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Abstract: 

Bending behaviour was dealt with in the preceding prequel, its associated failure modes 

identified, and a simplified theoretical approach was proposed for design purposes.  However, 

this approach would not be complete without a simplified method for estimating the shear 

resistance of the beam and its torsional response.  
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INTRODUCTION  

FRP beams are known to experience high shear deformations [1,2,3,4,5,6], it is therefore 

necessary to include the effect of shear in describing their deformation under load. In 

addition, load eccentricities and/or geometrical imperfections, tend to cause a beam to twist 

towards its weaker axis. This lateral torsional buckling often precipitates bending failure. 

Consequently, it can become the primary failure mode of a beam. To avoid this scenario, 

lateral restraints are often provided. Determination of restraint locations is dependent upon the 

critical buckling load, which is a function of the un-restrained span, and the section properties 

of the beam.  

 

In the following sections a simplified method will be developed to check the shear capacity of 

the proposed beam. However, since beams are rarely used in states of pure bending or pure 

shear, the interaction between the two loadings will also be investigated using the 

Timoshenko beam theory.  A method for the determination of the torsion constant of the 

section is also proposed together with simple one-dimensional analysis to study the possibility 

of lateral torsional buckling.  

PURE SHEAR 

Shear – deformation behaviour 

Like in the preceding prequel, the transformed section approach is also used to model shear 

behaviour. The shear modulus, G, is now used in conjunction with the widths of the lamina to 

produce the transformed section. The behaviour of the beam under shear loading is as shown 

on Figure 1. 

 

The shear stiffness of the beam, GA, is initially that of the un-cracked section (region 1). The 

first cracks in the PFR appear at a loading of: 
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where τf6 is the failure shear stress of the core, At is the transformed area of the un-cracked 

section, G is the reference modulus of the transformed section, G6 is the shear modulus of the 

core. The subscript 6 refers to the core material in Figure 1 of the preceding prequel. The 

derivation of equation (1) together with  the coefficient of 1.785 were derived from a shear 

flow analysis of the section of the beam under consideration. The details of the complete 

derivation are given in [7].  

 

Once cracking occurs, the beam becomes a hybrid of cracked and un-cracked sections. The 

beam continues to withstand further loading until failure of the web laminates (point 3). The 

behaviour of the beam and the progression of cracks are similar in nature to that discussed for 

pure bending in the preceding prequel. Using the same bilinear relationship adopted in the 

prequel, the effective shear stiffness for region 2 can be estimated as: 
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where Vultimate is determined in the coming sections. 

Assuming small deformation theory, the obtained effective stiffness can be used to estimate 

shear deformations as detailed in [7] 

 

Shear stress distribution 

As experimental tests revealed [7], shear behaviour of FRP materials is often characterised by 

yielding. In the opinion of the authors, failure may be therefore better defined through the use 

of a limiting stress criterion, which is best suited to characterise the onset of yielding. 
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The stress distribution throughout a beam undergoing shear loading is not uniform. The 

variation in stresses is characterised by the shear flow throughout the section, which can be 

estimated using the following equation [8]: 

 
y

y
y It
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where: τy is the shear stress at the location a distance y from the neutral axis, V is the shear 

force acting on the beam, Qy is the first moment of the area above y, to the neutral axis, I is 

the second moment of area of the section, and ty is the width of the section at the distance y. 

By ignoring shear lag, the equation gives an average shear stress across the width of the 

section. Indeed, shear lag can be considered negligible for thin sections such as those used in 

FRP beam webs as reported in [8].  

 

Using equation (3), two cases were modelled, respectively ignoring and allowing for the 

cracking of the core material. The obtained distributions are shown on Figure 2. 

 

 It can be seen that the shear stresses within the web laminates are much higher when cracking 

of the core is considered. In addition, it can be seen that the maximum shear stress value 

occurs in the webs for both cases. Hence, it is a common and reasonable practice to ignore 

flange contribution to shear resistance in box beams. However, for the sake of completeness, 

flange contributions are considered herein. 

 

Calculation of the maximum shear stress is often facilitated by the introduction of a shear 

correction factor, k3, to the average shear stress. This average shear stress is calculated by: 
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The shear correction factor can be estimated by comparing the values obtained from equations 

(3) and (4). Figure 3 shows the variation of k3 along the depth of the beam. 

 

It appears from these values that the maximum shear stress in the webs can be calculated, 

using a shear flow analysis of the section [7], respectively for the un-cracked and cracked 

transformed sections as: 

 
t

crackedun A
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and: 
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V
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where At.c is the transformed area of the cracked section. Both the coefficients 1.785 and 

3.893 derive from a shear flow analysis of the section of the beam under consideration. The 

details of the complete derivation are given in [7].  

 

In equations (5) and (6) the transformed section is used to come up with a generic shear stress 

for the section. In reality, the shear stresses within the individual components of the web 

(lamina and PFR core) are different. Assuming strain compatibility, and using the modulus 

ratios for the transformed section and the particular laminate, they can be calculated as 

follows: 

 ττ
G
Gi

i =   (7) 

where: τi and Gi are respectively the shear stress and shear modulus in laminate i, G is the 

reference modulus used for the transformed section, and τ is the shear stress calculated from 

equation (5) or (6). These stresses can then be compared with the capacities of the laminates 

to assess whether failure is likely to occur at the given shear loading. 
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Once the stresses in the beam have been determined, the failure modes can be defined with 

reference to these stresses. 

SHEAR INDUCED FAILURE MODES 

Cracking of the core 

Excessive shear stresses in the beam can lead to a number of failure modes taking place. In 

particular, due to its brittle nature, cracking of the core material is likely to occur when the 

maximum shear stress in the web exceeds the failure shear stress of the PFR as shown in 

equation (1). It is expected that cracking will be initiated in the middle of the web where the 

shear stresses are the highest. Once the PFR is cracked, the web and flange laminates provide 

the only resistance to failure at crack locations, as they constitute the main shear 

reinforcement of the beam. With the addition of load, the cracks extend into the flanges 

causing a localised shear dislocation in the beam as shown on Figure 4. As a result, the inner 

RHS is no longer constrained by the core, and is prone to delaminating and buckling. 

Whereas the outer RHS laminate is still restrained and continues to resist the loading until it 

fails in a tensile mode. 

 

Shear failure of the webs 

 
Failure of the web is expected when the shear stress in the outer RHS laminate exceeds its 

shear capacity, which is determined as: 

 
G
G

A
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where τf7 is the shear capacity of the web laminate as determined using ISO 14129, which 

stipulate the testing of a coupon at ±45o.  
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However, experimental results [7] reveal that the shear capacity of the web laminates is higher 

than that estimated using ISO 14129. It was also found that the shear strength of the web 

laminates is governed by fibre fracture. Therefore, equation (8) is reformulated to include 

fibre fracture [7] and results in: 

 45cos893.3 77
7

.
ff

ct G
G

A
V φσ≥   (9) 

Indeed, once the matrix cracks the fibres align themselves with the direction of the load as 

shown schematically on Figure 5. Equation 9 attempts to model the sequential failure 

behaviour of the laminate. It takes into account the residual load carrying ability of the fibres 

once the resin has failed.  

 
 
The capacity of the fibres in tension has been determined by unidirectional tensile tests. By 

multiplying the cross sectional area of the specimen by the fibre fraction ratio (φf), the area of 

fibres in the unidirectional tests is found. The force at failure is then divided by the area of 

fibres to get the fibre fracture stress (σf) The fibres are orientated at 45 degrees in the webs, 

hence the cos45. So the RHS is the shear stress capacity and the LHS is the calculated shear 

stress. 

 

Using the latest equation, a prediction of the ultimate shear capacity of the beam can be 

obtained as: 
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Shear buckling of the webs 

The thinner the web, the higher the likelihood that web buckling will precede shear failure. 

The principal stresses caused by shear are shown on Figure 6. 
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The compressive component of these principal stresses may cause buckling of the web. This 

type of buckling reduces the stiffness of the webs and leads to premature failure of the beam. 

Using a hinged boundary assumption, as adopted in the preceding prequel, a lower boundary 

solution for the critical shear buckling stress can be obtained [9]: 
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where: the parameter 5.35 is based upon thin-walled plate theory for a plate with simply 

supported restraints, tw is the thickness of the web, db is the depth of the void, and νw is the 

Poisson ratio of the web [7]. Comparison of the critical buckling and the maximum shear 

stresses within the web obtained respectively using equations (5) and (6) provides an 

indication as to when shear buckling of the web is likely to occur. It is apparent from equation 

(11) that the web thickness has a major affect upon capacity. A substantial rise in capacity can 

be achieved by a slight increase in web thickness. 

 

Flange failure 

While the webs resist the majority of the shear loading, the flange laminates also provide 

some resistance to shear. As a result, they are susceptible to undergo the following failure 

modes: shear failure of the laminates (L1, L2 or the core), and punching shear of the flange 

into the hollow core of the beam. Furthermore, the fibre orientation and geometry of the 

laminates do not provide any restraint against fibre pull-out, therefore the ISO 14129 

recommended shear capacity applies. 
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Laminate failure in the flanges may happen when the shear stress exceeds the shear capacities 

of the outer laminates (L1 or L14), the unidirectional laminate (L2 or L13), and the core (L3 or 

L12); their respective failure criteria are given as: 
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where τfi is the failure shear stress of laminate i, and the coefficients in the denominators are 

obtained from the shear flow diagrams represented on Figure 3. In case of failure of the 

flanges, the shear force is entirely resisted by the webs. However, as the web carries most of 

the shear, this is unlikely since the shear loads required to cause flange laminate failures are 

well in excess of the webs shear capacity. 

 

Punching shear of the flange into the beam hollow core may split the beam into two parts 

along the longitudinal axis. Such a catastrophic failure can happen if the shear stress within 

the flange exceeds the shear strength of the core in the flange: 
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It is apparent from equation  (15) that flange thickness can be increased with subsequent 

increase in capacity.  
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MOMENT – SHEAR INTERACTION 

Deformation behaviour 

The Timoshenko beam theory stipulates that the total deflection Δt of a beam under a 

combined loading of moment and shear can be decomposed into two additive components, 

namely flexural and shear: 

 smt Δ+Δ=Δ   (16) 

For a beam in four-point bending, where M is the moment and V is the shear force imposed on the 

beam. The values L and a are shown on Figure 7, the flexural and shear deflections are respectively 

given as: 

 

 ( )
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and  

 
effective

s GA
Va

=Δ   (18) 

Shear - moment capacity 

Composite beams are known to experience a moment-shear interaction. That is the 

introduction of a moment into a beam affects its shear capacity and vice versa. Methods for 

predicting the moment-shear interaction for homogeneous beams exist in the literature 

[8,10,11, 2 , 3]  namely: the linear relationship (Eurocomp), and the elliptical relationship.  

 

Linear relationship (Eurocomp) 

A linear relationship has been adopted by the Eurocomp design code [10]. It uses the 

following formula: 
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for the determination of a moment-shear interaction diagram. Where Vu0 and Mu0 are 

respectively the ultimate capacities of the beam in pure shear and moment. 

Elliptical relationship  

When considering isotropic materials, the linear relationship mentioned above is 

conservative and is often replaced with an elliptical derivation that has its roots in the Mohr’s 

circle method. For an isotropic material the general form is as follows: 
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where N is the axial force applied. Given that the primary failure mechanism for the beams in 

flexure is one of an axial failure, the substitution of moment for axial force in equation (20) 

may be acceptable, therefore equation it becomes: 
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This relationship is quadratic and allows higher combined loadings than the Eurocomp 

method. This method is also used for combined web buckling calculations [9]. A 

diagrammatic comparison between the models is given on Figure 8. 

 

Proposed method 

Through the use of the transformed section approach, it is possible to simulate the FRP beam 

as an isotropic medium. Cracking of the core will precipitate failure of the beam. Therefore, 

the cracked section is used in the analysis. The critical location depends on the ratio of 

moment to shear. However, unlike a real isotropic section, the angle the principal strain makes 

with the direction of the fibres in the laminates is of paramount importance. The most critical 
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situation happens when the first principal strain is normal to fibre direction. For each moment 

shear combination, the principal strains and their directions can be established, and compared 

with the material capacity to determine the critical location. By altering the magnitude of 

shear and moment loading, an interaction diagram can be produced. A detailed description of 

the method is given in [7].   

 

Now that a number of models have been defined, they will be compared against FEA and 

experimental data in the next sequel to validate their applicability to FRP beam design. 

 

LATERAL TORSIONAL RESISTANCE OF THE BEAM 

Determination of the torsion constant 

Torsion or twisting in a section induces shear stresses. In the case of a rectangular hollow 

section, such as the present FRP beam, the shear stresses induced within the flanges and webs 

will be of different magnitudes. The difference in magnitudes is due to the dissimilarity in the 

size, spatial location, and make-up of the flanges and webs. The core material could fail in 

tension from these shear stresses, and the section would continue to sustain further loads until 

ultimate failure. The mechanisms of pure shear discussed above are also applicable here. 

Distortional warping of the cross section is prevented by the applied boundary conditions 

used in the experimental set-up. As a result, there is no change in length of the beam and the 

cracks in the PFR remain closed.  As a result, torsional deformation behaviour does not 

display distinct cracked and un-cracked responses. Therefore, the torsion constant, J, for this 

particular set up can be assumed to be independent of the applied loading. 

 

 13



The rotation of the section can now be calculated using a one-dimensional analysis. For thin 

walled box beams, the determination of the torsion constant and rotations can be found in [14, 

8]:  
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This results in the well known Saint Venant torsion constant formula: 

 

∫
=

t
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where: T is the applied torque, L is the length of the beam, G is the shear modulus of the 

beam, φ is the angle of rotation as shown on Figure 9, the integral in the denominator is taken 

along the centre line of the wall section (for example, the integral of an RHS with dimensions 

D × W, web thickness tw and flange thickness tf equals: 

( ) ( )f w

w f

D t W tds 2
t t t

⎛ ⎞− −⎜= +⎜⎜ ⎟
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∫ ⎟
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and  ( )( wf tWtD − )−=Α .        (25) 

 

Through the use of the transformed section approach, the above formulas may be applied to 

determine the shear constant and deformations of the beam. Because of the geometry of the 

section, the transformation is carried out in a cylindrical coordinate system about the centre of 

rotation of the beam. A simplification is to set the transformed flanges to the y-axis 

transformation formula: 

 
G
G

tt i
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and the webs to the x-axis transformation formula as: 
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Where: tti is the transformed thickness, wti is the transformed width, Gi is the shear modulus, 

of laminate i, and G is the reference modulus of the transformed section. A justification of this 

approach is given in [15]. 

 

The resulting torsion constant can now be used within the model to estimate lateral torsional 

buckling behaviour. 

 

Simplified analysis of lateral torsional buckling 

The behaviour of an unrestrained beam under an increasing moment is illustrated on Figure 

10. Minor imperfections in the beam and loading arrangement can result in the beam twisting 

slightly with increased loading. In region 1, as depicted on the graph, the behaviour of the 

beam is stable. However, as the end of region 1 is approached, the rotation of the section 

increases markedly. At this critical loading, the beam is no longer stable as it continues to 

twist without addition of further loading, which ultimately results in its failure. 

 

Analytical formulation of lateral torsional buckling behaviour 

Figure 11 represents the free end of the cantilever beam with an applied load, P. Due to the 

large displacements, the updated configuration, and the additional torque, Pδx, are obtained 

iteratively. 

 

The derivation of the iterative approach is detailed in [7] and results in expressions for the x-

axis deflection, y-axis deflection and rotations respectively equalling: 
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and     
GJ
xLP

4
δφ =           (30) 

 

where L is the cantilever length, EIx and EIy are respectively the bending stiffness of the beam 

in the x and y directions, and δx, δy, and φ are shown on Figure 11.  

 

Equations (28), (29) and (30) are solved for δx, δy, and φ. If the torsional resistance of the 

beam is greater than the average applied torque, Pδx/4, the beam will not buckle and φ will 

converge to zero. The onset of buckling is observed if φ does not result in zero. The critical 

buckling moment is asymptotic to the resulting graph of P versus φ as shown on Figure 10. 

 

Critical buckling moment formulas 

The previously developed approach describes the load deformation path of the beam under 

torsional buckling. However, from a designer point of view only the critical buckling load is 

of interest. This can be obtained using equations based upon Euler buckling theory. A number 

of equations, for the critical buckling moment have been presented in design literature. 

Following is a discussion of a generalised approach, and the other one specifically developed 

for FRP beams. 

Generalised approach 

According to [12], the critical lateral torsional buckling moment of a steel beam is given as:  
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where: Mcr is the critical buckling moment, L is the length of the beam between lateral 

restraints, EIy is the stiffness of the beam about the y-axis, GJ is the torsional stiffness of the 

beam, and EIwarp is the warping stiffness of the beam. For an RHS, Iwarp is taken as zero as the 

section is doubly symmetric.  

 

This formula is for the specific case of a simply supported beam subjected to pure moment 

loading. To allow for other loading and boundary conditions equation (31) is altered to: 

 

 warpy
ef

y
ef

bcr EIEI
L

GJEI
L

CM 4

4

2

2 ππ
+=   (32) 

 

where the coefficient Cb is incorporated to allow for the loading arrangement on the beam and 

Lef is the effective length of the beam, which is related to the end restraints. Gaylord et al. 

gives a range of 1.28 to 1.71 for Cb, and Lef equalling L for the cantilever beam. 

Specific approach for composite beam 

The Eurocomp Design Code [10] presents a formula for lateral torsional buckling specifically 

for FRPs:  
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where: K = 0.5 for fully-fixed end condition, and C1 is depending upon K, and the loading 

arrangement. For a cantilever with point load at its end K = 0.5 and C1 = 1.0. 
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The factors given in [10] are only applicable to simply-supported doubly-symmetrical beams 

that are loaded through their shear centre. However, as shown on Figure 12, the use of the 

equation does not yield satisfactory results when compared against the analytical and the 

generalised approach.  

KEY FINDINGS 

From the bending and shear investigations it became apparent that the thicknesses of the 

flanges and webs greatly affect the performance of the beam. Indeed, providing adequate 

thickness to the flanges and webs could avert all the possible second-order failure modes. In 

addition, the core material is comparatively cheap compared to the laminates, and it does not 

have a key function as regards to the primary failure modes.  

 

Altering the flange thickness does not have a significant effect upon shear capacity, as the 

webs provide the majority of the shear resistance of the beam. However, it does affect the 

moment resisting capacity of the beam. As shown on Figure 13, there is an optimum value for 

top flange core thickness. Below the optimum, the beam is susceptible to flange buckling and 

punching failures. Once the thickness rises above the optimum, beam capacity falls due to the 

rise in neutral axis and proportional rise in tensile strains in the bottom laminate. 

 

Because of cracking, the thickness of the core material in the bottom flange is less influenced 

by a shift in the neutral axis. However, as shown on Figure 14, insufficient material results in 

a lower capacity of the beam due to the prevalence of bottom flange punching.  
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When web thickness is varied, as shown on Figure 15, both shear and moment capacities 

exhibit different responses. In both cases, primary failure occurs once the web thickness is 

over an optimal value. 

 

CONCLUSIONS 

The thin walled beam theory was used to investigate the behaviour of the beam under shear 

loading. It was found that the laminates constitute the main shear reinforcement of the beam, 

particularly those placed in the webs. However, if insufficient core material is provided within 

the webs and flanges, secondary failure modes such as buckling of the webs and punching 

shear of the flange could precede primary shear failure. The formulas presented in this part 

together with those developed in the preceding prequel for bending have been used to 

investigate the combined moment – shear loading. The combined model was found to 

replicate the known interaction between shear and bending. 

 

Lateral instability is another reason for secondary failure of FRP beams. Using the 

transformed section, an iterative method describing the load deformation behaviour was 

developed. This approach has been also incorporated into two programs to respectively 

predict the torsional and lateral torsional buckling behaviour of the beam 
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Figure1:  FRP beam; shear load deformation behaviour 
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Figure 2:  Shear stresses throughout the beam cross-section 
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Figure 3:  Shear correction values throughout the beam 
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Figure 4:  Localised shear dislocation caused by cracking of the PFR 
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Figure 5: Free body diagrams of the initial and final fibre orientation at a crack 
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Figure 6:  Principal stresses on the webs 
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Figure 7:  Beam in four-point bending 
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Figure 8:  Moment-shear interaction diagrams 
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Figure 9:  Torsional rotation of the Beam 
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Figure 10:  Lateral buckling behaviour of the FRP beam 
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Figure 11:  Deflections of a beam undergoing lateral torsional buckling 
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Figure 12:  Comparison of methods to determine the critical buckling moment 
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Figure 13:  Effect on capacity by varying top flange core thickness 
 

 

 

 

 

 

 

 

 

 34



 

 

 

 

60%

70%

80%

90%

100%

110%

0 1 2 3 4 5 6 7 8 9 10 11 12

Tension flange core thickness (mm)

Analitical moment capacity Analytical shear capacity

Flange punching Primary failure 

 

Figure 14:  Effect on capacity by varying bottom flange core thickness 
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Figure 15: Effect on shear and moment capacities by varying web thickness 
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