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Abstract— We propose a new class of parallel data convolu­
tional codes (PDCCs) in this paper. The PDCC encoders inputs
are composed of an original block of data and its interleaved ver­
sion. A novel single self­iterative soft­in/soft­out a posteriori prob­
abilit y (APP) decoder structur e is proposed for the decoding of
the PDCCs. Simulation results are presented to compare the per­
formanceof PDCCs to that of parallel concatenated convolutional
codes (PCCCs).

Index Terms—PDCCs, Self­iterative, APP.

I . INTRODUCTION

The original turbo codes proposed by Berrou et al. [1] are
binary turbo codes in that thosecodesaccept only singlebinary
inputs. The so­called non­binary turbo codes are based on a
parallel concatenation of RSC component codes with m inputs
(m � 2) [2]. Theadvantagesof non­binary turbo codes include
better convergence in iterative decoding, large minimum dis­
tances, less sensitivity to puncturing patterns and suboptimum
decoding algorithms and reduced latency [2]. Double­binary
turbo codes [3] (m = 2) usually possess better error­correcting
capabilities than binary turbo codes for equivalent implementa­
tion complexity and coding rate. Thisobservation led to theuse
of circular recursivesystematic convolutional (CRSC) codesby
Berrou et. al. [4]. CRSC codes have the advantage of a grace­
ful degradation to increasing coding rate, and is less suscepti­
ble to puncturing and suboptimal decoding algorithms [5]. As
a consequence, a CRSC code was chosen for the DVB­RCS
standard for return channel via satellite [6] as an alternative to
concatenated Reed­Solomon (RS) and non­systematic convolu­
tional codes due to their outstanding performance.

Inspired by a paper submitted recently to Electronic Let­
ters [7], we propose a new class of parallel data convolutional
codes (PDCCs) in this paper. The PDCC encoder inputs are
composed of an original block of data and its interleaved ver­
sion. A novel single self­iterative soft­in/soft­out a posteriori
probability (APP) decoder structure is proposed for the decod­
ing of thePDCCs.

The remainder of this paper is organised as follows. Sec­
tion II­A briefly reviews the circular recursive systematic con­
volutional codeadopted in theDVB­RCSstandard. A new class
of parallel convolutional codesisproposed inSection II­B. Sec­
tion II I discussestheMAPdecoding and self­iterativedecoding
of PDCCs. Section IV is dedicated to simulation results. The
concluding remarks arepresented in Section V.

II . PARALLE L DATA CONVOLUTIONAL CODES

A. Circular RecursiveSystematic Convolutional Codes

Fig. 1 depicts theCRSC codeadopted in theDVB­RCSstan­
dard [6]. The data sequence to be encoded consists of a block
of N bits grouped into M couples (N = 2M ). The incoming
data is first demultiplexed and fed into A and B of a CRSC
encoder (the first bit to A, second bit to B and so on). A
and B are two systematic bits, whereas Y and W are two par­
ity bits. Since a CRSC encoder has two inputs and four out­
puts, it can provide an ample set of seven coding rates, i.e.,
R = 1/3, 2/5, 1/2, 2/3, 3/4, 4/5 and 6/7. These rates are
achievable through puncturing theparity bits.

We show the derivation of the parity check equations and its
canonical form for the CRSC code adopted by the DVB­RCS
standard as shown in Fig. 1.
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Fig. 1. CRSC component codestructure.

Through some mathematic derivation, it is not difficult to
show that the parity check equations of the parity output bits
Y and W areexpressed by (1) and (2) as follows:

(1 + D2 + D3)A + (1 + D + D2 + D3)B

+ (1 + D + D3)Y = 0 (1)

(1 + D3)A + (1 + D2)B + (1 + D + D3)W = 0. (2)

Furthermore, thecanonical form [8] of theCRSC depicted in
Fig. 1 can bederived, which is illustrated in Fig. 2. Refer to [9]
for detailed derivation of thecanonical form shown in Fig. 2.

B. Parallel Data Convolutional Codes

we propose a new class of parallel data convolutional codes.
Fig. 3 depicts a PDCC encoder in its canonical form which
adopts the CRSC code described in Section II­A as the con­
stituent convolution code. It is assumed that S� is the MSB1

(most significant bit) and S� = 4S� + 2S� + S3.1 2
�

As depicted in Fig. 3, the block of data sequence to be en­
coded A and its interleaved version A� constitute two inputs
into theencoder. Thefact that aPDCC encoder hastwo parallel
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Fig. 2. Canonical systematic convolutional codeof coding rate1/2.
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Fig. 3. PDCC encoder.

data inputs is the reason that we name it parallel data convolu­
tional codes. X and X � are two systematic outputs, whereasY
and W are two parity bits. The parity check relationships of Y
and W resembling (1) and (2) aregiven by

(1 + D2 + D3)A + (1 + D + D2 + D3)A�

+ (1 + D + D3)Y = 0 (3)

(1 + D3)A + (1 + D2)A� + (1 + D + D3)W = 0. (4)

Thedatastream A and its interleaved version A� are fed into
thedecoder at thesametime. However, A� isdecorrelated rela­
tiveto A dueto thepresenceof theinterleaver. For areasonably
good interleaver, like theS­interleaver used in our simulations,
this should not adversely affect the performance of the code.
Thesystematic bit X � isnot transmitted asX � is theinterleaved
version of X. Thus, thePDCC encoder shown in Fig. 3 can typ­
ically provideacode rateof 1/2 by transmitting thesystematic
bit X and the parity bit Y , and a code rate of 1/3 by transmit­
ting the systematic bit X and the parity bits Y and W . It can
also provide other coding rates through puncturing the parity
bitsY and W if needed.

It is noted that the idea of self­concatenation in [10] is dif­
ferent from that of PDCCs. For the idea of self­concatenation,
data X and its interleaved version X � are joined together and
encoded as a single data stream. In other words, the end state
of X is the starting state of X �. However, this is quite differ­
ent from the idea of PDCCs where X and X � are fed into the
decoder at thesame time.

III . SELF­ITERATIV E DECODING OF PDCCS

A. MAP Decoding of PDCCs

The key difference between the MAP algorithm for PDCCs
and the MAP algorithm presented in [11] is that the PDCC en­
coder has two input bits and four output bits, including two
systematic bits A,A� and two parity bits Y, W . The MAP al­
gorithm described in [11], however, is applicable to the soft

decoding of rate 1/2 systematic convolution codes which have
one input bit and two output bits, including one systematic bit
and one parity bit. Fig. 4 illustrates the trellis diagram of the
PDCC presented in Fig. 3. It is an 8­state trellis. The numbers
shown on the left of each state represent a format of system­
atic bits/parity bits, i.e., AA�/Y W . The numbers from top to
bottom correspond to the state transitions diverging from each
state from top to bottom.
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Fig. 4. PDCC’s 8­state trellis diagram.

Assume that the outputs of the PDCC encoder depicted in
Fig. 3 at time index k are the systematic bit Ak, and the par­
ity bits Yk and Wk. These outputs are BPSK modulated and
transmitted through an AWGN channel. At the receiver end,
the received symbols at time index k aredefined as

1RAk
= (1 − 2Ak) + n (5)k

2RYk
= (1 − 2Yk) + n (6)k

3RWk
= (1 − 2Wk) + nk, (7)

1 3with nk, n2 and nk being three independent normally dis­k

tributed Gaussian random variables with variance σ2. Ak
� , the

interleaved version of the received symbol Ak, is obtained by
interleaving Ak at the receiver end.

Asshown in Fig. 4, each branch in thePDCC trellisdiagram
isassociated with two input bitsand four output bits. Therefore,
the branch metric γi,m, which denotes the branch exiting fromk
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Sk = m with Ak = i, can beexpressed as

j

γi,m ξi ξ� 1 � �2= k k exp RAk
− (1 − 2Ak) dRAkk 23

√
2πσ

−
2σ2

1 1 � �2exp RA� − (1 − 2A�
k k

·√
2πσ

−
2σ2 k) dRA�

1 1 � �2exp RYk
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·√
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·√
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j= χk ξi
k k + RYk

Ykk ξ� exp − Lc RAk
Ak + RA� A�

k

+RWk
Wk , (8)

jwhereχk is a constant, ξi = Pr(Ak = i), ξ� = Pr(A� = j),k k k

Lc = 2/σ2, anddRAk
, dRA� , dRYk

anddRWk
aredifferentials

k

of RAk
, RA� , RYk

and RWk
.

k

The forward state metric αm at time k and state m can bek

shown as

3

= γ
i,b(i,m)

α
b(i,m)

,αm (9)k k−1 k−1

i=0

whereb(i,m) denotesthebackward statewhosenext state ism
given input i at theprevious time. Likewise, thebackward state
metric βm at timek and statem can beexpressed ask

3

= γi,m f(i,m)
,βm (10)k k βk+1

i=0

where f(i,m) denotes the forward state given current input i
and statem.

The likelihood ratio λk associated with each decoded bit Ak

is defined as

Pr(Ak = 1|RA, RY , RW )
λk =

Pr(Ak = 0|RA, RY , RW )
3� �

αm γi,m f(i,m)
k k βk+1

m i=2=
1� �

αm γi,m f(i,m)
, (11)

k k βk+1
m i=0

where i = 0, 1, 2, 3 corresponds to A,A� inputs of 00, 01, 10
and 11. Similarly, the log­likelihood ratio λ� of the interleavedk

bit A� can bewritten ask

Pr(A� = 1|RA, RY , RW )kλ� =k Pr(A� = 0|RA, RY , RW )k� �
αm γi,m f(i,m)

k k βk+1
m i=1,3

= � �
αm γi,m f(i,m)

. (12)
k k βk+1

m i=0,2

Decisionsondecodedbits �Ak arethenmadeby thePDCCMAP
decoder by comparing λk to a threshold equal to one.

B. Self­iterativeDecoding

The novelty of decoding the PDCCs lies in self­iterative de­
coding. Theself­iterativePDCC decoder operateslikeanormal
MAP decoder except it feeds the extrinsic outputs after inter­
leaving or deinterleaving back as a priori inputs. Fig. 5 shows
aschematic of aself­iterativePDCC decoder.
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Fig. 5. Self­iterativePDCC decoder.

The inputs to the decoder are the soft outputs of a noisy
channel LcRA, LcRY and LcRW , respectively. The decoder
reconstructsLcRA by interleaving LcRA. The ideaof theself­
iterative decoding comes from the fact that R� is the inter­A

leaved version of RA, so that the extrinsic information of RA

can be fed back as the a priori information for R� after inter­A

leaving and the extrinsic information of R� can be fed back asA

thea priori information for RA after deinterleaving.
Wedenotethea priori information of RA and RA

� by Za andA

Za
A� , while theextrinsic information of RA and R� aredenotedA

by Ze and Ze
A� , respectively. The self­iterative MAP decoderA

computes theAPPof the information bit A. TheLLR output of
thedecoder can beexpressed as

Lout = LcRA + LcRA� + Za + Ze + Za
A� . (13)A� + Ze

A A

Theself­iterativePDCC decoder proceedsas follows. At the
first decoding iteration, Za and Za are initialised to zero. ForA A�

thesubsequent iterations, Ze is interleaved and fed back as theA

a priori information for A�, i.e., Za = π(Ze
A) where π(·) de­A�

notes an interleaving mapping. Likewise, Ze is deinterleavedA�

and fed back as the a priori information for A, i.e., Za =A

π−1(Ze
A�) where π−1(·) denotes a deinterleaving mapping. At

the final iteration, the decoder delivers the log­likelihood out­
put Lout. The self­iterative decoding process can be clearly
seen from the two feed back connectionsbetween Ze and Za

A A� ,
and Ze and Za

A in Fig. 5.A�

IV. SIMULATIO N RESULTS

In thissection, wecompare theperformanceof theproposed
PDCC to a parallel concatenated CRSC coding system used in
theDVB­RCSstandard and present simulation results. Thesys­
tem functional block diagram is graphically shown in Fig. 6.

The horizontal and vertical constituent codes used in Fig. 6
are the same as the CRSC presented in Fig. 1. The incom­
ing information data sequence consists of a block of N bits
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Fig. 6. Parallel concatenated CRSC encoder.

grouped into M couples (N = 2M ). The horizontal con­
stituent encoder is fed with the information bits in the natu­
ral order of the data, whereas the vertical constituent encoder
is fed with the same information bits in an interleaved order
of the data. A� and B� bits are not transmitted since they can
be reconstructed by interleaving the A and B bits at the re­
ceiver side. The parallel concatenated CRSC encoder can pro­
videseven coderatesasdefined in theDVB­RCSstandard, i.e.,
R = 1/3, 2/5, 1/2, 2/3, 3/4, 4/5, 6/7 [6]. The decoder
structure is similar to that of turbo codes [1] except that the
MAP decoders for a rate 1/2 systematic convolutional code are
replaced by the MAP decoders for the CRSC described in Sec­
tion II­A .

Simulationswereconducted to compare theperformance for
theproposed PDCC system shown in Fig. 3 to theparallel con­
catenated CRSC system shown in Fig. 6. The simulation con­
figurationsareasfollows. AnS­typeinterleaver [12] isadopted
with S equal to 47. Randomly generated data of length 8K
(8192) bits is used for both systems. The channel coding rate
for both systems is 1/2. Simulation results are presented in
Fig. 7, where the PCCC curve refers to the performance of the
parallel concatenated CRSC system.

As depicted in the figure, the performance of the PDCC is
very close to that of the parallel concatenated CRSC at low
Eb/N0 up to 0.6 dB. However, PDCC performs at least 0.2 dB
worse than the parallel concatenated CRSC at low BERs. We
conjecture the relatively poor performance of PDCCs at low
BER may be due to the self­terminating phenomena with one
input bit. Fig. 8 illustrates the trellis terminating properties of
the PCCCs (turbo codes) and PDCCs. For the PCCCs, an error
bit could cause the trellis path to divert from the two all­zero
paths as shown in Fig.8–(a). The same bit is interleaved and
fed into the second encoder. That bit would not cause the di­
verted trellis path to re­emerge earlier. On the other hand, for
the PDCCs, an error causes a diversion from the all­zero trellis
path. The same bit is interleaved and then fed into the same
PDCC encoder. That bit could cause an earlier trellis remerge
as shown in Fig.8–(b). The decoding complexity of PDCCs is
similar to that of the PCCCs. This is because the PDCC de­
coder consists of one constituent MAP decoder which decodes
onebit in each iteration, whereasthePCCC decoder consistsof
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Fig. 7. Simulation results.

two constituent MAP decoders which decode two bits in each
iteration.

(a)

(b )

Fig. 8. Self­terminating property of (a) PCCC; (b) PDCC.

A way of overcoming the self­terminating property may be
by designing the interleaver so as to avoid self­terminations.
For example, if Ak = 1, with zeros elsewhere except at
A� = 1, then we would have a self­terminating sequencek+3

going through states S0 � S3 � S4 � S0. Thus, we could de­
sign the trellis such that if the interleaver maps position i to j,
then (i − j) mod 3 isnot equal to zero. Thiswil l removemany
self­terminating sequences and hopefully lower the error floor.
Another possibility is designing the convolutional code so that
these period 3 terminations do not occur. It may be possible to
increase theself­termination length to 2ν − 1 = 7, which is the
maximum that can beexpected with aprimitivedivisor polyno­
mial. These longer lengthsshould beeasier to design out of the
interleaver.

Nevertheless, theideaof self­iterativedecoding could beuse­
ful in some cases, e.g., space­time coding. We could combine



thetwo trellisesof aspace­timecodeinto asuper trellis. Subse­
quently, self­iterativedecoding could beapplied to such atrellis
with non modulo­2 operation.

V. CONCLUSIONS

In thispaper, anew classof parallel dataconvolutional codes
ispresented. ThePDCC encoder takes two parallel data inputs,
with one being the original data and the other being the inter­
leaved data. ThePDCC decoder hasan innovativeself­iterative
decoding structure. Unlike a turbo decoder where the extrinsic
output of one MAP decoder is passed on to the other as the a
priori input, thePDCC decoder operateslikeanormal MAPde­
coder but feedstheextrinsic outputsback as itsown interleaved
a priori inputs.

Theperformanceof PDCCswascompared to that of aparal­
lel concatenated CRSC, equivalent to theoneused in theDVB­
RCS standard. The two schemes performed close to each other
at low SNRs, however the parallel concatenated CRSC outper­
formed PDCCsby at least 0.2 dB at low BERs. Also, thePDCC
has a higher error floor than the PCCC. We conjecture this is
due to the self­terminating property of PDCCs with single bit
errors. Although the performance of PDCCs is not encourag­
ing, the idea of self­iterative decoding is worth exploring and
can beapplied to somecodes likespace­timecodes.
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