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1 Introduction

When properties of a fluid are allowed to vary with temperature and pressure,
the momentum and energy equations which describe the flow of a fluid, be-
come substantially more complicated due to the additional nonlinearities aris-
ing from density, viscosity, thermal conductivity, and specific heat variations.
In the Boussinesq limit, where fluid properties are constant, the governing
equations have a quadratic nonlinearity. However, in non-Boussinesq regimes
the nonlinearity of the governing equations is largely determined by the form
of the constitutive equations and the equation of state for the fluid, and in
general it is not even of polynomial character. This is the case, for example,
when the well known Sutherland formulae are used to describe viscosity and
thermal conductivity.

The nonlinearities associated with fluid property variations play a symmetry-
breaking role. In a differentially-heated tall vertical cavity they distort the
stationary cubic velocity profile and linear temperature distribution across
the cavity which exist in the Boussinesq limit of very small temperature dif-
ferences (e.g. Rudakov, 1967; Bergholtz, 1978; Lee and Korpela, 1983). This
deviation from the symmetric case starts playing an important role in defin-
ing the stability characteristics of the flow when the temperature difference
between the walls is only about 10% of the average temperature in the cavity
(Suslov and Paolucci, 1995b). One consequence is that the parallel basic flow
becomes more stable: the critical Grashof number at which it bifurcates to
a spatially periodic one increases rapidly. Although the instability leading to
transverse rolls is still due to the shear of the flow and first appears near the
inflection point of the basic velocity profile, the disturbances are not stationary
anymore, in contrast to the Boussinesq limit, and the resulting convection rolls
drift downward. In weakly non-Boussinesq convection in a tall vertical cavity,
this drift has been detected experimentally, for example, by Simpkins (1989).
He observed a slow downward motion of convection rolls in a cavity of aspect
ratio 40 for € ~ 0.15 and Gr =~ 8732. The speed and cell wavelength of the
moving rolls (Simpkins, 1993) were found to be in close agreement with val-
ues predicted by two-dimensional linear stability theory (Suslov and Paolucei,
1995b). At very large values of temperature differences between the walls the
nonlinear density variation leads to the appearance of a new physical instabil-
ity driven by buoyancy. The corresponding critical Grashof number decreases
rapidly with increasing temperature difference between the walls. This insta-
bility appears near the cold wall and the associated disturbances propagate
downward much faster than those associated with shear.

The weakly nonlinear hydrodynamic stability theory first suggested by Stuart
(1960), Watson (1960), and Stuart and Stewartson (1971), and their modifi-
cations by Reynolds and Potter (1967), Sen and Venkateswarlu (1983), and



Herbert (1983), have been shown to be very powerful tools for the stability
analysis of various flows. In our earlier work (Suslov and Paolucci, 1997b)
we extended the application of Watson’s theory to the stability of the flow
of a general fluid. The form of the expansion was derived based on the Tay-
lor expansions of properties about the reference distributions. This enabled
us to examine successfully the near critical weakly nonlinear states in the
differentially-heated cavity problem. In particular, it was confirmed that the
shear driven (inflection point) instability is supercritical in the Boussinesq
limit, but it was shown to become subcritical at larger values of temperature
difference between the walls. The buoyancy driven instability was shown to
remain supercritical. At a certain value of temperature difference both insta-
bility modes bifurcate simultaneously (the so-called codimension-2 point). The
dynamics of the flow in this regime has been explored in Suslov and Paolucci
(1997a). It has been shown that the subcritical shear mode triggered by the
supercritical buoyancy mode normally dominates the asymptotic behaviour of
the flow.

Since both instability modes have a preferred propagation direction under non-
Boussinesq conditions, the issue of absolute and convective instabilities arises.
When applied to finite size geometries, such as enclosures, these concepts are
closely related to the existence of so-called global modes (Pier and Huerre,
1996; Priede and Gerberth, 1997). Their spatial shape is non-trivially influ-
enced in absolutely unstable regimes by the type of boundary conditions which
are specified for the model (e.g. Biichel, Liicke, Roth, and Schmitz, 1996). The
study by Cross and Kuo (1992) shows that in systems with y — —y symme-
try, which can support counter-propagating waves, a self-sustained disturbance
pattern may exist near the ends of an enclosure even in convectively unstable
regimes due to the disturbance reflections from boundaries. This is observed,
for example, in binary fluid convection in a horizontal layer considered by
the above authors. In our study the y — —y symmetry is broken by the
fixed downward direction of the gravity in conjunction with non-Boussinesq
fluid property variations. As a result the disturbances are found to propagate
only downwards in the considered non-Boussinesq regimes (they have nega-
tive group and phase speeds in contrast to the Boussinesq limit where the
disturbances have zero group and phase speeds). As noted, for example, by
Aranson and Kramer (2002), in such a situation detailed consideration of wave
reflections can be avoided and thus leading to a significant simplification of
the analysis. First, this is because there are no waves incident to the upper
wall to be reflected. Second, the disturbances reflected from the bottom wall
cannot propagate far back into the flow domain. Indeed the group speed of the
reflected disturbances is still negative and they can only diffuse back. Their
diffusion speed is normally much slower than the propagation group speed.
Therefore the reflected disturbances are swept back to the wall where the en-
ergy loss due to its absorbing nature kills the reflected disturbances before they
can be felt far back in the flow domain, unless the flow is absolutely unstable.



But even in this case the global influence of the boundaries is due to diffusion
and not to the wave reflections. Such influence is much easier to account for as
it depends mostly on the properties of the model equation valid in the “bulk”
of the fluid rather than on the specific (unknown) reflection coefficients of the
walls. Because of these arguments the spatio-temporal instability character
remains very similar to that of open flows and the influence of the top and
bottom wall boundary conditions on the model solutions is found to be weak.
In practice imposing intuitive zero boundary conditions for the disturbance
amplitudes, governed by the derived Ginzburg-Landau equations, results in
solutions that sufficiently far away from the top and bottom walls are found
to be in excellent qualitative and quantitative agreement with those from
direct numerical simulations (DNS) of the full equations with the appropriate
physical boundary conditions. This agreement motivated us to undertake the
following simplified approach. Effectively, for analysis purposes, we consider
an infinitely tall enclosure with no detailed treatment of the top and bottom
boundaries. The fact that the cavity is closed enters only in the context of
global fluid mass conservation at the disturbance development stage which re-
sults in a non-trivial constraint when fluid density is allowed to vary. We only
mimic the physical boundary conditions when comparisons with DNS results
are made. Such an approach is also justified by the fact that a parallel basic
flow, which is the starting point for the derivation of the reduced amplitude
models, does not exist near the top and bottom ends so that it does not make
much sense to study the detailed influence of the boundary conditions onto
the model behaviour in the regions where the model itself becomes irrelevant.
Any such detail would be completely obscured by the effects of nonparallel
turning flow which is virtually impossible to describe using weakly nonlinear
arguments.

Having explained such simplified treatment, in this work we focus on the influ-
ence of the non-Boussinesq fluid properties variations on the spatio-temporal
evolution of the “bulk” solutions (sufficiently far from the ends) to the natural
convection problem. The present work provides a general theoretical frame-
work based on a weakly spatial modulation approach to analyse the character
of instabilities in non-Boussinesq convection.

Spatio-temporal instabilities of various fluid flows have been the subject of
many studies in the last decade. Recent works reported by Brevdo (1995),
Lingwood (1997), Carriére and Monkewitz (1999), Moresco and Healey (2000),
and references therein, are just few such examples. In brief, these studies deal
with the analysis of disturbances which can grow in space and time. If the
disturbance grows at any spatial location, such instability is referred to as
absolute while if the asymptotically growing disturbance is observed only in
a moving system of coordinates, but not in a stationary one, the situation
is referred to as convective instability. The strict mathematical formalism
of determining the character of an instability in a problem is accomplished



through analysis of the dispersion relation over a complex wavenumber space
(see Huerre and Monkewitz, 1985, 1990; Brevdo, 1988). This approach, al-
though accurate, has two obvious disadvantages. First, analysing the topog-
raphy of multiple branches of a physical dispersion relation in the complex
space, while straightforward and informative for a simple relation, is an ex-
pensive and technically involved numerical task for a non-trivial one. Second,
this approach is linear in nature and therefore cannot predict characteristics
of saturated supercritical states. For these reasons the idea of reducing the
full physical problem to a simpler weakly nonlinear model and analysing it,
instead of the original problem, is very appealing (see, for example, Suslov,
1997; Biichel and Liicke, 2000).

The simplest mathematical model which describes convective and absolute
instability scenarios for a (small) disturbance amplitude A is the complex
Ginzburg-Landau equation (CGLE)
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This model has been the subject of extensive studies, and many of its solutions,
including fully nonlinear, have been obtained, well understood and catalogued
(e.g. Newell, 1974; Nozaki and Bekki, 1983, 1984; Landman, 1987; Cross and
Hohenberg, 1993; Tobias et al., 1998; Huerre, 2000; Aranson and Kramer,
2002), making the use of this model for analysing complicated physical flows
even more appealing. However, the major criticism of such an approach is that
it is generally difficult to prove the relevance of the CGLE to the original full
problem. This difficulty is two-fold: the mathematical form of (1) has to be
justified and, subsequently, its actual coefficients have to be chosen to reflect
accurately the properties of the original full problem. In the literature, an
abstract CGLE is frequently analysed without relating the quantitative results
to any specific physical problem in a consistent manner. The danger of this is
noted, for example, by Carriére and Monkewitz (1999). It was shown there that
discrepancy exists between the accurate convective/absolute instability results
based on the saddle point analysis of the dispersion relation and results based
on the Ginzburg-Landau model for convection in a horizontal fluid layer with
through-flow (Miiller et al., 1993). In the present work special care is taken
to guarantee that the derived CGLE remains a relevant and quantitatively
accurate model for the complete range of parameters describing the physical
problem of non-Boussinesq convection in the differentially-heated tall vertical
cavity.

The concepts of convective and absolute instabilities originally based on the
properties of the linearised dispersion relation (Huerre and Monkewitz, 1990)
have been generalised to incorporate finite amplitude perturbations, (see Chomaz,
1992) where the concepts of nonlinear convective and absolute instabilities
were introduced. The idea behind them is to trace the dynamics of propa-



gating fronts separating the regions with finite disturbances from undisturbed
ones. The boundary of nonlinear absolute instability was found to coincide
with that of linear absolute instability in such flows as wakes (Delbende and
Chomaz, 1998), Taylor-Couette flow (Biichel et al., 1996) and Rayleigh-Bénard
convection (Fineberg and Steinberg, 1997). This conclusion was made based on
either relatively expensive numerical simulations of the full flow equations or
experiments. Couairon and Chomaz (1997) show that if the flow can be mod-
elled by the supercritical cubic Ginzburg-Landau equation this should always
be the case. In contrast, if the corresponding model is a subcritical quintic
GLE then the nonlinear absolute instability may occur even in linearly sta-
ble regimes. The numerical simulations that we report in Section 5 indeed
indicate that this can be the case in non-Boussinesq natural convection. This
emphasises once again the important role which the properly derived CGLE
can play in the analysis of flow instabilities and resulting flow patterns.

Another aspect deserving attention is the character of the coefficients enter-
ing (1). The CGLE model has been studied extensively and its derivation is
thought to be common knowledge. Details of such derivations for any par-
ticular physical problem are normally lengthy and are rarely reported in the
literature in full (see, for example, Biichel and Liicke, 2000). Nevertheless, here
we endeavour to provide a fully consistent derivation for a fairly general two-
dimensional flow. The major purpose of this exercise is to develop a reliable
criterion for the accuracy of the cubic Ginzburg-Landau model. In particular,
we will show that if the physical dispersion relation deviates from quadratic
over the wavenumber range corresponding to the positive linear amplification
rates, then the linearised Ginzburg-Landau model cannot be used to accurately
determine the character of spatio-temporal instabilities arising in a problem.
This explains, for example, why the range of validity of the Ginzburg-Landau
equation modelling binary fluid convection becomes smaller with increasing
Reynolds number of a through-flow (Biichel and Liicke, 2000).

In this paper the problem of non-Boussinesq natural convection of a fluid
with realistic property variations in a two-dimensional differentially-heated
tall vertical cavity is formulated in Section 2. The Appendices A-D contain
a detailed derivation of a general CGL model using the approach previously
suggested by the authors (Suslov and Paolucci, 1997b). This approach uses the
appropriate orthogonality conditions along with the conventional solvability
conditions which extend the applicability region further away from a marginal
stability surface. The major goal of Section 4 is to suggest a simple and com-
putationally inexpensive quantitative accuracy test and a method for error
bound estimation for the developed CGL model. This becomes possible by
following a somewhat untraditional discussion of the CGLE with coefficients
evaluated at a wavenumber different from that providing the maximum am-
plification rate. A careful physical interpretation of such an equation and its
solutions is given in Section 3. Once the developed accuracy test is shown to



be satisfied in all regimes of interest, the wide range of physical results for non-
Boussinesq natural convection in a tall cavity are obtained and reported in
Section 5. Special attention is given to quantitative comparisons of the model
results for an effectively infinitely tall cavity and DNS results of a flow in a
cavity of large but finite aspect ratio. To account for the interaction of two
instability modes in the strongly non-Boussinesq regimes, the globally coupled
equations, derived in Appendix E, are solved numerically. The major findings
of the present study are summarised in Section 6.

2 Problem definition

We consider the two-dimensional convection flow in a tall rectangular air-
filled cavity of width H with isothermal vertical walls maintained at the
different temperatures Ty and T respectively (asterisks denote dimensional
quantities). A uniform downward gravitational field of magnitude g is paral-
lel to the vertical walls. In the case of large temperature differences AT =
Ty —Tr > 0 the flow is described by the dimensionless low-Mach-number
equations (Paolucci, 1982; Chenoweth and Paolucci, 1986):
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As shown by Paolucci (1982), in the low-Mach-number expansions which re-
sult in the above equations, the total pressure decomposes into the spatially
uniform thermodynamic component P = P(t) and the dynamic/hydrostatic
component IT = II(x;,¢). In writing (5), Stokes’ hypothesis is used to relate
the coefficient of bulk viscosity to the dynamic viscosity. Here u; = (u,v)
and z; = (x,y) are velocity components and coordinates in the horizontal
and vertical directions respectively and n; = (0, —1) is the unit vector in the
direction of gravity. The equations are made dimensionless by using the enclo-
sure width H, the reference temperature 7, = (T + 1) /2, the viscous speed
ur = pr/(prH), the characteristic time t, = H/u,, the initial thermodynamic
pressure P, which would exist in the cavity with a stationary fluid at the
reference temperature, and the characteristic value of the dynamic pressure



I, = p,u?. All properties of the fluid are non-dimensionalised by using their
respective values evaluated at the reference temperature and thermodynamic
pressure.

The above system is complemented by the non-dimensional equation of state
relating the fluid density p, the temperature 7" and the spatially uniform ther-
modynamic pressure P. While the procedure developed in this work is abso-
lutely general, all specific numerical results are given for air as the working
fluid so that the appropriate equation of state is that of an ideal gas (Paolucci,

1982)
P

constant specific heat at constant pressure,
CP =1 ’ (7)

and constitutive equations for the transport properties, namely the Sutherland
laws for dynamic viscosity p and thermal conductivity &

1+ S5 1+ 5
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where, according to White (1974), S, = S; /T, = 0.368 and Sy = S;/T; =
0.648 for T, = 300 K. We also take the Prandtl number Pr = p,¢,./k, = 0.71,
and the fluid resilience parameter I' = (v, — 1)/(0,T,) = 2, correspond-
ing to the ratio of specific heats v, = cpr/cpr = % for an ideal gas since it
follows from the equation of state that the coefficient of tension is given by
o = ((0P/dT)/P)|, = 1/T. Other parameters are the non-dimensional tem-
perature difference between the walls € = 5,AT/2 and the Grashof number
Gr = p2B,gATH?/ 2, where 8 = — ((0p/0T)/p)|p = 1/T is the coefficient of

volume expansion.

The dimensionless global mass conservation condition

Aﬁmvz1, 9)

where V' is the cavity volume, completes the system of equations describing
the fluid flow.

The boundary conditions for the problem are
u=v=0 and T=1+¢€¢ atx=0,1. (10)

The distant no-penetration boundary conditions at the top and bottom of
the closed cavity lead to zero average mass flux through any horizontal cross-
section. Allowing for periodicity in the vertical direction with arbitrary wave-



length A, this condition can be written as

1 /1 ryot+A
/0 (X/yo pvdy) dz =0, (11)

where 7, is an arbitrary vertical location sufficiently far from the ends. This
condition leads to the appearance of a uniform vertical pressure gradient when-
ever the temperature difference between the walls is finite and the flow loses
symmetry due to property variations (Suslov and Paolucci, 1997b). This pres-
sure gradient is responsible for the preferred propagation direction of distur-
bances. Note that although the global conservation conditions (9) and (11) are
induced by the distant boundary conditions they do not contain any specific
information about the top and bottom ends except that they are closed. These
conditions cannot be treated as boundary conditions for the model which will
be discussed in the next section. Furthermore, in the Boussinesq limit, con-
ditions (9) and (11) are trivially satisfied since density is treated as constant
and the resulting problem is centro-symmetric.

It has been shown by Chenoweth and Paolucci (1985) that for a tall enclosure,
a two-dimensional steady parallel basic flow exists over most of the enclosure
far enough away from the top and bottom walls. These walls cause the basic
flow to reverse. The turning flow existing in the proximity of the top and
bottom walls is not parallel and is a natural source of disturbances for the
primary parallel flow existing sufficiently far from the ends. The exact form
of these disturbances is virtually impossible to establish without solving the
full problem. At the same time, if the cavity is sufficiently tall, these details
will be shown not to have any significant influence on the bulk flow due to the
fact that long-range reflectional influences of the top and bottom walls are not
possible in this problem due to the broken reflectional symmetry discussed in
the Introduction. Thus only the spatio-temporal evolution of disturbances in
the bulk of fluid is investigated in the subsequent sections by means of the
Ginzburg-Landau theory and DNS.

3 Complex Ginzburg-Landau model

Suslov and Paolucci (1997b) developed an expansion procedure and multiple
time scale analysis for the system of equations describing a fluid with gen-
eral properties. Here we generalise the expansions by allowing multiple spatial
scales in the longitudinal coordinate direction in order to account for spa-
tial modulations of the disturbance wave. We assume that a small-amplitude
periodic disturbance is superimposed on the fully developed stationary par-
allel basic flow. Since the most unstable disturbances have been shown to be
two-dimensional (Suslov and Paolucci, 1995b), we restrict ourselves to the two-
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Fig. 1. (a) Sketch of a typical linear stability diagram (thick line): the wave group
speed is real only along curves A and B. (b) Real parts of the leading eigenvalues
for the non-Boussinesq natural convection problem (¢ = 0.3 and Gr = 9275, solid
and dashed lines correspond to the shear and buoyancy modes, respectively): the

of(a) curves have multiple inflection points where K£ changes sign.

dimensional case. So as not to detract from the major points of the present
work, we have relegated the detailed derivation of (1) to Appendices A-D.
Here, for convenience of later discussions, we rewrite the CGLE model in a
frame moving with some constant speed v as
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where Y = y — vt, and ¢,, K;(o) and K(a) are given by (B.8), (D.8) and
(D.9), respectively. This model describes the evolution of a spatially modulated
monochromatic disturbance wave with wavenumber a.

3.1 Linearised CGLE: convective and absolute instabilities

Consider equation (12) linearised about the trivial solution A = 0. This corre-
sponds to the linear stability analysis of the basic flow with respect to a weakly
modulated spatially periodic wave with fixed wavenumber «. Naturally, this
is an idealisation since any realistic disturbance is represented by a finite wave
envelope rather than by a single sinusoidal wave. Nevertheless, it is instruc-
tive to carry out this analysis to obtain some insight into the early stages of
the disturbance development. Applying the Fourier transform in Y to the lin-
earised CGLE, and suppressing notations of explicit parametric dependence

10



on «, we obtain
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Taking the inverse transform we obtain the solution of the linearised CGLE:
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For K > 0 (near o = a4 in Fig. 1(a)), following the definitions given in
Deissler (1986), we distinguish three situations: absolute instability, convective
instability, and absolute stability of the asymptotic solution A = 0. Consider
the limit £ — oo in the coordinate system moving with velocity v:

Cq—v 2
xp [<UR - ) t]

A(t — oo,y — vt = const.) ~ =
2

If
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then the amplitude grows in this frame. Note that the condition of instability

in the stationary (v = 0) coordinate system is

(=) = ()] Kf + 2clei
Yo=o0"— 1K >0 (15)

which corresponds to the case when the disturbance grows with time at any
fixed point y, i.e. to absolute instability. It is easy to show that the extremum
of v, is obtained in a frame moving with speed

vm = ¢ + ¢, K3 [ K7, (16)
and the amplification rate in this frame is
2
Ym =0+ (ch) [ (4K7) . (17)
Thus, when KE > 0, if

d=4Kfo™ + ()" >0, (18)
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there exists a moving system of coordinates with respect to which the distur-
bance grows. If at the same time v, < 0, the amplitude decays at any fixed
stationary point. This corresponds to the case of convective instability, i.e. the
disturbance grows only in the moving frame of reference. The fastest growth
rate is observed in the frame moving with velocity given by (16), which is
the wave packet propagation speed in a dispersive medium. It is important to
note that d > 0 along the marginal stability surface (thick line in Fig. 1 (a)),
meaning that any state which is neutral according to temporal linear stability
theory is convectively or absolutely unstable provided K£ > 0 and c; # 0.
If d < 0, the disturbance amplitude decays with respect to the stationary as
well as any moving frame of reference. Such a flow is referred to as absolutely
stable.

Note that if d > 0, equating (14) to zero gives an equation for the velocities
of the edges of a localised disturbance (the disturbance amplification rate at
the edges is equal to zero):

vmif|K2|. (19)

It follows that the localised disturbance always spreads with rate
K.
b= v —1)2|—2\/_| 2' (20)

as it develops. In view of (19), the flow is absolutely unstable if |v,,| <

V| K,|/KE.

These types of behaviours are illustrated in Figs. 2 and 3 for the Gaussian
initial condition Ag(y) = agexp (—ay?) (ao and a are real positive constants).
Solution (13) in a stationary frame (v = 0) becomes

Qo

A = By g (y—cyt)?].
(tay) \/1—|-4—aK2teXp [U 3 a(y Cgt)]

When K > 0 (near a = ap in Fig. 1(a)), cases of absolute stability and con-
vective and absolute instability are distinguished in Fig. 2. We intentionally
have chosen o® < 0 to emphasise that the formal solutions of the CGLE can
grow even when the sign of the linear growth rate o® indicates linear stability
of a wave with the chosen wavenumber (we interpret this result later in this
section). Note that in order for convective instability to occur in such regimes
it is necessary, but not sufficient, to have d > 0: only sufficiently localised or,
equivalently, modulated initial distributions such as that in Fig. 2 (b) can grow
convectively when of < 0. Less localised packets (which are more compact
in Fourier space i.e. closer to a monochromatic wave), as shown in Fig. 2 (c),
will decay. Thus, in subcritical regimes one should expect a strong dependence

12
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Fig. 2. (a) and (c) Absolutely stable, (b) convectively unstable, and (d) absolutely

unstable solutions of the linear CGLE with Gaussian initial condition for oft = —1,

cf = KE =K! =1,and v = 0: t = 0 (solid lines), t = 1 (dashed lines), t = 3
(dash-dotted lines), and ¢t = 5 (dotted lines).

of the asymptotic behaviour not only on the magnitude of the initial distur-
bance, but also on its spatial distribution. This result is consistent with that of
Dauchot and Manneville (1997) obtained using a simplified nonlinear model
which mimics the behaviour of the Navier-Stokes equations in a subcritical
regime.

When K® < 0 (near o = ap in Fig. 1(a)), for reasons which are discussed
in Section 4 the physical relevance of the CGLE solution is limited to small
times. Such solutions are typically discarded completely and are not discussed
in the fluid dynamics literature. Nevertheless we believe they provide valuable
qualitative insight into the initial development of disturbances. The formal
solution dynamics is much more complicated when KX < 0 as seen from
Fig. 3. In this case the initially localised distribution leads to the appearance
of two fronts. When d > 0 and v;v, < 0 (Fig. 3 (a)) the two fronts propagate in
opposite directions and thus the solution decays asymptotically in the region
between them. When v;v5 > 0, the fronts move in the same direction (from
left to right in Fig. 3 (b)), and asymptotically the solution will become finite
at any point. However since the right front moves faster, an expanding region

13
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Fig. 3. Various solutions of the linear CGLE with negative K& with Gaussian initial
condition for ¢f = KJ* = -1, cf = K] =1, v =0and a = 0.1: £ = 0 (solid lines) to
t = 10 (dashed lines) with At = 0.4. Arrows show the directions of front propaga-
tions. Plot (d) illustrates the spatial variation of the real part of the amplitude in
(b) corresponding to t = 3.

with nearly zero amplitude will exist between the fronts. Finally, if d < 0, the
two fronts generated by the initially localised distribution move towards each
other, collide and the solution amplitude increases everywhere with time (see

Fig. 3 (c)).

The major conclusion which follows from the above illustrations is that when
the coefficient K1 is negative the solution of CGLE can grow rapidly even if
its linear amplification rate o® < 0. At first sight this seems non-physical. The
deeper analysis presented next clarifies this apparent contradiction.

3.2  Wavenumber cascading

All disturbance development scenarios discussed so far are based on the anal-
ysis of a spatially modulated disturbance envelope centred at wavenumber «
which in general is not equal to a4 corresponding to the maximum linear
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amplification rate.

Consider Fig. 1 (b) where the leading eigenvalues are given as functions of
wavenumber for the non-Boussinesq convection problem. Clearly, K&(«) is
negative in the vicinity of agp, the local minimum of the o®(a) curve. The
value of o®(ap) is negative and according to standard linear stability theory
the monochromatic disturbance wave with this wavenumber must decay. At
the same time Fig. 3 shows a rapidly growing solution of the CGLE with
coefficients evaluated in the vicinity of ap. Typically this paradox is used
to advocate the irrelevance of the Ginzburg-Landau model away from the
maximum of the marginal stability curve. However it is trivial to show that if
initially the disturbance amplitude is uniform in space then one would observe
a rapidly decaying solution of the CGLE equivalent to that of a plane wave
decay predicted by linear theory of monochromatic waves. Only initial spatial
modulation can lead to the somewhat counter-intuitive results obtained above.
Consequently, the influence of modulation has to be understood first. Closer
inspection of the solution of the CGLE in the case of K& < 0 shows that it is
characterised by rapid spatial oscillations with the wavelength quickly decreas-
ing in the direction of amplitude growth (away from the centre of the picture
in Fig. 3(d)). Therefore the CGLE predicts strong spatial modulation of the
original a-harmonic within the wave envelope modelled by this CGLE when
a # aa. As a result the effective wavenumber of such solution changes with
time so that a disturbance with a slower decay rate appears, see the arrow in
Fig. 1 (b). This new harmonic, with an effective wavenumber located closer to
a4, eventually dominates the original one and in turn, after being modulated
itself, generates another harmonic with wavenumber closer to a4 (with even
slower decay rate) and gets enslaved by it. This process continues until the
disturbance with wavenumber ay4 is obtained (lines A in Fig. 1 a). In other
words, spatial modulation of the initial disturbance wave gives rise to a slower
overall decay rate than that expected for a monochromatic wave with the
chosen wavenumber a # a4 while the effective wavenumber cascades towards
a 4. Any initial modulation triggers such wavenumber change which is man-
ifested through the positive combined temporal amplification rate (14) even
when o®(a) < 0. The detailed discussion of the Benjamin-Feir instability of
noncritical waves performed in Suslov (1997) leads to the same conclusion: the
side-band instability necessarily shifts the effective wavenumber to a4 regard-
less of the initial wavenumber. This puts the concept of wavenumber cascading
introduced above on a firm ground but the extent of algebraic detail involved
in such an analysis prohibits us from presenting it here. This shows that even
though the coefficients of the CGLE are evaluated at a specific wavenumber
«, it contains information about a wider spectrum of disturbances. It will
be shown in the Section 4 that it is the accuracy of this information what
determines the relevance of the model for specific applications.
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4 Relevance of the CGLE and its particular solutions to physical
problems

The discussion in the previous sections shows how disturbances of arbitrary
wavenumbers develop to those near a4 as a result of wavenumber cascading at
the earlier stages of their evolution. In this section an important consequence
of the above analysis will be introduced: we will develop a straightforward
test which allows one to assess the range of applicability of the CGLE model
without comprehensive comparisons with numerical solutions of a full problem.
It will be shown to work well in the differentially heated cavity problem in
Section 5.1.

In contrast to the cubic Landau amplitude equation, whose range of validity
is discussed in detail in Suslov and Paolucci (1997b), the CGLE attempts to
account for the disturbance wave envelope dynamics in a dispersive medium.
The dispersion relation corresponding to the linearised version of the CGLE
derived for a particular set of physical parameters and v = 0 is

ocu(B; ) = o) —icg(an) B — Ka(ao)B?, (21)

where o is the wavenumber at which the coefficients of the formally de-
rived CGLE are evaluated (o # a4 p in general) and § is the modulation
wavenumber for the fundamental wave with wavenumber ogy. The relation
(21) is quadratic in 5 and thus is expected to be a good approximation to the
physical dispersion relation only for small values of  so that terms propor-
tional to higher powers of 3 are negligible (Suslov, 1997; Biichel and Liicke,
2000). On the other hand, if the physical dispersion relation itself is quadratic,
for example,

o(a) =Ci(aam) — @)’ + ofp (22)

+1 I:CQ(O{A(B) — 04)2 =+ CfA(B)(aA(B) — Ck) + 0'1{1(3)] s
where all coefficients are real and subscript A(B) corresponds to C; < 0
(Cy > 0). Using (22) in (B.8) and (D.9) we obtain

cg(@) = cfA(B) + 20 (aam) — a) + 20 (o — aas)),

23
KQ(O!) = —01 — iCQ, ( )
so that subsequently we have

oa(B; ) =Ch(aam) — oo — B)? + o}

+1i [Cg(aA(B) — o = B)* + cymy(@am — a0 — B) + 0114(3)] '

This dispersion relation is identical to the dispersion relation (22) for the
full problem with o = «g + . In other words, the modulated solution of
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the linearised Ginzburg-Landau model fully recovers the linearised evolution
of the solution amplitude of the complete problem no matter what value of
wavenumber the model coefficients are evaluated at and/or whether C; (or,
equivalently, KX) is negative or positive as long as the physical dispersion
relation is given by (22). Note though that C; > 0 in (22) obviously assumes
the existence of arbitrarily fast growing disturbances with wavenumbers suffi-
ciently far away from «pg. This is unrealistic. Thus there can exist no physical
problem whose full dispersion relation is given by (22) with C; > 0. In other
words, even if the physical dispersion relation is locally such that C; > 0,
there must exist an inflection point of the of(a)-curve where the sign of C}
changes. At that point the physical dispersion relation necessarily deviates
from quadratic (22) and the CGLE becomes irrelevant. We emphasise that
the irrelevance of the CGLE in this case has nothing to do with the choice of
oo and how far it is from a4, but rather it is associated with the inadequacy
of expression (22) to represent the physical dispersion relation. This means
that the Ginzburg-Landau model with coefficients evaluated at oy near apg
can only be accurate for relatively short time. Indeed, because of the cascad-
ing of the disturbance wavenumber towards faster growing waves discussed in
Section 3.2, the effective wavenumber o + 3 reaches eventually the inflection
point of the o#(a)-curve and invalidates the CGLE with negative KJ(«a) for
large time. On the other hand, if the physical dispersion relation is locally such
that C; < 0 then the o®(a)-curve has a finite maximum towards which the
disturbance wavenumber approaches. The corresponding CGLE remains rele-
vant as long as the wavenumber spectrum of the disturbances is limited to the
interval between the inflection points of the of(a)-curve containing a4. Then,
if the long time spatio-temporal dynamics of the physical flow is investigated,
the CGLE predictions may only be valid if the contribution of the disturbance
spectrum with wavenumbers near the inflection points of the o®(c)-curve are
asymptotically negligible. In other words the necessary condition for the ac-
curacy of the long-term CGLE predictions is that o®(a) < 0 at the inflection
points (if they exist) of the physical dispersion relation. This is not a sufficient
condition though. Indeed, if for example, the convective/absolute instability
nature of the flow is studied, then all linearly amplifying disturbances con-
tribute to the long-term evolution. Consequently, (21) has to be accurate for
the complete range of o for which o > 0. This is rarely the case for realistic
flows and even if the inflection points are not present or correspond to nega-
tive linear amplification rates, the o' (a)-curves frequently deviate from the
parabolic shape. This is the reason why, for example, the convective/absolute
instability boundary for mixed Boussinesq Rayleigh-Bénard-Poiseuille convec-
tion found in Miiller et al. (1993) using the Ginzburg-Landau model disagrees
with the one computed in Carriere and Monkewitz (1999) using the complete
dispersion relation.

It is clear then that the CGLE can be used reliably in supercritical regimes,
and in particular to predict accurate transition to absolute instability, only
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when the full physical dispersion relation is very close to (22) with C; < 0
over the complete range of amplifying disturbances. If this is the case then
substituting (23) into (16) and (17) we obtain that the coordinate system,
with respect to which the maximum temporal amplification rate is observed
always moves with speed v,,(a) = cfA, which is the group speed evaluated at
a. The effective amplification rate in this frame is 7,, () = 0§, the maximum
amplification rate according to standard temporal linear stability theory. From
(18) we then obtain that d(a) = —4C 0%, i.e. the flow is unstable whenever
ol > 0. Since it follows from (15) that y(a) = o + Ciclly/ (CF 4 C3), abso-
lute instability can only occur in a medium with sufficiently small wave group
speed. This is consistent, for example, with the results of Deissler (1987) who
shows that instability in plane Poiseuille flow, for which the group speed is
proportional to the Reynolds number and is relatively large, is always con-
vective. Equation (20) provides an estimate of the disturbance spread rate
o(a) = 4\/ —oB (C? + C%) /C; which grows with the temporal amplification
rate. This shows once again why absolute instability generally occurs in more
supercritical regimes: the disturbance extension rate has to become sufficiently
large in order to overcome the wave envelope drift with the group speed. This
can only occur if o is sufficiently large, i.e. further away from the marginal
stability surface.

All results noted above are independent of the actual value of o at which the
CGLE is derived. This leads to a straightforward conclusion: if the dispersion
relation for the full physical problem is parabolic, then the long-term flow be-
haviour predicted by the CGLE does not depend on the actual wavenumber
ap for which its coefficients are evaluated: it will be identical to that of the
model with coefficients evaluated at oy = a4. For this reason it is convenient
to evaluate all coefficients at this wavenumber from the start as the extent of
algebraic detail in this case is the least. In Section 5 we also take advantage
of this fact and conveniently compute all coefficients at a4 unless specified
otherwise. Nevertheless, it would be unwise to discard completely the consid-
eration of the CGLE with coefficients evaluated at oy # a4 for two reasons.
First, it sheds light on the non-trivial mechanism of wavenumber change at
the earlier stages of disturbance development, especially when the spectrum of
the initial disturbance envelope does not involve the a4-harmonic. Secondly,
and most importantly, it provides a way of judging the accuracy of the CGLE
predictions as discussed below.

The accuracy of the CGLE results is easily assessed by computing the o™ ()
curves for a particular problem. If these curves are parabolic for the com-
plete range of wavenumbers corresponding to positive linear amplification
rates 0%(a) > 0 then the use of the CGLE produces reliable results, oth-
erwise a different type of analysis must be invoked. Such a test is simple and
inexpensive in comparison with commonly used direct numerical simulations
of a full nonlinear problem or experimental investigation as done, for exam-
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Fig. 4. Comparison of the full numerical (solid lines) and approximate quadratic
(CGLE) (dashed lines) dispersion relations along the boundary separating the re-
gions of convective and absolute instabilities in the natural convection problem in
(a) the Boussinesq limit € — 0, Gr = 8037, (b) € = 0.3, Gr = 9273 and (c) € = 0.6,
Gr = 16817. The coefficients of the CGLE are evaluated at a4.

ple, in Biichel and Liicke (2000) and Biichel et al. (1996), respectively. The
test involves solving only the linear algebraic eigenvalue problem (B.2) for a
range of values of (real) wavenumber « and plotting the leading eigenvalue(s).
In Fig. 4 we show the result of applying such a procedure to the problem of
non-Boussinesq natural convection defined in Section 2. Since the parabolic
approximation (dashed line) is virtually indistinguishable from the disper-
sion relation (B.5) of the full problem (solid line) for the complete range of
wavenumbers with o®(a) > 0, the application of the CGLE is well justified.
In particular, the convective/absolute instability boundary is given very accu-
rately by the CGLE analysis. Although not presented here, our computation
of convective/absolute instability transition for natural convection at selected
values of the temperature difference € between the walls using the analysis of
complex saddle points of the numerical dispersion relation (see Huerre and
Monkewitz, 1990) shows agreement with the CGLE analysis to within 1.3%.
On the other hand, tests for convection with through-flow show that the cor-
responding o(«) curves are not parabolic. Consequently, the application of
the CGLE is not justified for mixed or forced convection regimes as was also
empirically noted in Carriere and Monkewitz (1999) and Biichel and Liicke
(2000).
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of convective (v, = 0) and absolute (79 = 0) instabilities, respectively. L: linear

stability boundary (o = 0); A: line of the maximum linear amplification rate o®.

5 Results

Encouraged by the accuracy test for the CGLE in Section 4, we now apply
the general theoretical procedure to non-Boussinesq natural convection flow
of air in a tall cavity. All numerical results were obtained using 52 Chebyshev
spectral modes (see Suslov and Paolucci, 1995a, for the description of the
numerical approximation) and double precision versions of appropriate IMSL
Inc. (1989) routines: NEQNF to solve for the basic flow, GVCCG and GVLRG
to solve the generalised eigenvalue problem for @ > 0 and o = 0 respectively,
LSBRR to solve the mean flow correction equations, LSACG to solve the
equations for the second harmonic and for x, and LSVCR to solve for the
spatially modulated distribution ws; (see Appendices C and D).

5.1 Convective vs absolute instability in non-Boussinesq natural convection

The coefficients entering the CGLE (12) depend not only on the physical
parameters such as the Grashof number, the Prandtl number, and the tem-
perature difference between the walls, but also on the chosen wavenumber .
As discussed in Section 4, such dependence results in equivalent asymptotic
behaviours regardless the wavenumber at which the model coefficients are eval-
uated, but only if the physical dispersion relation o(«) is quadratic. This is
a condition for the validity of the CGLE. Here we discuss this criterion from
a slightly different angle. We look at the linear stability diagrams presented
in Fig. 5 for different values of the temperature difference between the walls.
The lines L represent the standard linear stability boundary o®(a, Gr) = 0
for monochromatic waves. Spatial modulations modify it. The more realis-
tic stability diagrams accounting for modulations are produced by analysing
the equivalent CGLE model derived for arbitrary o and applying criteria
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Ym(a, Gr) = 0 for the convective instability boundary and ~o(c, Gr) = 0
for the absolute one; see the long-short dash and dashed lines in Fig. 5. These
modified diagrams take into account the wavenumber cascade discussed in
Section 3.2. If the physical dispersion relation is quadratic then, as shown in
Section 4, criteria (14) and (15) are a-independent and both 7, = 0 and 5 = 0
would be represented by vertical lines in Fig. 5. The extent of such straight-
line instability boundaries shows the validity range of the Ginzburg-Landau
approximation. Deviation of the instability boundaries from straight vertical
lines in Fig. 5 corresponds to the ranges of wavenumbers in Fig. 4 where
distinction between the physical (solid lines) and model (dashed lines) disper-
sion relations are clearly seen (for negative amplification rates). The CGLE
model performance is expected to be satisfactory if lines v, = 0 and vy = 0
have vertical linear segments across the complete range of wavenumbers with
of(a) > 0, i.e. within the region bounded by the linear instability line L in
Fig. 5. This is surely the case for Boussinesq and weakly non-Boussinesq nat-
ural convection flows, see Fig. 5 (a) and (b), respectively. In these regimes the
CGLE provides excellent results for transition to absolute instability. On the
other hand, when the symmetry-breaking effects of fluid property variations
with temperature become very strong the disturbance group speed increases.
This in turn leads to transition at a larger value of Grashof number and devia-
tion of the physical dispersion relation from quadratic: the dashed line within
curve L in Fig. 5 (c) is not straight anymore indicating that the accuracy of
the CGLE results has deteriorated. In fact all one can say is that the tran-
sition to absolute instability occurs somewhere within the shaded region in
Fig. 5 (d) between the vertical dotted line through the leftmost intersection
of the dashed and solid (L) lines and the rightmost vertical dotted line tan-
gent to the dashed line. In other words in this case the application of the
Ginzburg-Landau theory only gives an estimate of the transitional Grashof
number Gr = 16725 + 225. Indeed the accurate value of the Grashof number
corresponding to transition to absolute instability which we computed using
the saddle point method (see Huerre and Monkewitz, 1990) for ¢ = 0.6 is
found to be 16817 (middle vertical dashed line in Fig. 5 (d)) is well within
the range predicted by CGLE. The discrepancy between the accurate and es-
timated values is noticeable, but the relative error of the CGLE estimate does
not exceed 1.3%. The model is still reasonably accurate, consistent with the
conclusion made in Section 4 based on Fig. 4 (¢). The above example shows
how a reasonable estimate of the accuracy of the CGLE predictions can be
obtained if its coefficients are computed for a range of the wavenumbers in
the vicinity of that providing the maximum linear amplification rate. This
accuracy estimate requires significantly less resources than comparison with
experimental, DNS or complete saddle point analysis. Remarkably, a quanti-
tative error bound estimate is not possible in principle if only the CGLE with
coefficients evaluated at a4 is considered.

As follows from Fig. 4 (a), o = 0 when of > 0, i.e. the disturbances are
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Fig. 6. (a) Convective/absolute instability transition diagram: the flow is linearly
stable below the solid line, absolutely unstable above the dashed line and convec-
tively unstable between them; (b) wavenumber a4 corresponding to the largest
temporal amplification rate ot and (c) disturbance group speed cf along the sta-
bility boundaries shown in (a).

stationary in Boussinesq natural convection. Then cf = K] = 0 and thus
conditions d = 0 (see (18)) and 7y = 0 define the same curve. In other
words, convective instability cannot be observed in a system where distur-
bances are of standing-wave type; there the linear instability is necessarily
absolute. Similarly, as seen in Fig. 4 (b), cf ~ 0 for weakly non-Boussinesq
convection (the slope of the of(a)-curve is close to zero near the maximum
of of(a)). Therefore transition to absolute instability occurs at a value of the
Grashof number which is very close to that of linear instability (the dashed
and long-short dash lines cannot be distinguished in Fig. 5 (b)). In contrast,
in strongly non-Boussinesq regimes the slope of the of(«a)-curve is finite (see
Fig. 4 (c)), ¢ff # 0 and the distinction between the linear and absolute in-
stability boundaries for the shear mode (the upper branch in Fig. 5 (c), see
Suslov and Paolucci (1995b)) is clearly seen. The buoyancy driven instability
occurring in strongly non-Boussinesq flows (lower branch in Fig. 5 (c)) remains
of convective type for values of Grashof number at least up to 3 x 10*. This
is consistent with the results of Suslov and Paolucci (1995b) who found that
this type of instability occurs in the region of downward flow near the cold
wall: plumes of overcooled fluid with larger density drop in the direction of
gravity. Hence, buoyant disturbances generated near the top end of the cavity
can only propagate downwards, and this determines the convective character
of instability.

A complete convective/absolute instability transition diagram for various val-
ues of temperature differences between the walls is shown in Fig. 6 (a). Fig. 6 (c)
shows the disturbance group speed cf. It is zero in the Boussinesq limit € — 0
and this explains why in this case the instability is absolute: disturbances are
not carried away by the primary flow and are observed in a stationary frame.
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The specific non-Boussinesq fluid property variations (6)—(8) break the sym-
metry of the primary flow so that the disturbance group speed first becomes
slightly positive reaching its maximum of about 0.64 at ¢ ~ 0.2 and then
decreases rapidly crossing zero at € ~ 0.3 and becomes negative for larger
values of the temperature difference between the walls. This is because the
shear disturbances begin to develop closer to the cold wall where the flow is
downward. This explains why the region of convective instability exists for
larger temperature differences between the walls. The buoyancy disturbances
existing in strongly non-Boussinesq flows are characterised by much smaller
wavenumbers (see Fig. 6 (b)), faster group speeds and relatively small tem-
poral amplification rates and for this reason the buoyancy driven instability
remains of convective type.

5.2 Comparison of numerical results of the CGLE with DNS

All analysis and results presented thus far have been obtained for an essentially
infinitely tall enclosure so that the influence of the top and bottom walls only
enter through the enforcement of global mass conservation (9). Obviously such
a configuration is a mathematical abstraction. Nevertheless in this section
we show the analytical results for the simplified infinite geometry are in full
qualitative and quantitative agreement with the realistic flow existing in a
tall but finite enclosure sufficiently far from the ends, thus justifying the weak
influence of the distant boundary conditions in the CGLE model.

In all regimes investigated, results of comprehensive linear stability anal-
ysis (Suslov and Paolucci, 1995b) show that the instability remains two-
dimensional with convection roll axes along the span-wise direction. Therefore,
as a final step in justifying the accuracy of the results presented in the previous
section, we obtain DNS results of the two-dimensional flow in a closed cavity
of aspect ratio Ay = 40 using the finite volume code described in Chenoweth
and Paolucci (1986) with spatial discretisation of 51 x 301 points. Selected
DNS simulations were also performed for cavity of aspect ratio Ay = 50 to
demonstrate that the patterns arising in the middle part of the cavity are fully
consistent with those obtained for Axy = 40 and therefore to conclude that the
influence of the finite enclosure size is negligible in the context of the present
investigation. The CGLE was solved numerically with linear terms discre-
tised using the Crank-Nicolson scheme while the nonlinear term was treated
explicitly using the second order Adams-Bashforth scheme. The CGLE time
integration step was At = 5 x 10~* and the spatial discretisation step was
Ay =4x102.

The DNS was started with a motionless isothermal state at 7" = 1. The
fluid accelerates quickly along the differentially heated walls by buoyancy
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forces, then it hits the horizontal top and bottom walls which force it to
turn. Thus, the distant top and bottom ends act as natural sources of (fi-
nite amplitude) disturbances to the parallel basic flow existing in the middle
part of the cavity (Chenoweth and Paolucci, 1985). Consequently, in order
to mimic this scenario, when solving the equivalent CGLE we take A(y,0) =
ao [ [6(y—Ag+7)—0(y—17)] dy, where Ay is the dimensionless cavity height,
ap is the amplitude of the initial pulse, ¢ is its initial location (all numerical
results are obtained for § = 0.03Ag), 6(y) is the Dirac delta function, and we
enforce the boundary conditions A(0,t) = A(Ag,t) = 0. These conditions are
chosen to mimic the physical no-slip/no-penetration conditions for velocities.
Of course, these conditions are not rigorous since they are imposed in regions
where the amplitude equation itself is not appropriate as it is based on the
parallel basic flow assumption which does not exist near the ends. Although
we have argued in the Introduction that disturbance reflections from the walls
can be neglected in this problem the global effect of the above zero boundary
conditions cannot. The disturbance mechanical energy loss at the boundaries
delays the transition to absolute instability associated with the appearance of
an unstable global mode (Huerre and Monkewitz, 1990) in this case. It occurs
at a larger value of the governing parameter (the Grashof number in this case)
to compensate for this energy loss (Cross and Kuo, 1992, see the qualitative
discussion therein). Indeed, as shown by Tobias et al. (1998), the first global
mode obtained by solving the linearised CGLE (1) with the above boundary
conditions is

2 2 2
o TY\ Gt+oly ~ ¢ m
A(y,t)—SIH (A—H>e 2K y 0'—0'—4—]22—}-{214—%{.

The condition 7y = 0 for the absolute instability boundary in the infinitely
tall cavity results in 6% = —KEn?/A% < 0 as K > 0 for @ = ayu, ie. the
zero boundary conditions stabilise the flow. Thus the transition to absolute
instability in a cavity of finite aspect ratio occurs at a larger Grashof number.
This difference was found to be largest at e = 0.6. In this case the linear global
mode amplification rate 6% is zero for Ay = 40 at Gr = 16989 which is only
0.3% larger than the value of Gr,},4 reported in the previous section. Hence in
the following discussion we do not distinguish between the global modes in the
finite aspect ratio cavity from absolute instability in the infinitely tall closed
cavity focusing on the regions away from the top and bottom ends. Tests for
a cavity of aspect ratio Ay = 50 show that the predicted instability patterns
observed near the cavity centre do not differ from those presented here for
Ap = 40 confirming that the detailed influence of the remote top and bottom
walls is insignificant in the context of the present study.

First, we justify the comparison between stability results for a parallel basic
flow in the infinitely tall cavity with the DNS results for the cavity of aspect
ratio 40. As seen from Fig. 7, the flow profiles which are quickly established
in the middle part of a finite enclosure can hardly be distinguished from the
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Fig. 7. Temperature (top) and vertical velocity component (bottom) profiles at
y = 20 in a vertical cavity of aspect ratio 40 for (¢, Gr) = (0.001,8170) (left),
(e,Gr) = (0.3,9860) (middle), and (e, Gr) = (0.6,9860). Solid lines represent DNS
results, dashed lines correspond to spectral results for an infinitely tall cavity, at
the times indicated.

spectral approximation in Suslov and Paolucci (1995b) for an infinitely tall
cavity for all values of €. They remain unchanged until they become affected
by the natural travelling disturbance waves arising from the flow turning at the
top and bottom ends of the cavity. Therefore, the stability theory developed
here for an infinitely tall enclosure is expected to be in reasonable agreement
with the DNS results for a sufficiently tall cavity.

The major numerical results are summarised in three groups of figures below.
Figs. 810 show the solutions of the CGLE which correspond to DNS results
presented in Figs. 11-14. Details of the DNS results along the vertical mid-
plane are given in Figs. 15-19.

For the slightly supercritical Boussinesq regime of (e, Gr) = (0.001,8170)
(the critical value of the Grashof number in this case is 8037) the constants
entering the Ginzburg-Landau model are o ~ (0.765,0.090), ¢, ~ 0.005,
K, ~ (—1.22x10%,-3), and K, ~ (12.1,—0.004), all evaluated at a4 ~ 2.802.
Fig. 8 shows that two disturbance wave envelopes, initially mimicking the
flow-turning influence of the top and bottom cavity walls, move towards each
other, eventually resulting in a nonzero solution in the complete domain. This
situation corresponds to absolute instability as predicted by Fig. 6 (a).
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Fig. 9. Solutions of the CGLE for (¢, Gr) = (0.3,9860) with close-up views (the first
and third plots from the top) of a solitary structure. The instability is absolute.

Snapshots of the DNS results presented in Fig. 11 and plots of the horizontal
velocity component u (which is zero for undisturbed parallel flow) in Fig. 15
confirm the above conclusions: the fully developed parallel basic flow is estab-
lished in the middle part of the cavity and its instability starts developing by
t =~ 0.16. The end regions, where the fluid flow turns, act as sources of distur-
bances to the parallel flow. These disturbances propagate towards the centre
of the cavity (snapshots at ¢ = 0.33 and ¢ = 0.82), collide and form an essen-
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Fig. 10. Solutions of the coupled equations (26)—(27) for (¢, Gr) = (0.6,16900). The
instability is linearly convective.

tially steady wavy flow with wavenumber o = 2.80 which is estimated based
on the average distance between the velocity peaks in Fig. 15. This value is in
excellent agreement with the wavenumber of the maximum amplification rate
predicted by linear stability analysis (see Fig. 6 (b)). The wavy flow occupies
most of the cavity at ¢ = 5.68 emphasising the absolute nature of instability.

In the supercritical weakly non-Boussinesq regime (e, Gr) = (0.3,9860) (the
critical Grashof number is 9273, see Fig. 5 (b)) the constants entering the
CGLE are o &~ (3.03,32.5), ¢, & —0.632, K; ~ (—1.08 x 10, —1.29 x 10%),
and Ky =~ (14.3,—1.12), all evaluated at ay = 2.721. The corresponding
solution of the CGLE is presented in Fig. 9. As in the Boussinesq limit the two
wave envelopes extend towards each other and eventually occupy the complete
computational domain. Thus, as predicted by the analysis in Sections 3.1
and 5.1, the instability is absolute, but in this case there exists a direction
of preferred propagation (the group speed ¢, is negative) which breaks the
symmetry of the solution: the soliton-like structure propagates towards y = 0
as seen from the enlarged snapshots at ¢ = 10 and t = 20 in Fig. 9. The
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Fig. 11. Flow fields for ¢ = 0.001 and Gr = 8170. Lighter regions in the thermal
(left) and velocity (right) fields correspond to higher temperature and larger kinetic
energy, respectively.

solitary solution of the cubic Ginzburg-Landau equation can be found in the
polar form A(t,y) = a(t,y)e? @) with

a(t,y)=rsech(bn), r>0, n=y—Vt, (24)
0(t,y) =pln[cosh(bn)] + ky + It + 6y , (25)
where
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Fig. 12. Flow fields for e = 0.3 and Gr = 9860. Lighter regions in thermal (left) and
velocity (right) fields correspond to higher temperature and larger kinetic energy,
respectively.
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This is a generalisation of the solitary wave solution given, for example, by
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Fig. 13. Flow fields for ¢ = 0.6 and Gr = 9860. Lighter regions in thermal (left) and
velocity (right) fields correspond to higher temperature and larger kinetic energy,
respectively.

Newell (1974). For the above constants, (24) has amplitude r &~ 0.052 which
is very close to the maximum amplitude of the solution shown in Fig. 9.

The DNS results presented in Fig. 16 also indicate the existence of the pre-
ferred downward direction of disturbance propagation (see sequence of snap-
shots ¢ = 0.13, t = 0.45, and t = 1.03) and the absolute instability of the
parallel basic flow (¢ = 2.13, see also Fig. 12). The initial overshoot of the
horizontal velocity near the upper wall (seen at ¢ = 0.13) creates a large am-
plitude disturbance which propagates downwards (see snapshot at ¢t = 0.45).
Its large wavelength seen in the region 25 < y < 35 for t = 0.45 suggests
that this disturbance is of buoyancy type. This is consistent with the linear
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Fig. 14. Flow fields for € = 0.6 and Gr = 16900. Lighter regions in thermal (left) and
velocity (right) fields correspond to higher temperature and larger kinetic energy,
respectively.

stability analysis which predicts negative amplification rate for the buoyancy
mode in weakly non-Boussinesq regimes (see dashed line in Fig. 1 (b)) and its
rapid decay. The initial velocity overshoot near the bottom of the cavity also
creates a large amplitude disturbance, but because buoyancy disturbances are
characterised by relatively large negative group speeds these disturbances do
not propagate upwards. The two middle snapshots in Fig. 16 also illustrate
the wavenumber cascading towards the most unstable one: according to linear
analysis the initial long wave disturbance seen at ¢ = 0.45 is replaced with
a shorter linearly unstable shear one by ¢t = 1.03. The development of the
absolutely unstable shear instability is clearly seen in snapshots at t = 1.03
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Fig. 15. Horizontal velocity at z = 0.5 for e = 0.001 and Gr = 8170.
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Fig. 16. Horizontal velocity component at £ = 0.5 for ¢ = 0.3 and Gr = 9860.
Velocity range for t = 0.45 and ¢t = 1.03 is made smaller to show the structure of

the flow.

and ¢t = 2.13. Strictly speaking, there exists a small difference between the
critical Grashof numbers for linear and absolute instabilities for ¢ = 0.3, but
it is so small that the resolution of the numerical code was not sufficient to de-
tect it. The disturbance wavenumber, which is estimated based on the average
distance between the velocity peaks in the middle part of the last snapshot
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Fig. 17. Time history of the horizontal velocity component at the centre of the cavity
at € = 0.3 and Gr = 9860 for short (top) and long (bottom) time ranges. The dotted
line in the top plot represents the CGLE velocity estimate for u; the dashed line in
the bottom plot shows the CGLE estimate of the horizontal velocity amplitude.

in Fig. 16 is a =~ 2.75 which agrees well with the value obtained from linear
stability analysis (see Fig. 5 (b)).

In order to demonstrate the quantitative accuracy of the model we compare
the time evolution of the CGLE solution with that obtained from DNS at the
centre of the cavity (z,y) = (0.5, 20). The most straightforward comparison is
obtained for (0.5, 20, t) since the undisturbed flow at this location has zero
horizontal velocity. Sample values from the DNS are compared with the values
of the leading terms in the approximate solution given by (see Appendix A)

A(t, 20)u1,(0.5)E(20) + c.c.

where u1; is the horizontal velocity component of the eigenvector of the lin-
earised problem and A(t, 20) is given by the solution of equation (1) at y = 20.
The choice of physical parameters for comparison between the DNS and model
results is a delicate issue. The model is most accurate near the threshold of
instability. In contrast, because of the limited resolution of the DNS code,
its predictions of instability characteristics near criticality are least accurate:
the disturbance amplitude is very small and the DNS stability results are the
most vulnerable with respect to discretisation errors. On the other hand, fur-
ther away from the critical point, where the accuracy of the DNS instability
results improves, the model predictions become less accurate due to the in-
creased range of nonlinear effects which it does not account for. Typically,
monochromatic amplitude models in far supercritical regimes under-predict
the saturation amplitude and over-predict the saturation time scale. The set

33



of physical parameters chosen for comparison of results is a compromise be-
tween these two conflicting influences. While the current model predictions are
not completely free from the above deficiencies, Fig. 17 demonstrates remark-
able agreement between the DNS and model results. The model is capable
of capturing very fine detail of the temporal evolution of the flow. In order
to match the phases between the DNS and CGLE results, when solving the
CGLE the initial disturbance pulses were located at y ~ 0.2 and y = 38.8 at
time ¢ = —0.35. This is an empirical choice since the exact correspondence
between the disturbances caused by the turning nonparallel flow near the ends
of the cavity and the initial conditions for the CGLE is not known. The am-
plification rate up to time ¢ = 1.5 was estimated assuming exponential growth
obtained from the average over several oscillations of the quantity

. 1 U, i+1
5t = In (22
tmit1 — b U

where u,, is the local maximum of the horizontal velocity observed at time
tm and t,, ;11 — tm, is the approximate period of oscillations (see top plot in
Fig. 17), i and 7 + 1 denoting two consecutive maxima. We find that 6% ~ 4
which is larger than the amplification rate for the most amplified plane wave
predicted by a linear stability analysis (which is 3.03). This is expected be-
cause in this situation the growth rate is determined not only by the linear
amplification, but also by the propagating finite amplitude front of the lo-
calised disturbance wave envelope. The frequency of oscillations is estimated
by averaging over a few oscillations the quantity

5 2T
51

tm,i+1 - tm,i

The approximate frequency is found to be 67 ~ 32.8 which agrees very well
with the linear stability results of 32.5. For large times this value decreases
to 61 ~ 29.0. As shown by Suslov and Paolucci (1997b), the frequency of
a weakly nonlinear state corresponding to a plane wave with an equilibrium
amplitude |A.| = /—c®/KE is 67 = 0! + K[| Ae|?. This formula gives an
estimate of & ~ 28.8 which is in excellent agreement with the observed value
of 6! for large times as well. Finally, note a slight bias of the DNS results
towards positive values of u in the bottom plot of Fig. 17. This is consistent
with Fig. 5(a) in Suslov and Paolucci (1997b) which shows that the weakly
nonlinear self-interaction of the disturbance wave produces a mean flow which
has positive horizontal velocity component near z = 0.5 whose magnitude
is proportional to |A|%. It is not accounted for by the first order disturbance
envelope approximation shown by the dashed lines in the bottom plot of Fig. 17
which are symmetric with respect to the u = 0 level. Although not shown here,
similar bias are found at other y-locations along the x = 0.5 plane. Finally note
that after the initial rapid increase the amplitude predicted by CGLE decreases
towards its saturated level achieved at ¢t ~ 14. This initial overshoot with
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Fig. 19. Horizontal velocity component at = 0.5 for ¢ = 0.6 and Gr = 16900.

subsequent relaxation is a consequence of the solitary structure seen in Fig. 9
and propagating with small negative group speed downwards. Such a long-
living solitary structure is a result of the adopted impulse initial conditions
and is a fully nonlinear solution of CGLE. It does not seem to be present in
the DNS simulations with fully physically consistent initial conditions.

The flow arising in the strongly non-Boussinesq regime with € = 0.6 is much
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more complicated than flows arising from moderate temperature differences
between the walls. This complexity is two-fold. As can seen from Fig. 5 (c),
both shear and buoyancy instability modes are present in general, and sec-
ondly, as shown by Suslov and Paolucci (1997b), the shear mode bifurcates
subcritically. In such a situation the cubic CGLE may become inadequate
since its solution becomes unbounded for sufficiently large initial conditions
and at least a fifth order CGLE is necessary to obtain a bounded nonlinear
state. Nevertheless meaningful qualitative conclusions can still be drawn from
such a model.

When two interacting nonlinear modes define the flow pattern, two CGLEs
modelling individual modes become coupled and lead to the following system
of complex equations

oA oA A
a—tl +6918—y1:(01+)\1K12)A1+M1 8y21 + KAl A%, (26)
0A oA A
a—tz +0928—y2:(02 —{—/\2K21)A2 +M2WQZ +K22A2‘A2‘25 (27)
1 An
)\1,2 = A— / \142,1|2 dy, (28)
H J0

as derived in Appendix E. This system of equations models global nonlinear
coupling between two wave envelopes propagating with different group speeds
(Knobloch and De Luca, 1990; Pierce and Wayne, 1995).

For Gr = 9860 we obtain oy ~ (0.45,77.5), ¢g1 &~ —50.0, K11 =~ (—76.0, —150.6)
and M; = (14.7,5.66). These coefficients are evaluated at a4, =~ 1.155 and
correspond to the buoyancy driven instability mode. For the shear driven
mode at ayu, ~ 2.815 we obtain oy &~ (—23.1,62.1), co & —7.28, Ky =~
(1.77 x 10*,3.54 x 10*) and M, =~ (16.8, —1.69). The coupling coefficients are
K1y =~ (—2.58 x 10%,1.73 x 10%) and K»; ~ (108.5,3.47). Estimates of the two
frequencies from the DNS results give 67 = 73.7 and 61 = 63.2 both agree-
ing fairly well with the linear analysis values. Based on the above numerical
data, the following conclusions can be made. The flow in this regime is linearly
convectively unstable with respect to buoyancy disturbances and stable with
respect to shear disturbances. The buoyancy driven instability results from
supercritical bifurcation while the shear driven disturbances destabilise the
flow only if their initial amplitude is sufficiently large, as the corresponding
bifurcation is subcritical. Both types of disturbances propagate downwards.
Part of the buoyancy disturbance energy is transferred to the shear mode
through nonlinear coupling (K% < 0, K£ > 0). The numerical solution of the
coupled CGLE’s (not shown) confirms the convective nature of both distur-
bances: wave envelopes generated by the initial pulse at y = y decay quickly
as they propagate towards the bottom wall. The wave envelopes generated by

36



the initial pulse at y = Ay — 7 also propagate downwards. Since the wave
group speeds corresponding to the buoyancy and shear disturbances are sub-
stantially different, the two wave packets interact only for a limited time.
For small amplitude initial pulses, the solution corresponding to the shear
mode decays quickly as its linear amplification rate is negative, but larger
initial amplitudes eventually blow-up (representing shear instability subcriti-
cally triggered and initially supported by the buoyant instability). As noted
above, at least a quintic CGLE model is required to eliminate this singular
behaviour. The buoyancy mode, while linearly unstable, dies out as soon as
it reaches the bottom wall due to its convective nature and the zero bound-
ary conditions. Mode coupling does not support its existence either because
as discussed above the shear instability extracts energy from the buoyancy
mode.

Snapshots of the DNS results for this regime are presented in Figs. 13 and 18.
The parallel basic flow is established in the middle part of the cavity by time
t = 0.13. Simultaneously a large amplitude disturbance is generated near the
upper end of the cavity which propagates quickly downwards. This is the
buoyancy disturbance: it is seen from the second snapshot in Fig. 13 that
relatively large lumps of cold and more dense fluid with wavenumber o =
a7 ~ 1.16 move down the right (colder) wall. The amplitude of these buoyancy
driven disturbances is so large that it triggers the subcritical transition to shear
instability which is characterised by a wavelength of approximately half the
size of that of the buoyancy disturbance, as seen in the snapshots at ¢t = 1.22
and ¢t = 2.84. Note that subcritical shear disturbances occupy a large part
of the enclosure. This is not expected for a convective instability regime and
indicates the presence of a nonlinear absolute instability which may exist for
subcritically bifurcating flows as discussed in Couairon and Chomaz (1997).
To show rigorously that the nonlinear absolute instability of the shear driven
mode is indeed observed, one would need to analyse at least a fifth order
CGLE, the derivation of which is beyond the scope of the current work.

An even more complicated flow is observed at the larger value of Gr = 16900.
In this case the buoyancy mode constants at a4, = 0.857 are found to be
o1 & (3.57,95.8), cj1 = —87.3, K11 =~ (—74.7,—-359.5) and M; ~ (28.8,9.42)
and the shear mode constants evaluated at a4, ~ 2.580 are 09 & (4.52,111.5),
C2 & —20.3, Ky =~ (1.02 x 103,—-6.58 x 10%) and M, =~ (22.1,—1.59).
The mode coupling coefficients are Ko ~ (—1.02 x 10%,8.52 x 10%) and
Ky =~ (59.3,532.1). Both modes are linearly convectively unstable and prop-
agate downwards with the shear mode forming an irregular pattern at large
times. The numerical solution of the coupled equations (26)—(27) presented
in the first four snapshots in Fig. 10 has characteristics very similar to the
ones described for the lower value of the Grashof number. Convectively un-
stable wave envelopes of buoyancy and shear disturbances interact only for
a short time since they have very different group speeds and propagate in
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a finite domain bounded by the absorbing walls (see snapshot for t = 0.04
and ¢ = 0.20). Thus despite the global nature of coupling between equations
(26)—(27) the interaction between these envelopes remains essentially local
and is mostly limited to the short period of time when the localised envelopes
share the same location in space. The wave envelopes induced by the initial
pulses near the bottom of the cavity and seen for ¢ = 0.4 at y ~ ¢ remain
there as they are swept towards that wall with their negative group speed.
Because of the convective character of instability the extension rate of these
wave packets is not sufficiently large to overcome their drift and they decay
quickly due to the absorbing influence of the nearby wall, see snapshot at
t = 0.20. They are not seen at t = 0.32. The wave envelopes induced near the
top of the cavity propagate downwards and spread but never occupy the whole
cavity as they are only convectively unstable (see snapshots at ¢ = 0.20 and
0.32). The wave envelopes corresponding to the buoyancy and shear modes
are clearly distinguished for t = 0.20 and 0.32 by very different wavelengths.
The buoyancy disturbance envelope moves faster and decays after it reaches
y = 0 emphasising the convective nature of this instability and zero bound-
ary conditions (compare snapshots for ¢ = 0.32 and 0.68). The long term
behaviour of the shear mode amplitude is essentially different. The initial en-
velope breaks into several parts and loses its symmetry as it hits y = 0: the
wave amplitude is generally larger near y = 0 towards which the envelope
propagates. The shear disturbance amplitude tends to zero near y = Ay once
again demonstrating the linearly convective character of instability of this
mode. Nevertheless unlike the buoyancy mode the shear disturbances never
decay even after reaching the bottom wall. This is because of the subcriti-
cal nature of the corresponding bifurcation (K% > 0): by the time the shear
envelope reaches the bottom of the cavity it has a magnitude larger than
a threshold value of Ay, = /of/K% =~ 0.067 so that the nonlinear desta-
bilisation becomes sufficiently strong to maintain shear instability. The large
amplitude subcritical shear disturbances existing in the lower part of the cav-
ity may also trigger a nonlinear absolute instability (Couairon and Chomaz,
1997) which can result in a nonlinear global shear mode. The results seen in
Fig. 10 at large times strongly indicate that this is the case, but no detailed
investigation of this possibility has been performed as this would require in-
corporation of quintic nonlinear terms in the amplitude equations. Note that
although the nonlinear cubic term in (27) plays a destabilising role, the so-
lution remains bounded. This is partly due to the zero boundary conditions
and partly due to the strong dissipation (MJf > 0). In addition, as discussed
by Aranson and Kramer (2002), and references therein, the so-called phase
gradient mechanism arrests the blow up of the subcritical pulse-like solution
whenever ‘MZI / KQIQ‘ < 1 as indeed is the case in the problem considered.

The corresponding DNS results are presented in Figs. 14 and 19. After the
parallel basic flow is established in the middle part of the cavity by time t =
0.13, the large buoyancy disturbance starts propagating from the top end of
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the cavity. Its wavenumber is approximately 0.96 which is slightly larger than
a4, ~ 0.857 predicted by linear analysis. Since the ot > 0, the flow is linearly
unstable with respect to shear disturbances. Indeed, the snapshot at t = 0.22
in Fig. 19 confirms this: the shear instability disturbances start developing
in the lower part of the cavity, their estimated wavenumber is approximately
2.50 which is reasonably close to a4, =~ 2.580. The two instability modes
interact at larger times resulting in a somewhat irregular flow pattern (¢ =
0.87). Eventually, the convectively unstable buoyancy disturbance reaches the
bottom wall and decays while the slower propagating shear disturbances form
the pattern seen in the upper part of the snapshot at ¢ = 2.15. This snapshot
agrees qualitatively with the numerical solution of CGLE shown in the top
plot in Fig. 10: regular periodic tail and irregular head of the resulting wave
envelope. The DNS results for larger times (not presented) show that the
buoyancy disturbance is generated again and the qualitative flow scenario
described above is repeated.

For larger values of the Grashof number the shear instability becomes absolute
and the numerical solution of the corresponding CGLE does not decay near
y = Ag. The DNS results show irregular flow patterns in the cavity in these
regimes.

We note that flow patterns observed in DNS for the larger Grashof numbers
reveal fast velocity variations along the cavity (see Fig. 19). They are primarily
caused by the buoyancy mode disturbances which have much smaller critical
Grashof number than the shear ones. Because of the large supercriticality for
the buoyancy disturbances in such regimes they are unlikely to remain two-
dimensional. In contrast the shear mode is still predominantly two-dimensional
due to the lower degree of its supercriticality. Indeed the last snapshots in
Figs 14 and 19 show that once the fast moving large amplitude buoyancy
envelope propagates away (confirming that its nature remains convective as
discussed in Section 5.1) it leaves behind a pattern typical for two-dimensional
shear disturbances predicted by the analysis. Thus the character of instability
is still expected to be reasonably accurately determined through the two-
dimensional analysis. Two additional reasons can be given to advocate this.
First, in the present work we are specifically interested in transition between
linear absolute and convective instabilities in the longitudinal direction. Even
if nontrivial dynamics exists in the transverse direction it is linearly fully
decoupled from that of interest and the two-dimensional study is sufficient for
our purpose. Second, although in the centre of the buoyancy wave envelope
the disturbances are sufficiently large and could become three-dimensional,
the character of linear instability is fully determined by the relative motion of
the edges of the wave envelopes. There the disturbance amplitudes are small
by definition and standard linear analysis is applicable which shows that two-
dimensional disturbances are the most dangerous, see the discussion in the
beginning of Section 3 and results reported in Suslov and Paolucci (1995a).
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Nevertheless, it is clear that extending the present analysis to the quintic
CGLE, in conjunction with a three-dimensional DNS study, can enhance our
understanding of this interesting and relevant flow.

6 Conclusions

Non-Boussinesq regimes with large fluid property variations reveal a rich va-
riety of possible flow patterns in very simple geometries. A systematic proce-
dure of deriving the complex Ginzburg-Landau model of near critical flows is
presented for such cases. Analysis of its infinitesimal solutions shows various
spatio-temporal scenarios corresponding to convective and absolute instabili-
ties of the basic parallel flow. Special attention is paid to the aspects of physical
relevance and accuracy of the developed Ginzburg-Landau model when it is
used to determine the transition between absolute and convective instabili-
ties. It is shown that the CGLE based predictions of the transition can be
accurate only if the full physical dispersion relation is close to a quadratic
function over the complete range of disturbance wavenumbers with positive
linear amplification rate. In this case the coefficients of the CGLE can be
evaluated at any wavenumber in the parabolic range of the physical disper-
sion relation. Such models result in identical long term behaviours due to the
wavenumber cascading towards that of the most amplified disturbance. These
criteria are formulated as simple accuracy tests which are shown to be satisfied
in the problem of natural convection in a tall vertical enclosure. In applying
the model to the non-Boussinesq convection flow, we show that fluid property
variations in the vertical differentially-heated cavity have a strong influence
on the character of flow bifurcations. In particular, as the temperature differ-
ence between the walls of the enclosure increases, the shear driven bifurcation
changes character from supercritical to subcritical, and the corresponding in-
stability changes from absolute to convective. It becomes absolute again only
if the Grashof number is increased to a finite value above the linearly critical
one. At very large temperature differences, a buoyancy driven instability mode
appears as a result of a supercritical bifurcation. This instability is found to
be of convective type for the complete range of Grashof numbers investigated.
These conclusions are based solely on the analysis of the complex Ginzburg-
Landau equations derived for the flow, but are confirmed by DNS results of
the corresponding two-dimensional flows. Remarkably, although the presented
theory of CGLEs is developed for an effectively infinite geometry, and as such
does not account rigorously for details of the distant top and bottom bound-
ary conditions, the results are in excellent agreement with those of the DNS
in a finite cavity of aspect ratio 40. This confirms the validity of our quali-
tative arguments regarding the weak boundary condition influence when the
symmetry y — —y is broken.
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Experiments in the weakly non-Boussinesq regime (Simpkins, 1989) also con-
firm the two-dimensionality of the instability and provide quantitative evi-
dence of the accuracy of critical parameters (Simpkins, 1993). More recent
high pressure convection experiments in an inclined enclosure of large as-
pect ratio (Daniels, Plapp, and Bodenschatz, 2000) confirm the qualitative
symmetry-breaking influence of the non-Boussinesq fluid property variations
on spatio-temporal instability of convection resulting in the preferred down-
ward disturbance propagation and convective instability. Unfortunately, no
quantitative information on such flows has been reported to date. This is
partly due to technical difficulties associated with measuring flow characteris-
tics under high pressure/temperature conditions. For this reason, theoretical
analysis in conjunction with numerical simulations still remain the only tools
for investigating the physics of non-Boussinesq flows.

While our analytical results are in excellent agreement with those obtained
by numerical simulations, thus demonstrating the accuracy of the model de-
veloped, we hope that our work will motivate future experimental research in
this area as it is shown to provide an even richer variety of flow patterns than
the well studied classical Rayleigh-Bénard and Taylor-Couette flows. As noted
by Moresco and Healey (2000), although complex convection flows are found
in various practical applications, reports of their experimental investigation
are still surprisingly rare.

A Multiple scale expansions

We look for the solution of problem (2)—(11) in the separable Fourier-decompo-
sed form o
W(t,z,y) =Y, > e"ApWmnE", (A1)
m=0n=—oc
where Wi = (Umn (T), Vin (2), T (), Wi () + Sonllimoy)™, E = exp(iay) is
a Fourier component of the disturbance corresponding to wavenumber «, and
0 < € < 1 is a small parameter representing the size of the time-dependent
disturbance amplitude which is allowed to vary slowly in y. The terms II,,0y
in the expansion for the dynamic pressure are necessary in order to take into
account the constant vertical pressure gradient required to maintain a zero
average mass flux through any horizontal cross-section when disturbances are
developing. The expansion for the spatially uniform thermodynamic pressure
P is
x
P = Z ™ Ao Pro (A.2)
m=0
where the individual (constant) terms P, are determined at each order from
the global mass conservation condition (9). We also introduce the property
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vector g = (p, ¢y, i1, k)T, which is expanded similarly to (A.1):

o o

g(t: z, y) = Z Z EmAmngmnEna (A3)

m=0n=—o0

where, in particular,

gi1=9goorTi1, g2 = goorTeo + goorr|Ti1|* + goorPao

1
g1 =goor121, G2 = goorla + §QOOTTT121 ; (A4)

1
931 = goorT31 + goorr(T11Teo + 177 Te2) + §QOOTTTT11 T2
+goorpTi1 P,

the subscripts 7" and P denote partial differentiation with respect to Topo(z)
and Py, of the equation of state or corresponding property variation for-
mulae, and the star superscript denotes complex conjugation. Now we as-
sume the existence of multiple time and spatial scales so that A,,,(t,y) =
A (to, t1, T, -+ Y1, Yo, - - -), Where we take to = t, t; = &t, to = €2t,... and
Yo =1, Y1 = €Y, Yo = €2y, ... so that

The amplitudes A,,,, being functions of “long” spatial scales at which the
modulation of a fundamental harmonic can be observed, do not depend on g
since the periodicity of the disturbance is taken into account explicitly by the
exponentials E™(yq).

Substituting expansions (A.1) and (A.3) into system (2)-(11), we obtain a
set, of equations at each order of ¢ and E. Since the equations for E™ and
E~™ are complex conjugates of each other, we limit our consideration to the
equations for positive values of n. Note that w),, = wy_n, A, = An_n,
A = 1, Aonzo = Aijpz1 = 0 (for details see Suslov and Paolucci (1997b)).
The specific form of the equations at each order will define the functional form
of the dependence of higher-order amplitudes A,,, on A;; as demonstrated
next.
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B Linearised disturbances

At order e' E' we obtain the linear perturbation equations, which upon making
the identification A = A;, can be given in matrix form as

(AAa - g—iB) w1 = 0, (Bl)
where wy; = (upy,v11, 711, H11)T, uyy = viy = Ty = 0 at = 0,1, and the
elements of A, and B are given in Suslov and Paolucci (1997b). This system of
linear differential equations has a nontrivial solution of the form Aw;;, where
A = A(ty,ta, ..., y1, 42, ...)e™ only if operator on the left hand side of the
equation is singular and ¢ = o® +io! and wy; are respectively the eigenvalues
and eigenvectors of the generalised eigenvalue problem

(Aa - O'B)’LUH =0. (BQ)

This problem has been solved for a wide range of ¢ and Gr in Suslov and
Paolucci (1995b). The eigenvectors are normalised in such a way that

max |v11| = max |vgo| ,
so we can judge the disturbance magnitude by its amplitude only.

The system (B.2), with discretised spatial variable, reduces to an algebraic
eigenvalue problem. For future convenience we define the corresponding dis-
crete singular matrix operator L, , = A,—oB and its adjoint LLJ = (A: — o*B*)T
such that

LL,awllrl =0, (B.3)

where w], is the discrete adjoint eigenvector normalised in such a way that
I, Bwy )y =1 B.4
w;;, bwyy . (B.4)

The inner product of two discrete N-component vectors a and b, denoted by
angle brackets, is defined as (a,b) = Y| a’b;. Subsequently, from (B.2) and
(B.4) follows the dispersion relation

o= <wL,Aaw11> ) (B.5)

Differentiating (B.2) with respect to a we obtain

awn N al_a,g I aAa oo
“da  da THTT ( o Oa B) i (B.6)
and 0? oL OLy, O
w1 _ a,0 a,0 w11
“7 da? < Oa? Wi+ 2 da  Oa ) ’ (B.7)
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Then, considering the inner products of w!, with (B.6), and using (B.3) and
(B.4), we obtain

do 0w

: 0A,
% = —1£ = —l¢g = <wL, %w11> ) (B-8)

where w = io is the complex frequency and ¢, = cf' +ic} is the complex group
speed of the packet of disturbance waves centred at wavenumber «. Note that
the group speed defined by (B.8) is real only at values of « providing maximum
or minimum linear amplification rates, i.e. along lines A and B in Fig. 1 (a),
since for these wavenumbers ¢! = 9o%/0a = 0. For all other values of a,

g
ch # 0 (see Craik, 1985, page 14). From (B.7) we also obtain

% = <w11,2ag;"’ 8;121 + 3;22"w11> , (B.9)
which will be used in Appendix D.
C Second order terms
Collecting terms at order e2E! we have
(1aha ) = (408 00 (o

where wo; = (Uay, Vo1, To1, [la)T and ugy = ve; = Ty = 0 at z = 0, 1. Since, as
shown in Appendix B, A ~ e°%, compatibility of the left- and right-hand sides
of (Cl) requires that A21 = 12121 (tl, tg, e Y1, Yo, - .)e”to so that 8A21/8t0 =
0Ay;. Then upon using (B.4) and (B.8) the inner product between equation

(C.1) and the solution w!, of the adjoint problem results in

0A 0A

0=cyo + oo
cgayl +3t1’

(C.2)

i.e. the disturbance amplitude A = A(Y1,to,10,...) €%, V] =y, — cgt1. Then
problem (C.1) is transformed to

0A (.0A,

A21 I—a,a'w21 = a—Y <la—a - CgB> w1 - (C3)
1

It is clear now that compatibility of the left- and right-hand sides requires
A21 = 8A/8Y1

Solvability condition (C.2) puts the right-hand side of equation (C.1) in the
range of the singular linear operator L, , so that equation (C.1) has infinitely
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many solutions. Indeed by comparing (C.3) and (B.6), we see that the multi-
tude of solution of (C.3) can be written as

awu

o

where r is an arbitrary constant. To eliminate this ambiguity we impose an
extra orthogonality condition (wpmn, w11) = 0 when m # 1 or n # 1. Physically
this means that the disturbance amplitude A is chosen in such a way that
the higher order corrections to the solution do not affect the intensity of the
component of the complete solution given by the eigenfunctions w;; and only
add orthogonal modifications. Requiring (ws1, wy1) = 0 fixes r to the unique
value

Wwo1 = —i —+ rwi; y (C4)

_ i<w11, 8’(.011/(90[)

<’w11, ’w11>

Equations for the mean flow correction arising from terms of the order £2FE°
and for the second harmonic arising from terms of the order ¢2E? have been
obtained and discussed in detail in Suslov and Paolucci (1997b) and Suslov and
Paolucci (1999) and are not repeated here. We only note that unless special
resonant conditions occur (which does no happen in this study) (see Suslov
and Paolucci, 1997b) the operators Lgg, and La, g, are not singular and no
issues of solvability or non-uniqueness have to be resolved at these orders.

D Complex Ginzburg-Landau equation

The system which results at order e3E" is given by

0A 0?A [ .0A, 10%A,
<A31Aa - 8t21 B) wy = A|A]fy + av2 (1—8a W+ 550 ’w11>
.0A 0A, 0A 0%A
la—y2 o w11 B (8—752’1011 - Cga—y?’le) X (Dl)

where w3 = (U,31, V31, T31, Hgl)T, U31 = V31 = T31 =0atz = 0, 1, and we have
taken into account that, as follows from (C.2),

0*A 0?A 0?A

ooy o ovE

T
The vector f5; = ( ﬁ), fg(f), ?fi’), fﬁ)) is a function of solutions obtained at

lower orders of ¢ and is given in Suslov (1997). The right-hand side of (D.1)
consists of terms with three different functional dependencies on the amplitude
A: A|AJ?, 0%A/0Y?2, DA/ Dy,. Therefore in order to guarantee the compatibility
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of the system for different times it has to be split into three independent parts
representing each of the above functional forms. This also requires the slow
evolution of amplitude A to depend in general on the same three functional
forms, namely,

0A 8A+K%
Oty oYE oy,

Our goal now is to obtain the constants K;, Ky and Kj.

= K, A|A? + K,

Equation (D.1) splits into a system of three equations

(1) A, e
Az’ A, — Oty B | ws’' =AlAP (f31 + K1Bwyy) , (D.2)
A2 0%A [ (.0A,
(Ai(iQI)Aa - —31;(),)1 B) :(’,21) = —6Y1 l(l—aa — ch> wao
10%A,
i <§ 902 +KQB> w“] ’ (0:5)
9A% 04 (.0A,
ADA, — 32 B | wld = B . D.4
( Bt s \' 0o wn (D4)

Now compatibility of the left- and right-hand sides requires Agll) = A|AJ?,
AD) = 92A4/0Y2, AS) = 0A/0y, so that the above equations become

La,o’—|—2(7Rw§11) = f31 + Kl Bwll ) (D5)
.0A, 10%A,
Lo ws) = <1 o= ch> wy + (2 ot KQB) wyy , (D.6)
0A,,
La aw{g?{) = (1 P + KgB) w17 - (D?)
«

The linear operator on the left-hand side of equation (D.5) is typically not
singular and therefore this equation has a unique solution for any value of Kj.
Thus, orthogonality rather than the conventional solvability condition has to
be used to fix the value of this constant. As shown in Suslov and Paolucci
(1997b), the condition (wéll), wi1) = 0 leads to

K, = _QGRM (D.8)
! <’w11,’w11> ’ .

where x = (uy, vy, Ty, II,)" is the solution of

La,0—|—20RX = f31 .
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Note that the above value of K; approaches the value given by the standard
solvability condition in the limit o® — 0.

Since the linear operators on the left-hand sides of equations (D.6) and (D.7)
are singular we apply the solvability condition, i.e. consider the inner product
of these equations with w!,. Then using (B.4)-(B.9) and (C.4) we obtain

1 0%
K2:_§W’ K3:—Cg. (Dg)

Now reconstituting the time derivative of the amplitude, we have

A A 2.4
94 0A 2%+---=0A—cg(ea—+523—>+521<23—

8_150 +€3—tl te Oty oY1 0y oyt
+e2 K AJAP + -+,
or using (A.5)
0A 0A 0?A
—— =0A—cy o + Ko + 2K AJAP + -+
g = AT gy HRag s TEKAAR Y

Multiplying the above equation by &, redefining eA—A and neglecting the
higher-order terms in amplitude we obtain the CGLE (1) for the amplitude
A = A(t,y) of a spatially modulated monochromatic disturbance.

We note two aspects which distinguish the above derivation from those con-
ventionally found in the literature. First, the disturbance amplitude is allowed
to be a function of the fast time ¢, and its magnitude is not directly re-
lated to the distance from criticality. This means that we do not impose the
conventional requirements |o%| = O(g?) and (Gr — Gr.)/Gr. = O(c?) (see
Herbert, 1983). They are avoided by using the orthogonality condition in ad-
dition to the solvability condition at various orders of small amplitude as was
first suggested by the authors in Suslov and Paolucci (1997b). Naturally, this
does not imply that the derived amplitude equation is valid arbitrarily far
from criticality. Indeed the requirement of small amplitude is equivalent to
|A| ~ /—0B/KE = O(e) < 1 which in turn defines the relation between the
fast (linear) and slow (nonlinear) timescales. This condition is definitely sat-
isfied near the criticality, but might fail far away from it. At the same time, in
some physical problems, and in particular in the one considered here, it might
hold farther away from criticality than a distance of order £2. This condition is
checked a posteriori when the numerical values of the coefficients are computed
and is found to be well satisfied in the current work. Second, the derivation
presented here does not rely on the fact that « is the wavenumber correspond-
ing to the largest linear amplification rate o®. Implications of this are very
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delicate and are discussed in the body of the current paper. The main out-
come of this extended treatment is the computationally straightforward and
inexpensive criterion which is formulated in Section 4 and which allows one to
quantify the bounds of critical parameters for transition between convective
and absolute instabilities when using the CGLE as a working model.

E Coupled equations for two-mode regimes

When linear stability analysis predicts the existence of two instability modes a
system of coupled amplitude equations describes the dynamics. Assuming that
two instability modes are present in the flow, each of which is characterised by
its own amplitude A; = O(g), wavenumber «;, complex linear amplification
rate o; and group speed cg, ¢ = 1,2, fully uncoupled sets of equations arise
for each of the modes for the fast spatial variation given by E; up to and
including terms of second order in e. Coupling terms, of the form A;|A;|* and
Ay|A1|%, appear at third order in e. Using the same procedure as described in
Appendix D, these extra terms lead to a separate system of equations

0Asn
Oty

0A
B) w311 = A1|A2|2f311 + —lelll s (El)

Asi1Aa, —
(311 . ot,

where the vector fj3; depends on solutions obtained at lower orders in ¢
and is defined in Suslov and Paolucci (1997a,b). Subsequently, the coupling
amplitude has to be of the form Az; = A;|Ay|*> and the slow time derivative
of A; has to be of a similar form, A, /0t; = Ki2A;|A5%. As in Appendix D
this results in an equation with a non-singular operator on the left-hand side

La1,01+2a§w:(a11)1 = (f311 + Ki2Bwin) , (E.2)

where the constant K5 is uniquely determined by the orthogonality condi-
tion (see equation (D.8)). Such a procedure leads to a system of two coupled
Ginzburg-Landau equations

0A;  0A; 0% A;

R 2 2y
gp gy T T i T Al Rl (=

As discussed by Knobloch and De Luca (1990) and Pierce and Wayne (1995),
this set of equations although mathematically correct may be incomplete as
it only describes local wave interactions. Indeed the only interactions in this
system are due to the cubic terms A;|A3_;|> which only contribute if the two
wave envelopes are found at the same physical location at the same time. In
the case of localised wave packets propagating with different group speeds,
which is relevant to convective and absolute instabilities considered in this
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work, this interaction time is small and, as discussed by Pierce and Wayne
(1995), coupled CGLEs exclude the possibility of mutual spatial modulation
of the two wave envelopes propagating with different group speeds. The nu-
merical simulation of equations (E.3) conducted by the authors confirms this
conclusion.

In order to account for nonlocal mode coupling, we generalise the procedure
of Knobloch and De Luca (1990). Originally it was developed for counter-
propagating waves with the same group speed. Here we consider the case
of waves propagating with arbitrary group speeds. In order to accomplish
this, we allow small perturbations B; of the fundamental amplitudes A;. As
shown in Appendix C, amplitudes A; are functions of Yi; = y; — cgit1. Thus
the coupling amplitudes are chosen to be of the form eA;(Yi;, ta,vo,...) +
e2B;(Y13-i, ta, Y2, - - .), i = 1,2. The equations for B; resulting at second order
in ¢ are identical to the linearised equations (B.1). At order &3, amplitudes
B; introduce terms proportional to E°, Ey, E,, E? EZ E;? Ey’, E\F,,
E\E;', E['E,, and E7'E;'. Provided that no wavenumber resonance occurs
(i.e. 2a1 # ap assuming that a; < ap) the only extra terms which contribute
to the right-hand side of equation (D.1) are those proportional to E;. The
additional equation, similar to equations (D.2)—(D.3), becomes

83311 N 8B1 8Aa1 831 8A1
8—tOB> 3= ll oy, da <6t1 * 6t2> B] win - (E4)

The equation for e2E», i.e. the second mode, is similar.

(BSIIAal -

Following the steps developed in Appendix D and recollecting that B; =
B1 (}/12, .. ) we deduce that B311 = 8B1/8Y12 and 8A1/8t2 = K48B1/8Yv12, SO
that subsequently we have

.OA,
Lalaalwngl)l =1 8041 + (K4 — cg2)B| winy - (E.5)

The solvability condition applied to equation (E.5) results in
Ky = cgo — cy1,
so that the evolution equation for A; at third order becomes

0A
aTl - KllAl‘A1‘2+K12A1|A2|2+K2
2

02 A, 04,

0B,
W2y, + (g2 —cq1)

8712 . (E.6)

This equation is identical to equation (12) given by Knobloch and De Luca
(1990) in the case of counter-propagating waves where cgo = —cg1. If ¢go = ¢
then the last term in (E.6) disappears and the equation becomes the stan-
dard coupled CGLE. Although this equation is local in nature, it does not
lead to any problem since in this case the two wave envelopes travel together
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and interact (locally) indefinitely. When the group speeds are different, the
uniform validity of (E.6) requires the solvability condition with respect to the
modulational amplitude B; to be satisfied. It is obtained by integrating this
equation with respect to Yi5 over the flow region and imposing homogeneous
boundary conditions for B; at the ends. The resulting amplitude equation for
slow time then becomes

0A; 0% A, 04,
—— = K1 A AP + Ko\ AL + K. — E.7
ot 141 A7 + Ki2M Ay + 23Y121 Cg1 By (E.7)
where
1 Afg—cgoty
A = A_/ REVHLEI (E.8)
H J—cgat1

and Ay is the dimensionless height of the enclosure. The derivation of the
evolution equation for A, is identical. Finally, reconstituting the full amplitude
equations for both A; and A, as done in Appendix D we obtain equations
(26)—(28).
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