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summary

The estimation of the slope parameter of the linear regression model with
normal error is considered in this paper when uncertain prior information
on the value of the slope is available. Several alternative estimators are
defined to incorporate both the sample as well as the non-sample informa-
tion in the estimation process. Some important statistical properties of the
restricted, preliminary test, and shrinkage estimators are investigated. The
performances of the estimators are compared based on the criteria of un-
biasedness and mean square error. Both analytical and graphical methods
are explored. None of the estimators is found to be uniformly superior over
the others. However, if the non-sample information regarding the value of
the slope is close to its true value, the shrinkage estimator over performs
the rest of the estimators.
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1 Introduction

Traditionally the classical estimators of unknown parameters are based exclusively
on the sample information. Such estimators disregard any other kind of non-sample
prior information in its definition. The notion of inclusion of non-sample information
to the estimation of parameters has been introduced to ‘improve’ the quality of the
estimators. The natural expectation is that the inclusion of additional information
would result in a better estimator. In some cases this may be true, but in many other
cases the risk of worse consequences can not be ruled out. A number of estimators

1Department of Mathematics and Computing, University of Southern Queensland, Toowoomba,
Queensland, Australia, email: khans@usq.edu.au. This work was initiated when working as a visit-
ing consultant in the Department of Mathematics and Statistics at the Sultan Quaboos University,
Oman during the second half of 2001

2Department of Mathematics and Computing, University of Southern Queensland, Toowoomba,
Queensland, Australia, email: hoque@usq.edu.au. On leave from Department of Statistics, Univer-
sity of Chittagong, Bangladesh

3School of Mathematics and Statistics, Carleton University, Ottawa, Canada

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11035351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


have been introduced in the literature that, under particular situation, over performs
the traditional exclusive sample information based unbiased estimators when judged
by criteria such as the mean square error and squared error loss.

There has been many studies in the area of the ‘improved’ estimation follow-
ing the seminal work of Bancroft (1944) and later Han and Bancroft (1968). They
developed the preliminary test estimator that uses uncertain non-sample prior in-
formation (not in term of prior distribution), in addition to the sample information.
Stein (1956) introduced the Stein-rule (shrinkage) estimator for multivariate nor-
mal population that dominates the usual maximum likelihood estimator under the
squared error loss criterion. In a series of papers Saleh and Sen (1978, 1985) ex-
plored the preliminary test approach to Stein-rule estimation. Many authors have
contributed to this area, notably Sclove et al. (1972), Judge and Bock (1978), Stein
(1981), Maatta and Casella (1990), and Khan (1998), to mention a few. Ahmed
and Saleh (1989) provided comparison of several improved estimators for two mul-
tivariate normal populations with a common covariance matrix. Later Khan and
Saleh (1995, 1997) investigated the problem for a family of Student-t populations.
However, the relative performance of the preliminary test and shrinkage estimators
of the slope parameter of linear regression equation has not been investigated.

Consider the linear regression equation

y = β0 + β1x + e (1.1)

where y is the response variable; β0 is the intercept parameter; β1 is the slope pa-
rameter; x is the predictor variable and e is the error component associated with
the response variable. Assume that the errors are independently and identically dis-
tributed as normal variables with mean 0 and variance σ2. Then, in the conventional
notation we write, e ∼ N(0, σ2). Also assume that uncertain non-sample prior in-
formation on the value of the slope parameter, β1 is available, either from previous
study or from practical experience of the researchers or experts. Let the non-sample
prior information be expressed in the form of a null hypothesis, H0 : β1 = β10

which may be true, but not sure. We wish to incorporate both the sample infor-
mation and the uncertain non-sample prior information in estimating the slope β1.
Furthermore, we assign a coefficient of distrust, 0 ≤ d ≤ 1, for the non-sample
prior information, that represents the degree of distrust in the null hypothesis. It is
assumed that the intercept parameter is unknown and estimated by the maximum
likelihood estimator (mle). First we obtain the unrestricted mle of the unknown
slope β1 and the common variance σ2 from the likelihood function of the sample.
Based on the unrestricted and restricted (by the null hypothesis) mle of σ2, we de-
rive the likelihood ratio test for testing H0 : β1 = β10 against HA : β1 6= β10. Then
use the test statistic, as well as the sample and non-sample information to define
the preliminary test and shrinkage estimators of the unknown slope.

It is well known that the mle of the slope parameter is unbiased. We wish
to search for an alternative estimator of the slope parameter that is biased but
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may well have some superior statistical property in terms of another more popular
statistical criterion, namely the mean square error. In this process, we define three
biased estimators: the restricted estimator (RE) with a coefficient of distrust, the
preliminary test estimator (PTE) as a linear combination of the mle and the RE, and
the shrinkage estimator (SE) by using the preliminary test approach. We investigate
the bias and the mean square error functions, both analytically and graphically, to
compare the performance of the estimators. The relative efficiency of the estimators
are also studied to search for a better choice. Extensive computations have been
used to produce graphs to critically check various affects on the properties of the
estimators. The analysis reveals the fact that although there is no uniformly superior
estimator that bits the others, the SE dominates the other two biased estimators
if the non-sample information regarding the value of β1 is not too far from its true
value. It is expected that such an information will not be too far from the true
value.

The next section deals with the specification of the model and definition of the
unrestricted estimators of β1 and σ2 as well as the derivation of the likelihood ratio
test statistic. The three alternative ‘improved’ estimators are defined in section 3.
The expressions of bias and mse functions of the estimators are obtained in section
4. Comparative study of the relative efficiency of the estimators are included in
section 5. Some concluding remarks are given in section 6.

2 The Model and Some Preliminaries

Let us express the n sample responses from (1.1) in the following convenient form

y = β01n + β1x + e (2.1)

where y = (y1, . . . , yn)′ is an n × 1 vector of responses, 1n = (1, . . . , 1)′ – a vector
of n-tuple of one’s, x is the n × 1 vector of explanatory variable, β0 and β1 are
the unknown intercept and slope parameters respectively and e = (e1, . . . , en)′ is a
vector of errors with independent components which is distributed as Nn(0, σ2In).
So that

E(e) = 0 and E(ee′) = σ2In. (2.2)

Here, σ2 stands for the variance of each of the error component in e and In is the
identity matrix of order n. From the exclusive sample information, the unrestricted
estimator (UE) of the slope β1 is the usual maximum likelihood estimator (mle)
given by

β̃1 = (x′x)−1x′y. (2.3)

It is well known that, for the normal model, the sampling distribution of the mle of
β1 is normal with mean, E(β̃1) = β1 and variance, E(β̃1 − β1)2 = σ2

Sxx
in which
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Sxx =
∑n

j=1(xj − x̄)2. Therefore, β̃1 is unbiased for β1, and hence the mse is the
same as its variance. Here, the bias and the mse of β̃1 are given by

B1(β̃1) = 0 and M1(β̃1) =
σ2

Sxx
respectively. (2.4)

We compare the above bias and mse functions with those of the three biased esti-
mators, and search for a ‘best’ estimator that may perform better than the other
estimators under some specific condition. It is well known that the mle of σ2 is

S∗2n =
1
n

(y − ŷ)′(y − ŷ) (2.5)

where ŷ = β̃01n + β̃1x in which β̃0 is the mle of β0.
This estimator of σ2 is biased. However, an unbiased estimator of σ2 is given by

S2
n =

1
n− 2

(y − ŷ)′(y − ŷ). (2.6)

The unbiased estimator of σ2 has a scaled χ2 distribution with shape parameter
ν = (n− 2). The standard error of β̃1 is Sn√

Sxx
.

To be able to use the uncertain non-sample prior information in the estimation
of the slope, it is essential to remove the element of uncertainty concerning it’s
value. Fisher suggested to express the uncertain non-sample prior information in
the form of a null hypothesis, H0 : β1 = β10 and treat it as a nuisance parameter. He
proposed to conduct an appropriate statistical test on the null-hypothesis against
the alternative HA : β1 6= β10 to remove the uncertainty in the non-sample prior
information. For the problem under study, an appropriate test is the likelihood ratio
test (LRT). The LRT for testing the null-hypothesis is given by the test statistic

Lν =
√

Sxx(β̃1 − β10)
Sn

. (2.7)

The above statistic Lν , under HA, follows a non-central Student-t distribution with
ν = (n−2) degrees of freedom (d.f.), with the non-centrality parameter 1

2∆2, where

∆2 =
Sxx(β1 − β10)2

σ2
. (2.8)

Equivalently, we may say that L2
ν , under HA, follows a non-central F -distribution

with (1, ν) degrees of freedom having the same non-centrality parameter 1
2∆2.

Under the null-hypothesis Lν and L2
ν follow a central Student-t distribution and an

F -distribution respectively with appropriate degrees of freedom. This test statistic
was used by Bancroft (1944) to define the PTE, and we use the same statistic to
define the shrinkage estimator by following the preliminary test approach to the
shrinkage estimation.
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3 Alternative Estimators of the Slope

As part of incorporating the uncertain non-sample prior information into the
estimation process, first we combine the exclusive sample based estimator, β̃1 with
the non-sample prior information presented in the form of a null hypothesis, H0 :
β1 = β10 in some reasonable way. First, consider a simple linear combination of β10

and β̃1 as
β̂1(d) = dβ̃1 + (1− d)β10, 0 ≤ d ≤ 1. (3.1)

This estimator of β1 is called the restricted estimator (RE), where d is the degree
of distrust in the null hypothesis, H0 : β1 = β10. Here, d = 0, means there is no
distrust in the H0 and we get β̂1(d = 0) = β10, while d = 1 means there is complete
distrust in the H0 and we get β̂1(d = 1) = β̃1. If 0 < d < 1, the degree of distrust
is an intermediate value which results in an interpolated value between β10 and β̃1

given by (3.1). The restricted estimator, as defined above, is normally distributed
with mean and mean square error given by

E[β̂1(d)] = dβ1 + (1− d)β10 and M[β̂1(d)] =
σ2

Sxx
[d2 + (1− d)2∆2] (3.2)

respectively. Following Bancroft (1944) we define a preliminary test estimator (PTE)
of the slope parameter as

β̂PTE
1 (d) = β̂1(d)I

(|tν | < tα/2) + β̃1I(|tν | ≥ tα/2

)

= β̃1 − (1− d)(β̃1 − β10)I(|tν | < tα/2) (3.3)

where I(A) is an indicator function of the set A and tα/2 is the critical value chosen
for the two-sided α-level test based on the Student-t distribution with ν = (n − 2)
degrees of freedom. A simplified form of the above preliminary test estimator is

β̂PTE
1 = β10I

(|tν | < tα/2

)
+ β̃1I

(|tν | ≥ tα/2

)
, (3.4)

which is a special case of (3.3) when d = 0. Note that, the β̂PTE
1 (d) is a convex

combination of β̂1(d) and β̃1, and β̂PTE
1 (d = 0) is a convex combination of β10 and

β̃1. We may rewrite (3.3) as

β̂PTE
1 (d) = β̃1 − (1− d)(β̃1 − β10)I(F < Fα) (3.5)

where Fα is the (1−α)th quantile of a central F -distribution with (1, ν) degrees of
freedom. For d = 0, we get (3.5) as

β̂PTE
1 (d = 0) = β̃1 − (β̃1 − β10)I(F < Fα). (3.6)
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The PTE is an extreme choice between β̂1(d) and β̃1. Hence it does not allow any
smooth transition between it’s two extreme values. Also, it depends on the pre-
selected level of significance, α of the test. To overcome these problems, we consider
the shrinkage estimator (SE) of β1 defined as follows:

β̂SE
1 = β10 +

{
1− cSn

|√Sxx(β̃1 − β10)|

}
(β̃1 − β10). (3.7)

Note that in this estimator c is a constant function of n. Now, if |tν | =
∣∣∣
√

Sxx(β̃1−β10)
Sn

∣∣∣
is large, β̂SE

1 tends towards β̃1, while for small |tν | equaling c, β̂SE
1 tends towards β10

similar to the preliminary test estimator. Unlike the preliminary test estimator, the
shrinkage estimator does not depend on the level of significance.

4 Some Statistical Properties

In this section, we derive the bias and the mean square error (mse) functions
of the RE, PTE and SE. Also, we discuss some of the important features of these
functions.

First the bias and the mse of the RE, β̂1(d) are found to be

B2[β̂1(d)] = − σ√
Sxx

(1− d)∆, ∆ =
√

Sxx(β1 − β10)
σ

(4.1)

M2[β̂1(d)] =
σ2

Sxx

[
d2 + (1− d)2∆2

]
(4.2)

where ∆2 is the departure constant from the null-hypothesis. The value of this con-
stant is 0 when the null hypothesis is true; otherwise it is always positive. The
statistical properties of the three estimators depend on the value of the above de-
parture constant. The performance of the estimators change with the change in
the value of ∆. We investigate this feature in a greater detail in the forthcoming
sections.

4.1 The Bias and the MSE of PTE

From the definition, the expression of bias of the PTE is

E[β̂PTE
1 (d)− β1] = E(β̃1 − β1)− (1− d)E

{(
β̃1 − β10

)
I
(
F < Fα

)}
(4.3)

= −(1− d)
σ√
Sxx

E

{√
Sxx(β̃1 − β10)

σ
I

(
Sxx(β̃1 − β10)2

S2
n

< Fα

)}
.
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Note Z =
√

Sxx(β̃1 − β10)/σ is distributed as N(∆, 1), where ∆ =
√

Sxx

σ (β1 − β10),
and Sxx(n− 2)S2

n/σ2 is distributed (independently) as a central chi-square variable
with ν = (n− 2) degrees of freedom.

Evaluating the expression in (4.3) the bias function of β̂PTE
1 (d) is found to be

B3[β̂PTE
1 (d)] = −(1− d)

σ√
Sxx

∆G3,ν

(1
3
Fα;∆2

)
(4.4)

= −(1− d)(β1 − β10)G3,ν

(1
3
Fα;∆2

)
,

where Ga,b(·; ∆2) is the c.d.f. of a non-central F-distribution with (a, b) degrees of
freedom and non-centrality parameter ∆2. The above c.d.f. involves incomplete beta
function ratio with appropriate arguments. This bias function of the PTE depends
on the coefficient of distrust and the departure constant, among other things. To
evaluate the expression in (4.3) we used the following theorem.
Theorem 4.1. If Z ∼ N (∆, 1) and φ(Z2) is a Borel measurable function, then

E
{
Zφ(Z2)

}
= ∆Eφ[χ2

3(∆
2)]. (4.5)

To obtain the mean square error of β̂PTE
1 (d) we need the following theorem.

Theorem 4.2. If Z ∼ N (∆, 1) and φ(Z2) is a Borel measurable function, then

E[Z2φ(Z2)] = E
[
φ{χ2

3(∆
2)}] + ∆2E

[
φ{χ2

5(∆
2)}] . (4.6)

The proof of the above two theorems are given in Appendix B2 of Judge and Bock
(1978). From the definition, the mse expression of the PTE is

M3

[
β̂PTE

1 (d)
]

= E
[
β̂PTE

1 (d)− β1

]2
(4.7)

= E(β̃1 − β1)2 + (1− d)2E(β̃1 − β10)2I(F < Fα)
−2(1− d)E[(β̃1 − β1)(β1 − β10)]I(F < Fα)

=
σ2

Sxx
+ (1− d)2E[

(
β̃1 − β10)2I(F < Fα

)
]

−2(1− d)E
[
{(β̃1 − β10)− (β1 − β10)}(β̃1 − β10)I(F < Fα

)]
.

After completing the evaluation of all the terms on the R.H.S. of the above
expression in (4.7), the mse function of the PTE becomes,

M3[β̂PTE
1 (d)] =

σ2

Sxx

[
1− (1− d2)G3,ν

(1
3
Fα;∆2

)
(4.8)

+(1− d)∆2

{
2G3,ν

(1
3
Fα;∆2

)
− (1 + d)G5,ν

(1
5
Fα; ∆2

)}]
.
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Figure 1: Graph of the mean square error of PTE as a function of ∆2

Figure 1 displays the behavior of the mse function of the PTE for different values
of α with the change in the value of ∆2. The two graphs illustrate the different
features for two values of the coefficient of distrust d = 0.25 and d = 0.50.

Some Properties of MSE of PTE

(a) Under the null hypothesis ∆2 = 0, and hence the mse of β̂PTE
1 (d) equals

σ2

Sxx

[
1− (1− d2)G3,ν

(
1
3
Fα; 0

)]
<

σ2

Sxx
. (4.9)

Thus, at ∆2 = 0 PTE of β1 performs better than β̃1, the UE. As α → 0, G3,ν

(
1
3Fα; 0

)
→

1, then
σ2

Sxx

[
1− (1− d2)G3,ν

(
1
3
Fα; 0

)]
→ d2σ2

Sxx
, (4.10)

which is the mse of β̂1(d). On the other hand, if Fα → 0, G3,ν

(
1
3Fα; 0

)
→ 0, then

σ2

Sxx

[
1− (1− d2)G3,ν

(
1
3
Fα; 0

)]
→ σ2

Sxx
, which is the mse of β̃1. (4.11)

(b) As ∆2 →∞, Gm,ν

(
1
mFα;∆2

)
→ 0, this means the expression at (4.8) tends

towards σ2

Sxx
, the mse of the UE.
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(c) Since G3,ν

(
1
3Fα; ∆2

)
is always greater than G5,ν

(
1
5Fα;∆2

)
for any value of

α, replacing G5,ν

(
1
5Fα;∆2

)
by G3,ν

(
1
3Fα;∆2

)
, (4.8) becomes

≥ σ2

Sxx

[
1 + (1− d2)G3,ν

(1
3
Fα; ∆2

){
(1− d)∆2 − (1 + d)

}]
(4.12)

≥ σ2

Sxx
whenever ∆2 >

1 + d

1− d
.

On the other hand, (4.8) may be rewritten as

σ2

Sxx

[
1 + (1− d)G3,ν

(1
3
Fα;∆2

){
2∆2 − (1 + d)

}− (1− d2)G5,ν

(1
5
Fα;∆2

)]
(4.13)

≤ σ2

Sxx
whenever ∆2 <

1 + d

2
.

This means that the mse of β̂PTE
1 (d) as a function of ∆2 crosses the constant line

M1(β̃1) = σ2

Sxx
in the interval

(
1+d
2 , 1+d

1−d

)
.

(d) A general picture of the mse graph may be described as follows: The mse-
function begins with the smallest value σ2

Sxx

[
1 − (1 − d2)G3,ν

(
1
3Fα; 0

)]
at ∆2 = 0.

As ∆2 grows large, the function increases monotonically crossing the constant line
σ2

Sxx
in the interval

(
1+d
2 , 1+d

1−d

)
and reaches its maximum in the interval

(
1+d
1−d ,∞

)

then monotonically decreases towards σ2

Sxx
as ∆2 →∞.

4.1.1 Determination of optimum α for the PTE

Clearly the (mse and hence the) relative efficiency of the preliminary test estimator
compared with the unrestricted estimator depends on the level of significance α of
the test of null-hypothesis and the departure parameter ∆2.

Let the relative efficiency of the PTE with respect to the UE be denoted by
E(α; ∆2) which is given by

E(α;∆2) = [1 + g(∆2)]−1, (4.14)

where

g(∆2) = 1 + (1− d)∆2
{

2G3,ν

(1
3
Fα;∆2

)
− (1 + d)G5,ν(

1
5
Fα; ∆2

)}
(4.15)

−(1− d2)G3,ν

(1
3
Fα;∆2

)
.
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The efficiency function attains its maximum at ∆2 = 0 for all α given by

E(α; 0) =
[
1− (1− d2)G3,ν

(1
3
Fα; 0

)]−1
≥ 1. (4.16)

As ∆2 departs from the origin, E(α;∆2) decreases monotonically crossing the line
E(α; ∆2) = 1 in the interval

(
1+d
2 , 1+d

1−d

)
, to a minimum at ∆2 = ∆2

min, then from

that point on increases monotonically towards 1 as ∆2 →∞ from below. Now, for
∆2 = 0 and level of significance varying, we have

max
α

E(α, 0) = E(0, 0) = d−2. (4.17)

As a function of α, E(α; 0) decreases as α increases. On the other hand, E(α;∆2)
as a function of ∆2 is decreasing, and the curves E(0;∆2) and E(1/2;∆2) = 1
intersect at ∆2 = 1+d

1−d . The value of ∆2 at the intersection decreases as α increases.
Therefore, for two different levels of significance say, α1 and α2, E(α1;∆2) and
E(α2;∆2) intersects below 1. In order to choose an optimum level of significance
with maximum relative efficiency we adopt the following rule: If it is known that
0 ≤ ∆ ≤ 1+d

1−d , β̂1 is always chosen since E(0, ∆2) is maximum for all ∆2 in this
interval. Generally, ∆2 is unknown. In this case there is no way of choosing a
uniformly best estimator of β1. Thus, we pre-assign a tolerable relative efficiency,
say, E0. Then, consider the set

Aα =
{
α|E(α;∆2) ≥ E0

}
. (4.18)

An estimator β̂PTE
1 (d)) is chosen which maximizes E(α;∆2) over all α ∈ Aα and

∆2. Thus, we solve the following equation for α

max
α

min
∆2

E(α;∆2) = E0. (4.19)

The solution α∗ provides a maximin rule for the optimum level of significance of the
preliminary test. A numerical procedure along with practical illustration of selecting
an optimal α is provided in Khan and Saleh (2001).

4.2 The Bias and MSE of SE

Now, following Bolfarine and Zacks (1992) we compute the bias and the mse of the
SE, β̂SE

1 . The bias of the SE is given by

B4(β̂SE
1 ) = E[β̂SE

1 − β1] = −cE

[
Sn(β̃1 − β10)

|√Sxx(β̃1 − β10)|

]
= − c√

Sxx
E[Sn]E

{
Z

|Z|
}
(4.20)
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where Z =
√

Sxx(β̃1−β10)
σ ∼ N (∆, 1). To evaluate E

{
Z
|Z|

}
we use the theorem below.

Theorem 4.3. If Z ∼ N (∆, 1) and φ(Z2) is a Borel measurable function, then

E

{
Z

|Z|
}

= 1− 2Φ(−∆) (4.21)

where Φ(·) is the c.d.f. of the standard normal distribution. The proof of the
theorem is straightforward.

From the expression of the above bias function, the quadratic bias of the SE,
QB4(β̂SE

1 ) is obtained as

QB4(β̂SE
1 ) =

σ2

Sxx
c2K2

n{1− 2Φ(−∆)}2 =
σ2

Sxx
c2K2

n{2Φ(∆)− 1}2 (4.22)

where Kn =
√

2
n−2

Γ(n−1
2

)

Γ(n−2
2

)
. As ∆2 → 0, QB4(β̂SE

1 ) → 0 and as ∆2 →∞, QB4(β̂SE
1 ) →

σ2

Sxx
K2

nc2. Therefore, QB4(β̂SE
1 ) is a non-decreasing monotonic function of ∆2. Thus,

unless ∆2 is near the origin, the quadratic bias of the SE is significantly large.
In order to compute the mse of β̂SE

1 we consider

E(β̂SE
1 − β1)2 = E(β̃1 − β1)2 + c2E(S2

n)E

{
(β̃1 − β10)2

[
√

Sxx(β̃1 − β10)]2

}
(4.23)

−2cE

{
(β̃1 − β1)(β̃1 − β10)
|√Sxx(β̃1 − β10)|

}
E(Sn)

=
σ2

Sxx
+

c2σ2

Sxx
− 2c

σ2Kn

Sxx

{
E(|Z|)−∆E

( Z

|Z|
)}

.

where Z ∼ N (∆, 1). To find E(|Z|), we have the following theorem.
Theorem 4.4. If Z ∼ N (∆, 1), then

E(|Z|) =

√
2
π

e−∆2/2 + ∆{2Φ(∆)− 1} (4.24)

where Φ(·) is the c.d.f. of the standard normal variable. See Khan and Saleh (2001)
for the proof of the above theorem.

Therefore, the mse of β̂SE
1 is given by

M4(β̂SE
1 ) =

σ2

Sxx

{
1 + c2 − 2cKn

√
2
π

e−∆2/2

}
. (4.25)
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The value of c which minimizes (4.26) depends on ∆2 and is given by

c∗ =

√
2
π

Kne−∆2/2. (4.26)

To make c∗ independent of ∆2, we choose c0 =
√

2
πKn. Thus, optimum M4(β̂SE

1 )
becomes

M4(β̂SE
1 ) =

σ2

Sxx

{
1− 2

π
K2

n

[
2e−∆2/2 − 1

]}
. (4.27)

We compare the above mse with that of the other estimators in the next section.

5 Comparative Study

In this section we compare the bias of the three estimators. Also, we define the
relative efficiency functions of the estimators, and analyze these functions to compare
the relative performances of the estimators.

5.1 Comparing Quadratic Bias Functions

First, we note that the quadratic bias of the RE, PTE and SE are given by

QB2[β̂1(d)] =
σ2

Sxx
(1− d)2∆2 (5.1)

QB3[β̂PTE
1 (d)] =

σ2

Sxx
(1− d)2∆2

{
G3,ν

(1
3
Fα;∆2

)}2

QB4[β̂SE
1 ] =

σ2

Sxx
c2K2

n{2Φ(∆)− 1}2.

Clearly, under the null-hypothesis QB2[β̂1(d)] = QB3[β̂PTE
1 (d)] = QB4[β̂SE

1 (d)] =
0 for all d and α. When ∆2 →∞, QB2[β̂1(d)] →∞ except at d = 1; QB3[β̂PTE

1 (d)] →
0 for all α and d; and QB4[β̂SE

1 ] → σ2

Sxx
c2K2

n, a constant that does not depend on d.
Therefore, in terms of quadratic bias, the RE is uniformly dominated by both the
PTE and SE. For very large values of ∆2, the SE is dominated by the PTE regard-
less of the value of α. From small to moderate values of ∆2, there is no uniform
domination of one estimator over the other. In this case, domination depends on
the level of significance, α. For small values of α, the PTE is dominated by the SE,
and for larger values of α, the SE is dominated by the PTE. However, Chiou and
Saleh (2002) suggest the value of α to be between 20% and 25%. In this interval
of α, the quadratic bias of the PTE approaches to zero for not too small values
of ∆2. However, in practice, the non-centrality parameter is unlikely to be very
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Figure 2: Graph of the quadratic bias of the RE, PTE and SE as a function of ∆2

large (otherwise the credibility of prior information is in serious question), and α
is usually preferred to be small. The quadratic bias of the SE is relatively stable
and approaches to a constant value starting from some moderate value of ∆2, and
is unaffected by the choice of d and α. Therefore, the SE may be a better choice
among the biased estimators considered in this paper. The graph of QB2[β̂1(d)],
QB3[β̂PTE

1 (d)] and QB4[β̂SE
1 ] are given in Figure 2.

5.2 The Relative Efficiency

First we define the relative efficiency functions of the biased estimators as the ratio
of the reciprocal of the mse functions. Then we compare the relative performance
of the estimators by using the relative efficiency criterion.

Comparing RE against UE
The relative efficiency of β̂1(d) compared to β̃1 is denoted by RE[β̂1(d) : β̃1] and

is obtained as
RE[β̂1(d) : β̃1] =

[
d2 + (1− d)2∆2

]−1
. (5.2)

We observe the following based on (5.2).
(i) If the non-sampling information is correct, i.e., ∆2 = 0, the RE[β̂1(d) : β̃1] =

d−2 > 1 and β̂1(d) is more efficient than β̃1. Thus, under the null hypothesis the
biased estimator, RE performs better than the unbiased estimator, UE.

(ii) If the non-sampling information is incorrect, i.e., ∆2 > 0 we study the
expression in (5.2) as a function of ∆2 for a fixed d-value. As a function of ∆2, (5.2)
is a decreasing function with its maximum value d−2(> 1) at ∆2 = 0 and minimum
value 0 at ∆2 = +∞. It equals 1 at ∆2 = 1+d

1−d . Thus, if ∆2 ∈ [
0, 1+d

1−d

)
, β̂1(d) is

13



more efficient than β̃1, and outside this interval β̃1 is more efficient than β̂1(d). For
example, if d = 1

2 , the interval in which β̂1(d) is more efficient than β̃1 is [0, 3), while
β̃1 is more efficient in [3,∞) than β̂1(d). For d= 0.5 the maximum efficiency of β̂1(d)
over β̃1 is 4.

Comparing PTE against UE
Now, we consider the relative efficiency of the PTE compared to the UE. It is

given by

RE[β̂PTE
1 (d) : β̃1] =

[
1− (1− d2)G3,ν

(1
3
Fα;∆2

)
+ (1− d)∆2 (5.3)

×
{

2G3,ν

(1
3
Fα;∆2

)
− (1 + d)G5,ν

(1
5
Fα;∆2

)}]−1

for any fixed d (0 ≤ d ≤ 1) and at a fixed level of significance α. As Fα → ∞,
RE[β̂PTE

1 (d) : β̃1] → [1 − (1 − d2) + (1 − d)2∆2]−1 = [d2 + (1 − d)2∆2]−1 which
is the relative efficiency of β̂1(d) compared to β̃1. On the other hand, as Fα → 0,
RE[β̂PTE

1 (d) : β̃1] → 1. This means the relative efficiency of the PTE is the same
as the unrestricted estimator, β̃1. Note that under the null hypothesis, ∆2 = 0, the
relative efficiency expression (5.3) equals

[
1− (1− d2)G3,ν

(1
3
Fα; 0

)]−1
≥ 1, (5.4)

which is the maximum value of the relative efficiency. Thus the relative efficiency
function monotonically decreases crossing the 1-line for ∆2-value between 1+d

2 and
1+d
1−d , to a minimum for some ∆2 = ∆2

min and then monotonically increases, to
approach the unit value from below. The relative efficiency of the preliminary test
estimator equals unity whenever

∆2
∗ =

(1 + d){
2− (1 + d)G5,ν( 1

5
Fα;∆2)

G3,ν( 1
3
Fα;∆2)

} , (5.5)

where ∆2∗ lies in the interval
(

1+d
2 , 1+d

1−d

)
. This means that

RE
[
β̂PTE

1 (d) : β̃1

]
<=
>

1 according as ∆2
∗

<=
>

∆2. (5.6)

Finally, as ∆2 →∞, RE[β̂PTE
1 (d) : β̃1] → 1. Thus, the preliminary test estimator is

more efficient than the unrestricted estimator whenever ∆2 < ∆2∗, otherwise β̃1 is
more efficient than PTE up to a moderate value of ∆2. As for the relative efficiency
of β̂PTE

1 (d) compared to β̂1(d) we have

RE
[
β̂PTE

1 (d) : β̂1

]
=

[
d2 + (1− d)2∆2

][
1 + g(∆2)

]−1 (5.7)
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Figure 3: Graph of the relative efficiency of the RE, PTE and SE relative to UE
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where g(∆2) = (1− d)∆2

{
2G3,ν

(
1
3Fα;∆2

)
− (1 + d)G5,ν

(
1
5Fα;∆2

)}

−(1 + d2)G3,ν

(
1
3Fα; ∆2

)
. (5.8)

Under the null-hypothesis,

RE[β̂PTE
1 (d) : β̂1(d)] = d2

[
1− (1− d2)G3,ν

(1
3
Fα; 0

)]−1
≥ d2. (5.9)

At the same time we consider the result at (5.4). In combination, we obtain

d2 ≤ RE[β̂PTE
1 (d) : β̂1(d)] ≤ 1 ≤ RE[β̂PTE

1 (d) : β̃1]. (5.10)

For general ∆2 > 0, we have

RE[β̂PTE
1 (d) : β̂1(d)] <=

>
1 according as (5.11)

∆2 <=
>

1 + d

1− d

{
1−G3,ν

(
1
3Fα; ∆2

)}
{

1− 2G3,ν

(
1
3Fα;∆2

)
− (1 + d)G5,ν

(
1
5Fα;∆2

)} . (5.12)

Finally, as ∆2 → ∞, RE[β̂PTE
1 (d); β̂1(d)] → 0. Thus, except for a small interval

around 0, β̂PTE
1 (d) is more efficient than β̂1(d).

Comparing SE against UE
The relative efficiency of β̂SE

1 compared to β̃1 is given by

RE
(
β̂SE

1 : β̃1

)
=

[
1− 2

π
K2

n

{
2e−∆2/2 − 1

}]−1
. (5.13)

Under the null-hypothesis ∆2 = 0, and hence

RE
(
β̂SE

1 : β̃1

)
=

[
1− 2

π
K2

n

]−1
≥ 1. (5.14)

In general, RE(β̂SE
1 : β̃1) decreases from

[
1− 2

πK2
n

]−1 at ∆2 = 0 and crosses the

1-line at ∆2 = ln 4 and then goes to the minimum value
[
1+ 2

πK2
n

]−1
as ∆2 →∞.

Thus, the loss of efficiency of β̂SE
1 relative to β̃1 is 1−

[
1 + 2

πK2
n

]−1
while the gain

in efficiency is
[
1 − 2

πK2
n

]−1
respectively which is achieved at ∆2 = 0. Thus, for
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for different values of d.
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∆2 < ln 4, β̂SE
1 performs better than β̃1, otherwise β̃1 performs better. The property

of β̂SE
1 is similar to the preliminary test estimator but does not depend on the level

of significance. As ∆2 → ∞ the relative efficiency of PTE with respect to UE

approaches to 1 and that of the SE with respect to UE approaches to
[
1+ 2

πK2
n

]−1
.

Comparing SE against PTE relative to UE
To compare the relative performances of the SE and the PTE, first note that

the SE is superior to the PTE when the null hypothesis is true and the level of
significance, α is not too small. This is regardless of the value of the coefficient of
distrust, d. However, as the value of ∆2 increases and or α decreases the relative
efficiency picture changes.

For a fixed value of d, the relative efficiency of the SE with respect to the PTE
is above the 1-line for some value of ∆2 near 0. Then it slides down rapidly, and
passes the curve of the unit relative efficiency (of the UE) from above. The relative
efficiency of SE with respect to UE becomes constant after some moderate value of
∆2. However, the relative efficiency of PTE approaches to 1-line as ∆2 → ∞. For
larger α the relative efficiency of PTE approaches the 1-line for relatively smaller
values of ∆2. The top two graphs in Figure 4 demonstrate the behavior of the
relative efficiency curves for different values of α when d = 0.25 and d = 0.50
respectively. It is clear that as the value of α increases, the relative efficiency of the
PTE with respect to the SE grows higher for some moderate value of ∆2. When
the value of α is smaller the relative efficiency of the PTE is lower, and hence the
SE over performs the PTE for moderate value of ∆2.

From figure 5, it is clear that for ∆2 = 0 the relative efficiency of both the PTE
and SE relative to the UE are greater than one. As ∆2 grows larger, the relative
efficiency of both estimators decrease, but at different rates. Initially the relative
efficiency of the SE relative to the UE is greater than that of the PTE. But for some
larger value of ∆2 it becomes less than that of the PTE.

There is no uniform domination of the SE over the PTE for all ∆2 and every
α. Clearly, the superior performance of the SE relative to the PTE depends on
the value of ∆2. When the value of ∆2 is in the neighborhood of 0, the SE over
performs the PTE for every value of ∆2 close to zero. But, the value of ∆2 is near
0 (that is, (β1− β10) → 0) only when the value of the prior non-sample information
is reasonably accurate (not far from the true value). In other words, if the value of
β1 provided by the non-sample information is not too far from its true value then
the SE dominates the PTE. Furthermore, an unreasonable (far away from the true)
value of prior non-sample information is unlikely to be used by the researchers. In
practice, since the prior non-sample information is based on practical experience or
expert knowledge, it is expected to be close enough to the true value of β1 to make
∆2 close to 0 or reasonably small, and hence the SE would normally be a preferred
option over the PTE.
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Comparing efficiency of SE relative to PTE
In figure 6, the maximum relative efficiency of the SE relative to PTE attained

for ∆2 = 0 and d = 1, regardless of the value of α. At ∆2 = 0, as the coefficient
of distrust, d decreases, the relative efficiency of SE also decreases, and it decreases
below 1 for d = 0. Starting from some moderate value of ∆2, relative efficiency of
SE becomes less than 1 and converges to a stable value, below one, as ∆2 → ∞.
Except for ∆2 = 0 and near 0 the relative efficiency of SE is always higher for
smaller values of d than larger values of d, before converging to a stable value. The
difference between the relative efficiencies of the SE for different values of d is higher
for lower value of α then it’s higher values. As α increases this difference decreases.
Moreover, as α increases, the relative efficiency of the SE also increases for ∆2 = 0
or near 0.

6 Concluding Remarks

The UE is based on the sample data alone and it is the only unbiased estimator
among the four estimators considered in this paper. The introduction of the non-
sample information in the estimation process causes the estimators to be biased.
However, the biased estimators perform better than the unbiased estimator when
they are judged based on the mse criterion. The performance of the biased estima-
tors depend on the value of the departure parameter ∆. In case of the PTE, the
performance also depends on the value of the level of significance. Under the null
hypothesis, the departure parameter is zero, and the SE bits all other estimators
if α is not too high. As α increases, the performance of the PTE improves when
∆ is not too close to zero. At a lower level of significance, the SE performs better
than the PTE more often and over a wider range of values of ∆. When the value
of ∆ is not far from 0, the SE always over performs the PTE and RE. Therefore,
in practice if the researcher could gather a value of β1 from the prior knowledge or
experience that is not too far from its true value, the SE would be the best choice
as an ‘improved’ estimator of the slope.
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