
An Objective Comparison of Languages for

Teaching Introductory Programming

Linda Mannila
Turku Centre for Computer Science

Åbo Akademi University
 Dept. of Information Technologies

Joukahaisenkatu 3-5, 20520 Turku, Finland

linda.mannila@abo.fi

Michael de Raadt
Department of Mathematics and Computing and

Centre for Research in Transformational Pedagogies
University of Southern Queensland, Toowoomba

Queensland, 4350, Australia

deraadt@usq.edu.au

ABSTRACT

The question of which language to use in introductory pro-

gramming has been cause for protracted debate, often based on

emotive opinions. Several studies on the benefits of individual

languages or comparisons between two languages have been

conducted, but there is still a lack of objective data used to in-

form these comparisons. This paper presents a list of criteria

based on design decisions used by prominent teaching-language

creators. The criteria, once justified, are then used to compare

eleven languages which are currently used in introductory pro-

gramming courses. Recommendations are made on how these

criteria can be used or adapted for different situations.

Keywords
Programming languages, industry, teaching

1. INTRODUCTION
A census of introductory programming courses within Australia

and New Zealand [5] revealed reasons why instructors chose

their current teaching language (shown in Table 1). The most

prominent reason was industry relevance, before even peda-

gogical considerations. This suggests academics perceive pres-

sure to choose a language that may be marketable to students,

even if students themselves may not be aware of what is re-

quired in industry.

The primary objective of introductory programming instruction

must be to nurture novice programmers who can apply pro-

gramming concepts equally well in any language. Yet many

papers from literature argue that one language is superior for

this task. Such research asserts a particular language is superior

to another because, in isolation, it possesses desirable features

[2, 3, 4, 9, 21] or because changing to the new language seemed

to encourage better results from students [1, 11]. What is shown

in literature is surely only a reflection of the innumerable de-

bates that have undoubtedly taken place within teaching institu-

tions.

While the authors of this paper do not believe that language

choice is as critical as choice of course curriculum used to de-

liver teaching, it is important to choose a language that will best

support an introductory programming curriculum.

1.1 Background
The choice of programming language to use in education has

been a topical issue for some time. In the early 1980s, Tharp

[22] made a language comparison of COBOL, FORTRAN,

Pascal, PL-I, and Snobol, primarily focused on efficiency of

compilation and speed of code implementation, in order to pro-

vide educators with information needed to choose a suitable

language. Today, considerations focus more on pedagogical

concerns and the range of languages is even broader.

George Milbrandt suggests the following list of language fea-

tures for languages used in high schools in [20].

• easy to use

• structured in design

• powerful in computing capacity

• simple syntax

• variable declaration

• easy input/output and output formatting

• meaningful keyword names

• allowing expressive variable names

• provide a one-entry/one-exit structure

• immediate feedback

• good diagnostic tools for testing and debugging

Many of the criteria in the list above are echoed by McIver and

Conway [15] who list seven ways in which introductory pro-

gramming languages make teaching of introductory program-

ming difficult. They also put forward seven principles of pro-

gramming language design aiming to assist in developing good

pedagogical languages. Neither of these studies demonstrates

application of these criteria to make comparison between lan-

guages.

Instruments to facilitate the process of choosing a suitable lan-

guage have also been suggested (e.g. [18]), but without present-

ing any comparable results.

1.2 Goal
This paper is intended to be an objective comparison of com-

mon languages, based on design decisions used by prominent

teaching-language creators, drawing conclusions that allow

instructors to make informed decisions for their students. It is

also intended to provide ammunition for those who are, for

pedagogical reasons, seeking to make a language change, in an

environment where industry relevance can be overvalued.

The following section lists the criteria used to make a compari-

son of languages in section 3. Finally conclusions are drawn in

section 4.

Table 1: Reasons for instructors' language choice

Reason Count

Industry relevance/Marketable/Student demand 33

Pedagogical benefits of language 19

Structure of degree/Department politics 16

OOP language wanted 15

GUI interface 6

Availability/Cost to students 5

Easy to find appropriate texts 2

Proceedings, Koli Calling 2006

32

©Copyright held by the author(s).
ISBN: 978-1-59593-970-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11035712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. CRITERIA
A list of seventeen criteria has been created and is presented in

the following subsections. Each criterion has been suggested by

creators of languages that are considered "teaching languages".

1. Seymour Papert (creator of LOGO) 1

2. Niklaus Wirth (creator of Pascal) 2

3. Guido van Rossum (creator of Python) 3

4. Bertrand Meyer (creator of Eiffel) 4

Each criterion is drawn from the design decisions made by each

of these language creators as they describe their languages.

The criteria refer to languages in general. There is no mention

of paradigm within the criteria and this allows comparison of

languages across paradigms.

Criteria are grouped into related subsections for ease of applica-

tion. The criteria are shown in no particular order of priority.

2.1 Learning
The following criteria relate the programming language to as-

pects of learning programming.

2.1.1 The language is suitable for teaching
This first criterion was suggested by Niklaus Wirth [25]. Wirth

points out that widely used languages are not necessarily the

best languages for teaching.

The choice of a language for teaching, based on

its widespread acceptance and availability, to-

gether with the fact that the language most widely

taught is therefore going to be the one most

widely used, forms the safest recipe for stagnation

in a subject of such profound pedagogical influ-

ence. I consider it therefore well worth-while to

make an effort to break this vicious circle.

It is interesting that Wirth was able to break this cycle for al-

most twenty years, but how easily we have reverted to use of

commercial languages for the same reasons.

This criterion is echoed by Guido van Rossum [23].

…code that is as understandable as plain English.

…reads like pseudo-code.

…easy to learn, read, and use, yet powerful

enough to illustrate essential aspects of pro-

gramming languages and software engineering.

Bertrand Meyer also suggests this criterion [16].

In some other languages, before you can produce

any result, you must include some magic formula

which you don’t understand, such as the famous

public static void main (string [] args). A good

teaching language should be unobtrusive, ena-

bling students to devote their efforts to learning

the concepts, not a syntax.

1 http://www.papert.org/

2 http://www.cs.inf.ethz.ch/~wirth/

3 http://www.python.org/~guido/

4 http://se.ethz.ch/~meyer/

� To meet this criterion the language should have been

designed with teaching in mind. The language will have a

simple syntax and natural semantics, avoiding cryptic

symbols, abbreviations and other sources of confusion.

Associated tools should be easy to use.

2.1.2 The language can be used to apply physical

analogies
This criterion was suggested by Seymour Papert [17]. Papert

believed physical analogies involve students in their learning.

Without this benefit [using students' physical

skills], seeking to "motivate" a scientific idea by

drawing an analogy with a physical activity could

easily denigrate into another example of

"teacher's double talk".

This idea is extended to "microworlds", a small, simple,

bounded environment allowing exploration in a finite world.

� To meet this criterion a language would need to pro-

vide multimedia capabilities without extension. Per-

haps more critical is the effort needed to get students

to a stage where they could access this potential and

how consistently it is applicable across environments

(say between operating systems).

2.1.3 The language offers a general framework
The primary goal of any introductory programming course is to

introduce students to programming. As such, the language itself

is not the focus of instruction and any skills learned in one lan-

guage should be transferable to other common languages. Ber-

trand Meyer suggests the following philosophy [16].

A software engineer must be multi-lingual and in

fact able to learn new languages regularly; but

the first language you learn is critical since it can

open or close your mind forever.

� To meet this criterion the language should make it

possible to learn the fundaments and principles of

programming, which would serve as an excellent ba-

sis for learning other programming languages later on.

2.1.4 The language promotes a new approach for

teaching software
In an introductory course, language is but one part of the learn-

ing for a novice. It may be valuable where a language itself and

associated tools can assist in learning to apply the language.

Bertrand Meyer [16] suggests an introductory 'programming

language' should be...

…not just a programming language but a method

whose primary aim — beyond expressing algo-

rithms for the computer — is [to] support thinking

about problems and their solutions.

� To meet this criterion the 'language' should not only

be restricted to implementation, but cover many as-

pects of the software development process. The 'lan-

guage' should be designed as an entire methodology

for constructing software based on 1) a language and

2) a set of principles, tools and libraries.

2.2 Design and Environment
The following criteria describe the aspects of the language that

relate to design and the environment in which the language can

be used.

Proceedings, Koli Calling 2006

33

2.2.1 The language is interactive and facilitates

rapid code development
The potential to apply new programming ideas without requir-

ing the context of a full program is valuable to novices [17].

The possibility to quickly start writing (and understanding)

simple programs motivates and inspires [23].

� To meet this criterion the language and environments

supporting its use should allow novices to implement

newly acquired ideas, without having to establish the

context of a full application. The language environ-

ment should provide students with interactive and

immediate feedback on their progress.

2.2.2 The language promotes writing correct pro-

grams
The language Eiffel implements "Design by Contract" – a set of

concepts tied to both the language and the method [14]. The

aim is to move away from the prevalent "trial and error" ap-

proach to software construction.

By equipping classes with preconditions, postcon-

ditions and class invariants, we let students use a

much more systematic approach than is currently

the norm, and prepare them to become successful

professional developers able to deliver bug-free

systems.

� To meet this criterion, students should be given ways

to ensure that the code they write is correct and does

not contain bugs.

2.2.3 The language allows problems to be solved

in "bite-sized chunks"
It is desirable for any programmer to be able to focus on one

aspect of a problem before moving onto the next. A language

which supports problem decomposition is desirable as sug-

gested by Papert [17].

It is possible to build a large intellectual system

without ever making a step that cannot be com-

prehended. And building a system with a hierar-

chical structure makes it possible to grasp the sys-

tem as a whole, that is to say, to see the system

"viewed from the top".

� To meet this criterion the language should support

modularization, in functions, procedures or equivalent

divisions.

2.2.4 The language provides a seamless devel-

opment environment
When a novice begins to program it is valuable to understand

the process that takes their program source to an executable

program. Some Integrated Developments Environments can

hide these details, obscuring this process for the sake of sim-

plicity and rapidity which may be advantageous for an expert

but less so for a novice. Other environments can assist in bridg-

ing the gap between design and implementation by, for exam-

ple, converting architectural diagrams to code, and possible also

reversing this process. Meyer suggests a "seamless develop-

ment" can aid novices [16]. Such a language…

…enables us to teach a seamless approach that

extends across the software lifecycle, from analy-

sis and design to implementation and mainte-

nance.

� To meet this criterion the development environment

should have an intuitive GUI for design and imple-

mentation which provides access to features and li-

braries, both for basic and advanced programming.

2.3 Support and Availability
The following criteria describe the support community and

availability of the language and resources to teach the language.

2.3.1 The language has a supportive user com-

munity
Whether a language is a commercial creation or an open source

project, its longevity will depend on the support for that lan-

guage in the wider programming community. Where support is

limited, resources and support may be a restriction for instruc-

tors and students. This criterion is suggested in [23].

� To meet this criterion, there must be sufficient sup-

port for students, faculty and others interested in

learning and using the language. This support can

come in different forms, such as web pages, course

books, tutorials, exercises, documentation and mail-

ing lists.

2.3.2 The language is open source, so anyone can

contribute to its development
One of the benefits of an open source software project is the

reduction of cost. Another benefit of an open source project is

interoperability – where a commercial venture may seek to

avoid compatibility with other systems to create a reliance on

their creation. Beyond requiring a standard on which the lan-

guage is based, this criterion seeks to differentiate languages

whose development is the collaborative product of individuals.

This criterion is suggested in [23] and continues over the fol-

lowing two criteria, even though the following criteria may also

be applicable to languages outside the open source world.

� To meet this criterion the language should be the in-

vention of a group who do not seek to create a com-

mercial product and to which anyone can contribute if

they wish.

2.3.3 The language is consistently supported

across environments
Programming is conducted within different operating systems

and on different machines. It is useful to be able to offer tools to

students, which can be used in many environments rather than

just one. This gives access to students regardless of location or

setting.

� To meet this criterion the language should be avail-

able under various platforms.

2.3.4 The language is freely and easily available
For students, cost can be a significant issue. Students who are

unlikely to continue programming beyond an introductory ex-

posure will see little return from an expensive language or IDE.

� To meet this criterion the language should be free

from subscription or obligation and available world-

wide without restriction.

2.3.5 The language is supported with good teach-

ing material
It is beneficial for both instructors and students if teaching ma-

terials are available for a particular programming language.

Proceedings, Koli Calling 2006

34

These can provide alternate perspectives and suggest appropri-

ate curricula. This criterion was suggested by Meyer in [16].

� To meet this criterion, current textbooks and other

materials should be available for use in the classroom.

2.4 Beyond Introductory Programming
The following criteria describe considerations beyond an intro-

ductory course. It is useful to consider how well a language can

be used into various levels of a computing degree program as

learning new languages, although valuable, can be a costly ex-

ercise if every new course requires its own language. As such

an introductory language should also be examined from the

perspectives of advanced levels of undergraduate programming

and the programming industry. Moreover, using a language

which is applicable in other contexts beyond introductory pro-

gramming allows students to explore real world application

domains using a powerful language and environment. This is

especially relevant to students who wish to learn more, or at a

faster pace.

2.4.1 The language is not only used in education
Students may be more motivated by a language that is not sim-

ply used within an educational setting. This criterion was sug-

gested by van Rossum in [23].

…suitable for teaching purposes, without being a

"toy" language: it is very popular with computer

professionals as a rapid application development

language.

� To meet this criterion the language should also be

relevant in areas other than education, e.g. in indus-

try, and be suitable for developing large real world

applications.

2.4.2 The language is extensible
Novices may not be expected to write extension modules within

an introductory programming course, but using existing lan-

guage extensions has potential to make the learning experience

more motivating and exciting. Using modules, teachers can

tailor tuition according to the interests of the students, allowing

them to accomplish more than with the base language alone.

Extensibility also allows a language to be applied to a larger

variety of problems later in learning and professional use. This

criterion is suggested in [23].

� To meet this criterion a language, which can be effec-

tively used with only a small integral subset of fea-

tures, should make it easy to access advanced func-

tionality that is not directly accessible.

2.4.3 The language is reliable and efficient
Compilation speeds no longer seem to be as much of an issue as

they were in 1971, when Wirth announced Pascal [25], however

the ease with which a novice can take their source and produce

an executable is still relevant.

…dispelling the commonly accepted notion that

useful languages must be either slow to compile

or slow to execute, and the belief that any nontriv-

ial system is bound to contain mistakes forever.

This is balanced by the need to involve the novice in this proc-

ess and facilitate debugging.

Speed of execution still differentiates some languages, for ex-

ample a distinction can be made between the products of the

procedural and functional paradigms because of how closely

each relates to the model execution used by processors. It could

be argued that novice programmers rarely use the potential for

speed in a language; however it could equally be argued that an

academic setting is the perfect place to explore such limits.

It almost seems unforgivable that any compiler or environment

for programming could be, in itself, flawed. Perhaps with mod-

ern 'bloated' industry languages, complexity within monumental

libraries can bewilder novices.

From a pedagogical perspective, this criterion has a low priority

in relation to other criteria. However, the decisions made by

instructors are never purely motivation by pedagogy.

� To meet this criterion the language must be useful in

creating high speed applications.

2.4.4 The language is not an example of the

QWERTY phenomena
Papert suggests some languages continue to be used because of

historical reasons and the justification for this continuation is

often manufactured [17]. He defines the QWERTY phenomena

in relation to the QWERTY keyboard.

There is a tendency for the first usable, but still

primitive, product of a new technology to dig it-

self in.

� To fulfill this criterion the language must show its

usefulness now and into the future beyond its appli-

cability in the past.

3. LANGUAGE COMPARISON
With criteria given it is possible to compare languages in an

objective fashion. It should be stated that construction of such

criteria suggests the biases of the authors of this paper. By

choosing other inspirational figures, another set of criteria could

have emerged and even within the works of the prominent fig-

ures chosen here, new criteria could have been promoted and

others given less prominence. Also, any application of these

criteria is subject to the authors' judgment.

Not all criteria can be applied equally to each language. For

instance some languages are defined as a standard which is

implemented by multiple groups in the form of compilers. Such

a language may or may not be accompanied by additional tools

in its delivered form. Other languages are developed by one

group only and delivered with a specific set of tools. For this

reason it is often difficult to judge if a criterion is applicable to

a particular language and to what extent additional tools should

be considered as part of the 'language'. For this reason, several

notes have been added with the comparison.

Proceedings, Koli Calling 2006

35

The languages chosen in this comparison are chosen because

they were in use during the most recent Census shown in [6]

and are known to be in current use. This Australian/New Zea-

land source is a comprehensive survey of languages currently

used in introductory programming. The inclusion of other lan-

guages could also be argued.

In this comparison all criteria are equally weighted, but the

ordering presented here could easily be changed if criteria

weightings were applied. All features are hardly equally impor-

tant to all educators in all education situations.

Compared to the afore-mentioned feature lists given by Mil-

brandt [20] and McIver and Conway [15], the enumeration

presented in this paper is more extensive. Features related to

learning, design and environments have been considered previ-

ously, but including criteria concerning support, availability and

possibilities beyond introductory programming seem to be

unique to this study.

Some of the languages compared here can be regarded as “non-

traditional” to introductory programming and might be avoided

by some educators. Lack of strict typing in some languages (e.g.

Python and JavaScript) is of concern to some educators. Some

argue that teaching a language that is removed from a full in-

dustry relevant language can disadvantage students. Introduc-

ing programming using a simple language may cause students

to run into a wall when having to deal with a more complex one

later on. However, Mannila et al suggest students are not disad-

vantaged by having learned to program in a simple language

when moving on to a more complex one [13].

For many instructors the choice of paradigm is primary and the

language used must fall into a paradigm. There is as much lit-

erature discussing the value of teaching within one paradigm or

another as literature discussing language choice (for example

[7, 8, 9, 10, 12, 19, 24]). Certainly, if such an approach is nec-

essary, then the results presented here must be qualified accord-

ing to the instructor’s choice of paradigm.

This given, a comparison has been attempted by the authors and

the results are shown in Table 2. By this comparison, three lan-

guages are arguably the most suitable languages of those com-

pared. Python and Eiffel rate highest which justifies their design

as teaching languages. These are closely followed by Java,

which is commonly associated with industrial applications.

Other evaluated languages rated lower.

The comparison given is limited by the authors' experience with

each language. The authors encourage all readers to consider

how they would rate these languages, or perhaps others, accord-

ing to the criteria.

4. CONCLUSIONS AND RECOMMEN-

DATIONS
Not surprisingly, the authors' comparison suggests that the most

suitable languages for teaching, Python and Eiffel, are lan-

guages that have been designed with teaching in mind. However

this study also showed that Java, which is designed primarily

for commercial application, has merit when considered as a

teaching language.

By providing well founded criteria, this study has attempted to

Table 2: Languages Compared by Features

C

C
+
+

E
iffel

H
ask

ell

Jav
a

Jav
aS
crip

t

L
o
g
o

P
ascal

P
y
th
o
n

S
ch
em

e

V
B

Learning

Is suitable for teaching (§2.1.1) � � � �

Can be used to apply physical analogies (§2.1.2) � � � � � �

Offers a general framework (§2.1.3) � � � � � � � �

Promotes a design driven approach for teaching software (§2.1.4) � � *1 � �

Design and Environment

Is interactive and facilitates rapid code development (§2.2.1) � � � �

Promotes writing correct programs (§2.2.2) *2 � *2 *2

Allows problems to be solved in "bite-sized chunks" (§2.2.3) � � � � � � � � � � �

Provides a seamless development environment (§2.2.4) � *1

Support and Availability

Has a supportive user community (§2.3.1) � � � � � � � � �

Is open source, so anyone can contribute to its development (§2.3.2) �

Is consistently supported across environments (§2.3.3) � � � � � � � � �

Is freely and easily available (§2.3.4) � � � � � � � � � �

Is supported with good teaching material (§2.3.5) � � � � � � � �

Beyond Introductory Programming

Is not only used in education (§2.4.1) � � � � � � �

Is extensible (§2.4.2) � � � � � �

Is reliable and efficient (§2.4.3) � � � � � � � �

Is not an example of the QWERTY phenomena (§2.4.4) � � � � � � � � �

Authors' Score 8 11 15 6 14 9 9 7 15 8 9

*1 Possibly with some IDEs, e.g. BlueJ (http://www.bluej.org)

*2 Possibly with unit testing

Proceedings, Koli Calling 2006

36

provide objectivity into what has been, up to now, frequently an

emotive argument. The value of this work is to provide the

potential for a strong argument to those who seek to promote a

language change in an introductory course or perhaps over an

entire undergraduate degree program.

This work may also be useful to communities of developers

attempting to produce better programming languages for future

novices and experts.

Extensions of this study in future work may attempt to clarify

the criteria presented here, perhaps extending the criteria for

specific purposes. Other languages may also be compared using

this framework and it may be shown that other languages are

useful for introductory languages according to these or other

criteria.

5. REFERENCES
[1] Andreae, P., Biddle, R., Dobbie, G., Gale, A., Miller, L.,

and Tempero, E., Surprises in Teaching CS1 with Java

(School of Mathematical and Computing Sciences, Tech-

nical Report CS-TR-98/9). 1998, Victoria University of

Wellington: Wellington.

[2] Bergin, J. Java-- GOOD, BAD, and NOT C++. 2000

[cited 30th August, 2006]; Available from:

http://csis.pace.edu/~bergin/Java/SomegoodthingsaboutJa

va.html.

[3] Biddle, R. and Tempero, E., Java pitfalls for beginners.

ACM SIGCSE Bulletin, 30(2), 1998, 48 - 52.

[4] Chandra, S.S. and Chandra, K., A comparison of Java

and C#. Journal of Computing Sciences in Colleges,

20(3), 2005, 238 - 254.

[5] de Raadt, M., Watson, R., and Toleman, M. Language

Trends in Introductory Programming Courses. In The

Proceedings of Informing Science and IT Education Con-

ference. (Cork, Ireland, June 19-21, 2002). Inform-

ingScience.org, 2002, 329 - 337.

[6] de Raadt, M., Watson, R., and Toleman, M., Introductory

programming languages at Australian universities at the

beginning of the twenty first century. Journal of Research

and Practice in Information Technology, 35(3), 2003,

163-167.

[7] Decker, R. and Hirshfield, S. A case for, and an instance

of, objects in CS1. In Addendum to the proceedings on

Object-oriented programming systems, languages, and

applications (Addendum). (Vancouver, B.C. Canada, Oc-

tober 18 - 22, 1992), 1992, 309-312.

[8] Decker, R. and Hirshfield, S. The Top 10 Reasons Why

Object-Oriented Programming Can't Be Taught in CS1.

In Selected papers of the twenty-fifth annual SIGCSE

symposium on Computer science education. (Phoenix,

Arkansas, United States, March 10 - 12, 1994). ACM

Press, New York, NY, USA, 1994, 51 - 55.

[9] Hadjerrouit, S., Java as first programming language: a

critical evaluation. ACM SIGCSE Bulletin, 30(2), 1998,

43 - 47.

[10] Hadjerrouit, S. A constructivist approach to object-

oriented design and programming. In Proceedings of the

4th annual SIGCSE/SIGCUE ITiCSE conference on In-

novation and technology in computer science education.

(Cracow, Poland, June 27 - July 1, 1999), 1999, 171 -

174.

[11] Hitz, M. and Hudec, M. Modula-2 versus C++ as a first

programming language--some empirical results. In Pa-

pers of the 26th SISCSE technical symposium on Com-

puter science education. (Nashville, TN USA, March 2 -

4, 1995). ACM Press, New York, NY, USA, 1995, 317-

321.

[12] Kölling, M., Koch, B., and Rosenberg, J. Requirements

for a first year object-oriented teaching language. In Pa-

pers of the 26th SISCSE technical symposium on Com-

puter science education. (Nashville, TN USA, March 2 -

4, 1995). ACM Press, New York, NY, USA, 1995, 173-

177.

[13] Mannila, L., Peltomäki, M., and Salakoski, T., What

About a Simple Language? Analyzing the Difficulties in

Learning to Program. Computer Science Education,

16(3), 2006, 211 - 228.

[14] Mayer, R.E., Dyck, J.L., and Vilberg, W., Learning to

Program and Learning to Think: What's the Connection?

Communications of the ACM, 29(7), 1986, 605-610.

[15] McIver, L. and Conway, D. Seven Deadly Sins of Intro-

ductory Programming Language Design. In Proceedings

of the 1996 international Conference on Software Engi-

neering: Education and Practice (SE:EP '96). (Dunedin,

New Zealand, January 24 - 27, 1996). IEEE Computer

Society, 1996, 309 - 316.

[16] Meyer, B. Towards an Object-Oriented Curriculum. In

Proceedings of 11th international TOOLS conference.

(Santa Barbara, United States, August 1993). Prentice

Hall 1993, 1993, 585 - 594.

[17] Papert, S., Mindstorms: Children, Computers, and Pow-

erful Ideas. Basic Books, Inc., USA, 1980.

[18] Parker, K.R., Chao, J.T., Ottaway, T.A., and J.Chang, A

Formal Language Selection Process for Introductory

Programming Courses. Journal of Information Technol-

ogy Education, 5, 2006, 133 - 151.

[19] Ramalingam, V. and Wiedenbeck, S. An empirical study

of novice program comprehension in the imperative and

object-oriented styles. In Papers presented at the seventh

workshop on Empirical studies of programmers. (October

24 - 26, 1997, Alexandria, VA USA). ACM Press, New

York, NY, USA, 1997, 124-139.

[20] Stephenson, C. A report on high school computer science

education in five U.S. states. 2000 [cited 31st August,

2006]; Available from:

www.holtsoft.com/chris/HSSurveyArt.pdf.

[21] Stroustrup, B., Learning Standard C++ as a New Lan-

guage. The C/C++ Users Journal, May, 1999.

[22] Tharp, A.L. Selecting the “right” programming language.

In Proceedings of the thirteenth SIGCSE technical sym-

posium on Computer science education. (Indianapolis,

Indiana, United States). ACM Press, 1982, 151 - 155.

[23] van Rossum, G. "Computer Programming for Every-

body." Proposal to the Corporation for National Re-

search Initiatives. 1999 [cited 25th October, 2006];

Available from:

http://www.python.org/doc/essays/cp4e.html.

[24] Wallingford, E. Toward a first course based on object-

oriented patterns. In Proceedings of the twenty-seventh

SIGCSE technical symposium on Computer science edu-

cation. (Philadelphia, PA USA, February 15 - 17, 1996).

ACM Press, New York, NY, USA, 1996, 27-31.

[25] Wirth, N., The programming language Pascal. Acta In-

formatica, 1, 1971, 35 - 63.

Proceedings, Koli Calling 2006

37

