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Abstract. Despite decades of experimental and theoretical investigation on thin films, 

considerable uncertainty exists in the prediction of their critical rupture thickness. 

According to the spontaneous rupture mechanism, common thin films become unstable 

when capillary waves at the interfaces begin to grow. In a horizontal film with 

symmetry at the midplane, unstable waves from adjacent interfaces grow towards the 

center of the film. As the film drains and becomes thinner, unstable waves osculate and 

cause the film to rupture. Uncertainty stems from a number of sources including the 

theories used to predict film drainage and corrugation growth dynamics. In the early 

studies, the linear stability of small amplitude waves was investigated in the context of 

the quasi-static approximation in which the dynamics of wave growth and film thinning 

are separated. The zeroth order wave growth equation of Vrij predicts faster wave 

growth rates than the first order equation derived by Sharma and Ruckenstein. It has 

been demonstrated in an accompanying paper that film drainage rates and times 

measured by numerous investigations are bounded by the predictions of the Reynolds 

equation and the more recent theory of Manev, Tsekov, and Radoev. Solutions to 

combinations of these equations yield simple scaling laws which should bound the 

critical rupture thickness of foam and emulsion films. In this paper, critical thickness 
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measurements reported in the literature are compared to predictions from the bounding 

scaling equations and it is shown that the retarded Hamaker constants derived from 

approximate Lifshitz theory underestimate the critical thickness of foam and emulsion 

films. The non-retarded Hamaker constant more adequately bounds the critical 

thickness measurements over the entire range of film radii reported in the literature. 

This result reinforces observations made by other independent researchers that 

interfacial interactions in flexible liquid films are not adequately represented by the 

retarded Hamaker constant obtained from Lifshitz theory and that the interactions 

become significant at much greater separations than previously thought.   

 

Keywords:  Thin Films, Thinning Velocity, Critical Film Thickness, Spontaneous 
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1. Introduction  

Thin liquid films form between bubbles and droplets in multiphase systems and an 

improved understanding of their stability and rupture will benefit numerous industries 

such as tertiary oil exploration, biotechnology, and microchip design and 

manufacturing [1]. This work is preceded by numerous experimental [2-6] and 

theoretical [2, 5, 7-10] studies that address film stability and the critical or rupture 

condition. Despite this wealth of information, significant confusion and uncertainty 

remains in the ability to predict the critical film thickness from basic physicochemical 

properties. Uncertainties stem from a number of sources including the underlying 

theories governing film drainage and wave growth dynamics [11] and the magnitude of 

the Hamaker constant used to represent the attractive van der Waals forces [12, 13]. 

The work presented here represents an attempt to bound the prediction of the critical 

rupture thickness and thereby construct a framework from which past and future thin 

film studies can be described.    

 

Common thin films rupture via a spontaneous mechanism in which a film becomes 

unstable when capillary waves at the interfaces begin to grow [7, 10]. The conditions of 

the onset of instability have been described previously [8, 11]. Unstable capillary waves 

located along the interfaces of a thin film grow towards the middle of the film, in the 

direction of the opposing interface. As the film drains and becomes thinner, unstable 
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waves eventually osculate to rupture the film. Application of the quasi-static 

approximation allows the rate expressions for film drainage and corrugation growth to 

be separated in the underlying lubrication theory as a consequence of the vast size 

difference between the characteristic times of the two phenomena. In this way, 

approximate equations describing film drainage [11, 14, 15] and corrugation growth [7, 

9, 11] have been reported. It was recently demonstrated [16-18], and more thoroughly 

discussed in an accompanying review paper [19], that the thinning velocities of thin 

films with suppressed electrostatic interaction and tangentially immobile interfaces can 

be bounded using the Reynolds equation [10, 14] and the theoretical equation derived 

by Manev et al [15]. It was also recently shown [17, 18, 20] that the critical thickness of 

common thin films can be bounded by selectively coupling the drainage equations with 

the corrugation growth rate expressions derived from linear stability studies. In these 

previous works, values of the Hamaker constants were taken from a variety of sources. 

In this study, approximate Lifshitz theory is used throughout to estimate the Hamaker 

constants for the foam and emulsion film systems and equations from the underlying 

theory are assembled in such a way as to bound the critical rupture thickness. The 

resulting scaling equations are then used to explore the consistency of Lifshitz theory 

and spontaneous rupture theory in predicting the critical rupture thickness of foam and 

emulsion films.  

 

2. Theory 

Lubrication theory describes the squeezing flow of a viscous fluid between two rigid 

surfaces [14]. This is similar to the thin liquid films that form between bubbles in a 

foam or droplets in an emulsion. Drainage from the film occurs as a consequence of the 

pressure drop across the film. When the interfaces are tangentially immobile and nearly 

plane parallel, lubrication theory is applicable and provides the Reynolds equation for 

film thinning [10, 11].  
3

Re 2

2
3

dh h PV
dt R

Δ
μ

= − =  (1) 

h is the average film thickness, ΔP is the average radial pressure drop across the film, R 

is the film radius, and μ is the viscosity of the film. Thin film studies are carried out in 

specially designed capillary cells in which a thin film forms in the center of the liquid 

spanning the capillary tube. The Plateau border capillary pressure drop is the pressure 
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drop at the perimeter of the film due to the curvature of the meniscus. At sufficiently 

small thicknesses, attractive van der Waals forces acting between the film interfaces 

increase the intrafilm pressure. The van der Waals forces have a conjoining effect and 

are included as a negative component of the disjoining pressure. In the absence of 

electrostatic repulsion, the drainage pressure or average pressure drop across the liquid 

film is given by the following expression where the first term is the Plateau border 

pressure drop and the second term is the disjoining pressure. 

2 2 32
6

c

c

R AP
R R h

Δ σ
π

⎛ ⎞
= +⎜ ⎟−⎝ ⎠

 (2) 

A is the retarded Hamaker constant, cR is the radius of the capillary tube, and σ is the 

interfacial tension. Unlike the disjoining pressure component, the Plateau border 

capillary pressure component is not time dependent as long as the film radius remains 

constant. The physicochemical parameters and the range of film thickness determine 

the dominant component of the drainage pressure. Coons et al [11, 19] have shown that 

for films of large radii, the Plateau border capillary pressure term dominates the 

drainage pressure throughout the unstable period up to the point of rupture. For small 

radii films, the disjoining pressure contributes more significantly to the drainage 

pressure but probably never completely dominates.  Domination by the disjoining 

pressure component throughout the unstable period requires that R be of order h, which 

violates a basic premise of lubrication theory.  

 

In a free standing liquid film, the interfaces are not rigid and the non-uniform film 

pressure causes the interface to dimple. Hence, the interfaces become nonparallel as 

thinning proceeds [1, 5, 15]. The drainage theory of Manev et al [15, 21] assumes that 

the local film thickness is a homogeneous function of the average film thickness, that 

the waveform driving the film drainage forms by capillary forces, and that the pressure 

drop across the corrugated film is directly proportional to the driving pressure divided 

by the square root of the eigenvalue of the dominant waveform. These assumptions lead 

to the following expression for the thinning velocity.  
3 2

ReV V l=  (3) 

l is  the number of domains or rings in the film and is given by the following theoretical 

expression.  
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Equations (3) and (4) are referred to here as the theoretical MTsR equation. This theory 

predicts that the number of domains, and hence the thinning velocity ratio, increases as 

the film thickness decreases. Coons et al [11] obtained the following semi-empirical 

equation for the number of domains by comparing equation (4) with the thinning 

velocities reported by Radoev et al [5]. 
2 521 4 1
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 (5) 

Equations (3) and (5) are referred to here as the semi-empirical MTsR equation. The 

theoretical MTsR equation generally predicts higher thinning velocities than the semi-

empirical equation. Coons et al [19] have shown that the Reynolds equation typically 

underestimates thinning velocities, the theoretical MTsR equation consistently 

overestimates thinning velocities, and the semi-empirical MTsR equation provides 

more accurate thinning velocities through the stable and unstable periods leading to 

rupture.     

 

Thin films become unstable when small-amplitude thermal corrugations begin to grow.  

The linear stability of corrugated films has been investigated in which the dynamics of 

film thinning and corrugation growth are treated separately [11]. The critical thickness 

is defined as the optimum average film thickness at rupture, and approximations are 

obtained by tracking the waveform that is first to reach the center of the film. The 

amplitude of the critical wave is equivalent to the half film thickness at the critical 

rupture thickness [2, 9].  

( )02 expch Xζ=  (6) 

0
ζ is the initial amplitude and is estimated assuming that the corrugation results from 

thermal motion of the molecules along the interface [5]. 

 0 Bk Tζ σ=  (7) 

Bk is Boltzmann’s constant and T is absolute temperature. X in equation (6) is the 

growth constant, which is the dimensionless product of time and the growth rate for the 

optimum waveform. By replacing time with dh V∫ , the growth constant can be 
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expressed as a function of the film thickness whose form depends on the order of the 

approximation used to generate the corrugation growth rate. The zeroth order 

corrugation growth constant [2, 7] neglects the stabilizing effect of film thinning and 

the destabilizing effect of the film thickness dependency of the Hamaker constant. 

 
2

2 3
0 24

t

c

h
opt

opt
h

k A dhX k h
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⎡ ⎤= −⎢ ⎥⎣ ⎦∫  (8) 

ch  and th  are the critical and transition thickness of the optimum waveform, 

respectively. As each waveform has a unique transition and critical thickness, the 

optimum waveform is the wave that provides the maximum critical thickness and is 

generally not the first waveform to become unstable. The relationship between the 

eigenvalue of the optimum waveform ( )optk and its transition thickness is determined 

by setting the corrugation growth rate to zero and therefore depends on the order of the 

corrugation growth rate used. When the zeroth order corrugation growth rate is applied, 

the eigenvalue of the optimum waveform and its transition thickness have the following 

relationship.  

 
1 2

4opt
t
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hπσ
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⎝ ⎠
 (9) 

The first order corrugation growth constant [8, 9] and the equation that relates the 

eigenvalue of the optimum waveform with its transition thickness are provided below. 
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The first order growth constant includes the stabilizing effect of film thinning but 

neglects the film thickness dependency of the Hamaker constant. The latter effect is 

addressed for both corrugation growth constants by employing an effective Hamaker 

constant described in the subsequent section. The eigenvalue of the optimum waveform 

is obtained by differentiating equation (6) with respect to optk  and the result is 

independent of the order of the growth constant used.  
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3. The Hamaker Constant  

The equations described in the previous section are dependent on the Hamaker 

constant, which according to Lifshitz theory is in turn dependent on the dielectric 

spectrum of the materials in the specific film system as well as the film thickness. As 

described in an accompanying paper [19], equation 5.9.3 in Russel et al [22] was used 

to estimate the retarded Hamaker constants for this study. When the film medium 

contained electrolytes, ion screening of the non-retarded term was included using 

equations 11.23 and 12.37 from Israelachvili [23]. The equation is based on Lifshitz 

theory as applied to symmetric films of large lateral dimension (i.e., planar films).  

 

According to Lifshitz theory, the Hamaker constant decreases with increasing film 

thickness due to retardation effects. This dependency is neglected in the derivation of 

the above thinning velocity and corrugation growth equations. Given that the difference 

between the transition and critical rupture thickness of the optimum waveform is 

relatively small (i.e., approximately 100 Å), application of a film-thickness independent 

Hamaker constant is appropriate given the approximate nature of the bounding analysis. 

However, the destabilizing effect of the film thickness dependency of the Hamaker 

constant requires additional attention. The relative size of the destabilizing effect can be 

determined by taking the derivative of the disjoining pressure term in equation (2) with 

respect to h. This results in the following effective Hamaker constant.  

 11
3eff hh

h h

dA hA A
dh A

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎪ ⎪= − ⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
 (13) 

The effective Hamaker constant incorporates the destabilizing effect due to the film 

thickness dependency of the retarded Hamaker constant on the corrugation growth 

constant. As shown in Figure 1, the film thickness dependency contribution (i.e., the 

term in the square brackets in equation (13)) depends on the film thickness as well as 

the film material but does not fall below -1 for the films considered here. Therefore, the 

effective Hamaker constant used in this study was taken as the value of the retarded 

Hamaker constant at the experimentally measured critical film thickness with an 

approximate film thickness dependency contribution of -1. 

 4
3 c

eff h
A A≈  (14) 
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The nonretarded Hamaker constant ( )( )0A  was also used in this study and was 

calculated using equation 5.9.4 from Russel et al [22]. 

 ( ) ( ) ( )
( ) ( )

( )
( )

22 2 2
1 31 3

131 1.52 2
1 3 1 3

0 0 330
4 0 0 16 2B

n n
A k T

n n

ε ε ω
ε ε

⎡ ⎤−⎡ ⎤− ⎢ ⎥≈ +⎢ ⎥ ⎢ ⎥+⎢ ⎥ +⎣ ⎦ ⎣ ⎦
 (15) 

The subscript on the Hamaker constant is absent elsewhere in this paper and denotes a 

film of material 3 with semi-infinite material 1 at each interface.  is Planck’s constant 

(1.0545×10-34 Nms/radian), in is the refractive index in the visible frequency range of 

material i, ( )0iε  is the static dielectric constant of material i, and ω is the dominant 

relaxation frequency in radians/s in the ultraviolet frequency range. In the derivation of 

equation (15), it is assumed that the relaxation frequency is similar in both film 

materials. However, in practice, this is only approximately correct and in this study the 

relaxation frequency of the film medium (i.e., material 3) was used. The dielectric and 

optical properties used to calculate the Hamaker constants, and when available their 

temperature dependencies, are provided in Table 1. The electrolyte concentrations 

applied to determine the screening effects in aqueous films are provided in Table 2 

along with the calculated effective and nonretarded Hamaker constants. 

 

 

4. Critical Film Thickness Scaling Laws 

For a given drainage velocity expression, the zeroth order growth constant provides 

higher values of critical thickness than the first order growth constant [11]. Also, the 

magnitude of the film thickness integral in equation (8) and hence the size of the 

critical film thickness is inversely proportional to the thinning velocity. Therefore, by 

combining the Reynolds thinning velocity (equation (1)) and the zeroth order growth 

constant (equations (8) and (9)) with equations (6), (7), and (12), an upper bound of the 

critical thickness is obtained. This combination of equations is identical to the theory of 

Ivanov et al [2]. Previous solutions have been provided [11, 18] with reference to a 

master curve, which reflects the self-similarity of the film rupture process and is a 

necessary condition for a scaling law [24]. The master curve elucidates three 

subdomains over the relevant parameter space whose boundaries are defined by the 

dominant term in the drainage pressure of equation (2). Approximation of the master 
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curve by a continuum of three lines, one line for each subdomain, allows the critical 

thickness to be estimated over the entire relevant parameter space by the following 

scaling law (see the appendix for an alternate derivation of the basic form of the scaling 

law).  

 ( ) ( )* * *
,0

x y

c th C h P=  (16) 

* * *
,0, , and c th h P are dimensionless parameters defined as follows.  

 *

02
c

c
hh
ζ

=  (17) 
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 (18) 
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−
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0,1α  is the first root of the Bessel function of first kind order zero and has a value of 

2.4048. The scaling law constants C, x, and y in equation (16) are dependent on the 

system of equations solved, the relevant master curve, as well as the subdomain in 

which a solution is sought. For the system of equations describing the upper bound of 

the critical thickness, the scaling law constants take on the values provided in Table 3. 

The system of equations representing the upper bound scaling law is identical to the 

model described by Ivanov et al [2] for stationary films with high concentrations of 

surfactant when the disjoining pressure is represented as shown in equation (2). Ivanov 

et al did not provide a general solution in the form of limiting equations, but did show 

that the model predicted higher than actual critical thickness values for a series of 

aniline films. Ivanov et al also did not report all of the physicochemical properties 

necessary to obtain their results, making a quantitative comparison with the scaling 

laws impossible.   

 

In a similar manner, the scaling law for the lower bound of the critical film thickness 

was determined. This was accomplished by combining the theoretical MTsR equation 

(i.e., equations (3) and (4)) and the first order growth constant (equations (10) and (11)) 

with equations (6), (7), and (12). The resulting lower bound scaling law constants are 

provided in Table 4.  
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It has been shown that the semi-empirical MTsR equation provides more accurate 

estimates of the film thinning velocity in the unstable period of a large variety of films 

[19]. Therefore, combination of the semi-empirical MTsR equation (i.e., equations (3) 

and (5)) and the zeroth order growth constant (equations (10) and (11)) with equations 

(6), (7), and (12) may provide more accurate estimates of critical thickness. The scaling 

law constants for the lower bound of the critical film thickness are provided in Table 5. 

 

5. Discussion 

The utility of the critical thickness scaling law and the associated constants reported 

here can be tested by comparing the scaling law predictions with measurements 

reported in the literature. To meet this objective, critical thickness values reported on a 

variety of foam and emulsion films were collected [3-7, 25-27]. All of the aqueous 

films contained sufficient electrolyte to suppress electrostatic repulsion and the 

interfaces of all of the films were rendered tangentially immobile by the presence of 

surfactant. The physicochemical properties used for each film in application of the 

scaling law are provided in Tables 1 and 2. Upper and lower bounds of the critical 

thickness were calculated using equation (16) with the corresponding constants 

determined by the drainage pressure condition described in Tables 3 and 4, 

respectively. Scaling law predictions of the critical thickness bounds in foam and 

emulsion films using the effective Hamaker constant are compared to the 

experimentally measured values in Figure 2 and 3. The results demonstrate that only a 

portion of the foam and emulsion critical thickness measurements are bounded when 

the effective form of the retarded Hamaker constant is used. For a given film system, 

the scaling law predicts that the critical film thickness will increase with increasing film 

radius. This is consistent with the measurements reported in the studies included here. 

In Figure 2, it is shown that foam films of small radii are bounded by the scaling law 

predictions whereas the larger films are not. In Figure 3, the no. 6 emulsion films (i.e., 

tolunen-water-toluene films) of Manev et al [6] are bounded while the other emulsion 

films are not. The effective Hamaker constant appears to be within a suitable range for 

smaller films but does not adequately represent the long range van der Waals attraction 

over the entire size spectrum of foam and emulsion films considered.  
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It has recently been observed that long range van der Waals forces appear to have a 

much larger effect in liquid films than is predicted by the retarded Hamaker constant 

obtained from Lifshitz theory. Sharma et al [13] observed the breakup of micrometer 

thick polydimethylsiloxane (PDMS) films on solid substrates over time periods that 

were several orders of magnitude shorter than is predicted by thin film theory. Chen et 

al [12] independently measured the separation distance at which PDMS or 

polybutadiene films supported on mica substrates coalesce due to a jump instability 

created by long range van der Waals attractrive forces. The jump-in distance was 

measured at around 2000 Å, which is in agreement with theoretical predictions when 

the non-retarded Hamaker constant is used to represent long range forces. It is therefore 

of interest to determine if critical film thickness measurements reported in the literature 

are more globally consistent with the scaling law predictions when the non-retarded 

Hamaker constants provided in Table 2 are used. Scaling law predictions of the critical 

thickness bounds in foam and emulsion films using the non-retarded Hamaker 

constants are compared to the experimentally measured values in Figure 4 and 5. The 

scaling law bounds are shown to be much more consistent with the experimental 

measurements. In Figure 4, essentially all of the critical thickness measurements in the 

foam films are bounded. Also, with the exception of system no. 1 of Traykov et al [3], 

all of the emulsion films in Figure 5 are shown to be bounded by the scaling law 

predictions. Emulsion film systems nos. 1 and 4 of Traykov et al contained the same 

materials but were inverted. That is, film system no. 1 consisted of a benzene film 

surrounded by water whereas film system no. 4 consisted of a water film surrounded by 

benzene. According to Lifshitz theory, the Hamaker constants for these two systems are 

equivalent which is consistent with the Hamaker constants shown in Table 2. However, 

the critical film thickness measured in system no. 1 was about 35% thicker than in 

system no. 4. This discrepancy can not be explained by the difference in interfacial 

tension. The non-retarded Hamaker constant of system no. 4 would have to be 

increased by a factor of 3 to obtain agreement with the scaling law predictions.  

 

It is of interest to explore this approach when a more accurate film thinning model is 

coupled with the corrugation growth equation. For this purpose, the semi-empirical 

MTsR equation was coupled with the zeroth order corrugation growth constant and the 

resulting scaling law constants are provided in Table 5. The scaling law predictions for 

both types of films are compared to the actual values in Figure 6 and 7 where the 
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effective and non-retarded Hamaker constants are used, respectively. Here too, 

predictions using the non-retarded Hamaker constant more accurately predict the 

critical film thickness measurements.  

 

6. Conclusions 

It is shown in this study that the average critical film thickness of emulsion and foam 

films can be bounded using a simple scaling law with the constants provided in Tables 

3 and 4 when the non-retarded Hamaker constant is employed. The analysis 

demonstrates general agreement between the predictions of spontaneous rupture theory 

with the experimental measurements of a broad range of foam and emulsion films 

based on the growth of the optimum waveform. The equations used in this study only 

approximate the dynamics of film thinning and corrugation growth in thin films. The 

scaling laws used to predict bounds for the critical thickness were obtained following a 

quasi-static approach in which the fastest corrugation growth and slowest film thinning 

models, or alternatively, the slowest corrugation growth and fastest film thinning 

models were combined. Although the particular drainage and corrugation growth 

models in the underlying equations influence the resulting critical thickness predictions, 

the choice of drainage model appears to have the largest effect. When the scaling law 

incorporating the more accurate semi-empirical MTsR drainage equation is used, the 

resulting critical thickness predictions are more accurate for small to moderately sized 

films. The scaling laws can also be applied to bound the Hamaker constant when 

accurate critical thickness values are known.       
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8. Appendix 

The basic form of the scaling law can be obtained by assuming that the drainage 

pressure in equation (2) is dominated by either the Plateau border pressure drop or the 

disjoining pressure term. Under conditions when the Plateau border pressure drop 

( ),BPσ  dominates and the Reynolds equation is used for film thinning velocities, 
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equation (12) can be integrated directly. Substitution of equation (9) for optk  provides 

the following equation relating the critical and transition thicknesses of the optimum 

waveform. 

 
4 3

6 7 1c c

t t

h h
h h

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟
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 (A1) 

Limiting the film thickness ratio to positive values less than 1 provides: 

 0.72c

t

h
h

β = ≈  (A2) 

Integration of the zeroth order corrugation growth constant given by equation (8) 

followed by substitution of equation (9) provides: 

 
( )2 2

0 2 4 3 3 4
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1 1 1
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P h h h hσπ σ

⎡ ⎤−⎛ ⎞
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 (A3) 

The transition thickness is eliminated by substitution of equation (A2). 
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The zeroth order growth rate constant can be rearranged in the form of the 

dimensionless constants defined in equations (17) through (19). Introducing the 

resulting growth constant expression into equation (6) provides the following equation 

for the dimensioless critical film thickness. 
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h

h
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⎣ ⎦
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Taking the natural logarithm of both sides provides the basic form of the scaling law.  
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4 7 1 70,1* * *
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1 4 3

8lnc t
c

h h P
h

α β β β⎡ ⎤− +
⎢ ⎥=
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 (A6) 

The values of the exponents in equation (A6) are approximately equal to the x and y 

values listed in the last row of Table 3. The quantity in the square brackets is slightly 

dependent on the value of the dimensionless critical film thickness, which ranges 

approximately between 10 and 100. This provides a C value that ranges between 0.54 

and 0.60. The slightly larger C value provided in the last row of Table 3 compensates 

for the slightly smaller values of x and y.  
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A similar approach under conditions where the drainage pressure is dominated by the 

disjoining pressure provides a β value of 0.67 and equation (A6) becomes: 

 
( )

( ) ( )

1 4
2 4 4
0,1

* *
,0*

1ln 1
4

8lnc t
c

h h
h

α β β β⎧ ⎫⎡ ⎤− + −⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (A7) 

The value of the x parameter in the first row of Table 3 is smaller than unity. Although 

the difference is small, it effectively reduces the value of the critical film thickness by 

half. The difference is compensated for in the value of the C parameter. In equation 

(A7), the value of C ranges between 0.25 and 0.33, which is about half of the value 

provided in Table 3. The differences between the scaling law parameters provided in 

this appendix and those in Table 3 are a consequence of the master curve approach 

described in the previous scaling law section. The master curve approach yields 

approximate values of the scaling law parameters across the entire range of drainage 

pressure conditions as well as the approximate boundaries where the various forms of 

the scaling law are applicable.  

  

Rearrangement of the scaling law into a dimensional form provides an equation that is 

similar in form to the limiting equations of Vrij [7, 26], which included an undefined 

parameter (f) that was reported to be slightly dependent on film thickness. 
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TABLES 

 

Table 1. Dielectric and optical properties1 of reference film materials. 
Material ε(0) n ω ×10−16 

(rad/s) 
water ( ) ( )100.002 298.15 log 78.5410 T− − +  1.333 1.88 

air 1.00054 1 - 

benzene ( )2.284 .002 293.15T− −  1.5011 1.32 

toluene ( )2.379 .00243 298.15T− −  1.474 1.36 

chlorobenzene ( ) ( )100.0013 293.15 log 5.7110 T− − +  1.5241 1.32 

aniline ( ) ( )100.00148 293.15 log 6.8910 T− − +  1.583 1.32 

 

                                                 
1 ( )0ε were obtained from Weast [28]. n  and ω  for water and benzene were obtained from Israelachvili 
[23]. n  and ω  for toluene were obtained from reference [19]. The refractive indices for chlorobenzene 
and aniline were obtained from Weast [28] and the relaxation frequency of benzene was used for both 
materials.    
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Table 2. Source of experimental data and the physicochemical properties used for 
the prediction of critical thickness. 

Source of Data 
and Film Material 

Film 
Type 

204 10
3 ch

A ×  

(Nm) 
A(0)×1020 

(Nm) 
T 

(ºC) 
σ ×103 
(N/m) 

Rc 
(μm) 

R 
(μm) 

 
Vrij [7] 

air-aniline-air 
air-water-air 

 

 
 

Foam 
Foam2 

 
 

2.7 
1.7 

 
 

6.5 
3.6 

 
 

253 
253 

 
 

39.4 
65 

 
 

18404 
17904 

 
 

100 
100 

 
Exerowa & Kolarov (see 
Vrij [7], page 60) 

air-water-air 
 

 
 
 

Foam2 

 
 
 

1.2-1.6 

 
 
 

3.6 

 
 
 

253 

 
 
 

55.5 

 
 
 

23104 

 
 
 

100-400 

 
Scheludko & Manev [26] 

air-chlorobenzene-air 
air-aniline-air 

 

 
 

Foam 
Foam 

 
 

2.1-3.1 
2.6-3.7 

 
 

5.5 
6.5 

 
 

20 
20 

 
 

32.6 
42.6 

 
 

1140 
1140 

 
 

36-257 
36-200 

 
Traykov et al [3] 

water-benzene-water (1) 
benzene-water-benzene (4) 

 

 
 

Emulsion 
Emulsion5 

 
 

0.59 
0.34 

 
 

0.84 
1.1 

 
 

20 
20 

 
 

28 
34 

 
 

1350 
1450 

 
 

100 
100 

 
Rao et al [4] 

air-water-air  
 

 
 

Foam6 

 
 

1.5-1.7 

 
 

3.6 

 
 

25 

 
 

35 

 
 

1790 

 
 

90-140 

 
Radoev et al [5] 

air-water-air 
  

 
 

Foam6 

 
 

0.86-1.9 

 
 

3.6 

 
 

24 

 
 

34.5 

 
 

17904 

 
 

50-1000 

 
Manev et al [6] 

 air-water-air (1) 
air-water-air (2) 
air-water-air (3) 
air-water-air (4) 

toluene-water-toluene (5) 
toluene-water-toluene (6) 

 

 
 

Foam6 
Foam7 
Foam7 
Foam7 

Emulsion5 
Emulsion6 

 
 

1.1-1.9 
1.1-1.9 
1.1-1.9 
1.1-1.9 

0.20-0.29 
0.20-0.29 

 
 

3.6 
3.6 
3.6 
3.6 

0.86 
0.86 

 
 

25 
25 
25 
25 
25 
25 

 
 

44.5 
37.0 
34.0 
34.0 
15.0 
7.9 

 
 

1790 
1790 
1790 
1790 
1580 
1580 

 
 

50-500 
50-500 
50-500 
50-500 
50-300 
50-300 

 
Kumar et al [27] 

air-water-air  
 

 
 

Foam8 

 
 

1.6 

 
 

3.6 

 
 

25 

 
 

37.1 

 
 

930 

 
 

178 

 

                                                 
2 Aqueous films contained 0.1M KCl. 
3 The temperature was not reported by the data source so the value shown was assumed.   
4 The capillary tube radius was not reported by the data source so the value shown was calculated from 
the Plateau border pressure drop.  
5 Aqueous films contained 0.3M NaCl. 
6 Aqueous films contained 0.1M NaCl. 
7 Aqueous films contained 0.25M NaCl. 
8 Salt content in the aqueous film is not reported in the reference. 
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Table 3. Scaling Law Constants for the Upper Bound of the Critical Thickness 

( )2.861* *
,0tz P h=  

Dominant Film Pressure 

Term Throughout Drainage 
C  x  y  

1.239z >  Disjoining pressure 0.514 0.944 0 

1.239 0.0190z> >  
Both disjoining pressure and 

the Plateau border pressure 
0.506 0.735 0.073 

0.0190z <  Plateau border pressure drop 0.656 0.548 0.138 
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Table 4. Scaling Law Constants for the Lower Bound of the Critical Thickness 

( )2.735* *
,0tz P h=  

Dominant Film Pressure 

Term Throughout Drainage 
C  x  y  

1.994z >  Disjoining pressure 0.491 0.899 0 

1.994 0.0172z> >  
Both disjoining pressure and 

the Plateau border pressure 
0.448 0.535 0.133 

0.0172z <  Plateau border pressure drop 0.695 0.240 0.241 
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Table 5. Scaling Law Constants for Intermediate Critical Thickness Values 

( )2.735* *
,0tz P h=  

Dominant Film Pressure 

Term Throughout Drainage 
C  x  y  

1.994z >  Disjoining pressure 0.523 0.920 0 

1.994 0.0172z> >  
Both disjoining pressure and 

the Plateau border pressure 
0.476 0.563 0.133 

0.0172z <  Plateau border pressure drop 0.808 0.256 0.241 

 

 



 22

FIGURE CAPTIONS 
 
 
Figure 1.  The contribution of the film thickness dependency of the retarded Hamaker constant to 
the effective Hamaker constant as predicted by Lifshitz theory. The value of the bracketed term is 
shown for benzene, aniline, chlorobenzene, and aqueous films as a function of the film thickness. 
The contribution is mostly dependent on the film material and not on the material of the 
surrounding medium. The thickness dependence of benzene films is almost negligible while the 
contribution in films of the other materials is particularly high when the film thickness is around 
1000 Å.  
 
Figure 2.  The critical rupture thickness bounds of foam films determined using the effective 
Hamaker constants in Table 2. The upper (□) and lower (∆) bounds were determined by the scaling 
law with constants from Tables 3 and 4, respectively. The size of the critical thickness increases 
approximately with increasing film radius. Critical film thickness measurements in the smaller 
films are bounded by the scaling law predictions whereas those in the larger films are not bounded.  
 
Figure 3. The critical rupture thickness bounds of emulsion films determined using the effective 
Hamaker constants in Table 2. The upper (■) and lower (▲) bounds were determined by the 
scaling law with constants from Tables 3 and 4, respectively. The size of the critical thickness 
approximately increases with increasing film radius. Critical film thickness measurements of 
system no. 6 in Manev et al [6] is the only emulsion film system sufficiently bounded.  
 
Figure 4. The critical rupture thickness bounds of foam films determined using the non-retarded 
Hamaker constants in Table 2. The upper (□) and lower (∆) bounds were determined by the scaling 
law with constants from Tables 3 and 4, respectively. The size of the critical thickness 
approximately increases with increasing film radius. Critical film thickness measurements over the 
entire range are bounded by the scaling law predictions. 
 
Figure 5. The critical rupture thickness bounds of emulsion films determined using the non-
retarded Hamaker constants in Table 2. The upper (■) and lower (▲) bounds were determined by 
the scaling law with constants from Tables 3 and 4, respectively. The size of the critical thickness 
approximately increases with increasing film radius. Critical film thickness measurements for all 
of the emulsion films are bounded except for system no. 1 emulsion of Traykov et al [3]. 
 
Figure 6.  The critical rupture thickness of emulsion (■) and foam (□) films determined using the 
effective Hamaker constants in Table 2 along with the scaling law constants of Table 5. The 
theoretical values are significantly lower than the experimental measurements. 
 
Figure 7. The critical rupture thickness of emulsion (■) and foam (□) films determined using the 
non-retarded Hamaker constants in Table 2 along with the scaling law constants of Table 5. The 
size of the critical thickness approximately increases with increasing film radius. The theoretical 
predictions deviate more significantly from the measured values with increasing film radius.  



 23

FIGURES 
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Figure 4.  
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Figure 5.  
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