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Chapter 1 Introduction 

1.1 Background 

Odours are emitted from numerous sources and can form a natural part of the 

environment. The sources of odour range from natural to industrial sources and can 

be perceived by the community dependant upon a number of factors. These factors 

include frequency, intensity, duration, offensiveness and location (FIDOL). Or in other 

words how strong an odour is, at what level it becomes detectable, how long it can 

be smelt for, whether or not the odour is an acceptable or unacceptable smell as 

judged by the receptor (residents) and where the odour is smelt.  

Intensive livestock operations cover a wide range of animal production enterprises, 

with all of these emitting odours. Essentially, intensive livestock in Queensland, and a 

certain extent Australia, refers to piggeries, feedlots and intensive dairy and poultry 

operations. Odour emissions from these operations can be a significant concern 

when the distance to nearby residents is small enough that odour from the operations 

is detected. The distance to receptors is a concern for intensive livestock operations 

as it may hamper their ability to develop new sites or expand existing sites.  

The piggery industry in Australia relies upon anaerobic treatment to treat its liquid 

wastes. These earthen lagoons treat liquid wastes through degradation via biological 

activity (Barth 1985; Casey and McGahan 2000).  As these lagoons emit up to 80% 

of the odour from a piggery (Smith et al., 1999), it is imperative for the piggery 

industry that odour be better quantified.  

Numerous methods have been adopted throughout the world for the measurement of 

odour including, trained field sniffers, electronic noses, olfactometry and electronic 

methods such as gas chromatography.  Although these methods all have can be 

used, olfactometry is currently deemed to be the most appropriate method for 
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accurate and repeatable determination of odour. This is due to the standardisation of 

olfactometry through the Australian / New Zealand Standard for Dynamic 

Olfactometry and that olfactometry uses a standardised panel of “sniffers” which tend 

to give a repeatable indication of odour concentration. This is important as often, 

electronic measures cannot relate odour back to the human nose, which is the 

ultimate assessor of odour. 

The way in which odour emission rates (OERs) from lagoons are determined is 

subject to debate. Currently the most commonly used methods are direct and indirect 

methods. Direct methods refer to placing enclosures on the ponds to measure the 

emissions whereas indirect methods refer to taking downwind samples on or near a 

pond and calculating an emission rate.  

Worldwide the odour community is currently divided into two camps that disagree on 

how to directly measure odour, those who use the UNSW wind tunnel or similar 

(Jiang et al., 1995; Byler et al., 2004; Hudson and Casey 2002; Heber et al., 2000; 

Schmidt and Bicudo 2002; Bliss et al., 1995) or the USEPA flux chamber (Gholson et 

al., 1989; Heber et al., 2000; Feddes et al., 2001; Witherspoon et al., 2002; Schmidt 

and Bicudo 2002; Gholson et al., 1991; Kienbusch 1986). The majority of peer 

reviewed literature shows that static chambers such as the USEPA flux chamber 

under predict emissions (Gao et al., 1998b; Jiang and Kaye 1996) and based on this, 

the literature recommends wind tunnel type devices as the most appropriate method 

of determining emissions (Smith and Watts 1994a; Jiang and Kaye 1996; Gao et al., 

1998a). Based on these reviews it was decided to compare the indirect STINK model 

(Smith 1995) with the UNSW wind tunnel to assess the appropriateness of the 

methods for determining odour emission rates for area sources. 
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1.2 Objectives 

The objective of this project was to assess the suitability of the STINK model and 

UNSW wind tunnel for determining odour emission rates from anaerobic piggery 

lagoons. In particular 

• Determining if the model compared well with UNSW wind tunnel 

measurements from the same source; 

• The overall efficacy of the model; and  

• The relationship between source footprint and predicted odour emission rate.  
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Chapter 2 Literature review 

2.1 Odour measurement  

Olfactometry is the tool of choice for examining odour emissions and impacts. It 

makes use of the olfactory senses that are found in the human nose to determine 

odour concentrations using human panellists. Work undertaken, such as that of 

Gralapp et al. (2001) shows that the human nose still outperforms current 

instrumental methods. This is because the available methods (eg. gas 

chromatography, electronic noses) are unable to match the interaction between 

numerous odorous compounds from a source and relate these to a person’s sense of 

smell. 

2.1.1 Olfactometry 

Olfactometers operate by passing a diluted sample of odour to a trained panel of 

people (sniffers or panellists) who then rate the odour based on whether they can 

detect the odour (certain), think they can detect the odour (inkling) or are simply 

guessing. Forced choice refers to the panellists having to provide a response even if 

they cannot detect odour. The concentration presented to the panellists is increased 

by doubling the concentration until each panellist can detect the odour with certainty.  

There are a number of olfactometry standards however, in general, they vary with 

respect to panel selection and the process used to calculate results. In the past a 

number of olfactometry standards have been used in Australia and overseas (Watts 

2000), including : 

• Queensland Department of Environment Method 6; 

• Victorian EPA Method; 

• Dutch Draft Standard NVN2820; 

• Australian Standard (AS4323.3); and 
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• CEN Standard (CEN-TC264). 

Watts (2000) found that the major difference between European and American 

standards for olfactometry were; 

• Volumetric flow rate; 

• Face velocity; 

• Panel selection; 

• Instrument calibration (American standards do not require); and 

• Guessing versus certain and correct criteria. 

Until recently, the most commonly used standard for olfactometry in Australia was the 

draft Dutch standard (NVN). With the publication of Australian and New Zealand 

standard (AS4323.3) in (2001) the NVN standard is redundant. 

The CEN and the Australian standard are essentially the same. The major difference 

between them is the number of times a series of dilutions (rounds) going from low to 

high concentration are presented to the panellists. The Australian standard states 

that, “A preliminary round of a measurement shall be made and the data 

systematically discarded (i.e. it is always excluded)” (Standards Australia 2001). 

Whereas the CEN standard states that,  “A preliminary round of a measurement may 

be made and the data systematically discarded” (CEN  1999). 

Simply put, under AS4323.3, three sample rounds are presented to the panel with 

the first being discarded. Whereas under the CEN standard, odour determination can 

be made using first two rounds.  

Jiang (2002) reported confusion when attempting to follow the CEN and the 

Australian Standards. He found that olfactometry concentrations could be subject to 

the operator’s personal view. It should be noted that Jiang followed the CEN 

standard and as such did not comply with the Australian Standard as defined in his 

project report. Jiang (2002) preferred to present the odour to his panellists at a 
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preselected concentration, if the odour was detected by the panellist, he then would 

dilute the odour until it could not be detected, this being the start of his first round.   

Experience with olfactometry has shown that, often the first round has a different 

geometric mean when compared to the following rounds (i.e. rounds 2 and 3). The 

author has a number of theories as to why this occurs. The most plausible reason is 

that after the butanol screening at the start of the session the panellists are still of the 

belief that are looking for n-butanol. The panellist does not detect the new odour until 

they can respond with certainty and correctly. Once the new odour has been 

detected, the panellist can more easily determine a difference in the following rounds, 

perhaps due to some kind of “memory training”. After they have smelt the new 

sample, they can then repeatedly detect it for the rest of the presentations. A number 

of commercial laboratories give the panellist a smell of the concentrated odour prior 

to analysis to help them recognise odours that are different to n-butanol.  

The Australian Standard for olfactometry has specific details covering accuracy, 

instability and repeatability. Accuracy and instability are calculated by using carbon 

monoxide (CO) as a tracer gas. The accuracy clause refers to closeness of 

agreement between test result and the accepted reference value with the instability 

criterion relating to the change of a characteristic over a stated period.  

Carbon monoxide is used to confirm the dilutions within the olfactometer.  For each 

dilution step a known concentration of CO is passed through the olfactometer at a set 

dilution. Generally, an amount of time is required for the odorous (or CO) air to mix 

with odour free air and to travel to the panellists this is defined as a settling time. 

After the settling time has passed, ten concentration readings are taken five seconds 

apart. Once this is complete, the olfactometer is flushed with clean air and the 

process is repeated four more times. 

From this data, the instrumental accuracy (as a function of the standard deviation of 

instability) and the accuracy (closeness to the theoretical value) are calculated. The 
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instability (Id) should be less than 5% and the accuracy (Ad) should be less than or 

equal to 0.2 (Standards Australia 2001). 

The Australian olfactometry standard states that, for an olfactometer complying with 

the standard, two tests performed on the same testing material in one laboratory 

under repeatability conditions will not be larger than a factor of 3 in 95% of cases. 

Sneath and Clarkson (2000) and the United Kingdom Environment Agency (2002) 

showed that for a sample at a given concentration, the variability attributable to 

olfactometry decreases as the number of samples analysed increases. A graphical 

representation of the decrease in variability associated with a hypothetical sample of 

100 OU is shown in Figure 1. This data assumes that the olfactometer only just 

complies with the requirements of the standard (AS4323.3). 
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Figure 1: Upper and lower bounds for a 100 OU sample for an olfactometer meeting 
the minimum requirements of AS4323.3 

2.1.2 Olfactometry units 

There has been conjecture over the appropriate units to use when reporting odour 

concentrations. The Australian Standard for olfactometry (Standards Australia 2001) 

uses the odour unit (OU) as its unit, whereas the CEN standard (CEN  1999) upon 

which the Australian Standard is based uses odour units per cubic metre (OU/m3). By 
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definition, one odour unit is the amount of (a mixture of) odorants present in one 

cubic metre of odorous gas (under standard conditions) at the panel threshold. In 

practical terms, the number of odour units that a sample is, refers to the average of 

the diltions at which a group of panellists are able to determine with certainty that the 

odour is present when presented to the panellists in the olfactometer. 

When undertaking emission calculations, the units play an important role for resultant 

emission rate. The use of OU/m3 is thought to be relating back to classical units such 

as an amount of compound per m3 of air (eg. μg/m3, mg/m3). There is not really a 

certain amount of odour in a cubic metre as it is a dilution ratio rather than a true 

concentration. The use of OU/m3 when placed into the continuity equation results in 

an emission rate in OUm-2s-1 whereas the use of OU results in OU.m/s. Both of which 

are correct depending upon which standard you reference. 

A number of researchers have reported odour emission units in OUm-2s-1(Guo et al., 

2001; Heber et al., 2000; McGahan et al., 2001; Sarkar and Hobbs 2003; 

Witherspoon et al., 2002) and others have reported odour emission units in OUms-1 

(Hudson and Casey 2002; Smith and Watts 1994b). An alternative to these 

emissions which has been published by Wood et al. (2001) and Gulovsen et al. 

(1992) is OU.m3m-2s-1. These units seem to be a combination of the two units 

previously stated. 

For the purposes of this project, the use of OU/m3 for concentrations and OUm-2s-1 

has been adopted for emissions. These however can be interchanged with the other 

units listed above. 

2.1.3  Olfactometry analysis 

Olfactometry should be undertaken to meet the requirements of the Australian / New 

Zealand Standard for Dynamic Olfactometry (AS4323.3) (Standards Australia 2001) 

or alternatively prEN 13725 (CEN 1999, ASSTM 1991). 
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2.1.3.1 Panellist screening 

Olfactometers use specially selected panellists with each panellist being screened 

with the reference gas, n-butanol, prior to them undertaking odour analysis. The 

screening is used to select panellists that can detect n-butanol repeatedly at a 

concentration between 20 and 80 ppb. Only a panellist with a long-term (10 sample) 

n-butanol history within this range can be used.  

2.1.3.2 Sample analysis 

Odorous air is diluted and presented to the panellists in one of three available ports 

with the other two ports emitting odour free air.  The panellists are then asked to 

determine if they can detect a difference between the three ports over a period of 15 

seconds after which the odorous air stops. The panellists then must respond whether 

they are certain, uncertain or guessing from which port the odour was emitted. 

This process is repeated by doubling the strength of the previous presentation until 

all panellists had responded with certainty and correctly for two consecutive 

presentations. The panellists’ individual threshold estimate ( ) are then 

determined by calculating the geometric mean of the dilution at which the panellists 

did not respond with certain and correct and the first of the two dilutions where the 

panellists responded with certain and correct.  This dilution series is defined as a 

round.  Three rounds should be undertaken for each sample to meet the standard. 

ITEZ

At the end of the three rounds, the results from the first round are discarded 

(Standards Australia 2001). The individual threshold estimates from rounds two and 

three are then geometrically averaged ( ITEZ ITEZ ITE).  The ratio between   and Z   is 

defined as ZΔ .  The calculation of ZΔ  is as follows in Equation 1 and Equation 2. 

If ITEITE ZZ ≥ then 
ITE

ITE

Z
ZZ =Δ  Equation 1 
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If ITEITE Z≤Z then 
ITE

ITE

Z
Z

=ZΔ  Equation 2 

ZΔ is greater than ± 5 then all ITEs of the panel member with the largest If ZΔ  are 

excluded from the data set.  The screening procedure is then repeated, after re-

calculation of ITEZ  for that measurement.  If panel member(s) again do not comply, 

the panel member with the largest ZΔ  is omitted.  This is repeated until all panel 

members in the dataset comply.  A minimum of four panellists must remain after the 

above screening procedure for the analysis to comply with the standard. The last 

value of ITEZ  is then defined as the odour concentration and expressed as odour 

units (OU or OU/m3).  

2.1.4 Assessment of olfactometer variation 

The variation in olfactometry results can be assessed by calculating the 95% 

confidence interval on the number of samples with the worst case repeatability 

standard deviation (sr) of 0.1726 as detailed in the standard. For an olfactometer 

exceeding the minimum requirements of the standard, the confidence interval would 

be less than one for an olfactometer meeting the minimum requirements. For a given 

group of samples the average concentration is determined. This value is then placed 

into Equation 3 which provides an upper and lower confidence interval. This process 

has been successfully used by Sneath and Clarkson (2000) and Gostelow et al. 

(1993). 

n
stym

n
sty r

w
r

w ×+≤≤×−  Equation 3 

Where: 

wy•   is the average of the odour concentration measurements; 

• m is the expected odour concentration; 



 11 

• t is the Student’s t-factor for n samples ( for n=∞, t=2 (Standards Australia 

2001); 

• n is the number of samples;  

• n   is the square root of the number of samples; and  

• sr is the repeatability standard deviation.  

2.1.5 Sample bag material 

A number of materials including Teflon, Tedlar and PET (Melinex and Nalophan) are 

listed in the Standard as odour free and suitable for use in odour sampling. The 

variety of suitable materials has seen a number of laboratories adopt different bag 

materials. For example, the UNSW odour laboratory uses Tedlar; The Odour Unit in 

Sydney uses Nalophan, The Department of Primary Industries and Fisheries in 

Queensland use Melinex and Ton van Harreveld (Odournet - Europe) use Nalophan.  

2.1.6 Odour decay 

When undertaking odour sampling, it is important to assess the suitability of the 

sample bag materials used for odour sampling, as odour samples stored in bags may 

decrease or increase with time. These changes may result in spurious emission rates 

being developed.  

A recent study by van Harreveld (2003) showed that odour from a tobacco 

processing factory decayed after 12 hours of storage in a Nalophan sample bag. 

Based on this work he concluded that Nalophan was the most suitable for sampling 

environmental odours. In contrast to this was the work of Pollock and Friebel (2002) 

which concluded that Tedlar was more suitable for sampling than Nalophan for 

poultry odour.  

The finding of van Harreveld was supported by a recent paper which showed Tedlar 

had a detectable odour concentration related to its manufacturing and required pre-

treatment of the bag prior to odour sampling (Parker et al., 2003). Koziel et al. (2004), 
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has supported the use of Melinex/Nalophan as they concluded that Melinex had 

better gas storage and recoveries than other bag materials such as Tedlar and 

Teflon. 

Australian pork project 1628, The effect of loading rate and spatial variability on pond 

odour emission rates (See Hudson et al. (2004)), examined blank odour samples and 

sample decay for piggery odour samples. The project found that when odour free air 

was stored in a Melinex sample bag the measured odour concentrations were similar 

to the theoretical lower detection limit (LDL = 6 OU) of the olfactometer.  

In the same project, an odour sample was analysed over a 24-hour period. The factor 

of 3 (worst case value for an olfactometer just complying with AS4323.3) for six 

samples was used in a calculation to determine the repeatability. This was 

undertaken in a similar fashion to that described by Sneath and Clarkson (2000). The 

results from this assessment are shown in Table 1 and Figure 2. 

Table 1: Results of 95% confidence interval for odour samples 

Range Concentration (OU) 

Calculated lower value 62 

Average odour concentration 86 

Calculated upper value 119 
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Figure 2: Piggery odour sample over 24 hour period 

Figure 2 shows: 

• The average odour concentration over the 24 hours was 86 OU; and 

• All analyses undertaken over the 24 hour period provided odour 

concentrations that were within the range that could be associated with 

olfactometry. 

Therefore it can be concluded that the piggery odour did not vary significantly over 

the 24 hour storage period when stored in Melinex bags. The interpretation of these 

results were independently confirmed by van Harreveld (2003), who recommended 

that samples could be stored for periods up to a maximum of 24 hours but ideally 

should be analysed with 12 hours when using Nalophan bags (Melinex).  

2.2 Review of area source emission measurement 

2.2.1 Introduction 

Area sources, including piggery ponds, are the most difficult source from which to 

estimate odour emission rates. This is due to the fact that there is no way of directly 

measuring or sampling the emission. Therefore, indirect methods must be used 

where the emissions are sampled after they have mixed with the air stream (Watts 
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2000). Currently a number of methods are available to determine emissions from 

area sources; however, it is important to note that in these techniques there are a 

number of inherent uncertainties. 

Watts (2000) broke the techniques into two areas, physical and downwind. Physical 

methods involve placing open bottomed enclosures over the emitting surface and 

determining the concentration of odour in the air exiting the enclosure. The second 

technique involves back calculating emissions from downwind concentrations 

(Sommer et al., 2004; Sarkar and Hobbs 2003; Smith 1995; Smith and Kelly 1996; 

Wilson et al., 1983; Turnbull and Harrison 2000; Zahn et al., 2002; Rege and Tock 

1996). Physical methods include wind tunnels / hoods (Heber et al., 2000; Jiang et 

al., 1995; Ryden and Lockyer 1985) and flux chambers (Gholson et al., 1989; Feddes 

et al., 2001; Martins 2000b; Wang et al., 1997; Martins 2000a). Jiang and Kaye 

(1996) identified the wind tunnel method as a dynamic method where the supply air 

has a much higher flow rate than the other dynamic methods such as the USEPA flux 

chamber, which has a low carrier gas flow rate.   

Of the methods currently available, the most commonly used methods in Australia 

are the UNSW wind tunnel and USEPA flux chamber. The flux chamber is typically 

used for the measurement of volatile organic compounds (VOCs) from soils (Martins 

2000b; Stavropoulos et al., 2002) whereas wind tunnels are predominantly used for 

sampling odour emissions (for more information see Heber et al. (2000), Jiang 

(2002), Jiang et al. (1995), Schmidt et al. (1999) and Smith and Watts (1994b)).   

Downwind methods are used to calculate emission rates from emitting surfaces by 

combining a concentration measured downwind of the source with local 

meteorological conditions at the time of sampling.  While a number of methods have 

been used, each method is based upon the premise that a downwind concentration 

can be related to an upwind source via a mathematical formula (Turnbull and 

Harrison 2000; Edgar et al., 2002; Koppolu et al., 2002; Sarkar and Hobbs 2003; 
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Smith 1993; Smith and Kelly 1996). Table 2 shows the review of wind tunnel and 

back-calculation methods undertaken by Smith and Kelly (1995).  

Table 2: Difference between wind tunnel and back calculation methods 

Wind Tunnel Back-calculation 

• sample emission rate from a small area 

of source 

• equipment intensive – requires wind 

tunnel, fan and filter, sampling 

equipment and anemometers 

• emissions are mixed with ambient air in 

a bounded air flow 

• representative sample of air/odour 

mixture taken at downwind end of tunnel 

(complete mixing is assumed) 

• odour concentration time invariant 

therefore sample time or rate 

unimportant 

• wind speed over the sample area is 

controllable  

• vertical wind speed profile over the 

sample area is a function of the tunnel 

geometry and the aerodynamic 

roughness of the surface 

• emission rate calculated from measured 

concentration by a simple continuity 

equation 

• gives the emission rate corresponding to 

the average or bulk wind speed in the 

tunnel (wind speed or emission rate can 

be adjusted to the ambient value) 

• samples ‘average’ emission rate from a 

relatively large area of source 

• less equipment intensive – requires only 

sampling equipment and anemometers 

• emissions are mixed with ambient air in 

an essentially unbounded air flow 

• sample of air/odour mixture taken at a 

known height at any selected  receptor 

location downwind of source 

• odour concentration time variant due to 

turbulence therefore sampling time must 

correspond to the averaging time used 

for the wind speed measurements 

• wind speed over source is not 

controllable 

• vertical wind speed profile over source is 

a function of atmospheric stability and 

the aerodynamic roughness of the 

surface 

• emission rate calculated from measured 

concentration by a simple continuity 

equation disguised as a dispersion 

model gives the actual emission rate for 

the prevailing ambient conditions 
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2.2.2 Emission theory 

The classic theory for describing volatile emissions from a liquid surface is the two 

film theory (Gholson et al., 1991). For volatile compounds where Henry’s law 

constant is greater than 1x10-3 atm m3 mol-1, the liquid film resistance is the 

controlling factor for emission (Gholson et al., 1991). Liquid turbulence and diffusion 

have been shown to be the environmental factors controlling the liquid mass transfer 

coefficient (Gholson et al., 1991). These factors are controlled by surface wind 

velocity and surface temperature (Gholson et al., 1991; Martins 2000b).  

Generally as turbulence across a surface increases, compounds stripped to the 

atmosphere increase (Sattler and McDonald 2002). Unfortunately, with the numerous 

compounds contained in odours, it becomes difficult to assess the boundary layer 

conditions (Martins 2000b). 

2.2.3 Emission rate calculation 

The emission of a compound or odour from a wind tunnel or flux hood can be 

described by a continuity equation (Smith and Watts 1994a). Odour emission rate (E) 

is a function of the concentration exiting the unit (C), the flow rate inside the unit (Q) 

and the surface area covered by the unit (AS). The continuity equation is shown in 

Equation 4. 

SA
QCE ×

=  Equation 4 

For wind tunnels the formula varies slightly as it takes into account the internal face 

of the tunnel and the footprint (area enclosed) of the tunnel. This is shown in 

Equation 5 (Smith and Watts 1994a).  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

S

t
t A

AVCE  Equation 5 

Where:  

• Vt is the bulk wind speed of the tunnel (m/s); 
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• At is the cross sectional area of the tunnel (m2); and  

• AS is the surface area covered by the tunnel (m2); 

2.2.4 Isolation (flux) chamber  

An isolation chamber is an enclosure of known volume used for direct measurement 

of emissions from solid and liquid surfaces. The chamber has an open end that is 

placed on a surface to quantify emissions (Martins 2000b). Typically, isolation 

chambers have a much lower airflow rate than wind tunnels. Kienbusch (1986), 

Feddes et al. (2001), Gulovsen et al. (1992), Gholson et al.  (1989; 1991), Torre 

(1991) and Martins (2000b; 2000a) have detailed the use of various styles of flux 

chamber for the measurement of emissions from solid and liquid sources. A 

schematic of the USEPA flux chamber as described by Kienbusch (1986) is shown in 

Figure 3. 

 

Figure 3: Cut away of flux chamber and support equipment (Kienbusch 1986) 

Kienbusch (1986) identified the flux chamber as a promising technique for measuring 

gas emission rates from land surfaces and had a number of benefits including: 

• a low detection limit;  

• easily obtained accuracy and precision data;  

• simple and economical equipment requirements;  
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• minimal time requirements; and  

• rapid and simple data reduction and the applicability to a wide variety of 

surfaces. 

The chamber operates by passing sweep air (instrument air or nitrogen) through the 

device at a rate of 5 litres per minute (Kienbusch 1986). It has been shown that flux 

chambers derive lower emission rates than wind tunnels or back calculation 

methods. Gao and Yates (1998b) examined two closed chambers to estimate the 

emission rates of a soil fumigant. They found that the two chambers (similar to the 

USEPA flux chambers) underestimated emissions because of the low flush rates. 

The design of the chambers meant that the concentration of material in the chamber 

volume increased with time, which in turn depressed the concentration gradient 

across the soil-air interface, this in turn decreased emissions. In their study, Jiang 

and Kaye (1996) examined a UNSW wind tunnel and a USEPA flux chamber and 

made similar conclusions to Gao and Yates, that flux chambers underestimate 

emissions and that the flux chambers exhibit gas phase controlled volatilisation.  

Other more recent research by Sarkar and Hobbs (2003) and Sommer et al. (2004) 

have compared back calculation methods with wind tunnels and flux chambers 

respectively. Whilst Sarkar and Hobbs (2003) found a good relationship between a 

wind tunnel and their wind tunnel technique, Sommer et al. (2004) found that their 

large flux chamber predicted emission rates that were 12-22% of that measured with 

the back calculation techniques. Gao and Yates (1998b) and Jiang and Kaye (1996) 

both concluded that emissions could be suppressed by covering an emitting surface 

and limiting airflow over the surface.  

2.2.5 Wind tunnels 

2.2.5.1 Background 

A wind tunnel is a portable enclosure that is placed on a surface that can be either 

liquid or solid. Air (carbon filtered or ambient) is blown or sucked (dependant upon 
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the design) through the tunnel to simulate the transport of odorous compounds by the 

local meteorological conditions. In their review of sampling techniques, Smith and 

Watts (1994a) concluded that wind tunnels were the best method for obtaining 

emission rates from area sources. Recent work in the United States (eg. Heber et al. 

(2000), Byler et al. (2004)  and Schmidt and Bicudo (2002)) has favoured the use of 

wind tunnels for estimating odour emissions from area sources, thus, indicating 

acceptance in Australia and the United States of wind tunnels for determining area 

source emission rates. 

Wind tunnels have been used extensively to measure emission rates from area 

sources. Recent studies also include those of Smith and Watts (1994b), Hudson and 

Casey  (2002), Gwynne et al. (2002) and Ryden and Lockyer (1985). It should be 

noted that the types of tunnels studied by Smith and Watts (1994b) are no longer in 

use in Australia since the development of the more modern UNSW wind tunnel.   

Wind tunnels are generally of similar design but have different operating conditions. 

The differences can include whether the wind is blown or drawn through the chamber 

and the use of carbon filtered air or ambient air. Smith and Watts (1994b) found that 

normalising data obtained from wind tunnels of two different sizes gave similar odour 

emission rates. The method of normalising used was a function of the different 

velocity profiles in the two tunnels. These velocity profiles depended heavily on the 

aerodynamic roughness of the feedlot surface (Smith and Watts 1994b). 

Emission rates derived from wind tunnels are standardised using Equation 6 (Smith 

and Watts 1994b). This equation converts the wind tunnel emission rate at the 

sampling wind speed to an emission rate at 1 m/s. 

65.0

1
tV

E
E

≈  Equation 6 

Where: 
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• E1 and E are the standardised and calculated emission rates respectively; 

and 

• Vt is the average wind speed in the wind tunnel. 

Pollock (1997) detailed changing the factor of 0.65 which was derived from studies 

on feedlot pads (Equation 6) to 0.5 for use on pond surfaces based on the work of 

Bliss et al. (1995). Recent research by Schmidt et al. (1999) found that the exponent 

for odour on a lagoon surface was 0.89 (R2 = 0.56) for odour and 0.90 (R2 = 0.87) for 

hydrogen sulphide.  Schmidt et al. (1999) hypothesised that the difference between 

their work and that of Smith and Watts (1994b) could be a result of one or more 

factors that included the type of odour source, surface roughness, wind tunnel design 

and the range of wind speeds tested.  

2.2.5.2 University of New South Wales wind tunnel 

The design of tunnel that is commonly used in Australia is the University of New 

South Wales (UNSW) wind tunnel (Figure 4) which is based on the Lindvall hood 

design. The development of the tunnel was described by Jiang et al. (1995).  The 

UNSW wind tunnel is normally operated at an internal velocity of 0.3 m/s which was 

found to be the optimal velocity for use (Bliss et al., 1995). However the operating 

range of the wind tunnel has been reported to be between 0.3 and 0.6 m/s (Bliss et 

al., 1995). 
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Figure 4: University of New South Wales wind tunnel (http://www.odour.unsw.edu.au) 

Prior to design of the UNSW wind tunnel, the design of the Lindvall hood was 

evaluated to give a starting point for designing a new tunnel. This evaluation showed 

that flow straightening would be required to improve aerodynamic performance.  

Jiang et al. (1995), described the design process of the UNSW wind tunnel. Their aim 

was to design a system, which had better aerodynamic performance than the Lindvall 

hood, and to find the relationship between air velocity and odour emission rate. The 

design of various wind tunnels was reviewed by Watts (2000) and further details of 

the Lindvall hood can be found in his review. 

After initial testing of the new design, the flexible inlet duct was found to cause an 

uneven velocity distribution within the tunnel. To improve this uneven distribution 

within the tunnel, a fixed extension duct was designed to enable a consistent velocity 

profile when air entered the expansion section of the tunnel (Jiang et al., 1995).  In 

addition to the inlet duct three vertical flat planes were placed with equidistant 

spacing between the walls to flatten the horizontal velocity distributions and to control 

the jet effect1  (Jiang et al., 1995). These changes are shown in Figure 5. 

                                                 
1 Air was found to go straight through the hood and create a rotation inside the hood and a dead zone 

near the corners of the hood. 

http://www.odour.unsw.edu.au/
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Figure 5: Extension duct and flat vanes (http://www.odour.unsw.edu.au) 

After this work had been completed it was noted by the developer that even with the 

extension inlet duct there was still a significant amount of rotation of the flow within 

the tunnel. To negate the rotation effect a 10 mm thick perforated Teflon baffle was 

installed between the inlet duct and the main section. The Teflon baffle is shown in 

Figure 6.  

 

Figure 6: UNSW wind tunnel baffle plate (http://www.odour.unsw.edu.au) 

Recent work by Baldo (2000) on the UNSW wind tunnel found that whilst the 

developers of the tunnel had attempted to remove the “jet effect” they have only 

managed to reduce it. 

2.2.5.3 Recent developments with the UNSW wind tunnel design 

Loubet et al. (1999a; 1999b) reviewed conventional wind tunnels and found that 

volatilisation fluxes could be biased because of the methods used to sample the air 

velocity and concentration in the duct.  They found recovery rates varied between 

http://www.odour.unsw.edu.au/
http://www.odour.unsw.edu.au/
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70% and 87% depending on the flow rate inside of the tunnel (Loubet et al., 1999a). 

This work identified two main causes of error associated with wind tunnel use: 

• non-uniformity of the concentration profile in the measurement section 

leading to a underestimation of the flux of 11%; and 

• non-uniformity of the wind speed profile leading to an overestimation of the 

flux of about 3%.  

Subsequently the UNSW tunnel was modified based upon the studies undertaken by 

Loubet et al. (1999a; 1999b). The modification as published by Wang et al. (2001) is 

shown in Figure 7. Samples are drawn from the centre of the cross that is located in 

the exit of the extension (bottom of Figure 7). 

 

Figure 7: Modification to improve sampling efficiency 

2.3 Dispersion and back calculation of odours 

2.3.1 Background 

Dispersion models are used worldwide for numerous purposes, primarily regulatory 

assessments. For regulatory assessments, emission rates for emitting sources are 

used in the models to predict concentrations in ambient air away from the source.  
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Of the methods available to determine odour emission rates from area sources, back 

calculation is probably the most cost effective. Subsequently the back calculation of 

emissions from area sources has been widely reported as an alternative to direct 

measurement techniques.  

The advantage offered by back calculation is that it can provide a spatially averaged 

emission rate (Harris et al., 1996; Smith and Kelly 1996) rather than a single point 

sample of a source based upon the limited footprint of an enclosure technique. A 

number of assumptions must be made when using Gaussian (or to a certain extent 

other) models to model odour emissions. The assumptions detailed by Harris et al. 

(1996) include: 

• cross-sections through the plumes have a Gaussian or normal distribution 

over the time period; 

• the pollutant being dispersed obeys the law of conservation of mass;  

• the ground is a barrier to vertical mixing and is represented as a flat surface 

reflecting the plume back into turbulent air flow; 

• odour is neutrally buoyant – This assumption implies that the temperature at 

which the odour is released equals the ambient air temperature; 

• the odour does not degrade after release (conservation of mass); 

• the emission height at the source is equal to the roughness length of the 

surface; 

• odour source emissions do not vary with time; and 

• odour source emissions do not vary spatially; 

Dispersion is the overall description that can be used to describe odour moving away 

from a source and refers to the spreading or diffusion of the odour. It should be noted 

that diffusion would be more of a factor during calm conditions whereas dispersion 

would be dominant during turbulent conditions. When examining the dispersion of 
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odour from a source a number of meteorological and local factors affect the 

dispersion. 

2.3.2 Atmospheric stability 

Atmospheric stability for dispersion modelling is generally defined through Pasquill 

stability classes (Beychok 1994; PAE 2003a). The stability classes are used to 

represent the inclination of the atmosphere to resist or enhance upward movement of 

an odour. Pasquill classes range from A-F, with A being very unstable and F being 

very stable. A stability class of C is considered neutral. Normally E and F are only 

seen at night.   

A stable atmosphere can be defined as one in which a small parcel of air given an 

upward displacement would tend to return to its original position. Neutral stratification 

refers to a case where there is no tendency for the pollutant to be displaced either up 

or down from its original position and an unstable atmosphere exists when a small 

parcel of air continues to rise after being given as small displacement upwards 

(Harris et al., 1996). A description of the stability classes as discussed by Harris et al. 

(1996)  is shown in Table 3. 

 Table 3: Description of stability classes 

Pasquill Class Description 

A Extremely unstable 

B Moderately unstable 

C Slightly unstable 

D Neutral  

E Slightly stable  

F Moderately stable  

2.3.3 Wind speed and surface roughness length 

Wind speed is an important factor when modelling as it has two effects. Firstly it is a 

direct input into modelling and influences the distance travelled by the plume. 
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Secondly, it is an input for calculating stability classes that are also a model input. 

Wind speed does not remain constant as height changes. The effect of altitude on 

velocity involves two factors (Beychok 1994): 

• Degree of turbulent mixing as characterised by stability class; and 

• The surface roughness, which induces friction.  

As a rule of thumb, the more even the terrain (lower roughness) the steeper the 

profile (Harris et al., 1996). The wind speed at a particular height can be calculated 

from wind speed measured on-site using the power law, which assumes that the 

wind speed increases logarithmically with height (Beychok 1994; USEPA 2000a; 

VicEPA 2000). The power law is shown as Equation 7. An example of the power law 

for 2 m/s at a sampling height of 2 metres is shown in Figure 8. 

a

ref
refz Z

ZUU ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  Equation 7 

Where: 

• Uz (m/s) is the wind speed at a height of Z (m) above the ground;  

• Uref (m/s) is the wind speed at anemometer height Zref (m); and  

• a, the wind profile exponent, is a function of the stability class, surface 

roughness and height and is detailed in the literature (see USEPA (2000a)). 
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Figure 8: Example of power law for 2 m/s at 2 metres  

2.3.4  Turbulence 

The primary factor determining the dispersion of gases is atmospheric turbulence 

(Beychok 1994; Harris et al., 1996). Harris et al. (1996) broke down turbulence into 

two categories 1)friction (mechanical turbulence) and 2) convection (thermal 

turbulence). 

Mechanical turbulence is a result of a parcel of air passing over a surface near the 

ground. It will be affected by features such as vegetation and structures. Increasing 

horizontal wind speed near the ground surface cannot overcome the surface frictional 

effects and a result of this, eddies form and drift upwards, increasing the depth of 

turbulent flow (Harris et al., 1996). Thermal turbulence is a result of differences in the 

surface and air temperatures creating convective currents (Harris et al., 1996). High 

turbulence generally equates to unstable conditions and low turbulence equates to 

stable conditions. 

2.3.5 Source footprint 

Smith (1995) speculated, that each emitting point on a source would contribute 

equally to the resultant downwind concentration, provided the sample point was far 
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enough away from the source. The footprint refers to the areal source defined in the 

STINK model. Beychok (1994) showed that the horizontal dispersion, under different 

stability conditions, was minimal between 10 and 100 metres from a source. Thus it 

would be expected that source footprint would be an issue for samples collected 

within 100 metres of a source. Unfortunately, no published data is available on this 

subject for odour. A visual representation of the calculated horizontal dispersion 

under various atmospheric stability conditions is shown in Figure 9. 
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Figure 9: Horizontal spread according to distance from source 

2.4 Review of back calculation methods 

Koppolu et al. (2002) identified a number of factors, which make the assessment of 

odour impacts challenging. The most important of these, was that odour perception 

by the human nose cannot be assessed by current instrumental techniques. 

Assumptions such as homogenous emissions from sources have also been found to 

be important (Sarkar and Hobbs 2003). Factors such a these, should be taken into 

account when utilising dispersion modelling for impact or emission rate predictions. 

Smith and Watts (1994a) reviewed methods for the indirect estimation of emission 

rates. These methods included the mass balance method, the energy balance 

method, the theoretical profile shape (TPS) method and the Gaussian plume. In 
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addition to these, a number of other models have recently been developed, including 

the Eulerian model of Sarkar and Hobbs (2003) and backward Lagrangian stochastic 

(bLS) models of Sommer et al. (2004) and Flesch et al. (2005). 

2.4.1 Mass balance method 

The mass balance method involves the simultaneous measurement of vertical 

profiles of wind speed and concentration at a point downwind of the emitting area 

(Smith and Watts 1994a). The mathematical equation for this is shown below 

(Equation 8). 

( ) ( )∫
∞

=
0

1 dzzuzC
L

E  Equation 8 

Where: 

• E is the emission rate; 

• L is the depth of the source; and 

• C(z) and u(z) are the time averaged concentration and wind speed, 

respectively at height z. 

The method has been used successfully by a number of groups. Smith and Watts 

(1994a) found that with sources of a limited lateral extent and wind directions other 

than perpendicular the source, the formula upon which the mass balance method is 

based was no longer appropriate. They also concluded that the greatest limitation of 

the method is the need for measurement of the full concentration and wind speed 

profiles. This was important for odour calculations as for odour studies, multiple 

concentrations cannot be quickly analysed using olfactometry. 

2.4.2 Energy balance method 

The energy balance method is related to the evaporation prediction of the same 

name (Smith and Watts 1994a). This method assumes that the emission rate is a 
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function of the vertical concentration gradient in the horizontal airflow over the source 

and mathematically, is represented in Equation 9. 

z
k
∂
CE ∂

−=  
Equation 9 

Where   

• E is the emission rate; 

• C is the concentration over a height z; and 

• k is a measure of the turbulent mixing in the air flow. 

Smith and Watts (1994a) reported that the energy balance method has been used for 

ammonia and amine emissions from feedlots, however, has not been applied for 

odour studies. A negative aspect of the method was that it is instrument intensive. 

2.4.3 TPS method 

The TPS method is a simplification of the mass balance or concentration profile 

method. Further information on the method can be found in Wilson et al. (1983). The 

method makes use of theoretical wind speed profiles for each of the three main 

atmospheric stability conditions (stable, neutral and unstable) (Smith and Watts 

1994a).  Smith and Watts (1994a) concluded that the TPS method was proven and 

only required minimal data and was limited only by the constraints on source 

geometry. 

Harris et al. (1996) described a modification of the TPS by Smith (Smith 1994), which 

included receptor locations removed some distance from the source and a Gaussian 

lateral dispersion to cater for sources of limited lateral extent. More recently Zahn et 

al. (2002) and Sommer et al. (2004) have used the theoretical profile shape (TPS) 

method.  

Zahn et al. (2002) showed that there was significant variation in the calculated 

emissions over time, but did not compare the data against any direct methods. 
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In their research, Sommer et al. (2004) used the TPS method and another method 

(bLS method described below) to calculated emissions of gases from feedlot manure 

stockpiles. They compared this data to the emissions predicted by a flux chamber. 

They concluded that the flux chamber provided values that were 12-22% of that 

predicted by the models with the modelled emissions being similar. 

2.4.4 Eulerian advection-diffusion 

Sarkar and Hobbs (2003) developed a new model based on the Eulerian advection-

diffusion equation for a line source. They then extrapolated this to the case of an 

area source, which is shown as Equation 10.  

( ) ∫=
x

m dxKEzxC
0

',  Equation 10 

Where: 

• C is the concentration at a height of zm; 

• E  is the emission rate (OUm-2s-1);  

• x is the upwind distance; and 

• K’ is a factor dependant upon wind speed and the shape of the vertical 

distribution.  

Sarkar and Hobbs (2003) used downwind samples taken at a height of 1.5m in the 

model and compared this to odour emission rates measured using a Lindvall hood 

(wind tunnel). Overall, they found that the model showed a good agreement with the 

results from the Lindvall hood.  

2.4.5 Backward Lagrangian stochastic model 

The backward Lagrangian stochastic model, allows for predictions of the strength of 

any surface source from one point or line measurements of wind speed and 

concentration within a downwind plume (Flesch et al., 1995). The model uses the 

geometry of the surface and the location of a measuring point, to calculate the 
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trajectories of air parcels upwind from the measuring location (Sommer et al., 2004). 

The model simulates the ratio of concentration to source flux using Equation 11 and 

Equation 12 below.  

( )simL FC
= obsL

bls

C
E ,

bLS

 Equation 11 

Where: 

•  F is the bLS flux; 

•  obsL,C  is the concentration in excess of background; and 

•  E is the emission rate (surface flux density) (OUm-2s-1). 
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Where: 

• N is the number of particles released in the simulation; 

• w0 is the vertical touchdown velocities at the source; and  

• P is the number of specified release points along the line. 

2.4.6 Gaussian plume 

2.4.6.1 Background 

Gaussian plume models are the most commonly used dispersion models. The 

Gaussian theory assumes that the distribution of the pollutant concentration 

downwind of a source can be approximated by a normal distribution in the vertical 

and lateral directions over a sufficiently large averaging time (Harris et al., 1996). The 

downwind concentration, C(x,y,z), can be calculated from Equation 13 (Smith 1995). 
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Where: 

• C is the concentration averaged over time t; 



 33 

• x,y and z are the downwind, cross wind and vertical differences measured 

from the source; 

• σz and σy are the dispersion coefficients representing the crosswind and 

vertical spread of the plume respectively and which are increasing functions 

of x and t; and  

• u represents the average wind speed. 

It is widely acknowledged that Gaussian plume models require a number of 

assumptions for their use (Harris et al., 1996). These include: 

• vertical and horizontal concentration profiles through the plume follow a 

normal distribution; 

• odour obeys the law of conservation of mass; and 

• the ground is a barrier to vertical mixing and is a flat surface. 

Harris et al. (1996) highlighted that wind speed and emission rate are the most 

important parameter to this type of model followed by atmospheric stability and 

surface roughness. 

2.4.6.2 Stink model 

Smith (1995) developed the STINK model specifically to calculate odour emission 

rates from ground level area sources. During the initial stages of this work it was 

discovered that adjusting the Monin-Obukhov lengths in the model did not change 

the model output. As a result of this the model was adjusted to allow for changes in 

the Monin-Obukhov lengths in the input file. This model uses Gaussian plume theory, 

assumed vertical wind speed profiles, and, the simultaneous measurement of 

concentration and wind speed at a point downwind of the source to calculate an 

emission rate (Smith 1995). Figure 10 shows a schematic of the area source and 

inputs used for the STINK model. The mathematical basis for the STINK program is 

given in Equation 14 (Smith 1995). 
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Figure 10: Area source for the STINK model (Smith 1995) 

As shown in Figure 10, the source width can be defined as width (X) and the finite 

length (Y).  
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Equation 14 uses numerical integration based on the assumption that the area 

source is comprised of n strips of thickness Xδ .  Φ  represents the normalised 

concentration (for emission rate E and wind speed u) at a receptor located at (x,y,z) 

(Smith 1995). yiσ  and ziσ  are the dispersion coefficients for each strip. Other 

requirements of the model include the aerodynamic roughness height of the ground 

surface . oz

The Monin-Obukhov length, L, is an alternative measure of stability used in the 

definition of the vertical wind speed profiles. In the STINK model, it is estimated 

arbitrarily from the Pasquill stability classes. The length is a function of the friction 

velocity, reference temperature, density of the air and the vertical heat flux (Harris et 

al., 1996).  The Monin-Obukhov lengths corresponding to each of the Pasquill 

stability classes were assumed from the table provided by Golder (1972). This 
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decision was based on the sensitivity analysis (Chapter 3) that showed that the 

model is fairly insensitive to changes in the Monin-Obukhov length. Table 4 presents 

the relationship between the Pasquill stability class, the Monin-Obukhov length and 

the length adopted for use in the model. 

Table 4: Pasquill stability and adopted Monin-Obukhov length 

Stability Class Monin-Obukhov length (m) Adopted length (m) 

A  -5 

B -40 ≤ L ≤ 12 -40 

C -200 ≤ L ≤ -40 -200 

D |L| > 1000 ∞  

E 100 ≤ L ≤ 200 100 

F 0 ≤ L ≤ 10 5 

 

Specific requirements to operate the model include: 

• pond width (X m); 

• pond length (Y m);  

• wind direction (degrees from x axis); 

• longitudinal and lateral distances to receptor from centre of the pond (x,y);  

• averaging time (hours); 

• surface roughness height (m); and 

• height for calculation of concentration profile (m).  

The model output provides a table of non-dimensional concentrations for increasing 

sampling heights for different stability classes. An example of the output is shown in 

Figure 11. 
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Figure 11: Example output from STINK 

The model can allow for different sampling heights, however, for this work all 

samples were taken at a height of one metre. The non-dimensional concentration for 

the emission rate calculations is selected based on the stability class at the time of 

sampling and the height at which it was taken. This data is easily obtained from the 

output shown above. The emission rate is then calculated using Equation 15 (Smith 

1995).  

( )
( )z

uzCEa ψ
ˆ

=

aE

( )zC

ˆ

Ψ

 Equation 15 

Where: 

• is the calculated emission rate (OUm-2s-1); 

•  is the measured odour concentration (OU/m3) at height z; 

•  u  is the wind velocity measured on site (m/s); and 

•   is the non-dimensional concentration at the sampling height. ( )z

A sensitivity analysis was undertaken by Smith (1993) that identified the following 

variables which affect odour concentration downwind from an areal source: 
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• odour emission rate; 

• wind speed and atmospheric stability; 

• dispersion coefficients; 

• averaging time; 

• ground surface roughness height; 

• mean wind direction; 

• standard deviation of wind direction; and  

• strip width. 

Harris et al. (1996) identified wind speed and emission rate as the most important 

parameters followed by atmospheric stability and surface roughness. Wind speed 

was found to have two effects on odour concentration. The normalised concentration 

(Equation 15) is inversely related to wind speed and that wind speed at a height of 

10m is a factor in the selection of the atmospheric stability classification. Smith 

(1993) concluded that there was nothing to suggest that the results would be 

significantly different for concentrations close to an area source. 

He also found that varying the stability class used by one interval (which was the 

largest error likely to occur when calculating the stability class) an increase in 

concentration of between 40% and 90% was observed. Varying the stability class is 

equivalent to varying the dispersion coefficients simultaneously (Smith 1993).  

Varying of the coefficients individually, measures the effect of uncertainty in the 

schemes used to estimate the parameters, which involves a redistribution of the 

odour through the normal distribution (Smith 1993). 

Smith (1993) found that concentration was only moderately sensitive to the 

roughness height,  but due to the fact that roughness height is difficult to estimate 

it is an important factor in dispersion modelling. The averaging time t was found to be 

unimportant as it can be measured reasonable accurately. 

oZ
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Smith (1993) summarised that for concentrations at 1m in height and close to an 

areal source (<1000m), the parameters in order of decreasing importance  would 

appear to be: 

1. wind velocity; 

2.  emission rate; 

3. stability class; 

4. roughness height; 

5. vertical dispersion coefficient ( zσ ); 

6. mean wind direction (θ ); 

7. averaging time; 

8. horizontal dispersion coefficient ( yσ ); and  

9. the standard deviation of the wind direction ( θσ ).  

2.5 Verification of dispersion models 

A number of studies have examined the accuracy of predictions from dispersion 

models. Whilst there is no doubt that the models work well for relatively inert 

materials such as certain particulate matter and gases, their use for odour is based 

on a number of assumptions as detailed above.  

As a result of the uncertainties, studies into the use of modelling to determine the 

impact of emissions from area sources have been undertaken. These include those 

of Koppolu et al. (2002), Sarkar and Hobbs (2003), Edgar et al. (2002), Guo et al. 

(2001), Sommer et al. (2004)  and Smith and Kelly (1996). 

The works listed above, can be broken down into two categories. These being the 

use of models which predict the impact from the use of emissions data (regulatory 

application) or models that are used to calculate emissions data from downwind 

concentrations (back calculation models).  
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2.5.1 Comparison of STINK and TPS methods 

The Lagrangian TPS method of Smith (1994) and the STINK method of Smith (1995) 

were compared by Harris et al. (1996). They found that at 50 to 200 metres from a 

source, both models gave almost identical concentrations at all heights for neutral 

conditions. However under very stable and very unstable conditions the correlation 

between the results from the two models was poor. They hypothesised that this could 

be due to the different descriptions of stability used in the two models. 

2.5.2 Verification of regulatory models 

When modelling odour, the underlying problem with back calculation from area 

sources is the uncertainty inherent in olfactometry (Smith and Kelly 1995). Guo et al. 

(2001) and Edgar et al. (2002) undertook verification studies on the effectiveness of 

Gaussian models (INPUFF and Ausplume respectively) for assessing odour 

dispersion. Generally these models are used to predict the number of hours per year 

which the odour exceeds a certain concentration (impact criteria).  

The difference between the two approaches was that Guo et al. (2001) used nearby 

residents to assess odour over a period of time and then correlated their responses 

to those predicted by the model. They did this by comparing the resident’s responses 

with n-butanol reference concentrations. In their study, Edgar et al. (2002) used 

downwind samples analysed using olfactometry to compare measured odour 

concentrations with those predicted by the model. 

Guo et al. (2001) found that the INPUFF-2 model satisfactorily predicted faint odours 

(low odour intensity) from sources up to 3.2km away under stable to slightly unstable 

conditions. However, it was also found that the model underestimated the dispersion 

of moderate to strong or very strong odours and under predicted odour levels during 

neutral or unstable weather as compared to the field measured data.  

They also highlighted that under calm conditions (wind speeds less than 0.5 m/s) the 

model was not capable of predicting odour dispersion properly. Gaussian dispersion 
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cannot handle low wind speed events under stable conditions (NZMfe 2004). The 

finding of Guo et al. (2001) using the Inpuff-2 model was unexpected as puff models 

are generally assumed to be capable of handling dispersion better than the standard 

Gaussian models.  

The USEPA recommends replacing low wind speed values with a default value of 

1m/s. This is a function of the stall speed of most cup anemometers. In Australia this 

approach is followed however, values less than 0.5 m/s are replaced by a value of 

0.5 m/s. This is an important aspect when using Gaussian models, as the models do 

not provide realistic concentration estimation at wind speeds less than 0.5m/s. With 

the more modern models such as Calpuff, much lower wind speeds can be modelled 

accurately. 

In their work Edgar et al. (2002) found limitations with the Gaussian Ausplume model. 

As discussed briefly above, the limitations of Gaussian models are well known and 

include: 

• that the models assume that pollutant material is transported in a straight line 

instantly to receptors (NZMfe 2004); 

• the model breaks down at wind speeds less than 0.5 m/s (Guo et al., 2001; 

PAE 2003b); 

• in moderate terrain areas they will typically overestimate terrain impingement 

effects during stable conditions (NZMfe 2004); 

• they have no memory of the previous hours emissions (NZMfe 2004); and  

• the models assume that the atmosphere is uniform across the modelling 

domain (NZMfe 2004). 

The limitations of Gaussian models play an important role in the findings. The slight 

slope in terrain listed by Edgar et al. (2002) could be the cause of the differences as 

the terrain would play an important effect due to night-time valley drainage.  
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They also found that the model under-predicted odour concentrations at the 

centreline of the odour plume and over–predicted the spread of the plume at 

distances within approximately 1000m of the odour source. A significant finding of 

this work was that the odour in the plume from the piggery did not appear to be 

conserved, which is an assumption on which Gaussian models are based (Edgar et 

al., 2002). For in depth information on the differences between the various models 

see Ormerod (2001), NZMFE (2004) or Diosey et al. (2002). 

2.5.3 General back calculation studies 

A number of groups have back calculated gaseous emissions from area sources 

using non-regulatory models. These include Koppolu et al. (2002), Smith and Kelly 

(1995; 1996) and Sarkar and Hobbs (2003)..  

Sarkar and Hobbs (2003) compared a Lindvall hood and a Eulerian advection-

diffusion flux footprint method to estimate odour fluxes from a sold waste landfill site. 

The Eulerian based model was shown by Walcek (2003) to be superior for modelling 

the effects of wind shear, an effect that is ignored by Lagrangian puff models. 

Sarkar and Hobbs (2003) found that their back calculation method (bLS model) 

showed promise when compared to emissions calculated by a Lindvall hoods. Their 

study was limited by resource constraints, which meant there was a limited dataset. 

They concluded that the use of a back calculation method provided the major 

advantage of analysing emissions when the surface was under natural 

meteorological conditions.  

Koppolu et al. (2002) used a modified version of the STINK model which included 

Draxler’s approach (Draxler 1976) to back calculate volatile fatty acid emissions from 

an area source. Their aim was to utilise back-calculation methodology to assess 

emission rates of specific gases for near source dispersion. They used five receptors 

ranging from 2 m from the source to 20 m from the source. At each of these 

receptors, SME fibres were used to collect samples and later analysed by GCMS to 
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determine gas concentrations. Three of the receptors were along a centreline directly 

downwind of the source with an additional two located on each side of the centreline 

in an attempt to assess the edges of the plume. The source consisted of four 

children’s swimming pools placed adjacent to each other in a square shape. The 

base was approximately 2 m x 2 m.  

They found that the volatile fatty acid concentrations predicted at the receptors 

located off the centreline of the plume were unrealistic in some situations partly 

attributable to plume fluctuations (Koppolu et al., 2002). They concluded that the 

model performed well under the given conditions but it did not produce results similar 

to the theoretical 1:1 relationship (Koppolu et al., 2002).  

Sommer et al. (2004) conducted an in depth emissions study of emissions from 

feedlot manure. They used two back calculation methods and a flux chamber type 

device. Whilst the two back calculation methods compared reasonably well, the flux 

chamber emission rate was only 12-22% of that calculated using the models 

(Sommer et al., 2004). 

In general back calculation techniques have been applied successfully, i.e. they have 

calculated an emission rate. However the ability to define what is the “real” emission 

rate compared to those derived from wind tunnels and flux chambers hampers 

defining the most appropriate method for area sources. 

2.6 Spatial variability of odour emissions 

Currently there is little known about the spatial dynamics of emissions from piggery 

lagoons. While not stated explicitly, publications regarding odour and VOC sampling 

implies that the surface liquor of anaerobic ponds is well mixed and spatially 

homogenous (Hudson et al., 2004). This indicates that the emissions from piggery 

lagoons do not vary spatially. Jiang (2002), Heber et al. (2000) and Bicudo et al. 

(2002) have all undertaken measurement of odour emissions from anaerobic 
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lagoons. Unfortunately Jiang’s (2002) work has not detailed any emission rates or the 

number or location of samples taken. Heber et al. (2000) and Bicudo et al. (2002) 

measured odour emissions at a single point and did not take samples over the ponds 

surface.  

Previous research has eluded to the fact that difference seen between back 

calculation and wind tunnel methods may be due to the inability of single samples 

taken using a wind tunnel to be representative of the true average emission rate of 

an entire area source (Smith and Kelly 1996). 

A study by Melbourne Water at the Werribee Sewage Treatment Plant  showed large 

variations in emission rates over the surface of their anaerobic lagoons (0.05 – 7.3 

OU m3/m2.s) (Gulovsen et al., 1992). More recent studies at sewage treatment plants 

in Western Australia have shown significant spatial variation in emissions in primary 

sedimentation tanks and activated sludge tanks (Gwynne et al., 2002). Overall, 

research undertaken to date has not detailed enough information to ascertain the 

existence of spatial variability or to draw further conclusions. 
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Chapter 3  STINK sensitivity analysis 

3.1 Introduction 

A model can only be used to its full potential if good quality data is available to the 

user.  Thus, prior to using any model, the importance of each input parameter should 

be assessed to determine the influence of errors and uncertainties in the input 

parameters on the output.   

The objective of this sensitivity analysis was to enable future users of the model to 

make informed decisions regarding the importance of parameter selection and input 

with a view to determining an accurate estimate of emission for samples taken close 

to an area source.   

The sensitivity analysis was undertaken using the data derived from this project and 

the variables identified by Smith (1993). These included roughness height, 

atmospheric stability, Monin-Obukhov length, averaging time, variation in source 

dimensions and effect of input wind direction. When undertaking the sensitivity 

analysis for this project, all variables with the exception of the variable in question 

were kept constant. The variable in question was then modelled using a range of 

values, to assess possible impacts. Piggery C was selected at random to undertake 

the sensitivity analysis upon. 

3.2 Results 

The results from the sensitivity analysis on the variables detailed above are given in 

Figure 12 to Figure 20. 
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Figure 12: Effect of varying roughness height 

 

Figure 12 shows that increasing roughness height, can result in increased prediction 

of odour emission rate.  
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Figure 13: Result of Variation in Stability Class 

 

Figure 13 shows that varying stability class by one, can result in moderate changes 

in the predicted odour emission rate. 
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Figure 14: Variation associated with changes in Monin-Obukhov length  

 

It can be seen in Figure 14 that under most classes, the length has little influence on 

the predicted OER. However, for stability class F it can have a large influence on the 

predicted OER as the length (L) approaches zero. 
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Figure 15: Effect of variation in averaging time for the STINK model 

 

It can be seen in Figure 15 that averaging time has very little effect on the output of 

the model. 
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Figure 16: Effect of variation in dimensions for Piggery C 

 

During this process a discrepancy was found between this work and the sensitivity 

analysis of Harris et al. (1996). Further investigation showed that Piggery C had a 
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long and narrow pond and was the only pond studied with this design. Therefore, it 

was decided to investigate the impact of pond dimensions on the pond at Piggery E 

which was the largest pond studied and had a square pond surface (147 x 116m).  
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Figure 17: Effect of variation in dimensions for Piggery E 

 

Figure 17 shows that a 10% change in dimensions changes the calculated emission 

rate by approximately 20%. The model uses x and y inputs to define source 

dimension and as such can only handle square/rectangular ponds. To overcome this 

obstacle the modeller generally defines the length and width of the source as the 

model’s X and Y inputs. Then the wind direction is altered by the angle in which the 

pond was different from the North axis. This in effect “tells” the model that the pond 

was aligned as per the model design. To assess variation in emissions in the case of 

a modeller not adjusting the wind direction, a comparison was made of the use of 

easily defined width and length values and the more accurate area calculated from 

the GPS survey. The width and the depth of the pond used in the research were 

found to be 40m x 130m. To achieve an area similar to the real area, values of 36.6 

and 118.95 were substituted.  
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Figure 18: Difference in Emissions with variation in Area 

 

Figure 18 shows that changes in the dimension can have an impact (≈15%) on the 

predicted OER for sample sites close to a source. To assess the variation in wind 

direction on the model output, values of 5, 7, 9, 11 and 15 degrees were modelled.  
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Figure 19: Effect of change in wind angle 
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Figure 19 shows that the effect of change in wind angle is relatively constant over the 

range tested (5-15°) and has a smaller effect on the predicted OERs than other 

factors.  
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Figure 20: Effect of change in wind speed 

As expected, Figure 20 shows that increasing wind speed increased the predicted 

OER. 

3.3 Discussion 

During any modelling exercise, the effect of model inputs (i.e. sensitivity analysis) 

should known. This is to 1) gain an insight into the models abilities and 2) to examine 

areas in which input data could significantly affect predictions.  

Smith (1993) identified wind speed, atmospheric stability, dispersion coefficients, 

averaging time, surface roughness, mean wind direction and the strip width used in 

the STINK model as parameters that could affect the model predictions.  Of these, 

wind speed and odour emission rate were identified as most important, followed by 

atmospheric stability and surface roughness. He also concluded that the vertical 

dispersion coefficient and wind direction was of moderate importance (Harris et al., 

1996; Smith 1993). As mentioned previously the model was updated to allow for 
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adjustment of the Monin-Obukhov lengths. As a result of this the model was adjusted 

to allow this. Thus to confirm the findings of earlier sensitivity analyses, the analysis 

was again based on the following variables as identified by Smith (1993): 

• Roughness height; 

• Atmospheric stability; 

• Monin-Obukhov length; 

• Averaging time; 

• Variation in source dimensions; and 

• Effect of input wind direction. 

3.3.1 Effect of input wind angle and wind speed 

Harris et al. (1996) concluded that the input values for wind direction for STINK was 

unimportant but wind speed was a critical parameter. This was highlighted in the data 

shown in Figure 20.  The effect of wind speed on the modelling process is twofold 

(Smith 1993): 

• The downwind concentration is inversely related to the average wind speed; 

and  

• That the wind speed at 10 m is a factor in the selection of stability classes 

used in the model thus affecting the models outputs. 

As shown in Figure 20, changing wind speed (irrespective of stability class) has a 

large impact upon the predicted odour emission rate.  As wind speed and stability 

class are linked, errors associated with measuring wind speed can be transferred 

through to the calculation of the stability classes.  The accuracy of the sensors used 

during this project was ±1.5% for the wind speed and ±3 degrees (≈±1% of total) for 

wind direction. Thus it is unlikely that small errors in the measurement of wind speed 

would cause significant changes in the predicted odour emission rate. Errors in 

direction either via measurement on aligning the wind vane with north would be more 

likely to impact upon the results. Smith (1993) found for an odour sample collected 
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close to an areal source, the effect of variation in measured wind direction was 

negligible.  For the sensitivity event, the wind direction was 9° from the x-axis.  To 

assess the variation in wind direction on the model output, values of 5°, 7°, 9°, 11° 

and 15° were modelled with the results shown in Figure 17. The results showed that 

a change of approximately 4° results in a change in the predicted odour emission 

rate of about 9% thus indicating that small errors in wind direction would have a 

minimal effect on models output when compared to other factors such as wind speed 

or stability class.  

3.3.2 Surface roughness  

Roughness height is a standard input into dispersion models and is used to represent 

the presence of features in the surrounding landscape. The variation likely in this 

parameter makes it extremely important in dispersion modelling (Smith 1993) for 

distances away from an area source (Harris et al., 1996). The USEPA (2001) 

recommends a value of 0.1 metres for low crops and occasional large obstacles and 

a value of 0.25 metres for high crops with scattered obstacles. Values of between 

0.003m to 0.1m for grass and 0.04 to 0.2m for agricultural crops have been 

previously published (Smith 1993). 

To assess roughness height, Piggery C was selected at random. Although it was a 

long narrow pond, this design should not have unduly affected the model’s output as 

the exercise was representative of a real world modelling exercise. Harris et al. 

(1996) showed for the STINK model, the non dimensional concentration (raw output 

from the model not the calculated emission rate), was relatively insensitive to small 

changes or errors in the measurement or estimates of aerodynamic roughness. The 

roughness heights for the sample sites were estimated to be between 0.1 and 0.2m. 

These estimates were loosely based upon the 1/10th rule of thumb, in which the 

roughness height for a site is the height of any obstructions divided by 10. Because 

of these estimates, surface roughness was increased in the model from 0.1 to 0.6 m 
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to assess changes in the predicted odour emission rate. As shown in Figure 12, 

increasing surface roughness from 0.1 to 0.15m increased the emission rate by 

approximately 10% and increasing the roughness height from 0.15 to 0.2 metres 

increased the emission rate by a further 10%.  From changing the roughness height 

two conclusions have been drawn. Firstly, for a value between 0.1 and 0 .2 metres, 

the overall impact of changing surface roughness does not appear to be as great for 

roughness heights above 0.2 metres and secondly, relatively large changes in 

surface roughness (i.e. doubling from 0.1 to 0.2) has little effect on the predicted 

emission rate. 

There are prescriptive methods available to describe roughness height, however, due 

to the difficulties in fully describing a limited upwind fetch at a piggery, a value of 

0.15m was deemed appropriate for modelling, as it provided a realistic estimation of 

emission rate compared to the wind tunnel and additionally, limited additional 

variation being included. 

3.3.3 Atmospheric stability 

Stability classes describe the tendency of the atmosphere to enhance or restrict 

horizontal and vertical movement of an odour plume.  

As described previously, atmospheric stability was calculated using the sigma-A 

method. To assess the impact of the stability class on the model output, the stability 

class at the sampling time was varied by one interval to mimic the sensitivity analysis 

of Smith (1993). For the analysis, Piggery B was selected.  The results from this 

assessment were shown Figure 13. The results demonstrated that incorrect 

assignment of stability class by one class could result in a change in predicted odour 

emission rate by +/- 30%.  Thus it is concluded that the model is relatively sensitive 

to stability class selection. As discussed below, the Sigma-A methods prediction of 

stability class differs from Turners and SRDT methods under stable conditions. Thus 
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errors in stability class determination may occur if a) the meteorological data is 

erroneous or b) sampling is restricted to very early morning or night time. 

3.3.4 Monin-Obukhov length 

Atmospheric stability is also represented in the model by the Monin-Obukhov length. 

The Monin-Obukhov lengths corresponding to each of the Pasquill stability classes 

were based on the table provided by Golder (1972). Assumed Monin-Obukhov length 

values may not be identical to those that would have been measured during sampling 

making it important to assess the impact variable selection may have on model 

output.  

During the sensitivity analysis it was noted that varying the value of Monin-Obukhov 

lengths did not significantly influence modelled prediction. This was due to the Monin-

Obukhov lengths being “hard wired” into the program and not responding to user 

input.  The model was subsequently updated by Professor Rod Smith of the 

University of Southern Queensland to allow users to vary the Monin-Obukhov 

lengths.  A series of values were then assessed for their effect on model output. The 

result of variation in the lengths under different stability classes was previously 

shown in Figure 14. 

It was found that only stability class F showed a significant variation in odour 

emission rate.  No samples were collected during this project under these stability 

conditions, so the use of assumed Monin-Obukhov lengths is appropriate. This does 

indicate that if the model were to be used under stable conditions, site-specific 

Monin-Obukhov lengths would be beneficial.  Under other conditions selection of 

values of this parameter appear to play a minor role in the overall function of the 

model. 

3.3.5 Averaging time 

Averaging time refers to the period over which the odour sample was collected or 

alternatively over which a model predicts a concentration.  Based on the previous 
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use of the model by Smith and Kelly (1995), a 6-minute averaging period was 

selected both for modelling and sample collection.  To gain an insight into the impact 

of averaging time selection on model output the averaging time was varied from 0.01 

to 2 hours. The results of this assessment were shown in Figure 15. 

Figure 15 shows that variation in averaging time had a minor effect on the output of 

the model. However, this did not take into account temporal variation of odour 

emissions during the modelling or sampling process. From the limited modelling, it is 

concluded that the time over which a sample was taken for this model, is relatively 

unimportant. 

3.3.6 Variation in pond dimensions  

Harris et al. (1996) discovered that pond size had negligible impact on the modelled  

odour emission rate.  Initially the impact of pond size was assessed using a trial pond 

(Piggery C) with a 10% decrease and a 10% and 20% increase in pond dimensions.  

The results of the assessment (Figure 16) indicated that the dimensions of the pond 

were important when determining odour emission rates using the STINK model.  This 

is contrary to the findings of Harris et al. (1996) and Smith (1993) who concluded that 

the dimensions were not an important factor when determining odour emission rates. 

Further examination revealed that Piggery C was long and narrow (133 x 35m, 

Figure 21)). This would have impacted on the predicted odour emission rate, as the 

pond had a much smaller overall surface area and was irregular in shape.  Since the 

adoption of the Rational Design Standard (Barth 1985) in Queensland, very few 

ponds have been built which are not rectangular or square (with a length to width 

ratio that is no more than 2:1).  

It was decided to investigate the impact of pond dimensions on the model output for 

Piggery E (147 x 116m) that was deemed more representative of the current design 

rationale for ponds.   
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The data presented in Figure 16 showed that a 10% decrease in pond dimensions 

results in a 20% increase in predicted emissions for Piggery C. The predicted 

emission rate for Piggery E increased by 4% (Figure 17). Whilst a 10% increase in 

pond dimensions caused a 20% decrease in predicted emission rate for Piggery C 

and a 15% decrease for Piggery E.  

Although this data indicates that pond dimensions are not as important as other 

factors in determining odour emission rates for regularly shaped ponds, pond shape 

still should be viewed as an important factor when modelling. 

IN the STINK model, the dimensional input is somewhat simplistic when compared to 

other available models, such as Ausplume and Windtrax, where irregular shapes can 

be modelled.  The model uses an X and Y input to describe the emitting source and 

as such can only handle square/rectangular ponds.  Generally, the user of the STINK 

model defines the length and width of the source as the model’s X and Y inputs. 

Then the wind direction is altered by the angle in which the pond was different from 

the North axis. This in effect “tells” the model that the pond was aligned as per the 

model design.  

To assess what would happen if the wind direction were not altered, a comparison 

was undertaken on pond dimensions and their effect on predicted odour emission 

rates.  The width and the depth of the pond were 35m x 133m (area of 4655 m2) 

based upon an initial survey.  A GPS survey indicated that the actual dimensions 

were 36.6 and 118.95m (area of 4353 m2).  These data were input into the model and 

the results of this assessment were shown in Figure 18. 

The results showed that use of better-defined dimensions resulted in the calculation 

of an emission rate that was approximately 20% greater than that derived using less 

accurate pond dimensions. Thus, it can be concluded that for a regularly shaped 

pond, small discrepancies in the measurement of the length and width inputs have 

some effect on the output of the model. For irregularly shaped ponds, pond 
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dimensions may have a significant impact on calculated odour emission rate if the 

pond alignment is not adjusted as described above. 

3.4 Conclusion 

The sensitivity analysis showed that a number of inputs are important for the STINK 

model when determining emissions from close to an area source. The variables in 

order of importance for samples taken close to a source were found to be: 

1. Wind speed; 

2. Atmospheric stability; 

3. Pond size and alignment;  

4. Surface roughness; 

5. Wind angle/direction; 

6. Averaging time; and  

7. Monin-Obukhov length (except under stable night time conditions as L 

approaches zero). 
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Chapter 4 Methodology 

4.1 Olfactometry 

In 2000, the Queensland Department of Primary Industries and Fisheries upgraded 

its olfactometer to automate dilution indexing and to incorporate other changes as to 

conform to the Australian Standard for Dynamic Olfactometry (AS4323.3) (Standards 

Australia 2001). Elements of this upgrade have been discussed in Zeller et al. (2002) 

and Nicholas et al. (1999). 

The olfactometer can undertake dilutions from 21 to 215 (1 to 32768 dilutions), thus, 

when an appropriate amount of sample is available the lower detection limit is 6 OU. 

For a sample size of around 100 litres, the minimum concentration measurable is 

around 10 OU. 

The olfactometer is a three way forced choice dynamic olfactometer. Three way 

refers to each panellist having three ports to sniff from.  The panellists are all 

presented with an odorous sample, which has been diluted to a predetermined 

concentration. The panellists are asked to respond whether they were certain, 

uncertain or were guessing which port the odour is being emitted from. If, during the 

first round, a panellist responds certain and correct (i.e. they could detect the odour 

with certainty) the odour is further diluted and the odour is presented to the panel at 

the lower concentration (higher dilution). This process occurs until the odour cannot 

be determined correctly with certainty by the panel members. The concentration is 

then doubled and presented again to the panel. This occurs until all of the panel 

members have responded certain and correct twice to the odour (Standards Australia 

2001). This is defined as a round. A ZITE or individual threshold estimate is then 

calculated for each panellist for that round. Two more rounds are undertaken using 
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the above-mentioned process. This process has previously been described in section 

2.1.3.2. 

4.2 Meteorological data collection 

4.2.1 Weather station 

Site-specific meteorology was measured using custom built weather stations. The 

stations measure wind speed, direction, rainfall and incoming solar radiation all at a 

height of 2m.  

4.2.2 Stability class calculation 

Stability classes were calculated using the Sigma-A method (USEPA 2000a). The 

method is turbulence based that uses the standard deviation of the wind direction in 

combination with the scalar mean wind speed (USEPA 2000a). There are a number 

of methods available to determine stability class and recent work by Mohan and 

Siddiqui (1998) and Tripp et al. (2004) has shown that there are some 

inconsistencies in stability classes determined using the USEPA methods. However, 

given the limited data required for the Sigma-A method, it was deemed appropriate 

for this work. 

4.3 Sample site selection 

4.3.1 Pond selection 

The ponds used in this project had to meet four specific criteria.  The criteria were: 

• the pond had a known operating history;  

• a volatile solids loading rate could be easily determined;  

• there was only one primary pond; and  

• there were only one or two discharge points into the pond.   

The selected ponds gave a representation of a number of different volatile solids 

loading rates. Sampling sites on each pond were selected beyond the batter of the 
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pond to ensure that there was a uniform depth of effluent below each sampling point.  

To create a sampling grid, the surface area of the pond was broken up into sections 

with equidistant spacing within the grids. Samples were taken in the centre of each 

grid. Table 5 shows the characteristics of the ponds studied for the project. 

Table 5: Pond Characteristics 

Piggery Pond length 

(m) 

Pond width 

(m) 

Depth2 (m) Pond Volume 

(ML) 

Surface Area 

(m2) 

A 56 52 6.0 6.0 2946 

B 64 54 3.2 10.8 2977 

C 133 35 4.0 8.7 4600 

D 110 76 5.5 27 8517 

E 146 116 7.0 73 16882 

F 45 34 4.3 4.3 1154 

4.3.2 Sample grid selection 

The sampling grids were selected as to be proportional to the pond size based on the 

data in Table 5 and are shown in Figure 21. A minimum of six samples were taken on 

the smallest pond with up to nine samples being taken on the larger ponds.  

                                                 
2 Measured depth to base of pond 
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Figure 21: Schematic of piggery treatment ponds and sample location3  

4.4 Emission rate determination 

4.4.1 Sampling 

Samples were taken during the summer of 2000-2001, winter 2001 and the summer 

of 2001-2002. Each piggery was sampled once during each period. Additionally, 

Piggery B was sampled again, at the end of the sampling period to evaluate any 

                                                 
3 Note: Sites are not drawn to scale. 
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variability during the sampling period. Sampling was undertaken on Tuesday and 

Thursday in one week for each pond to assess variability between days.  

The average odour emission rate for the sampling day was the averaged odour 

emission rates for all sample points for a pond. 

4.4.2 Stink modelling 

Where possible, a minimum of two odour samples were taken downwind of each 

pond studied for each sample day. Samples were taken at a height of 1 metre, 

approximately 1 metre from the edge of the pond. Wind speed was determined using 

a Thermo Systems Incorporated (TSI) Model 8355 hot wire anemometer with 

downwind samples only being taken when wind was at or above a velocity of 1 m/s. 

This wind speed was not used for the modelling process but to determine optimum 

sampling times. Sampling was not undertaken if another source (i.e. secondary pond 

or sheds) were upwind of the downwind sample site.  

The velocity used for the modelling was sourced from the on site meteorological 

station. A surface roughness height of 0.15 m was adopted. 

The required inputs were placed into the model and an emission rate was calculated. 

To enable the emission rate to be scaled to a standard wind speed of 1 m/s inside of 

the wind tunnel the wind profile for the site was calculated using the power law 

(Equation 7).  

The calculated odour emission rate was then scaled to a standard wind speed of 1 

m/s inside of the tunnel using Equation 6, the factor of 0.5 (Bliss et al., 1995; Pollock 

1997) and the velocity obtained using Equation 7. 

4.4.3 Calculation of on pond odour emission rates 

Odour samples were collected using a University of New South Wales wind tunnel 

operated according to standard protocol (i.e. Bliss et al. (1995) and Jiang et al. 

(1995)).  When measuring the cross sectional velocity profile at the tunnel, it was 
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found that the exit point exhibited a skewed velocity profile, not a normal distribution. 

To even the flow profile a 4” PVC extension was used to increase the length of the 

section, promote laminar flow and thus flatten the velocity profile. As this did not 

sufficiently flatten the velocity profile, the velocity was determined from four points 

across the diameter (as per USEPA Method 1 (USEPA 2000b)). 

To facilitate sampling for this and other projects, a gantry was constructed to allow 

the wind tunnel to be moved across the ponds without disturbing the pond surface 

layer.  This gantry consisted of two pontoons constructed from 12” stormwater pipe 

and a four-metre wide aluminium frame.  A full description of the gantry and its 

design can be found in Casey et al. (2002). The gantry is shown in Figure 22. 

 
Figure 22: Wind tunnel and gantry in Use 

Odour samples were collected in Melinex™ (Polyethylene Terephthalate) sample 

bags.  The sample bags were placed into a rigid sample container and the air inside 

the container was evacuated at a controlled rate using 12-volt diaphragm pumps to 

fill the bags. This is known as the lung method. All components used for sampling 



 64 

were composed of odour free stainless steel or polytetrafluoroethylene (PTFE) as per 

the standard. 

Prior to sampling the bags were pre-conditioned by filling them with odorous air from 

the source.  After this pre-conditioning, odour samples were collected over a period 

of six minutes. All odour samples were analysed at the DPI&F olfactometry 

laboratory on the same day they were collected. 

By taking samples across a pond’s surface (as shown in Figure 21) the issue of 

spatial variability could be investigated. 

4.5 Assessment of footprint 

It has been proposed that, for a sample collected close to a source, whilst the model 

would allow for the entire source, a limited area of the pond (due to horizontal 

spread, Figure 9) would unduly influence the modelled predictions (Smith and Kelly 

1996; Smith 1995). 

To assess the source contribution, each source was broken up into a number of 

equally sized areas. This breakdown was dependant upon the number of sample 

points taken across each ponds surface and the shape of the pond. For source, the 

area within the main source was modelled separately to assess the contribution of 

the smaller part of the source to the downwind non-dimensional concentration (Ψ) for 

the entire source. The weighted emission rate was calculated using Equation 16.  
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 Equation 16 

Where: 

• n is the number of grid points for the pond;  

• EW is the weighted odour emission rate (OUm-2s-1); 

• Ψn is the non-dimensional concentration for point n on the pond; 

• ΨTotal is the sum of all non dimensional concentrations; and  
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• En is the emission rate measured using the wind tunnel for point n. 

4.6 Assessment of fetch 

The fetch theory proposes that the transfer of odour from the liquid surface into the 

air-stream passing over the surface is reduced as the concentration of odour in the 

air-stream increases (Nicholas et al., 2003). In an attempt to assess fetch, the 

distance upwind of each sample site was derived from the data obtained by a GPS 

survey of the site. The fetch was defined as the point on the pond closest to the 

sampling point and then upwind to the furthermost point of the opposite pond edge.  

To enable the efficacy of the model to be assessed with respect to fetch, the 

emission rates were expressed as a back calculated odour emission rate minus 

averaged pond odour emission rate. Thus, if fetch were an issue (based on the 

proposal of Jiang (2002)), it would be expected that as fetch increases, the back 

calculated emission rate would decrease thus the majority of points would fall 

beneath the line. 

4.7 Statistical analysis 

Linear regressions were performed using Genstat for Windows, Sixth edition.  
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Chapter 5 Results 

5.1 Odour emissions 

All odour emissions have been scaled to a standard tunnel wind speed of 1 m/s at 

half tunnel height using Equation 6. 

5.1.1 Piggery A 

The results for the three on pond sampling sessions and back calculation modelling 

for piggery A are shown in Table 6 to Table 8. 

 

Table 6: Results from on pond sampling at Piggery A (OUm-2s-1) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Sampling 

Location Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 5.3 10.1 2.8 10.9 10.5 9.5 

2 6.5 9.7 39.2 17.4 26.6 7.1 

3 6.6 7.0 31.5 8.6 26.6 6.3 

4 6.1 8.0 25.9 14.6 39.8 6.0 

5 21.3 12.0 8.5 17.4 33.5 6.7 

6 11.2 4.4 7.5 17.4 12.5 9.5 

7 3.8 11.3 5.7 29.3 13.2 7.8 

8 13.0 8.5 4.9 61.3 13.2 5.9 

9 13.8 5.3 10.9 16.6 18.8 4.1 

Average 9.7 8.5 15.2 21.5 21.6 7.0 
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Table 7: Concentrations of downwind samples at Piggery A (OU) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Downwind 

sample 

number 

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 N/A 16 N/A 25 24 22 

2 N/A 11 N/A 26 24 25 

3 N/A 11 N/A N/A N/A N/A 

 

Table 8: Back calculated odour emission rates for Piggery A (OUm-2s-1) 
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Wind angle4 (from) 

(Degrees) 

Measured Wind 

Speed (m/s) 

Stability Class5 Emission Rate @ 

1 m/s 

Downwind 

Sample 

Number Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

S6 00/01 

S1 

N/A 143 N/A 1.8 N/A D7 N/A 2.3 

S 00/01 S2 N/A 142 N/A 1.9 N/A C N/A 2.4 

S 00/01 S3 N/A 124 N/A 2.6 N/A C N/A 3.4 

W 01 S1 N/A 128 N/A 3.4 N/A D N/A 10.0 

W 01 S2 N/A 37 N/A 4.6 N/A D N/A 13.3 

S 01/02 S1 135 113 3.3 0.8 C A 9.4 3.1 

S 01/02 S2 126 118 3.9 1.2 C A 11.3 5.0 

 

5.1.2 Piggery B 

The results for the three on pond sampling sessions and back calculation modelling 

for piggery B are shown in Table 9, Table 10 and Table 11. 

+Table 9: Results from on pond sampling at Piggery B (OUm-2s-1) 

                                                 
4 This is not the original value measured by the weather station as it has been adjusted to take into 

account pond alignment 

5 All stability classes were calculated using Simga-A method. 

6 S = Summer year = 2000-2001 sample number =Sample 1 

7 Neutral stability mid morning during summer may be questionable 
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Summer 2000-2001 Winter 2001 Summer 2001-2002 Sampling 

Location Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 11.1 11.1 22.2 12.5 32.7 10.3 

2 6.1 10.6 12.5 26.6 12.7 7.7 

3 7.2 5.2 3.6 9.3 24.3 10.8 

4 7 4.5 35.4 8.3 62.2 17.4 

5 14.8 6.4 18.9 14.0 50.2 10.9 

6 4.2 10.5 3.6 10.7 30.3 10.9 

7 N/A  5 7.5 3.1 16.8 17.3 

8 2.8 14.9 47.2 8.4 18.0 23.5 

9 4.1 9.6 23.6 5.2 76.5 17.3 

Average 7.2 8.6 19.4 10.9 36.0 14.0 

 

Table 10: Concentrations of downwind samples at Piggery B (OU) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Downwind 

sample 

number 

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 N/A 21 12 26 36 31 

2 N/A 19 64 17 22 51 
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Table 11: Back calculated odour emission rates for Piggery B (OUm-2s-1) 

Wind angle (from) 

(Degrees) 

Measured Wind 

Speed (m/s) 

Stability Class Emission Rate @ 

1 m/s 

Downwind 

Sample 

Number Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

S 00/01 S1 N/A 33 N/A 1.7 N/A A N/A 5.5 

S 00/01 S2 N/A 19 N/A 1.9 N/A A N/A 6.2 

W 01 S1 287 292 2.7 2.3 C D 3.6 4.7 

W 01 S2 289 304 3.2 2.8 C D 22.5 4.2 

S 01/02 S1 

S 01/02 S2 
No Data Available due to Meteorological Station Failure 

 

5.1.3 Piggery C 

The results for the three on pond sampling sessions and back calculation modelling 

for piggery C are shown in Table 12, Table 13 and Table 14. 
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Table 12: Results from on pond sampling at Piggery C (OUm-2s-1) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Sampling 

Location Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 8.7 14 4.7 5.9 DNS 8 DNS 

2 20.1 18.7 9.8 13.8 DNS DNS 

3 16.7 6.7 8.9 17.2 DNS DNS 

4 2.9 2.5 14.7 10.4 DNS DNS 

5 22.5 8.2 42.7 17.1 DNS DNS 

6 66.7 N/A9  35.9 78.7 DNS DNS 

7 30.3 7.8 14 53.3 DNS DNS 

8 28 12.4 27.7 83.7 DNS DNS 

Average 24.5 10.0 19.8 35.0 N/A N/A 

 

Table 13: Concentrations of downwind samples at Piggery C (OU) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Downwind 

sample 

number 

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 57 35 45 79 DNS DNS 

2 161 33 30 80 DNS DNS 

 

                                                 
8 No data due to inability to access the site for sampling 

9 Sample analysis was not complete due to split sample bag 
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Table 14: Back calculated odour emission rates for Piggery C (OUm-2s-1) 

Wind angle (from) 

(Degrees) 

Measured Wind 

Speed (m/s) 

Stability Class Emission Rate @ 

1 m/s 

Downwind 

Sample 

Number Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

S 00/01 S1 64 9 2.4 1.7 A A 27.8 21.1 

S 00/01 S2 57 57 2.8 2.5 B A 167.6  16.5 

W 01 S1 19 43 1.5 3.8 C D  8.4 29.1 

W 01 S2 22 35 2.1 4.6 A D 11.4 33.3 

S 01/02 S1 

S 01/02 S2 
Did not sample as unable to gain site access 

 

5.1.4 Piggery D 

The results for the three on pond sampling sessions and back calculation modelling 

for piggery D are shown in Table 15, Table 16 and Table 17. 
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 Table 15: Results from on pond sampling at Piggery D (OUm-2s-1) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Sampling 

Location Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 2.2 1.4 1.9 39 

2 6.9 21.7 19.9 83.9 

3 5.6 8.7 28.2 73.7 

4 8.2 6.6 28.2 82.7 

5 11.4 15.3 29.1 69.5 

6 1.7 3.4 25.5 80.3 

7 1.7 12.9 22.4 73.7 

8 20.7 13.5 

DNS10

27.1 61.9 

9 5.1 9.4   19 70.5 

Average 7.1 10.3   22.4 70.6 

 

Table 16: Concentrations of downwind samples at Piggery D (OU) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Downwind 

sample 

number 

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 16 84 78 271 

2 22 22 DNS 23 228 

 

                                                 
10 DNS – Did not sample due to pond being unavailable due to being desludged 
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Table 17: Back calculated odour emission rates for Piggery D (OUm-2s-1) 

Wind angle (from) 

(Degrees) 

Measured Wind 

Speed (m/s) 

Stability Class Emission Rate @ 

1m/s 

Downwind 

Sample 

Number Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

S 00/01 S1 68 106 1.5 4.3 B D 9.1 24.4 

S 00/01 S2 87 99 1.8 5.1 A D 5.4 7.3 

W 01 S1 

W 01 S2 
Did not sample due to the pond being desludged 

S 01/02 S1 111 84 2.3 5.3 D D 13.9 92.8 

S 01/02 S2 141 85 2.5 5.6 D D 7.7 82.5 

 

5.1.5 Piggery E 

The results for the three on pond sampling sessions and back calculation modelling 

for piggery E are shown in Table 18, Table 19 and Table 20. 
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Table 18: Results from on pond sampling at Piggery E (OUm-2s-1) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Sampling 

Location Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 6.7 5 24.7 3.6 34.0 30.5 

2 7.1 17.3 73.1 33.5 41.9 27.9 

3 8.7 10.3 7.9 20.9 39.1 33.3 

4 10.6 32.3 13.5 30.7 18.2 22.8 

5 13.7 9.1 54.8 7.9 24.3 40.7 

6 5.8 7.6 34.4 5.8 27.6 39.6 

7 10 9.4 27.4 3.4 15.8 61.1 

8 21.1 13.5 15.3 7.5 25.8 38.4 

9 7.4 10.4 12.1 16.6 12.8 32.3 

Average 10.1 12.8 29.2 14.4 26.6 32.3 

 

Table 19: Concentrations of downwind samples at Piggery E (OU) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Downwind 

sample 

number 

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 28 22 22 N/A 11 63 101 

2 N/A 12 24 48 42 84 256 

 

 

                                                 
11 Not available: sample not analysed due to problem with olfactometer 

12 Not available: sample not analysed due to problem with olfactometer 
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Table 20: Back calculated odour emission rates for Piggery E (OUm-2s-1) 

Wind angle (from) 

(Degrees) 

Measured Wind 

Speed (m/s) 

Stability Class Emission Rate @ 

1 m/s 

Downwind 

Sample 

Number Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

S 00/01 S1 190 340 1.9 4.1 A C 6.8 8.6 

S 00/01 S2 N/A  316 N/A 3.2 N/A C N/A 7.0 

W 01 S1 90 N/A  3.4 N/A D N/A 4.6 N/A 

W 01 S2 90 225 4.7 3.2 D A 14.0 16.6 

S 01/02 S1 83 98 3.7 2.9 C D 20.6 18.0 

S 01/02 S2 96 107 3.9 2.9 D D 19.5 50.1 

 

5.1.6 Piggery F 

The results for the three on pond sampling sessions and back calculation modelling 

for piggery F are shown in Table 21, Table 22 and Table 23. 
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Table 21: Results from on pond sampling at Piggery F (OUm-2s-1) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Sampling 

Location Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 DNS  DNS 2 6.8 39.6 10.8 

2 DNS DNS 3.3 7.1 11.6 30.5 

3 DNS DNS NA 9.3 38 61.1 

4 DNS DNS NA 6.8 39.6 38.6 

5 DNS DNS NA 51 25.7 23.3 

6 DNS DNS NA 66.2 19.8 25 

Average N/A N/A 2.7  24.5 29.1 31.6 

 

Table 22: Concentrations of downwind samples at Piggery F (OU) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Downwind 

sample 

number 

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 N/A N/A 11 22 110 45 

2 N/A N/A 10 78 N/A  73 

3 N/A N/A 14 N/A N/A N/A 
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Table 23: Back calculated odour emission rates for Piggery F (OUm-2s-1) 

Wind angle (from) 

(Degrees) 

Measured Wind 

Speed (m/s) 

Stability Class Emission Rate @ 

1 m/s 

Downwind 

Sample 

Number Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

S 00/01 S1 

S 00/01 S2 
No samples taken during first sampling period 

W 01 S1 329 280 1.4 2.4 C C 2.5 14.1 

W 01 S2 314 304 2 1.8 C B 2.6 23.5 

W 01 S3 343 N/A 1.4 N/A A N/A 3.8 N/A 

S 01/02 S1 142 208 1.1 2.4 A A 21.4 24.3 

S 01/02 S2 N/A 209 N/A 1.6 N/A A  N/A 26.6 

 

5.1.7 Piggery B second sampling sessions 

The results for the three on pond sampling sessions and back calculation modelling 

for second sample sessions at piggery B are shown in Table 24, Table 25 and Table 

26. 
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Table 24: Results from on pond sampling at Piggery B – Second session (OUm-2s-1) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Sampling 

Location Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 9.5 22.7 10.2 17.8 49.5 27.2 

2 12.8 7.1 6.7 20.8 35.1 17.0 

3 15.7 10.7 14.5 9.2 34.7 34.6 

4 18.7 21.6 9.5 17.7 13.0 10.1 

5 14.4 8 13.5 19.0 42.7 21.0 

6 17.9 20.2 15.5 27.7 29.2 22.8 

7 14.2 10.8 7.8 28.4 5.5 36.2 

8 15.7 13.3 13.5 19.4 11.5 23.5 

9 13.5 20.2 16.7 10.3 9.2 9.1 

Average 14.7 15.0 12.0 18.9 25.6 22.4 

 

Table 25: Concentrations of downwind samples at Piggery B – Second session (OU) 

Summer 2000-2001 Winter 2001 Summer 2001-2002 Downwind 

sample 

number 

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

1 N/A13 63 24 21 

2 N/A 76 25 31 

DNS14

 

 

 

                                                 
13 Samples were not taken on this day 

14 DNS- Did not sample due to weather station failure 



 80 

 

Table 26: Back calculated odour emission rates for Piggery B – Second session  
(OUm-2s-1) 

Wind angle (from) 

(Degrees) 

Measured Wind 

Speed (m/s) 

Stability Class Emission Rate @ 

1 m/s 

Downwind 

Sample 

Number Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

S 00/01 S1 N/A 33 N/A 3.4 N/A B N/A 30.8 

S 00/01 S2 N/A 19 N/A 3.5 N/A C N/A 31 

W 01 S1 272 322 2.5 3 A D 8.9 6.4 

W 01 S2 279 309 2.6 5.2 A B 9.5 18.8 

S 01/02 S1 

S 01/02 S2 
Samples were not taken due to meteorological station failure 

 

5.2 Confidence Intervals 

The confidence intervals show the variability in the analysis that would be associated 

with using dynamic olfactometry. The 95% confidence intervals for the three seasons 

are shown in Table 27, Table 28 and Table 29. 
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Table 27: 95% Confidence interval for summer 2000-2001 olfactometry results 

Piggery Day Lower (OUm-2s-1) Average (OUm-

2s-1) 

Upper (OUm-2s-1) 

A 1 7.5 9.7 12.7 

 2 6.5 8.5 11.0 

B 1 5.4 7.2 9.5 

 2 6.6 8.6 11.2 

C 1 18.5 24.5 32.4 

 2 7.4 10.0 13.6 

D 1 5.4 7.1 9.2 

 2 7.9 10.3 13.4 

E 1 7.8 10.1 13.2 

 2 9.8 12.8 16.6 

F 

 
Not sampled during this season 

B2 1 11.3 14.7 19.2 

 2 11.5 15.0 19.5 
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Table 28: 95% Confidence interval for winter 2001 olfactometry results 

Piggery Day Lower (OUm-2s-1) Average (OUm-

2s-1) 

Upper (OUm-2s-1) 

A 1 11.7 15.2 19.8 

 2 16.5 21.5 28.0 

B 1 14.9 19.4 25.3 

 2 8.4 10.9 14.2 

C 1 15.0 19.8 26.2 

 2 26.5 35.0 46.3 

F 1    

 2 17.8 24.5 33.9 

E 1 22.5 29.2 38.1 

 2 11.4 14.9 19.3 

B2 1 9.2 12.0 15.6 

 2 14.5 18.9 24.6 
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Table 29: 95% Confidence interval for summer 2001-2002 olfactometry results 

Piggery Day Lower (OUm-2s-1) Average (OUm-

2s-1) 

Upper (OUm-2s-1) 

A 1 16.6 21.6 28.2 

 2 5.4 7.1 9.2 

B 1 27.6 36.0 46.8 

 2 10.8 14.0 18.2 

D 1 17.2 22.4 29.1 

 2 54.2 70.6 91.9 

F 1 21.0 29.1 40.1 

 2 22.8 31.6 43.6 

E 1 20.4 26.6 34.7 

 2 27.9 36.3 47.3 

B2 1 19.7 25.6 33.3 

 2 17.2 22.4 29.2 

 

5.3 Summary of odour results 

5.3.1 Summer 2000-2001 

The on pond and back calculated emission rate data for summer 2000-2001 is shown 

in Table 30 and Figure 23. 
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Table 30: Average daily odour emission rates for summer 2000-2001  (OUm-2s-1) 

Day 1 Day 2 Piggery 

Average on Pond Average 

Downwind 

Average on pond Average 

downwind 

A 9.7 N/A 8.5 2.7 

B 7.2 N/A 8.6 6.4 

C 24.5 27.8 10.1 18.8 

D 7.1 7.3 10.3 15.9 

E 10.1 6.8 12.8 7.8 

F DNS15

B2 14.7 N/A 15.0 30.9 

 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Directly measured OER (OU/m2.s)

D
ow

nw
in

d 
O

ER
 (O

U
/m

2 .s
)

Data points Summer 00-01 Linear (Data points Summer 00-01) Linear (Theoretical 1:1)

 

Figure 23: Comparison of on pond and downwind emission rates summer 00/01 

5.3.2 Winter 2001 

The on pond and back calculated emission rate data for winter 2001 are shown in 

Table 31 and Figure 24. 

                                                 
15 DNS – Did not sample Piggery F during this period 
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Table 31: Average daily odour emission rates for winter 2001 (OUm-2s-1) 

Day 1 Day 2 Piggery 

Average On 

Pond 

Average 

Downwind 

Average on pond Average 

downwind 

A 15.2 N/A 21.5 11.7 

B 19.4 13.1 10.9 4.5 

C 19.8 9.9 35.0 31.2 

D DNS16

E 29.2 9.3 14.4 16.6 

F N/A 2.8 24.5 18.8 

B2 12.0 9.2 18.9 12.6 

Figure 24 shows the winter odour emission rate data. 
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Figure 24: Comparison of on pond and downwind emission rates Winter 2001 

 

                                                 
16 DNS – Did not sample PiggerD during this period 



 86 

5.3.3 Summer 2001-2002 

The on pond and back calculated emission rate data for summer 2001-2002 are 

shown in Table 32 and Figure 25. 

Table 32: Average Daily Odour Emission Rates for summer 2001-2002  (OUm-2s-1) 

Day 1 Day 2 Piggery 

Average On 

Pond 

Average 

Downwind 

Average on pond Average 

downwind 

A 21.6 10.4 7.0 4.1 

B 36.0 N/A  14.0 N/A 

C DNS17

D 22.4 10.8 70.6 87.7 

E 26.6 20.1 32.3 34.1 

F 29.1 21.4 31.6 25.5 

B2 25.6 N/A  22.4 N/A 
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Figure 25: Comparison of on pond and downwind emission rates summer 2001-2002 

 

                                                 
17 DNS – Did not sample Piggery C during this period 
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5.3.4 Overall effectiveness 

All pairs of data for downwind modelled odour emission rate and on pond odour 

emission rate across the three sampling seasons are shown in Figure 26 and the 

results of linear regressions on the data sets are shown in Table 33. 
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Figure 26: All data points for all seasons 

 

Table 33: Summary of seasonal regression results  

Seasons R2

Summer 2000-2001 42.5 

Winter 2001 45.8 

Summer 2001-2002 90.0 

All 72.5 

5.4 Source footprint 

The results of the footprint assessment for the three sampling periods are shown 

below. Examples of the data required to calculate the influence of footprint is shown 

in Table 34 and Table 35 below. Both show the modelling of all points and the entire 

pond for a day at Piggery A and Piggery F respectively.  A summary of the footprint 
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modelling for summer 2000/2001, winter 2001 and summer 2001/2002 are shown in 

Table 36, Table 37 and Table 38 respectively. The results of the linear regression 

analysis undertaken on the data sets for the averaged and the weighted emission 

rates are shown in Table 39. 

Table 34: Example of modelling for Piggery A Downwind 1 

Source 

Description 

Adjusted 

Dimensions 

(m) 

Co-

ordinates 

(m from 

centre) 

Ψ % 

Total 

Direct 

Measured 

OER (OUm-

2s-1) 

Weighted 

contribution to 

downwind source 

Entire 54,47.5 19,31.3 10.33867    

1 18,15.8 3.8,50 0.00003 0.0 10.1 0.00 

2 18,15.8 3.8,31.3 0.01835 0.1 9.7 0.01 

3 18,15.8 3.8,13.5 3.12689 25.5 7.0 1.79 

4 18,15.8 19.5,50 0.08140 0.7 8.0 0.05 

5 18,15.8 19.5,31.3 1.82097 14.9 12.0 1.79 

6 18,15.8 19.5,13.5 4.06163 33.1 4.4 1.47 

7 18,15.8 36,50 0.92511 7.5 11.3 0.85 

8 18,15.8 36,31.3 1.99046 16.2 8.5 1.37 

9 18,15.8 36,13.5 0.23135 1.9 5.3 0.10 

  Total 12.25619 100  7.4 
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Table 35: Example of modelling for Piggery F - Downwind 1  

Source 

Description 

Adjusted 

Dimensions 

(m) 

Co-

ordinates 

(m from 

centre) 

Ψ % 

Total 

Direct 

Measured 

OER (OUm-

2s-1) 

Weighted 

contribution to 

downwind source 

Entire 27.5,40 -21,8.8 4.61493    

1 13.5,13.5 -35,16.3 0.28195 5.6 39.6 2.2 

2 9.5,9.5 -35,1.8 0.19952 3.9 11.6 0.5 

3 13.5,13.5 -21,16.3 0.46054 21.8 38.0 8.3 

4 13.5,13.5 -21.5,1.8 1.10471 9.1 39.6 3.6 

5 13.5,13.5 -7.8,16.3 0.21481 4.2 25.7 1.1 

6 13.5,13.5 -7.8,1.8 2.81007 55.4 19.8 11.0 

  Total 5.07160 100  2.2 
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Table 36: Footprint analysis results – summer 2000/2001 

Piggery Date Downwind 

Number 

Footprint based 

OER (OUm-2s-1) 

Average of all 

points (OUm-2s-1) 

A 22/02/01 1 10.1 9.7 

A 22/02/01 2 10.1 9.7 

A 22/02/01 3 7.5 8.5 

B 01/03/01 1 9.7 8.6 

B 01/03/01 2 9.0 8.6 

C 06/03/01 1 23.5 24.5 

C 08/03/01 1 12.6 10.1 

C 08/03/01 2 7.3 10.1 

D 13/03/01 1 12.9 7.1 

D 13/03/01 2 9.2 7.1 

D 15/03/01 1 8.2 10.3 

D 15/03/01 2 10.4 10.3 

E 20/3/01 1 13.5 10.1 

E 22/03/01 1 13.5 12.8 

E 22/03/01 2 12.3 12.8 

B 12/04/01 1 16.6 15.0 

B 12/04/01 2 14.8 15.0 
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Table 37: Footprint investigation results – winter 2001 

Piggery Date Downwind 

Number 

Footprint based 

OER (OUm-2s-1) 

Average of all 

points (OUm-2s-1) 

A 26/07/01 1 16.5 21.5 

A 26/07/01 2 16.5 21.5 

B 17/07/01 1 17.1 19.4 

B 17/07/01 2 17.1 19.4 

B 19/07/01 1 8.3 10.9 

B 19/07/01 2 11.6 10.9 

C 31/07/03 1 14.1 19.8 

C 31/07/03 2 14.1 19.8 

C 02/08/01 1 34.5 35.0 

C 02/08/01 2 5.9 35.0 

E 14/08/01 1 12.8 29.2 

E 14/08/01 2 12.8 29.2 

E 16/08/01 1 4.6 14.4 

E 16/08/01 2 16.6 14.4 

F 09/08/01 1 36.5 24.5 

F 09/08/01 2 21.5 24.5 

B 21/08/01 1 10.4 12.0 

B 21/08/01 2 10.4 12.0 

B 23/08/01 1 15.0 18.9 

B 23/08/01 2 16.2 18.9 
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Table 38: Footprint investigation results – summer 2001/2002 

Piggery Date Downwind 

Number 

Footprint based 

OER (OUm-2s-1) 

Average of all 

points (OUm-2s-1) 

A 26/02/02 1 33.2 21.6 

A 26/02/02 2 33.2 21.6 

A 28/02/02 1 6.6 7.0 

A 28/02/02 2 6.6 7.0 

D 12/03/02 1 25.0 22.4 

D 12/03/02 2 24.0 22.4 

D 14/03/02 1 74.9 70.6 

D 14/03/02 2 74.9 70.6 

E 05/03/02 1 25.5 26.6 

E 05/03/02 2 29.6 26.6 

E 07/03/02 1 28.0 32.3 

E 07/03/02 2 28.0 32.3 

F 19/02/02 1 33.0 29.1 

F 19/02/02 2 29.1 29.1 

F 21/02/02 1 24.2 31.6 

F 21/02/02 2 24.2 31.6 
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Table 39: Regression results from comparing back calculated values to weighted and 
non weighted emission rates 

Season Averaged OER (R2) Weighted OER (R2) 

Summer 2000-2001 42.5 26.2 

Winter 2001 45.8 19.3 

Summer 2001-2002 90.1 80.0 

Combined 72.5 67.1 

 

The data in Table 39 shows that allowing for the concept of source footprint and 

weighting the emission rates accordingly does not improve the correlation between 

the on pond derived OER and those predicted using the model. 

5.5 Stability classes 

As shown in the sensitivity analysis, stability class plays an important role in the 

model’s interpretation of odour dispersion. The stability class information obtained 

during the sampling process is summarised in Table 40. The frequency of occurrence 

of a particular stability class calculated using the Sigma-A method is shown in Figure 

27. The relationship between the measured OERs and the back-calculated OERs 

sorted by stability class is shown in Figure 28. The average temperatures during 

sampling for the three sampling periods are shown in Table 41. 
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Table 40: Number of stability class events during all sampling periods. 

Stability class Summer 

2000-2001 

Winter 2001 Summer 

2001-2002 

Total number 

of 

occurrences 

% 

A 7 4 5 16 31 

B 2 2 0 4 8 

C 5 4 3 12 24 

D 3 9 7 19 37 

Total 17 19 15 51 100 
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Figure 27: Stability class events during measurement by season 
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Figure 28: Comparison of STINK prediction and measured OER by stability class 

 

Table 41: Daily average temperatures  

Season Temperature (degrees Celsius) 

Summer 2000-2001 26.8 

Winter 2001 15.9 

Summer 2001-2002 22.5 

 

5.6 Impact of fetch 

The results of the fetch analysis are shown in Figure 29. Overall, for all data points 

for all seasons (Figure 26), 39% of the values had an on pond to downwind ratio of 

1:0.7 or better and 61% of values had a ratio of less than 1:0.7.  
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Figure 29: Results of fetch assessment 

 

In Figure 29, there is no evidence of a significant reduction in emission rate, as 

proposed by Jiang (2002) for ponds up to 120 metres in length. 

5.7 Effectiveness on elevated ponds 

Of all the ponds studied Piggery B had a pond that was elevated approximately 2 

metres above the surrounding landscape. By elevated, it is inferred that the style of 

pond is that of a “turkey nest” dam and not constructed on a gradient where one or 

more sides are above the surrounding landscape. 

To assess the effect of elevated ponds on the predicted OERs, Piggery B was 

removed from the data set and the linear regression was calculated on the remaining 

data using Genstat. The results of this are shown in Table 42.  
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Table 42: Linear regression results for elevated ponds 

Season With Piggery B Without Piggery B 

Summer 2000-2001 42.5 53.5 

Winter 2001 45.8 12.4 

Summer 2001-2002 90.1 N/A18  

All 72.5 80.9 

 

Table 42 shows that overall; removing the elevated pond increased the correlation by 

approximately 8%. No influence was observed during the summer of 2001-2002 as 

Piggery B was not modelled due to weather station failure. It is concluded that based 

on the limited data, using the model on an elevated pond would not significantly alter 

the models prediction of emission rates. 

                                                 
18 No difference as due to weather station failure no back calculated values were available for Piggery B 
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Chapter 6 Discussion 

6.1 Introduction 

Indirect methods can be used where the collection of downwind odour samples 

occurs after the ambient air has mixed with odour from the source.  This eliminates 

the chances of errors associated with enclosure methods being introduced. At 

present, it is unknown which of the available methods actually provides the most 

accurate estimate of an areal odour emission rate 

Downwind methods are used to calculate emission rates from emitting surfaces by 

combining a concentration measured downwind of the source with local 

meteorological conditions at the time of sampling.  While a number of methods have 

been used, each method is based upon the premise that a downwind concentration 

can be related to an upwind source via a mathematical formula (Denmead et al., 

1998; Edgar et al., 2002; Koppolu et al., 2002; Sarkar and Hobbs 2003; Smith 1993; 

Smith and Kelly 1996). 

Smith (1993; 1995) developed the STINK model specifically to predict odour 

dispersion close to a ground level source.  The results generated using the STINK 

model in this report, have shown the model performed moderately well during the 

summer 2000-2001 and winter 2001 sampling periods. The model performed very 

well for the summer of 2001-2002. 

Overall, the model showed a good correlation (R2 of 72.5, Table 33) when the three 

datasets were combined. The odour emission rate calculated using the wind tunnel 

and the odour emission rate calculated from the STINK model should be similar, that 

is giving a 1:1 relationship. Figure 26 shows that this was the case, with the 

relationship being close to 1:1. However, the results from each season shown above 

do not show this as clearly as the individual season results do not follow the 1:1 line. 
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Possible causes of this variation would be related to the variation inherent in 

olfactometry and the limited number of data points used to generate the 

relationships. 

Whether the model over or under predicted emission rates during a given season can 

be linked back to the relationship between the accuracy and suitability of the 

methods. That is, which method provides the “real” emissions? The wind tunnel and 

STINK model have shown a good correlation; from this one may conclude that they 

both predict the emission rate as well as each other. Previous work, such as that of 

Sarkar and Hobbs (2003), has shown that back calculation methods are comparable 

to wind tunnel studies (when using a Lindvall hood). More recent work by Sommer et 

al. (2004) has shown that whilst two downwind methods compared well, when 

determining gaseous emission rates, neither correlated well with a flux chamber. The 

lack of data surrounding which of the available methods provides a realistic emission 

rate hampers further assessments. The overall correlation between downwind and 

measured values shows promise for future use of the model, and back calculation in 

general.  A number of the variables associated with the use of the modelling are 

discussed further below. 

6.2 Efficacy of model 

Both the downwind method and the wind tunnel each provide an estimate of the true 

emission rate, which currently, cannot be determined directly and accurately.  

Overall, a good correlation (R2 of 72.5) was observed for odour emission rates 

determined using the two techniques. This indicated that the back calculation method 

and wind tunnel were within a similar order of magnitude and were close to the 1:1 

relationship. It is known that wind tunnels and flux chambers do not relate well (Jiang 

and Kaye 1996) thus the findings of Sommer et al. (2004) as discussed previously 
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reinforced the fact that flux chambers are not suitable for determining emission rates 

for future use in dispersion models. 

A significant difference between this work and previous use of STINK, such as that of 

Smith and Kelly (1996), is that this project made use of a spatially averaged odour 

emission rate, (i.e. an average pond odour emission rate derived from a number of 

discrete samples).   

The seasonal results detailed above (Figure 23 to Figure 25), showed a different 

relationship between the modelled emission rate and that measured directly.  The 

model appeared to over predict the OERs in summer, whilst it under-predicted OERs 

in the winter period.  It is important to note that these results were derived from the 

limited data points that were available.  

Overall, the results for the three seasons (Figure 26) showed that the correlation 

between wind tunnel and the STINK model were similar to the theoretical 1:1 line. 

The results of the linear regressions performed on the data were shown in Table 33. 

Whilst there was enough data to derive a relationship, it can be seen in Figure 26 

that the majority of the emission rates are between 10 and 30 OUm-2s-1. Obviously, 

more data points between 30 and 60 OUm-2s-1 would benefit this work through an 

enhanced view of both on pond samples and back calculated odour emission rates. 

A number of factors must be considered when explaining the deviation of the 

relationship from the 1:1 line. The data indicated seasonal variation that could be 

caused by changes in atmospheric conditions. While the nature of the pond liquor 

may also change seasonally, both emission rate estimation techniques would 

presumably be influenced equally.   

The sample collection techniques followed for both methods could contribute to the 

deviation from the ideal relationship. Samples collected from the pond surface were 

collected as single samples on each sampling day – the variability of emission rate 

between samples collected over a short time scale remains unknown. This is 
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important because the odour samples were collected from the pond surface over a 

period of up to six hours duration. In contrast, the downwind samples were all 

collected over relatively short periods within this six-hour sampling period.   

In conclusion, the correlation between downwind and directly measured odour 

emission rates shows promise for future use of the model. A number of variables 

could have influenced the seasonal variation observed and are discussed further 

below. 

6.2.1 Stability class  

The stability of the atmosphere refers to its tendency to resist or enhance vertical 

motion of an air parcel.  These were described as follows by Harris et al. (1996): 

• Stable – A small parcel of air given an upward push tends to return to its 

original position; 

• Neutral – No tendency for a parcel of air to move up or down from its original 

position; and 

• Unstable – A small parcel of air continues to rise after being given a push 

upwards. 

Stability class influences the amount of spread (vertically and horizontally) of the 

plume and thus the downwind odour concentration. The preferred scheme for 

describing and categorising atmospheric stability is that proposed by Pasquill in 1961 

(USEPA 2000a). 

Stability classes for this project were calculated using the on-site meteorological data 

and varied from very unstable to neutral (as shown in Table 40). Recently there has 

been discussion over the accuracy and appropriateness of methods used to 

determine stability classes (eg. Bowen  et al. (1983), Dewundege (2002), Tripp et al. 

(2004) and Mohan and Siddiqui (1998)).  As a result of this, a number of practitioners 

have made use of a combination of methods to determine a stability class for a 

particular time period as, often, data collected can vary in quality and quantity.  
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The results showed that atmospheric stability varied from A to D (very unstable to 

neutral conditions) during sample collection.  The Sigma-A method used in this work 

is one of the methods listed in the USEPA publication, Meteorological Monitoring 

Guidance for Regulatory Modelling Applications. Due to its widespread use, Turner's 

method is seen as the best procedure for determining P-G stability (USEPA 2000a) . 

Of the published literature, very few researchers have used the Sigma-A method. 

Current work being undertaken by DPI&F at Clifton on the Darling Downs has shown 

that of 2500 hours, 68% of time the SRDT and Sigma-A method predicted the same 

stability class (Galvin et al. unpublished). Of the other 30% of predicted classes at 

Clifton, half of these predicted more stable conditions and half predicted unstable 

conditions.  

Experience has shown that under stable conditions, the SRDT and Sigma-A methods 

had the greatest divergence. Of the samples collected, 37% were collected under 

stable conditions, 24% under neutral stability and the other 39% were collected under 

unstable conditions. Thus, in this instance the Sigma-A method is likely to have 

provided a representative estimation of stability classes and therefore odour emission 

rate.  

The meteorological data quality can influence the selection of a method of calculation 

of stability class.  For this project, the sigma-A method was selected.  It is a 

turbulence-based method, which uses the standard deviation of the wind direction in 

combination with the average wind speed. It was selected as it was considered that 

any 2-metre weather station would be able to provide the data required for the 

calculations. An important, yet sometimes overlooked factor is ambient temperature. 

It is known that ambient temperatures have a direct link to atmospheric stability (Oke 

1975). Changes in temperature create convective currents (Harris et al., 1996), which 

cause unstable conditions and thus it would be expected that the summer sampling 

periods would have more occurrences of unstable weather conditions compared to 
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the winter periods.  In addition to the variance caused by stability class, emissions 

are known to follow Henry’s law which, for wastewater treatments plants means that 

hydrogen sulphide emissions (which can be linked to odour) rise when temperatures 

increase (Sattler and Devanathan 2004). 

Differences of up to 10°C were observed between average ambient temperature of 

the winter and the summer periods.  These differences in temperature could in part 

explain why the results in Figure 27 did not show a significant difference in stability 

class events between the seasons.  For the winter of 2001 there appears to be an 

increase of occurrences of stability class D compared to the summer sampling 

periods. However, an increase in stability class C events was not observed, contrary 

to expectations.  This could be attributable to the time of sampling during the day as 

unstable conditions generally occur as the ambient temperature increases. 

Where possible, downwind sampling was undertaken between 06:00 and 12:00 on 

the sampling days.  For this time of day, the atmospheric stability would be expected 

to range from very unstable to neutral depending on the meteorological conditions 

and time of year.  Downwind sampling was not undertaken until the onsite wind 

speeds were at or above 1 m/s as the assumptions underlying Gaussian models do 

not apply at wind speeds below 0.5 m/s (PAE 2003b). Occurrences of wind speeds 

greater than 1 m/s generally did not occur until well after sunrise.  

Stability classes determined on a sampling day were constant or only varied slightly 

as expected (i.e. A-B or B-C) between periods over which the downwind samples 

were collected. 

Figure 28 showed that the model performed well under stability classes of A and D. 

The data indicates that the model performed poorly for stability classes B and C.  

Large variability was observed for the data set for stability class C.  Removal of one 

of the data points was undertaken after statistical tests indicated it was an outlier.  
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The revised data set showed a R2 value for data in stability class C of approximately 

42%.  This value was closer to those shown for classes A and D in Figure 28. 

The cause of the difference in correlation between the two techniques as affected by 

stability class is unknown as the model allows for variation in stability classes.  The 

difference could be attributed to the number of data points (n≈4-19) or random errors 

associated with sampling and analysis.  Overall, the results observed when the 

relationship was reviewed in terms of stability class were very similar to those 

observed for the seasonal results.  The results indicate that the model performs in a 

similar manner irrespective of the stability class.  The good correlation over the three 

seasons indicates that the sigma-A method was appropriate in this instance. 

6.2.2 Variability in emissions by sampling day 

A one-way ANOVA was conducted to determine whether there was a difference 

between the two sample days at each of the piggeries for each season. No 

significant difference was found between the two days for each season. The lack of 

significance could primarily be the result of no replicates. The power of the test was 

conducted and it was found to be approximately 20%. This indicates how likely a 

significant result would be found when it really exists. This is closely related to the 

number of replicates and the difference between the treatment means with values 

closer to 80% or above being preferred. A significant result may have occurred, but 

due to the lack of replication, it has not been found conducting this statistical test. 

6.2.3 Impact of pond spatial variability  

As seen in Chapter 5, spatial variation was observed in emission rates. If spatial 

variability were not a real phenomenon, it could be attributed to random errors 

associated with sampling and analysis. An olfactometer that does not meet the 

standard could quite easily provide erroneous results. Olfactometry can have a 

certain level of variability associated with it, however, if an olfactometer is well 

managed, the level of variability is far less.  
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The repeatability criterion in the Australian Standard (Standards Australia 2001) is, 

“the repeatability (r) shall comply with r ≤ 0.477 (10 r ≤ 3.0)”. This implies that the 

factor that expresses the difference between two single measurements, performed 

on the same testing material in on laboratory under repeatability conditions, will not 

be larger than a factor of 3 in 95% of cases (Standards Australia 2001). The 

underlying problem with the back calculation of odour emissions from area sources is 

the errors inherent in the odour analysis techniques (Sarkar and Hobbs 2003; Smith 

and Kelly 1995). The variation in samples was assessed using a modification of 

standard protocol (Sneath and Clarkson 2000; Standards Australia 2001). 

If the olfactometer met the repeatability criteria of r≤0.477 (10r≤3.0) a 95% confidence 

interval can be calculated based on the number of samples taken. The expected 

variation attributable to olfactometry for a hypothetical 100 OU (Figure 1) showed that 

as the number of samples increases the expected range of samples analysed 

decreases. 

The effect of variation attributable to olfactometry was assessed on a pond-by-pond 

basis. As shown in the results, the variation observed is outside of that which could 

be associated with dynamic olfactometry. This indicated that spatial variability with 

respect to odour emissions is a real issue when sampling from anaerobic piggery 

lagoons. This also shows that taking a sample from a single point on a lagoon may 

not be representative of the spatially averaged OER. 

The use of a wind tunnel could be one source of the observed variation. A 

requirement of the project was to use the wind tunnel to correlate the DPI&F data 

with data from a project funded by Australian Pork Limited (APL) at the University of 

New South Wales (UNSW). Additionally the wind tunnel is the preferred method for 

odour sampling. The tunnel was operated in an identical manner as detailed by Bliss 

et al. (1995). Whilst the internal tunnel velocity may have varied slightly during the 

sampling process (within the limits described in the aforementioned paper) this would 
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have been accounted for in Equation 6, which accounts for variations in wind speed. 

Therefore, it is unlikely that the variation seen could be directly attributable to the 

wind tunnel. The other possible cause of the variation seen in the results is that 

associated with the use of dynamic olfactometry for the analysis of odour.  

6.2.4 Source footprint 

When comparing the results of the direct wind tunnel method and the indirect STINK 

method it is important to remember that both methods provide only an estimate of the 

true emission rate, which cannot be determined directly and accurately. The 

comparison between these two methods has been described previously by Galvin et 

al., (2004). That study showed a moderate to good correlation (R2 of 72.5) for the 

comparison between the emission rates predicted using the STINK model and a 

directly measured, spatially averaged, odour emission rate (as shown in Figure 26). 

A significant difference between this work and other less successful work using the 

STINK model (i.e. Smith and Kelly (1996)), is that this project made use of a spatially 

averaged odour emission rate. In reviewing area source sampling, Galvin et al., 

(2003) found only one occasion  in the literature (Gholson et al., 1989) where the 

impact of spatial variability on emissions measurement was addressed. 

While the STINK model purports to give an average emission rate for the entire 

source over the sampling period, this is not strictly correct.  With the downwind 

sampling point being very close to the edge of the source, not all points within the 

source will contribute equally to the downwind concentration. In fact, the concept of 

the source footprint (Smith 1995; Flesch 1996), should see particular areas of a pond 

dominating the concentration at the downwind sampling location. Hence, by 

weighting the spatially measured odour emission rates according to their contribution 

to the downwind concentration, it would be expected that the resulting average 

emission rate would better match that predicted by back calculation. The R2 of 67.1 

suggests that the scatter was greater than without source footprint incorporated, but 
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the regression line was still close to the 1:1 line. Factors which may mask the 

footprint effect include temporal variation in emission rates, uncertainties in the 

definition of the spatial variability of emissions resulting from the limited footprint of 

the wind tunnel and the small number of measurements, errors associated with the 

dispersion modelling, and the olfactometry.   

It is highly unlikely that the theory underlying dispersion modelling is a significant 

causal factor. If the Gaussian plume equation was seriously flawed, it would not be 

an adopted model of regulatory agencies and the good correlation would not have 

been observed. Let us look at the horizontal dispersion coefficients as an example. 

The values in Beychok (1994) for Pasquill, Turner, Slade, Gifford and Bowne are all 

similar in terms of horizontal dispersion for different stability classes. This indicates 

that multiple studies have confirmed horizontal spread from emitting sources under 

different stability classes. Furthermore, this indicates that the horizontal dispersion 

would have been adequately addressed by the model.  

The most likely cause of the less than perfect correlations for both the arithmetic and 

weighted average emission rates is the temporal variation in point emission rates and 

the time difference between when the two types of samples were taken. Samples 

collected from the pond surface were collected as single samples on each sampling 

day. An example of two days sampling for summer 2000-2001 at one pond can be 

seen in Table 6.  

There did not appear to be any reasons for the variation between the two sampling 

days in the one week. On average, it took 45 minutes to take a sample at a single 

measurement point, including movement of the wind tunnel and stabilisation prior to 

sampling. Therefore, the time taken to take the samples at every point on a large 

pond was approximately six hours. In contrast, the corresponding downwind samples 

were collected over a relatively short period (6 minutes) within this six-hour period. 

The correlation between the short-term downwind concentrations and the directly 
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measured samples showed that the average odour emission rate between the two 

days was similar, indicating a relatively uniform emission rate with time. However, the 

points with the highest emission rate on day one did not necessarily have a high 

emission rate on day two. The emissions vary; however, the cause of this is presently 

unknown. 

A number of studies, other than this study, have examined odour emission rates from 

ponds (e.g. Heber et al. (2000), Lim et al. (2003) and Smith et al. (1999)), however, 

at present, none have investigated temporal, or spatial variation, which makes it 

difficult to compare the data in this document against any other data. 

Uncertainties in the definition of the spatial variability of emissions resulting from the 

limited footprint of the wind tunnel within each sampling grid could also have played a 

role in the unimproved correlation. The wind tunnel has a footprint (sampling area) of 

0.32 m2. The major assumption within this work was that each point measured at the 

centre of the sampling grids was representative of the entire surface area within the 

grid. Rather than indicating that the emission rates vary temporally, the unimproved 

correlation could simply mean that the small-scale spatial variation in emission rates 

is more significant. However, the fact that the averaged data and the back calculated 

emission rates generally follow the 1:1 line suggests that the variation within each 

grid was no greater than the variation between the grids. 

A further issue with the variation could be evaluated by examining the issues 

associated with analysis of ambient odour samples by olfactometry. Three of these 

are (a) the sample decays in the sample bag prior to analysis, (b) the odorous air 

changes via dilution or other processes as it travels from the source to the sampling 

location and (c) the concentrations determined using olfactometry are generally 

above what an ambient concentration would be. The issue of bag materials has been 

noted in a number of publications (e.g. Hudson et al. (2004), Pollock and Friebel 

(2002), van Harreveld (2003) and more recently Koziel et al. (2004)). For the piggery 

Comment [EM2]: Should this 
explanation of ‘footprint’ be 
mentioned earlier than here?  
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samples taken in this project, the sample material (Melinex) did not appear to have 

issues associated with sample stability (Hudson et al., 2004) or other factors 

including contamination due to manufacturing (Koziel. et al., 2004). All samples were 

analysed within 12 hours of being taken (which is under half the time recommended 

by the olfactometry standard), thus, it is unlikely that sample decay is an issue for the 

sample bag used in this work. 

The change of an odour as it travels from a source to the receptor (e.g. through 

absorption of odorous materials onto plants) is an unanswered issue. One earlier 

validation study using a Gaussian model concluded that the lack of correlation 

between measured emissions and predicted emissions through back calculation are 

a result of interactions between the odorous air and other features prior to reaching a 

receptor (Edgar et al., 2002). Given that the samples taken in this project were never 

more than 2 metres from the edge of the emitting surface, it is unlikely that the results 

would have been affected by this phenomenon (Galvin et al., 2004). The third issue 

of the downwind sample concentration was also addressed by Galvin et al., (2004). 

They concluded that the result of error associated with downwind measurement 

using olfactometry for samples taken close to an emitting surface were not very 

significant. 

The stink model produces a non-dimensional coefficient (Ψ), which is then 

incorporated into Equation 15 to determine an odour emission rate. In theory, the 

coefficient for the entire source should equal the sum of the coefficients for the 

subsets of the source for a common downwind sampling location. As seen in the 

results (Table 34 and Table 35) this was not always the case. On first glance, it 

would appear that the model did not provide a similar prediction when the source is 

divided into a number of smaller sources. What one must remember is that the 

breakdown of the source was undertaken via scaling of a printed GPS output. The 

receptor co-ordinates were taken from the scaled plan by measuring the value with a 
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ruler. As most rulers do not measure distances less than 0.5 mm it is likely that the 

variation observed was a result of slight variations in the co-ordinate distances 

associated with scaling from the maps for modelling. Generally, the variation in 

calculated non-dimensional coefficients did not cause large variations in estimated 

emission rate, as velocity and concentration both had to be incorporated to calculate 

an emission rate.  

The effect of source footprint has been evaluated for downwind samples taken at 

piggeries and it has been found that the closest points of the emitting surface do not 

dominate the measured downwind concentration. This data indicates that whilst the 

emissions from a piggery vary spatially, they also vary temporally, as the ponds 

appear to have an “average” odour emission rate with time. While uncertainties 

regarding spatial and temporal variability still remain, the impact of footprint on the 

model performance does not appear to be as significant as previously proposed. 

6.2.5 Effect of elevation of ponds on model predictions 

Roughness height is used to represent the influence of topographic features such as 

buildings or vegetation (VicEPA 2000). The turbulence associated with the 

atmosphere around a pond can be linked to roughness elements such as trees and 

buildings (Harris et al., 1996). This means that any pond elevated above the 

surrounding ground level would have different turbulence characteristics relative to 

ponds that were not elevated.  For ponds built above the surrounding landscape the 

use of a standard surface roughness, value may be inappropriate.  

The pond at Piggery B was found to be the only pond that was elevated above the 

surrounding ground level.  It was estimated that the top of the pond wall was 2 

metres above the surrounding landscape.  The impact that results from this elevated 

source may have had on model prediction was assessed by performing a linear 

regression on the data sets with and without the data from Piggery B. The results of 

this assessment were shown in Table 42 above.  
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The difference in relationship between the emission rates generated using the two 

techniques with and without data from Piggery B is not large.  Removal of data for 

the elevated pond improved the correlation between the model and wind tunnel 

predictions indicating that even though the roughness height may not have perfectly 

described the area near the source, the model still performed well.  The improved 

correlation, however small, does indicate that the use of a standardised roughness 

height of 0.15m is acceptable in this instance. 

6.2.6 Impact of fetch  

Jiang (2002) proposed that odour emissions from ponds measured using a UNSW 

wind tunnel were actually a factor of two higher than those that would be derived 

from downwind samples.  He proposed that fetch caused this effect. The fetch theory 

proposes that the transfer of odour from the liquid surface into the air-stream passing 

over the surface is reduced as the concentration of odour in the air-stream increases 

(Nicholas et al., 2003). This is in effect a consequence of changes to the 

concentration gradient between the liquid and the atmosphere above it. 

The impact of fetch was assessed by determining the distance of each point to the 

upwind edge of the pond. The difference between the directly measured odour 

emission rate and the calculated odour emission rate was plotted against the fetch 

length.  It would be anticipated that a consistent bias would indicate that the fetch 

length might influence the downwind-calculated result.   There was no evidence of a 

trend or bias in the relationship between odour emission rate and fetch length – the 

data appears randomly scattered over a wide range of fetch lengths and differences 

in odour emission rate values. 

In addition, the similarity between the emission rate results directly measured using 

the UNSW wind tunnel and those derived from STINK model predictions (thus close 

to the 1:1 ratio in Figure 29) indicates that fetch cannot be as significant as proposed 

by Jiang (2002). If fetch were significant, the relationship between measured odour 
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emission rate and calculated odour emission rate would be highly dependent on the 

physical pond dimensions or the wind speed. 

6.2.7 Difference between seasons 

Differences were observed between the three seasons (Figure 23 to Figure 25). 

Anecdotal evidence from both literature and personal observations has shown that 

stable conditions are more likely to occur during winter. Thus, it would be expected 

that the stability classes would be biased towards stable to neutral conditions (D & C) 

for the winter sampling period. This was not the case. However, as the model 

considers stability, it would be expected that the model would give an indicative 

emission rate irrespective of stability class. 

For the summer 2000-2001 period the results showed that the model under predicted 

for the lower emission rates (i.e. < 7 OUm-2s-1) and over predicted above this value. 

For the winter of 2001 the model was found to under predict when compared to the 

on pond values which may indicate the effects of fetch, however during the summer 

of 2001-2002 the model again under predicted at around 40 OUm-2s-1 and over 

predicted above this value. This phenomenon could be attributed to the limited 

number of data points available (n ≈ 25). 

There are a number of reasons other than the number of data points to explain the 

differences in the observed data from the theoretical 1:1 relationship. These include 

the representativeness of the sampling grid system used, the effects of temperature, 

the way the stability class was determined including fluctuations in meteorological 

conditions at the time of sampling.  

6.2.8 Measurement characteristics of anemometer and direction vane 

Another possible source of variation is that the meteorological data used during this 

process was unduly influenced by the wind speed and wind direction measurement 

devices. However, upon inspection it was discovered that the accuracy of the wind 

speed sensors was 1.5% and the wind direction sensors was 3%. Upon investigation 
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it was discovered that the 3% accuracy in the measured wind speed would have 

caused approximately 2% variation in the predicted odour emission rate.  

A concern with the meteorological data was that the wind direction could only read 

between 0 and 355 degrees as the sensor used had a 5-degree dead band from 0 to 

355 degrees. This means that values between 0 and 355 degrees would not be 

registered by the sensor and would default to zero. It should be noted that aligning a 

anemometer in the field is difficult and aligning and anemometer precisely north may 

not be a working reality. Thus, issues associated with small changes in wind direction 

may be out of the research team’s control and are unlikely to have significant impacts 

on the predicted odour emission rates. 

The sensitivity analysis identified wind direction as an important input when using the 

model. Further investigation showed that no readings were used where the wind was 

in the above-mentioned range thus this would not have affected the results in this 

document. The accuracy of the sensor was plus or minus 3 degrees. The sensitivity 

analysis showed that for the pond studied a change in 4 degrees one way resulted in 

an increase in approximately 10% for the odour emission rate whereas a change the 

other way resulted in a decrease in the predicted emission rate by 10%.  

The sigma-A method uses the standard deviation of the wind direction in combination 

with the scalar wind speed. The meteorological data used during this project was a 

combination of all of the data readings over the half hour preceding and post 

sampling as per USEPA (2000a). Up to 360 readings per 6 minute period were taken 

by the weather station and thus the use of this averaged data may have reduced the 

impact or meandering of the weather data and the error inherent in the device. 
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Chapter 7 Conclusion 

The data in this document shows that the STINK back-calculation technique and the 

UNSW wind tunnel gave similar estimates of odour emission rates. This is important, 

as the USEPA flux chamber, which has been shown to derive lower emission rates 

than other methods, is the approved method of the New South Wales Environmental 

Protection Agency. This may lead to underestimation of odour impacts. As the 

Gaussian STINK model has been shown to be capable of predicting an odour 

emission rate with reasonable accuracy it would be expected that a technique that 

provides a much lower emission rate would not be suitable for odour emission rate 

determination.  

The results of the sensitivity analysis for samples taken close to a source indicate 

that the input variables in order of importance for the STINK model are: 

1. Wind speed; 

2. Atmospheric stability; 

3. Pond size and alignment;  

4. Surface roughness; 

5. Wind angle/direction; 

6. Averaging time; and  

7. Monin-Obukhov length (under stable conditions as the length approaches 

zero). 

Overall, the results show that for samples taken close to an areal source the 

emission rates calculated using the model are comparable to those derived using 

multiple samples from a ponds surfaces. These results indicate that: 

• If sufficient large samples are taken, the directly measured and STINK model 

calculated odour emission rates are comparable; 
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• The removal of the elevated pond from the dataset improved the correlation 

between on pond measurements and modelling, indicating that the elevation 

of the source can influence downwind concentrations;  

• The similarity between the emission rate results directly measured using the 

UNSW wind tunnel and those derived from STINK model predictions 

indicates that fetch does not appear to be a significant effect; 

• The model incorporates spatial variability of odour emissions providing and 

average odour emission rate;  

• If two downwind samples are used, the estimate of odour emission rate 

calculated using the STINK model is likely to be at least as good as that 

derived from a significant number of samples (say six) collected directly from 

the pond surface, or better than an estimate derived from a limited number of 

samples (say two) collected directly from the pond surface; 

• While the output of the STINK model is subject to parameter/variable 

selection, conservative use of input parameters will provide reasonable 

estimates of emission rate, and 

• The STINK model is a cost effective alternative to direct measurement of 

odour emission rates, particularly when significant numbers of samples are 

required to be collected directly from a pond surface. 
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