie on
the line AB to satisfy the inter-link measurement constraints.

III. PROBLEM FORMULATION

As mentioned previously, there are infinite numbers of
solutions to satisfy the vector equation (1). The traffic matrix
estimation problem is to select one of the infinite solutions.
The solution is chosen by calculating the closeness from
the given prior solution because it is assumed that the prior
solution represents some characteristics of the real traffic
matrix. The closeness can be represented as the Euclidean
distance [4], or the Kullback distance [5]. In other words,
when a prior solution is given, a solution is chosen from
the feasible area by minimizing the Euclidean or Kullback
distance.

We formulated the nonlinear optimization problem using
the Kullback distance. It minimizes the Kullback distance
between the prior solution and the feasible area, which sat-
isfies the constraint (5). The approach is different from the
previously suggested method [5] using the Kullback distance.
The difference will be discussed in Section V.

Suppose that there are two traffic matricesM andX. The
former is a prior traffic matrix, and the latter is the unknown
traffic matrix. The both matrices aren × n matrices, and
elements of the traffic matrices are represented as lowercase
mij andxij . Note thatpij = xij/TX andqij = mij/TM where
TX andTM are total demands denoted by

∑n
i=1

∑n
j=1 xij and∑n

i=1

∑n
j=1 mij . Therefore, the total sums ofpij andqij are

equal to one as follow.

n∑

i=1

n∑

j=1

pij = 1 and
n∑

i=1

n∑

j=1

qij = 1 (2)

The probabilistic distance betweenpij and qij , called
Kullback distanceK(pij , qij), is defined below.

K(pij , qij) =
n∑

i=1

n∑

j=1

pij log
pij

qij
(3)

Then, xij/TX and mij/TM are replacingpij and qij re-
spectively. After all, the optimization problem is formulated
by minimizing the Kullback distance from the given prior
solution to the feasible area, which satisfies the constraint (5).

Minimize
n∑

i=1

n∑

j=1

xij

TX
{log

xij

mij
− log

TX

TM
} (4)

Subject to

K∑

k=1

A`kX(k) = Y` (` = 1, .., L) ∀X(k) ≥ 0 (5)

where Y is the vector of measured link loads,A is a
routing matrix, andX is the vector of traffic demands.
(X = x1

(1,1), x
2
(1,2), ..., x

K−1
(n−1,n), x

K
(n,n)) and, K and L are

the number of flows and the number of links respectively.

IV. A C HOICE OF THESTARTING POINT FOR AFFINE

SCALING METHOD

Any existing interior point method requires a feasible start-
ing point, and the choice of the feasible starting point effects
on the convergency speed of the interior point algorithm. In
our implementation, the starting point is chosen as follows.

A point x0 is selected by minimizing the Euclidean norm
from a zero coordinateO using the pseudo-inverse method
x0 = AT (AAT )−1Y . However, the point is far from the
optimum solution and does not have a physical meaning
except it is on the feasible region. The pointx0 needs to be
moved to the other feasible point which produces a smaller
objective value. From the geometric analysis in Fig.3, the
moving direction can be decided.

Fig. 3. Geometric Analysis

Assume that there is a prior solutionMA. The optimization
process is to find a “probabilistically” closest point on the
feasible region from the prior solutionMA in terms of calcu-
lating the Kullback distance. The Kullback distance between



the prior solutionMA and any point on the line extended
from line OM

A
, is zero.

For instance, if the coordinate of the prior solutionMA

is mi (i=1,...,n), any point on the extended lineOM
A

can be represented as k timesmi (k × mi). Therefore,
the Kullback distance between the prior pointmi and any
point (k × mi) on the extended lineOM

A
becomes zero

(
∑n

i=1

∑n
j=1

kmij

kTM
{log kmij

mij
− log kTM

TM
} = 0). If the ex-

tended line OM
A

goes through the feasible region, the
cross pointxma between the extended lineOM

A
and the

feasible region becomes the optimum solution. Therefore, the
searching directionD to obtain the optimum solutionxma

from the pseudo pointx0, can be represented as follow.

D = P∇x = [I −AT (AAT )−1A]∇x (6)

whereP = I − AT (AAT )−1A is the projection matrix into
the null space ofA and∇x = MA − x0 (MA is the prior
point andx0 is the pseudo-inverse result). The direction∇x
is projected onto the hyperplane which is the feasible region
formed byAX = Y so that any movement along the direction
D can keep the feasibility. Then, the optimum solutionxma

is represented as follow.

xma = x0 + αD (7)

α is decided by a line search which is one-dimensional
minimization technique between0 < α < αmax.

αmax = min{−(x0
i )

Di
} (Di ∈ (Di < 0)) (8)

From the basic calculation,α minimizes the objective function
f(x0 + αD) when the directional derivatived

dαf(x0 + αD)
is equal to zero. In this case, the minimum of the objective
function f(x0 + αD) is zero so that the pointxma becomes
the optimum solution (Only one iteration is required to find
the optimum solution).

An another case exists to make the problem more complex.
Let’s consider another prior solutionMB in Fig.3. In this time,
the extended lineOM

B
does not go through the feasible area.

The searching directionD and the line search are applied
same as the previous case. Suppose that the pointxmb is
the minimum point from the line search, then the pointxmb

can be a starting point for the affine scaling method if all
elements of the pointxmb are positive. However, the pointxmb

may contain some negative elements which have no physical
meaning. To overcome the problem, Iterative Proportional
Fitting (IPF) is applied as suggested in [4].

V. D IFFERENCEFROM THE OTHER DETERMINISTIC

APPROACHES

The technique suggested by the authors belongs to the
deterministic techniques, which mean that the link load mea-
surements are regarded as solid constraints rather than as

statistical data. Table 1 shows the problem formulation of
these deterministic approaches with their objective functions
and the constraints.

Objective Functions Constaint
Linear
Program

(Max)
∑n

i=1

∑n
j=1 ωijxij Ax ≤ Y,

Least
Square

(Min)
∑n

i=1

∑n
j=1(xij −mij)

2

Information
Theory

(Min)
∑n

i=1

∑n
j=1

xij

TX
{log

xij

mij
} Ax = Y

Generalized
Kruithof

(Min)
∑n

i=1

∑n
j=1

xij

TX
{log

xij

mij
− log TX

TM
}

Table 1. Different deterministic approaches for the traffic matrix estimation

The objective function of the LP approaches [6][7] uses
wij as a weight for OD pairxij . When thewij represents
the hop counts of each OD pairxij , the objective function is
parallel to the hyperplane which satisfies theAX = Y . The
hop counts of each OD pair is equivalent to the sum of each
column ofA. For instance, each column and each row ofA
represent each flow and each link respectively. Therefore, a
column sum of the matrixA means how many links the flow,
involved the column, goes through.

When the objective function is parallel to the feasible region
formed by AX = Y , infinite range of the same optimum
solutions are possible. To select one of them as an solution,
two main algorithms are available in the LP problem. One
is the Simplex Method which chooses an optimum solution
from the corner points of the feasible space. The other is the
Interior Point Method (IPM) which cuts across the interior of
the feasible area to reach an optimum solution.

In Fig. 3, while the Simplex Method selects a solution
among the corner points, the iteration of the interior point
method starts from any point satisfying withAx ≤ Y , then
improves the objective value following a direction which is
constant in a linear program (equal to∇xf(x) = wij), since
the objective value decreases most rapidly along this direction.
The interior point method chooses a solution which is a cross
point between a line extended from the prior solution to the
search direction and the feasible region.

For the least square approach [4], after the prior solution
MA is obtained, a line is drawn perpendicular to the feasible
region from the prior solutionMA. The point xls, which
is “geographically” closest to the prior solutionMA, is the
solution of the least square method.

While the least square approach selects a geographically
closest point in the feasible region from the prior solution
MA, the information theory [5] and the generalized Kruithof
approach chooses a “probabilistically” closest point defined
as the Kullback distance.

The difference between the information theory and the
generalized Kruithof approach is that the nonlinear objective
function of the Kruithof approach has zero Kullback distance
between the prior solutionMA and any point on the line



extended from lineOMA.
Therefore, if the extended lineOMA goes through the

feasible region, the Kruithof approach selects the pointxma as
an optimum solution. On the other hands, in the information
theory approach case, the pointxma does not give zero
objective value, and also is not necessary to be the smallest
objective value in the feasible area. In other words, thexma

may not be chosen as the optimum solution. It was also
mentioned in [5] that the result of the information theory
approach was similar that of the least square method with
the square root weight.

Let’s see the below Fig. 4 and Fig. 5, which demonstrate the
variation of objective value of the Kruithof approach and the
information theory respectively with the given prior solution
m1 = 1 andm2 = 1.

Fig. 4. Generalized Kruithof -
the objective value by varying two
elements x1 and x2 with the given
prior solution (m1:1,m2:1)

Fig. 5. Infomation theory - the
objective value by varying two ele-
ments x1 and x2 with the given prior
solution (m1:1,m2:1)

In the Kruithof case in Fig. 4, the objective values are
zero along the lineOP because the probabilistic distributions
of each point along the lineOP ((1,1),(2,2),...,(n,n)) is the
same as that of the prior solution (1,1). If the figure is cut
vertically following the lineAA′ or BB′ which represents a
possible feasible region, the parabola contour defined by the
intersection is observed in each case and the parabola contour
has the minimum pointE which is one of points on the line
OP .

However, in the information theory case in Fig. 5, while
the minimum point of the parabola contour by cutting the
line AA′ is a pointE on the lineOP , the minimum point of
the parabola contour by cutting the lineBB′ is not a point
E but a point somewhere betweenB and E. It means that
the information theory does not choose the pointE as an
optimum solution even though the pointE has the minimum
probabilistic distance to the prior solution. In addition, the
objective value of the information theory seems to increase in
proportion to the Euclidian distance from the prior point(1,1),
then it indicates the objective function of the information
theory behaves similar to that of the least square method.

VI. SIMULATION TOOLS & N ETWORK TOPOLOGY

To judge the performance of the proposed method, the
linear programming approach, the least squared method, and

the information theory approach have been implemented.
Table 2. outlines the implementations. A simulation program,
using theC++ language, was built to simulate a network and
to generate traffic distributions for the network.

Implementations
Linear
Program

Simplex, and Interior Point Method (GLPK)

Least
Square

SVD and IPF

Information
Theory

SVD and IPF with the square root weights

Generalized
Kruithof

Affine Scaling Method

Table 2. Implementation of the deterministic methods

GLPK [8] (GNU Linear Programming Kit), which is an
open source libraries, offersC and C++ libraries to solve
linear programming and related problems.

The decomposition technique, Single Value Decomposition
(SVD), is used to obtain the inverse of the matrixAAT ,
because the normal inversion ofAAT can be very numerically
inaccurate. The inverse of the matrixAAT is required to
obtain the least square resultxls and the square root weighted
least squarexwls. In [5], the information theory approach can
be approximated using the square root weighted least square
method.

xls = M + AT (AAT )−1(Y −AM) (9)

xwls = M + w(Aw)T ((Aw)(Bw)T )−1(Y −AM)

where

wij =
√

Mi (i = j)
wij = 0 (i 6= j)

M is the given point, and the point is projected on the
hyperplane formed byAX = Y . As mentioned previously,
the pointxls andxwls may contain some negative elements.
In that case, IPF is applied to overcome the problem.

To validate those methods, the RMSE (Root Mean Squared
Error) and RMSRE (Root Mean Square Relative Error) were
used, which provide an overall metric for the errors in the
estimates. RMSRE was calculated on the largest 75% of the
flows as suggested in [4]. The reason is to protect the RMSRE
from being dominated by small flows.

RMSE=

√√√√ 1
N

N∑

i=1

N∑

j=1

(x̂ij − xij)2 (10)

RMSRE=

√√√√ 1
N

N∑

i=1

N∑

j=1

{ x̂ij − xij

xij
}2 (11)

One network topology (containing 16 nodes) was created
as shown in Fig. 6. The sixteen node network had the same



topology as that used in [9]. The topology represents the
Sprint PoP-level network consisting 70 links.

Fig. 6. Network Topologies

gMatVec [10] was used to manipulate matrices in the
implementation of the affine scaling method. gMatVec is a
small C++ matrix/vector template library provided by GNU
Free Software Foundation.

VII. R ESULTSAND DISCUSSION

A. Accuracies of the methods with the variation of the prior
solution

The accuracy of each method is dependent on how the
prior solution represents the characteristic of the real traffic
matrix. For instance, if an old traffic matrix is used as the prior
solution, each element of the current traffic matrix is likely to
increase proportionally. However, if an estimating technique
such as choice model [11] is used to produce a prior solution,
the solution becomes close enough to the real solution, so
that the solution requires to be refined to satisfy the inter-link
measurement constraint.

The following figures 7 and 8 show the variations of
RMSE and RMSRE of the three different approaches namely
the least square, the information theory approach and the
generalized Kruithof approach, as the prior solution moves
on the extended lineOMA in Fig.3.

Fig. 7. The variation of RMSE as the prior point approaches to the feasible
region.

The X-axis of the figures 7 and 8 represent the ratio
between the lengthes ofOMA andOXma in Fig.3. Therefore,
when the prior solution is on the feasible region,OMA and
OXma are matched (The ratio becomes one). The result
of the generalized Kruithof does not change as the prior

Fig. 8. The variation of RMSE as the prior point approaches to the feasible
region.

solution follows the extended lineOMA, while the RMSE
and RMSRE of the least square and the information theory
decreases, and then increases again after the prior solution
passes through the feasible region. The accuracies of the three
methods becomes trivial as the prior solution gets closer to the
feasible region. It can be seen from the Fig.3, the prior solution
MA, the least square solutionxls and the generalized Kruithof
solutionxku form a triangle. The triangle becomes smaller as
the prior solutionMA is getting closer to the feasible region.
That is why the difference of those methods becomes trivial
as the prior solution is close to the feasible region.

B. Comparison among the deterministic approaches

The figures 9,10,11,12, and 13 plot the estimated traffic
matrix elements against the synthetic traffic matrix, which is
generated artificially according to [7]. The results are obtained
when the prior solution has0.3 distance from the feasible
region in Fig 7 and 8. The solid diagonal line shows where
the synthetic traffic matrix is estimated exactly and the dotted
lines shows±20% of the RMSRE (Root Mean Squared Error)
of the estimated flows.
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Fig. 9. Simplex Method
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Fig. 10. Interior Point Method

Figures 9 and 10 show that the two LP methods produce
very different results in terms of estimating the distribution of
the synthetic traffic matrix – although the optimal values of
both methods are the same. The Simplex Method estimates
many elements as zeros. In Fig. 9, many estimates lie on the
X-axis, however, the rest of the elements are over-estimated
to compensate for the zero estimates. This result explains why
Medina et al reported in [11] that the errors with the LP
method are so high that it could not be used in practical
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Fig. 11. Least Squared Method
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Fig. 12. Information Theory Ap-
proach
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Fig. 13. Generalized Kruithof Approach

networks. However, the estimates from the interior point
method are scattered along the solid roughly without zero
estimation. The interior point method was implemented using
the GLPK [8], and it uses a priori solution obtained by [12].

Figures 11, 12, and 13 represent the results of the least
square, the information theory approach, and the generalized
Kruithof approach respectively. The information theory and
the generalized Kruithof approaches estimate the large ele-
ments more accurately than the least square method. Specially,
in the generalized Kruithof case, large estimated elements are
well scattered within the dashed lines.

RMSE RMSRE
Simplex Method 4710.6 107.3%
Interior Point Method 1333.9 26.4%
Least Square Method 1556.2 27.5%
Information Theory 1203.7 22.3%
Generalized Kruithof 1083.9 14.2%

Table 3. RMSE and RMSRE of deterministic approaches

Table 3 shows the RMSE (Root Mean Square Error) and
the RMSRE (Root Mean Square Relative Error) of the de-
terministic approaches shown in Fig. 9, 10, 11, 12, and 13.
While the simplex method produces over 100 % of RMSRE,
the interior point method reduces the RMSRE by more than
70 %. Generalized Kruithof method produced less RMSRE
and RMSE around by 8% and by 120 respectively compared
to the information theory approach.

VIII. C ONCLUSIONS

A new non-linear optimization problem was formulated
based on the generalized Kruithof method, which uses the
Kullback distance as the measurement of closeness between
the given prior solution and a point in the feasible region.
The non-linear optimization problem was solved using the
affine scaling method which is the simplest implementation of
all interior point methods, as well as it has the only interior
point strategy which approaches a solution by monotonically
decreasing the original objective function.

A strategy to accelerate the convergency of the affine
scaling method was developed by the geometric analysis of
the problem. The strategy finds a starting point and a searching
direction since the choice of these effect the convergency
speed of the interior point algorithm.

Four deterministic approaches, which are the simplex
method, the interior point method, the least square method,
and the information theory approach, have been implemented
to compare with the proposed approach. The first two LP ap-
proaches show very different results each other (Simplex had
an average error of 107.3% while interior point method had
26.4% only) although both use the same problem formulation.
The next three methods do not have much different when the
given prior solution is close to the feasible region, however
the difference becomes noticeable as the prior solution moves
far away from the feasible region.
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