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Abstract

This paper considers the multiple regression model to determine optimal β-
expectation tolerance regions for the future regression vector (FRV) and future
residual sum of squares (FRSS) by using the prediction distributions of some
appropriate functions of future responses. It is assumed that the errors of the
regression model follow a multivariate Student-t distribution with unknown
shape parameter, ν. The prediction distribution of the FRV, conditional on
the observed responses, is a multivariate Student-t distribution but its shape
parameter does not depend on the unknown degrees of freedom of the Student-t
model. Similarly, the prediction distribution of the FRSS is a beta distribution.
The optimal β-expectation tolerance regions for the FRV and FRSS have been
obtained based on the F -distribution and beta distribution respectively.

AMS 2000 Subject Classification: Primary 62A25, Secondary 62J05

Keywords: Multiple regression model; prediction distribution; optimal β-expectation
tolerance region; invariant differential; non-informative prior; multivariate Student-t,
beta and F distributions.

1 Introduction

A statistical tolerance region (interval in one dimension) is a region, defined on the

sample space, that contains a specified proportion of the future responses, or any suit-

able function of future responses of a random variable under study with a preassigned
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level of probability. There are several kinds of tolerance regions available in the liter-

ature (cf. Guttman, 1970b, and Aitchison and Dunsmore, 1975). The β-expectation

tolerance region is a special type of tolerance region when the expected probability

of the region to contain a set of future responses or an appropriate function of future

responses is a known value β, a real number, usually not too far from 1. A statistical

tolerance region is a region defined on the sample space that contains a specified pro-

portion of the realizations of the values of a random variable, or a suitable function

of it, under study with a pre-assigned level of probability. It is a problem under the

broader area of the predictive inference and can be solved by using the prediction

distribution.

There has been a growing interest in statistics for the use of non-normal models

to represent symmetrical, but fat or heavier tailed distributions of the errors. In this

paper we consider the widely used multiple regression model with errors, for both the

realized and future responses, following the multivariate Student-t distribution with

unknown shape parameter, ν. The two sets of responses are connected through the

common, shape, regression and scale parameters. Following Khan (2004), we pursue

the Bayesian approach to derive the distribution of the FRV and FRSS for the future

responses, conditional on a set of realized responses. This is a new development that

deals with the predictive inference for the future regression parameters, rather than

that of the future responses. The prediction distributions of the FRV and FRSS,

conditional on a given set of data, have been provided first, by using the invariant

differentials and non-informative prior distribution. Then β-expectation tolerance

regions have been obtained for the FRV and FRSS of the multiple regression model

by using these prediction distributions. It has been proved (see Bishop, 1976, p.99-

100 ) that the β-expectation tolerance regions based on such prediction distributions

are optimal in the sense of having minimum enclosures.

Many researchers conducted studies in the area of tolerance regions. The first work

in this area is due to Wilks (1941). Others include Scheffe and Tukey (1944), Paul-

son (1943), Wald and Wolfowitz (1946), Fraser (1953), Fraser and Guttman (1956)

and Guttman (1959, 1970a). A detail theory of tolerance region has been presented

by Guttman (1970b). The Bayesian works include Aitchison (1964), Aitchison and

Dunsmore (1975), and Geisser (1993), while Fraser and Haq (1969), Rinco (1973),

Haq and Khan (1990) pursued the structural distribution approach. Aitchison and

Dunsmore (1975) provide an excellent account of the theory and application of the

prediction problem including various tolerance regions. Geisser (1993) discussed the

Bayesain approach to predictive inference including the tolerance region and pointed

out a number of real-life applications in various fields. This includes model selection,

discordancy, perturbation analysis, classification, regulation, screening and interim
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analysis. The tolerance regions for linear models have been dealt with by Wallis

(1951), Lieberman and Miller (1963), and Bishop (1976). Haq and Rinco (1976)

derived the β-expectation tolerance region for generalized linear model with multi-

variate normal error distribution using the structural distribution approach. All the

above studies deal with the prediction distribution of future responses. However,

Khan (2004) proposed prediction distributions for the future regression vector (FRV)

and future residual sum of squares (FRSS). Here we pursue the same approach to

find the optimal β-expectation tolerance regions for the FRV and FRSS using the

distribution of appropriate future statistics.

The multiple regression model with the multivariate Student-t errors is specified

in the next section. The general formulation of the β-expectation tolerance region

and its optimality criterion are introduced in Section 3. Section 4 presents some

preliminaries and useful relationships. The prediction distributions of the FRV and

FRSS are given in section 5. The β-expectation tolerance regions for the FRV and

FRSS are obtained in section 6. Some concluding remarks are included in section 7.

2 Multiple Regression with Student-t Errors

In the recent years, there has been a growing interest in the non-normal and robust

models. Nevertheless, Fisher (1956) discarded the normal distribution as a sole model

for the distribution of errors. Fraser (1979, p.41) showed that the results based on the

Student-t errors for linear models are applicable to those of normal models, but not

the vice-versa. Prucha and Kelejian (1984) critically described the problems of nor-

mal distribution and recommended the Student-t distribution as a better alternative

for many problems. The failure of the normal distribution to model the fat-tailed dis-

tributions has led reserchers to the use of the Student-t model in such situations. In

addition to being robust, the Student-t distribution is a ‘more typical’ member of the

elliptical/spherical class of distributions than the normal distribution. Moreover, the

normal distribution is a special (limiting) case of the Student-t distribution. It also

covers the Cauchy and sub-Cauchy distributions (cf. Fraser, 1979, p.27) on the other

extreme. Extensive work on this area of non-normal models has been done in recent

years. A brief summary of such literature has been given by Chmielewiski (1981), and

other notable references include Fang and Zhang (1990), Haq and Khan (1990), and

Ullah and Walsh (1981). Zellner (1976) first considered the linear regression model

with Student-t errors.

In this paper we consider the multiple regression equation

y = βx + σe (2.1)
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where y is the response variable, β is the vector of regression parameters assuming

values in the p-dimensional real space Rp, x is the vector of p regressors with known

values, σ is the scale parameter assuming values in the positive half of the real line

R+, and e is the error variable associated with the response y. Assume that the error

component, e, is distributed as a Student-t variable with unknown shape parameter

ν, location 0 and scale 1, so that the variance of y is ν
ν−2

σ2. Now, consider a set of

n > p responses, y = (y1, y2, · · · , yn), from the above regression model that can be

expressed as

y = βX + σe (2.2)

where the n-dimensional row vector y is a vector of the response variable; X is a p×n

dimensional matrix of known values of the p regressors; e is a 1 × n vector of the

error component associated with the response vector y; and the regression vector β

and scale parameter σ are the same as defined in (2.1). Then the error vector follows

a multivariate Student-t (cf. Khan, 2000) distribution with location 0, a vector of

n-tuple of zeros, and variance-covariance matrix, ν
ν−2

In. Therefore, the joint density

function of the errors becomes

f(e) =
Γ(ν+n

2
)

[πν]
n
2 Γ(ν

2
)

[
1 +

1

ν
(ee′)

]− ν+n
2

. (2.3)

Consequently, the response vector follows a multivariate Student-t distribution with

mean vector βX, variance-covariance matrix, ν
ν−2

σ2In, and density function

f(y; β, σ2) =
Γ(ν+n

2
)

[πνσ2]
n
2 Γ(ν

2
)

[
1 +

1

νσ2
(y − βX) (y − βX)′

]− ν+n
2

. (2.4)

In this paper, the above multiple regression model represents the realized model of

the responses from the performed experiment.

2.1 Multiple Regression Model for Future Responses

In this subsection we introduce the idea of predictive model for the responses from

the future experiment. First, consider a set of nf > p future unobserved responses,

yf = (yf1, yf2, · · · , yfnf
), from the multiple regression model as given in (2.1) with

the same regression and scale parameters. Such a set of future responses can be

expressed as

yf = βXf + σef (2.5)

where Xf is the p × nf matrix of the values of the regressors that generates the

future response vector yf , and ef is the nf -dimensional row vector of future error

terms. The future responses are assumed to be generated by the same data generating
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process as that of the realized responses and involve the same shape, regression and

scale parameters. Thus the responses of the realized sample and the unobserved

future responses are related through the same indexing parameters, β and σ2. Unlike

the normal model the two sets of errors for the multivariate Student-t model are

dependent and hence the joint density of the combined error vector, (e, ef ), can’t

be written as the product of the marginal densities of the realized and future errors.

However, the join density function of the combined error vector, that is, the errors

associated with the realized and the future responses, (e, ef ), can be expressed as

f(e, ef ) =
Γ(

ν+n+nf

2
)

[πν]
n+nf

2 Γ(ν
2
)

[
1 +

1

ν

{
ee′ + efe

′
f

}]− ν+n+nf
2

. (2.6)

It may be noted here that for the multiple regression model with the normal errors,

the realized error vector and future error vector are independent, and hence the joint

density function of the two vectors can be written as the product of their marginal

density functions. But for the Student-t model the two vectors of errors are uncorre-

lated but dependent, and as such can’t be written as the product of their marginal

density functions. However, the above joint density function is used to derive the

prediction distributions of the functions of the future responses that subsequently

provide the basis for the derivation of optimal β-expectation tolerance regions.

3 Formulation of β-Expectation Tolerance Region

In the literature, a tolerance region R(Y ) is defined on a probability space (X ,A, Pθ)

where X is the sample space of the responses in the random sample (Y 1,Y 2, · · · ,Y n);

A is a σ-field defined on the sample space; and Pθ is the probability measure such

that θ = [βX, σ] (see the multiple regression model in the next section) is an element

of the joint parameter space Ω. Thus a tolerance region R(Y ) is a statistic defined

on the sample space X and takes values in the σ-field A. The probability content

of the region R(Y ) is called the coverage of the tolerance region and is denoted by

C(R) = P θ
Y [R(Y )]. Note that C(R) being a function of R(Y ), a random variable, is

itself a random variable whose probability measure is induced by the measure Pθ.

Of different kinds of tolerance regions available in the literature, here we consider

a particular kind of tolerance region that has an expected probability of 0 < β < 1.

A tolerance region R(Y ) is called a β-expectation tolerance region if the expectation

of its coverage probability is equal to a preassigned value β. Thus for a given set of

observed responses y, a β-expectation tolerance region R(Y ) must satisfy

E[C(R)|y] = β. (3.1)
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Let p(λf | y) denote the prediction distribution of λf , a function of a set of future

responses Y f , for the given set of observed responses y. Then we can write,

∫

R
p(λf | y)dλf =

∫

R

∫

Ω
p(λf , θ | y)dθdλf (3.2)

where p(λf , θ | y) is the joint density function of λf and Θ for any given y. Since, in

general, λf and Θ may not necessarily be independent, so λf and Θ are assumed to be

not independent, and hence the density can’t be factored. However, by applying the

rule of conditional probability and assuming that the conditions of Fubini’s theorem

hold (to be able to change the order of integration), we can write,

∫

R
p(λf | y) dλf =

∫

R

∫

Ω
p(θ | y) p(λf | θ, y) dθ dλf = Eθ [C(R) | y] = β (3.3)

where p(θ | y) is the density of the parameter Θ for any given y. In the Bayesian

approach this density function, p(θ | y) becomes the Bayes posterior density and in

the structural approach it is the structural density. Fraser and Haq (1969) discussed

that for the non-informative prior, the Bayes posterior density is the same as the

structural density. Thus one can find a β-expectation tolerance region for any suitable

function of a set of future responses by using the prediction distribution of the function

of future responses. However, there are many regions on the sample space that are

likely to satisfy (3.1), and hence a β-expectation tolerance region is not unique. So

the search for an optimal tolerance region becomes obvious.

3.1 An Optimal Tolerance Region

There could be infinitely many tolerance regions on the same sample space having the

same expected coverage. Hence we need to search for an optimal tolerance region. A

β-expectation tolerance region is said to be optimal if the enclosure or the coverage

of the tolerance region is the minimum subject to

E
θ|y {C [R(Y )]} ≥ β (3.4)

where θ | y denotes the density of Θ for given y. But as shown in (3.3), the relation

(3.4) can be written as

Pλf |y { λf ∈ R(Y ) } ≥ β (3.5)

where Pλf |y represents the prediction density of a function of the future response λf

for any given set of data, y. Different approaches have been proposed to determine an

optimal tolerance region in the literature. Here, we would apply the Neyman-Pearson

Lemma approach to find a tolerance region that satisfies (3.4) and has a minimum

enclosure.
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Let us assume that the coverage C[R(Y )] has an induced probability density

h(λf ) on the space of the future responses. Then by the Neyman-Pearson Lemma a

tolerance region R(Y ) would be optimal if it satisfies the following:

R(Y ) =

{
λf :

p(λf | y)

h(λf )
> k(y)

}
(3.6)

where k(y) is determined such that

Pλf |y { λf ∈ R(Y ) } = β. (3.7)

Bishop (1976, p. 99-100) shows that the β-expectation tolerance region obtained

by using the prediction distribution is an optimal tolerance region. Therefore, the

β-expectation tolerance region defined above would be an optimal tolerance region

in the sense of having a minimum enclosure.

4 Some Preliminaries

Some useful notations are introduced in this section to facilitate the presentation of

the results in the forthcoming sections. First, we denote the sample regression vector

of e on X by b(e) and the residual sum of squares of the error vector by s2(e). Then

we have

b(e) = eX ′(XX ′)−1 and s2(e) = [e− b(e)X][e− b(e)X]′. (4.1)

Let s(e) be the positive square root of the residual sum of squares based on the error

regression, s2(e), and d(e) = s−1(e)[e− b(e)X] be the ‘standardized’ residual vector

of the error regression. So

e = b(e)X + s(e)d(e) and hence ee′ = b(e)XX ′b′(e) + s2(e) (4.2)

since d(e)d′(e) = 1, inner product of two orthonormal vectors; and Xd′(e) = 0, since

X and d(e) are orthogonal. From (3.2) we observe the following relationship between

the error and response statistics (cf. Fraser, 1968, p.127)

b(e) = σ−1{b(y)− β}, and s2(e) = σ−2s2(y), (4.3)

where b(y) = yX ′(XX ′)−1 and s2(y) = [y − b(y)X][y − b(y)X]′ are the sample

regression vector of y on X, and the residual sum of squares of the regression based

on the realized responses respectively. Now define the following statistics based on

the future regression model:

bf (ef ) = efX
′
f (XfX

′
f )
−1, s2

f (ef ) = [ef − bf (ef )Xf ][ef − bf (ef )Xf ]
′ (4.4)
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in which bf (ef ) is the future regression vector and s2
f (ef ) is the residual sum of

squares of the future error of the future model respectively. Then we can write

ef = bf (ef )Xf + sf (ef )df (ef ) and hence efe
′
f = bf (ef )XfX

′
fb
′
f (ef ) + s2

f (ef ) (4.5)

since Xf and d(ef ) are orthogonal and df (ef ) is orthonormal. Moreover, the following

relations can easily be observed:

bf (ef ) = σ−1{bf (yf )− β}, and s2
f (ef ) = σ−2s2

f (yf ), (4.6)

where bf (yf ) = yfX
′
f (XfX

′
f )
−1 and s2

f (y) = [yf − bf (yf )Xf ][yf − bf (yf )Xf ]
′ in

which bf (yf ) is the future regression vector of the future responses and s2
f (yf ) is the

residual sum of squares of future responses respectively.

Note since the error vectors for the realized and future responses are not indepen-

dent, the joint density of the combined error vector can’t be written as the product

of the two marginal densities for the two sets of errors. Haq and Khan (1990) used

this density function to derive the prediction distribution of future responses, condi-

tional on the realized responses, by structural distribution approach. Here we require

the prediction distributions of the FRV and FRSS to find the β-expectation toler-

ance regions for them by using the Bayesian approach with non-informative prior

distribution.

5 Predictive Distributions of FRV and FRSS

In this section we provide the predictive distributions of the future regression vector

(FRV) and future residual sum of squares (FRSS) for the future multiple regression

model, conditional on the realized responses. This can be done either by the Bayesian

approach or structural approach. For the Bayesian approach, in the absence of any

knowledge about the parameters, an appropriate non-informative prior distribution

for the parameters is pursued. Justification for the use of such a non-informative

prior is given by Geisser (1993, p.60 & p.192), Box and Tiao (1992, p.21), Press

(1989, p. 132) and Meng (1994) among many others. It is worth noting that no prior

distribution is required in the structural approach (cf. Fraser, 1978) as the structural

distribution, similar to the Bayes posterior distribution, can be obtained from the

structural relation of the model without involving any prior distribution. Fraser and

Haq (1969) discussed that for the non-informative prior, the Bayes posterior density is

the same as the structural density, and hence they both lead to the same prediction

distribution. We use the prediction distributions of the FRV and FRSS to derive

optimal β-expectation tolerance regions for the two functions of the future responses.
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5.1 Distribution of the Future Regression Vector

The joint density function of the error statistics b(e), s2(e), bf (ef ) and s2
f (ef ), for

given d(·), is derived from the joint density of the combined error vector by applying

the properties of invariant differentials (see Eaton, 1983, p.194-206) as

p
(
b(e), s2(e), bf (ef ), s

2
f (ef )|d(·)

)
= Ψ1(·)× [s2(e)]

n−p−2
2 [s2

f (ef )]
nf−p−2

2

×
[
1 +

1

ν
+ b(e)XX ′b′(e) + g2

(
bf (ef )XfX

′
fb
′
f (ef )

)]− ν+n+nf
2

(5.1)

where Ψ1(·) = {Γ(
ν+n+nf

2
)|XX ′| 12 |XfX

′
f |

1
2}{[π]p[ν]

n+nf
2 Γ(n−p

2
)Γ(

nf−p

2
)Γ(ν

2
)}−1 is the

normalizing constant. Since the above density does not depend on d(·) the condition-

ing can be ignored. Now, the joint density of β and σ as well as the future response

statistics bf (yf ) and s2
f (yf ) is obtained as

p
(
β, σ2, bf (ef ), s

2
f (ef )

)
= Ψ2(·)× [s2]

n−p
2 [s2

f (yf )]
nf−p−2

2 [σ2]−
n+nf−p

2

[
1 +

1

νσ2

{
(b− β)XX ′(b− β)′ + s2

+bf (ef )XfX
′
fb
′
f (ef ) + s2

f (ef )
}]− ν+n+nf

2 (5.2)

where b = b(y) and s2 = s2(y). The normalizing constant Ψ2(·) can be obtained

by integrating the above function over the appropriate domain of the underlying

variables. Since we are interested in the distributions of bf (yf ) and s2
f (yf ), the

future regression vector and future residual sum of squares for the future regression,

respectively, conditional on the realized responses, we don’t pursue the matter any

further in this paper.

The joint posterior density of β and σ, and the future response statistics bf (yf )

and s2
f (yf ) is obtained by using the Jacobian of the transformation

J
{
[bf (ef ), s

2
f (ef )] → [bf (yf ), s

2(yf )]
}

= [σ2]
− p+2

2 (5.3)

and the non-informative prior distribution of the parameters of the model and the

density in (5.2), as

p
(
β, σ2, bf , s

2
f

)
= Ψ3(·)× [s2]

n−p−2
2 [s2

f (yf )]
nf−p−2

2 [σ2]−
n+nf−p

2

×
[
1 +

1

νσ2

{(
b− β

)
XX ′(b− β

)′
+ s2

+
(
bf − β

)
XfX

′
f

(
bf − β

)′
+ s2

f

}]− ν+n+nf
2

(5.4)

where Ψ3(·) is the normalizing constant, and bf = bf (yf ) and s2
f = s2

f (yf ) for

notational convenience.
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A similar result can be obtained by using the structural distribution approach. In

fact, the final results of this paper will be the same as that obtained by the structural

distribution approach. Interested readers may refer to Fraser and Haq (1969) for

details. The quadratic form in β, b and bf of the above density can be expressed as

follows:

(
b− β

)
XX ′(b− β

)′
+

(
bf − β

)
XfX

′
f

(
bf − β

)′
=

(
β − FA−1

)
A

(
β − FA−1

)′
+

(
bf − b

)
H−1

(
bf − b

)′
(5.5)

where F = bXX ′ + bfXfX
′
f , A = XX ′ + XfX

′
f , and H = [XX ′]−1 + [XfX

′
f ]
−1.

Thus, the normalizing constant for the joint distribution of β, σ2, bf and s2
f becomes,

Ψ3(·) = |A| 12 |H|− 1
2 [s2]

n−p
2

{
[2]

n+nf
2 (π)p Γ(n−p+2

2
)Γ(

nf−p

2
)
}−1

. The marginal density of

bf and s2
f is obtained as

p
(
bf , s

2
f |y

)
= Ψ4(·)× [s2

f ]
nf−p−2

2

[
s2 + s2

f +
(
bf − b

)
H−1

(
bf − b

)]−n+nf−p

2 (5.6)

where Ψ4(·) = |H|− 1
2 Γ(

n+nf−p

2
)[s2]

n−p
2

{
(π)

p
2 Γ(n−p

2
)Γ(

nf−p

2
)
}−1

is the normalizing con-

stant. Note that the above joint density of FRV and FRSS are dependent, and hence

it can’t be expressed as the product of two marginal densities. However, the marginal

densities are obtainable by the usual method of integration. Therefore, the prediction

distribution of the future regression vector, bf can be written in the usual multivariate

Student-t distribution form as

p
(
bf

∣∣∣y
)

= Ψ5(·)×
[
1 +

(
bf − b

)[
s2H

]−1(
bf − b

)′]−n
2

(5.7)

where Ψ5(·) = Γ(n
2
)[s2]

n−p
2

{
(π)

p
2 Γ(n−p

2
)|H| 12

}−1
. Thus, [bf |y] ∼ tp(n − p, b, s2H)

where b is the location vector and H is the scale matrix. It is observed that the

degrees of freedom parameter of the prediction distribution of bf depends on the

sample size of the realized sample and the dimension of the regression parameter vec-

tor of the model. The above prediction distribution is used to construct β-expectation

tolerance region for the future regression vector.

5.2 Distribution of Future Residual Sum of Squares

The prediction distribution of the future residual sum of squares from the future re-

gression model, s2
f (yf ), based on the future responses, yf , conditional on the realized

responses, y, is obtained as

p
(
s2

f (yf )
∣∣∣y

)
= Ψ6(·)×

[
s2

f (yf )
]nf−p−2

2
[
s2 + s2

f (yf )
]−n+nf−2p

2 (5.8)

10



where Ψ6(·) = Γ
(

n+nf−2p

2

)
[s2]

n−p
2

{
Γ

(
n−p

2

)
Γ

(
nf−p

2

)}−1
. The density function in

(5.8) can be written in the usual beta distribution form as follows:

p
(
s2

f

∣∣∣y
)

= Ψ7 ×
[
s2

f

]nf−p−2

2
[
1 + s−2s2

f

]−n+nf−2p

2 (5.9)

where Ψ7(·) = Ψ6(·) × [s2]
−n−nf−2p

2 . The above density is a modified form of the

beta density of the second kind with (nf − p)/2 and (n − p)/2 degrees of freedom.

This prediction distribution is used to construct β-expectation tolerance region for

the future residual sum of squares.

6 Optimal β-Expectation Tolerance Region

The tolerance regions based on prediction distributions are optimal in the sense of

having minimum closure. We use the prediction distributions of the FRV and FRSS

to find optimal β-expectation tolerance regions for them. In order to obtain the

optimal tolerance regions, we need to determine the sampling distribution of some

appropriate functions involved in the prediction distribution of the statistics of the

future responses.

From the definition of the β-expectation tolerance region in section 3, R∗(y) =

{W : W < W ∗} is a β-expectation tolerance region for W > 0 if W ∗ is the βth

quantile of the sampling distribution of the future statistic W . That is, R∗(y) is a

β-expectation tolerance region for the future statistic W if W ∗ is such that

∫ W∗

W=0
f(W )dW = β (6.1)

where f(W ) is the pdf of the statistic W .

6.1 Tolerance Region for the FRV

In the current study, to find an optimal β-expectation tolerance region of the FRV,

we use the prediction distribution of the FRV which is known to be a multivari-

ate Student-t distribution. We use the following result to derive the β-expectation

tolerance region for the FRV.

Theorem 5.1: If a p dimensional random vector η follows a multivariate Student-t

distribution with location vector ζ, scale matrix Ω and shape parameter ν then the

scaled quadratic form 1
ν
(η − ζ)Ω−1(η − ζ)′ follows an F distribution with p and ν

degrees of freedom.

The proof of the theorem is straightforward. Since the prediction distribution of

the FRV bf is a p-variate Student-t distribution we use the above theorem to assert
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that the distribution of the quadratic form

1

(n− p)

(
bf − b

)[
s2H

]−1(
bf − b

)′
(6.2)

is an F distribution with p and n−p degrees of freedom. Then an optimal β-expectation

tolerance region that will enclose 100β percent of the future regression vectors from

the multiple regression model is given by the ellipsoidal region:

R1(bf |y) =
{
yf :

[
1

n− p

(
bf − b

)[
s2H

]−1(
bf − b

)′
]
≤ Fp,n−p,β

}
(6.3)

where Fp, n−p,β is the β × 100 percentile point of a central F distribution with p and

n − p degrees of freedom such that P (Fp, n−p < Fp, n−p,β) = β. As noted by Bishop

(1976) the region given by R1(bf |y) in the foregoing expression is an optimal β-

expectation tolerance region and among all such tolerance regions it has the minimum

enclosure. Note that R1(bf |y) depends on the sample responses through H, a function

of observed and future regressors, b = b(y) and s = s(y). Moreover, it depends on

the size of the observed sample as well as the dimension of the regression vector.

6.2 Tolerance Region for the FRSS

For the derivation of optimal β-expectation tolerance region of the FRSS we use the

prediction distribution of the FRSS. From the previous section, the prediction distri-

bution of the FRSS is known to be a beta distribution. So an optimal β-expectation

tolerance region for the FRSS can be defined as follows. A region on the sample

space of the responses is an optimal β-expectation tolerance region if it encloses 100β

percent of the future residual sum of squares from the multiple regression model, and

it is given by the ellipsoidal region

R2(sf |y) =
{
yf :

[
s2

f (s
2
y)−1

]
≤ Bβ

(
nf − p

2
,
n− p

2

)}
(6.4)

where Bβ(
nf−p

2
, n−p

2
) is the β × 100 percentile point of a beta distribution with argu-

ments
(

nf−p

2

)
and

(
n−p

2

)
such that P

[
B

(
nf−p

2
, n−p

2

)
< Bβ

(
nf−p

2
, n−p

2

)]
= β. Using

the following relationship between the inverse beta distribution and F distribution,

the above β-expectation tolerance region for the FRSS can be based on an F distri-

bution with (nf − p) and (n− p) degrees of freedom.

Theorem 5.2: If ψ follows a beta distribution with arguments λ
2

and τ
2

then ϕ =
τ
λ
[ψ]−1 follows an F distribution with λ and τ degrees of freedom.

The proof of the theorem is straightforward. In view of the above fact, since

s2
f (s

2
y)−1 follows a beta distribution with arguments n−p

2
and

nf−p

2
, the statistic

12



[
s2
y{s2

f}−1
]

is distributed as a scaled F variable with (nf − p) and (n − p) de-

grees of freedom. That is,
[
s2
y{s2

f}−1
]
∼ n−p

nf−p
Fnf−p,n−p. Therefore an equivalent

β-expectation tolerance region for the future residual sum of squares from the multi-

ple regression model is given by the ellipsoidal region:

R3(sf |y) =
{
yf :

[
s2
y

s2
f

]
≤ (n− p)

(nf − p)
Fnf−p,n−p,β

}
(6.5)

where Fnf−p, n−p,β is the β × 100 percentile point of a central F distribution with

nf − p and n− p degrees of freedom such that P
(
Fnf−p, n−p < Fnf−p, n−p,β

)
= β. It

is interesting to note that optimal β-expectation tolerance regions for both the FRV

and FRSS can be based on the F distribution, of course, with appropriate degrees of

freedom parameters.

7 Concluding Remarks

The optimal β-expectation tolerance regions for the FRV and FRSS of a multiple

regression model with multivariate Student-t errors are obtained in this paper. This

study reveals the fact that conditional on the observed responses, the prediction dis-

tribution of the FRV from the multiple regression model is a multivariate Student-t

distribution. Similarly, conditional on the observed responses, the prediction dis-

tribution of the FRSS is a scaled beta distribution. The shape parameter or the

number of degrees of freedom of the prediction distributions depends on the size of

the observed sample and the dimension of the regression vector, but not on the shape

parameter of the multiple regression model. The β-expectation tolerance region for

the FRV is based on the distribution of an appropriate quadratic form of the FRV

that follows an F distribution. Similarly, the tolerance region for the FRSS is based

on the appropriate beta distribution or equivalently an appropriate F distribution.

Since the β-expectation tolerance regions of this paper are based on the prediction

distributions, they are optimal in the sense of having minimum enclosure among all

such tolerance regions. The optimal β-expectation tolerance regions defined in the

paper provide the criterion for the necessary and sufficient conditions that any set of

future responses from the multiple regression model satisfying the rules in R1(·) and

R3(·), given the observed responses, will produce FRV and FRSS such that β×100%

of such tolerance regions will contain the true future regression vector and true future

residual sum of squares respectively. As shown by Khan (2005), the same optimal

β-expectation tolerance regions for the FRV and FRSS is valid for the multiple re-

gression model with normal errors.
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