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Abstract: Finite element modelling of geometries with large dimensional differences between
adjacent sub-domains or domains which have poor aspect ratios can impose significant demands
on meshing algorithms and computational resources. A simple sub-domain scaling technique for
electromagnetic analysis of electrical machines by finite element analysis is proposed. The technique
can be used to improve aspect ratios and is useful in modelling electrical machines with small air
gap lengths.

1 Introduction

Finite element analysis is now a well accepted tool for the
design and analysis of practically all types of electrical
machines [1, 2]. The small air gap length of an electrical
machine compared to its other dimensions can, however,
make it difficult or even impossible to obtain accurate field
solutions [1]. Techniques based on the use of shell elements
[3], specialist air-gap elements [4, 5], or the coupling of finite
element analysis with an analytical solution [6], have been
proposed to overcome this problem. There have also been
other techniques [7–10], not specifically related to electrical
machines, on geometry transformations and for overcoming
meshing difficulties in the finite element method. All of these
techniques require some form of modification to the finite
element formulation. The method proposed here is based
on a rescaling of the air gap region. The original problem,
with the narrow air gap, is mapped onto a scaled problem
with an improved aspect ratio. Compared to previous
techniques, a major advantage of the proposed method is
that for axial flux machines, it can be simply implemented
using any standard finite element package, as it is
independent of the finite element formulation. For radial
flux machines, application of the method is equally simple if
the finite element software supports position dependence for
the material properties.

From the user’s viewpoint the technique involves:

(a) choosing a scaling factor (ka) to expand the original air
gap length so that the aspect ratios are sufficiently improved
in the scaled problem;

(b) evaluating sub-domain dimensions and material proper-
ties for the scaled problem based on the value of ka and the
dimensions and material properties of the original problem;

(c) determining the field solutions to the scaled problem
using a finite element package; and

(d) transforming the field solutions obtained for the scaled
equivalent problem into solutions for the original problem.

The objectives of this paper are:

� to illustrate the benefit of improved aspect ratios;

� to derive the transformation rules that permit a user to
transform the original problem into an equivalent scaled
problem;

� to derive the rules for transforming the field solutions to
the scaled problem into the field solutions to the original
problem;

� to demonstrate that the transformation rules have the
useful property of power invariance; and

� to demonstrate the benefits of using the proposed
technique in a practical problem.

2 Finite element analysis

2.1 The finite element mesh
The finite element method (FEM) is based on the
discretisation of the domain under consideration. The mesh
quality or element aspect ratio can have a significant effect
on the solution accuracy [11, 12]. When meshing adjacent
sub-domains with large size differences the mesh can
become distorted if the number of elements is insufficient.
Maintaining good element quality often requires large
numbers of elements and their associated nodes. This can be
most easily seen in a two-dimensional example. Consider
the domain represented in Fig. 1 where a large sub-domain
is adjacent to a much smaller one and triangular elements
have been chosen. The nodes at the boundary between the
two sub-domains are common to the elements on either side
and thus the element sizes are comparable near this
boundary. Due to the thinness of sub-domain 2 the
characteristic size (d) of an element in this region is equal
to the region’s height. Ideally, the element shape is an
equilateral triangle as seen in Fig. 1. This restriction alone
requires a significant number of elements to mesh a region

sub-domain 1

sub-domain 2

Fig. 1 Simple mesh across boundary between a small to larger
sub-domain
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which is thin in one direction and significantly larger in the
other. At the boundary, elements of sub-domain 1 have
edges of the same lengths as those in sub-domain 2 because
of their common nodes. Away from the boundary the
elements can grow in size. However, this requires a gradual
transition in order to maintain an acceptable element aspect
ratio. In these circumstances the number of elements
required to mesh the domain rapidly increases as d
decreases. Depending on the desired accuracy of the solution
in sub-domain 2, the maximum element size may not be
desirable which will further exaggerate the problem. This
problem is considerably worse when performing three-
dimensional meshing on geometries containing sub-domains
with poor aspect ratios. The number of nodes/elements
determines the computing resources required to solve a finite
element problem and thus it is highly desirable to reduce this
number whilst retaining desired solution accuracy.

2.2 Quasi-static formulations
There are a number of different quasi-static finite element
formulations, two of the more common being the A�f
(magnetic vector potential – electric scalar potential) and
T�O (electric vector potential – magnetic scalar potential)
methods. However, all formulations are based on the quasi-
static approximation to Maxwell’s equations i.e.

r �~BB ¼ 0 ð1Þ

r� ~HH ¼~JJ ð2Þ

r�~EE ¼ � @
~BB
@t

ð3Þ

where~EE is the electric field intensity, ~HH is the magnetic field

intensity, ~BB is the magnetic flux density, ~JJ is the current
density and t is time.

3 Scaling equations

Two scaling strategies with respect to a cylindrical
coordinate system have been developed. Scaling in the axial
direction is desirable when modelling axial flux machines
(AFM) in which the air gap length is defined in the axial (or
z) direction. Radial scaling is equivalently attractive when
considering radial flux machines (RFM) in which the air
gap length is defined along the radial direction.

Consider an RFM structure as three separate regions:

1) the rotor region 0rrrrr,

2) the air gap region rrrrrrg, and

3) the stator region rg � r � rs

where rr is the rotor radius and rg and rs are the inner and
outer radii of the stator region, respectively. No scaling is
required in the rotor region. The air gap region is extended
in the radial direction by a factor ka, so that the unscaled air
gap length

lg ¼ rg � rr
� �

ð4Þ
becomes

kalg ¼ ka rg � rr
� �

ð5Þ
The stator region must now be extended to accommodate
the scaled air gap region. A simple linear scaling coefficient
(ks) for the stator region is chosen to permit expansion of
the air gap region. Therefore,

ks ¼
rr þ kalg

rr þ lg
ð6Þ

Figure 2 shows the mapping from the original to the
transformed radial coordinate in each of the three regions.

A transformation function k(r) can now be deduced for
the air gap region

k rð Þ ¼ rT

r
¼ 1

r
ksrg � rr
� �

r � rrð Þ
lg

þ rr

� �
ð7Þ

where r and rT are the original and transformed radii,
respectively.

The transformation that maps the physical dimensions of
the original problem onto the dimensions of the trans-
formed problem is fully defined in Fig. 2. Based on this
transformation, relationships between the field variables in
the original problem and the corresponding field variables
in the transformed problem can be found. In general these
take the form of

GT rT ; f; z
� �

¼ y rð ÞG r; f; zð Þ ð8Þ
where GT represents a transformed quantity in the
transformed domain, G is the corresponding quantity in
the original domain and y(r) defines the relationship
between them. The functions represented by y(r) are derived
by ensuring that if GT satisfies Maxwell’s equations in the
transformed domain, then G satisfies Maxwell’s equations
in the original domain. In other words, y(r) permits the field
solutions obtained in the transformed problem to be
converted into the corresponding solutions to the original
problem. Having derived y(r) functions for all the field
variables, the relationships between the material properties
of the original problem and those of the transformed one
can be deduced by using the constitutive relations

~BB ¼ m~HH ð9Þ

~JJ ¼ s~EE ð10Þ
where m and s are the permeability and conductivity
tensors, respectively, for the unscaled regions. There is no
requirement for these constitutive relations to be linear.

The technique for deriving y(r) functions is now
demonstrated using the magnetic flux density and magnetic
flux intensity in the air gap region of an REM. Let

BT
r ¼ frBr ð11Þ

BT
f ¼ ffBf ð12Þ

BT
z ¼ fzBz ð13Þ

ks rg  

rT 

rr

rr rg

 

 r

Fig. 2 Radius mapping from original to the scaled regions
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HT
r ¼ grHr ð14Þ

H T
f ¼ gfHf ð15Þ

H T
z ¼ gzHz ð16Þ

where the generic notation y(r) has been replaced by the

particular functions fi and gi for the components of ~BB and
~HH , respectively, and i represents the subscripts r, f, z. In the
transformed air gap region, (1) becomes

1

kakr
@ krfrBrð Þ

@r
þ ff

kr
@Bf

@f
þ fz

@Bz

@z
¼ 0 ð17Þ

where k¼ k(r) and the substitution @r/@rT¼ 1/ka has been
made. However,

1

r
@ rBrð Þ
@r

þ 1

r
@Bf

@f
þ @Bz

@z
¼ 0 ð18Þ

For both (17) and (18) to hold for all r,f, z it is required that:

Br

kak
@ kfrð Þ
@r

¼ 0

and

fr

ka
¼ ff

k
¼ fz

Therefore, fr¼ c/k where c must be independent of r. The
continuity of Br at r¼ rr and BT

r at rT¼ rr imply that c must
be equal to 1.

Hence,

fr ¼
1

k
ð19Þ

ff ¼
1

ka
ð20Þ

fz ¼
1

kak
ð21Þ

Equation (2) in the transformed air gap region expands to
give

1

kr
@ gzHzð Þ
@f

�
@ gfHf
� �
@z

¼ frJr; ð22Þ

@ grHrð Þ
@z

� 1

ka

@ gzHzð Þ
@r

¼ ffJf; ð23Þ

1

kr
1

ka

@ kr gfHf
� �

@r
� @ grHrð Þ

@f

� �
¼ fzJz: ð24Þ

For (22)–(24) and equation (2) to hold for all r, f, z it is
required that

gz ¼ kgf ¼ kfr ð25Þ

kagr ¼ gz ¼ kaff ð26Þ

gf ¼
a
k

ð27Þ

gf

ka
¼ gr

k
¼ fz ð28Þ

where a must be independent of r.
The current density terms in (22), (23) and (24) have not

been set to zero because the transformed region is the entire
region between rr and rg. In addition to the air gap this
region may include, for example, parts of the end-shields
in which currents will be induced. A further point to note
is that due to the solenoidal condition of J or JT, the

relationship between these quantities is exactly the same as
that between B and BT.

Enforcing the continuity of Hf at r¼ rr and HT
f at

rT¼ rr, leads to a value of unity for the constant a in (27).
Equations (25)–(28) inclusive are not independent. How-
ever, they are all satisfied with

gr ¼
1

ka
ð29Þ

gf ¼
1

k
ð30Þ

gz ¼ 1 ð31Þ
Equations (11) through (16) can now be used to obtain the
magnetic permeabilities for the transformed region. Using
the constitutive relation given in (9) we have

~BBT ¼ fmg�1~HHT ð32Þ
where

f ¼
fr 0 0
0 ff 0
0 0 fz

2
4

3
5

and

g�1 ¼
1=gr 0 0
0 1=gf 0
0 0 1=gz

2
4

3
5

Therefore the permeability tensor for the transformed
region is given by

mT ¼ fmg�1 ð33Þ
For the simple case where the permeability tensor has
diagonal elements only we get

mT
r ¼

ka

k
mr ð34Þ

mT
f ¼

k
ka

mf ð35Þ

mT
z ¼

mz

kak
ð36Þ

The procedures used to find the transformations for~BB; ~HH ;~JJ
and m can also be applied to find the equivalent transfor-

mations for ~EE and s. An entire set of transformation rules
for radial scaling have been listed in Table 1, and for axial
scaling in Table 2. It should be noted that in the case of
axial scaling only the air gap region is scaled. That is
assuming z¼ 0 at the rotor surface:

zT ¼z 0 � z

zT ¼kaz 0ozolg

zT ¼zþ lg ka � 1ð Þ lg � z

ð37Þ

4 Material non-linearity

Except for the stator region in a RFM, the proposed scaling
method does not involve any special procedure to account
for material non-linearity. The rotor region in RFMs and
both the rotor and stator regions in AFMs are unscaled.
This means that material non-linearity in these regions is
accounted for in the normal way. Depending on the finite
element package, this requires the user to specify the
constitutive relations by means of curves, or expressions
representing those curves.
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Air is normally the only material type occupying the
air-gap region of both AFMs and RFMs. Even where
components such as end-shields are included in this
region, it is reasonable to assume that these parts remain
magnetically unsaturated. Material properties for the air-
gap region are easily deduced from Table 1 or Table 2, since
m and s in this region are independent of the field quantities.

Equation (33) applies for the stators of RFMs even if the

relationship between~BB and ~HH is non-linear. However, in the

presence of non-linearity, m is a function of ~BB, i.e.

mT ¼ fm Br; Bf; Bz
� �

g�1 ð38Þ

where

f ¼
1=ks 0 0
0 1=ks 0
0 0 1=k2s

2
4

3
5

and

g�1 ¼
ks 0 0
0 ks 0
0 0 1

2
4

3
5

For (38) to be useful it should be expressed in terms of
transformed quantities, i.e.

mT ¼ fm ksBr; ksBf; k2s Bz
� �

g�1 ð39Þ

The reason this is necessary is because when a finite element

analysis is performed on a scaled problem it is ~BBTwhich is

calculated and not ~BB. Therefore mT must be expressed in

terms of ~BBT : As shown in (39), the transformation of m

Br; Bf; Bz
� �

to m ksBT
r ; ksBT

f; k2s BT
z

� �
is performed simply

by replacing Br, Bf and Bz in the expression for mwith ksBT
r ,

ksBT
f and k2s BT

z , respectively.

5 Energy and power invariance

The magnetic energy stored per unit volume (W) in an
unscaled region is given by

W ¼ 1

2
~BB � ~HH ð40Þ

Table 1: Transformation rules for radial scaling

Quantity/property Symbol Transformation in
the air gap region

Transformation in
the stator region

Radial component of current density Jr JT
r ¼

Jr
kðrÞ JT

r ¼
Jr
ks

Angular component of current density Jf JT
f ¼

Jf
ka

JT
f ¼

Jf
ks

Axial component of current density Jz JT
z ¼

Jz
kakðrÞ JT

z ¼
Jz

k2
s

Radial component of magnetic field intensity Hr HT
r ¼

Hr
ka

HT
r ¼

Hr
ks

Angular component of magnetic field intensity Hf HT
f ¼

Hf
kðrÞ HT

f ¼
Hf
ks

Axial component of magnetic field intensity Hz HT
z ¼ Hz HT

z ¼ Hz

Radial component of magnetic flux density Br BT
r ¼

Br
kðrÞ BT

r ¼
Br
ks

Angular component of magnetic flux density Bf BT
f ¼

Bf
ka

BT
f ¼

Bf
ks

Axial component of magnetic flux density Br BT
z ¼

Bz
kakðrÞ BT

z ¼
Bz

k2
s

Radial component of electric field intensity Er ET
r ¼

Er
ka

ET
r ¼

Er
ks

Angular component of electric field intensity Ef ET
f ¼

Ef
kðrÞ ET

f ¼
Ef
ks

Axial component of electric field intensity Ez ET
z ¼ Ez ET

z ¼ Ez

Radial component of permeability mr mT
r ¼

ka
kðrÞ mr

mT
r ¼ mr

Angular component of permeability mf mT
f ¼

kðrÞ
ka

mf
mT
f ¼ mf

Axial component of permeability mz mT
z ¼

mz
kakðrÞ mT

z ¼
mz

k2
s

Radial component of conductivity sr sT
r ¼

ka
kðrÞ sr

sT
r ¼ sr

Angular component of conductivity sf sT
f ¼

kðrÞ
ka

sf
sT
f ¼ sf

Axial component of conductivity sz sT
z ¼

sz
kakðrÞ sT

z ¼
sz

k2
s

Radial component of magnetic vector potential Ar AT
r ¼

Ar
ka

AT
r ¼

Ar
ks

Angular component of magnetic vector potential Af AT
f ¼

Af
k rð Þ AT

f ¼
Af
ks

Axial component of magnetic vector potential Az AT
z ¼ Az AT

z ¼ Az
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and in the corresponding scaled region

W T ¼ 1

2
~BBT � ~HHT

¼ 1

2
frgrBrHr þ ffgfBfHf þ fzgzBzHz
� � ð41Þ

Inspection of Tables 1 and 2 shows that irrespective of the
scaled region it is always true that

frgr ¼ ffgf ¼ fzgz ð42Þ
Therefore,

W T ¼ fzgzW ð43Þ
It can also be shown that elemental volume elements in
scaled and unscaled regions are always related by

dV T ¼ dV
fzgz

ð44Þ

It is concluded from (43) and (44) that the magnetic energy
stored in a scaled region is identical to that stored in the
corresponding unscaled region. This result is also true for

ohmic power dissipation per unit volume ~EE �~JJ
� �

. The
magnetic energy or power invariance property greatly
simplifies post processing as there is no need to transform
the these quantities. Invariance in magnetic energy implies
that torque and inductance are also invariant. Total power
loss due to induced currents will also be invariant under the
transformation.

6 Practical implementation

It may seem, particularly in cases where there are regions in
which the field variables change rapidly in space, that the
coarser mesh produced by the scaling process will result in
increased solution errors. However, if adaptive meshing
methods are used this will not be the case. Even where
adaptive meshing is not available, manually controlled mesh
refinement can be used to improve solution accuracy. The
reduction in the number of nodes due to the scaling process
will be problem dependant. At one extreme, scaling a
problem which has an already large air gap region may not
produce any benefit. On the other hand there will be
instances where, due to very poor aspect ratios in the
geometry, an acceptable finite element solution may not be
possible without the use of some form of scaling. An
excessively small air gap may even cause generic meshing
algorithms to fail or produce poor quality meshes.

The scaling technique has been applied to a switched
reluctance motor test problem [13]. All relevant details are
given in Figs. 3 and 4. Results from the finite element
analysis are given in Tables 3–5 and Figs. 5–8. It was
performed in FEMLABs using tetrahedral (3-D) and
triangular (2-D) edge elements based on the magnetic vector
potential formulation [14]. The aim is to demonstrate that
field quantities (Figs. 5 and 6) and other quantities such as
the magnetic energy (Figs. 7 and 8) for the unscaled
problem are derivable from the corresponding quantities

Table 2: Transformation rules for axial scaling

Quantity/property Symbol Transformation in
the air gap region

Radial component of current density Jr JT
r ¼

Jr
ks

Angular component of current density Jf JT
f ¼

Jf
ks

Axial component of current density Jz JT
z ¼ Jz

Radial component of magnetic field intensity Hr HT
r ¼ Hr

Angular component of magnetic field intensity Hf HT
f ¼ Hf

Axial component of magnetic field intensity Hz HT
z ¼

Hz
ks

Radial component of magnetic flux density Br BT
r ¼

Br
ks

Angular component of magnetic flux density Bf BT
f ¼

Bf
ks

Axial component of magnetic flux density Bz BT
z ¼ Bz

Radial component of electric field intensity Er ET
r ¼ Er

Angular component of electric field intensity Ef ET
f ¼ Ef

Axial component of electric field intensity Ez ET
z ¼

Ez
ks

Radial component of permeability mr mT
r ¼

mr
ks

Angular component of permeability mf mT
f ¼

mf
ks

Axial component of permeability mz mT
z ¼ ksmz

Radial component of conductivity sr sT
r ¼

sr
ks

Angular component of conductivity sf sT
f ¼

sf
ks

Axial component of conductivity sz sT
z ¼ kssz

Radial component of magnetic vector potential Ar AT
r ¼ Ar

Angular component of magnetic vector potential Af AT
f ¼ Af

Axial component of magnetic vector potential Az AT
z ¼

Az
ks
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obtained from the scaled problem. Magnetic energy was
chosen as a comparison value because practical quantities
such as stator flux linkage and torque are obtainable
directly from it or from its angular derivative.

Table 3 shows that there is a considerable reduction
(greater than 60%) in the number of elements required when
scaling is used with non-adaptive meshing. Solution times
are also reduced by more than 50%. There is good
agreement between magnetic energies obtained for the scaled
and unscaled problems as shown in Fig. 7. Considerably

better agreement in magnetic energies is obtained if adaptive
meshing is used. However, the savings in the number of
elements, although still significant, are not as great.

excited coil

excited coil0.3mm air gap

37

23

16
8

12.06

45

Fig. 3 Switched Reluctance Motor configuration and dimensions
(in mm)

101 102 103 104
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

H, A/m

B
, T

Fig. 4 Stator and rotor iron magnetisation curve

Table 3: Finite Element results for test case presented in
Fig. 3 with adaptive meshing not used

FEM
Model

Rotor
angle

Scale
factor

Degrees of
freedom

Number of
elements

Solution
time, s

2-D 0 1 12068 5998 29.94

2-D 0 5 4944 2436 4.08

2-D 5 1 12148 6038 5.31

2-D 5 5 4936 2432 2.11

2-D 10 1 12169 6062 5.36

2-D 10 5 4932 2430 2.14

2-D 15 1 24696 12320 10.01

2-D 15 5 4908 2430 3.94

2-D 20 1 12008 5968 3.41

2-D 20 5 4916 2422 1.72

2-D 25 1 12732 6330 4.47

2-D 25 5 4896 2412 1.67

2-D 30 1 12212 6070 2.38

2-D 30 5 4976 2452 1.22

2-D 35 1 12192 6060 2.44

2-D 35 5 5000 2464 1.22

2-D 40 1 12352 6140 2.31

2-D 40 5 4976 2452 1.27

2-D 45 1 24992 12468 6.23

2-D 45 5 4132 2038 1.09

Table 4: Finite element results for test case presented in
Fig. 3 with adaptive meshing used

FEM
model

Rotor
angle

Scale
factor

Degrees of
freedom

Number of
elements

Solution
time, s

2-D 0 1 17424 8676 48.53

2-D 0 5 11492 5710 15.55

2-D 5 1 12288 6108 16.14

2-D 5 5 10220 5074 8.38

2-D 10 1 12316 6122 9.42

2-D 10 5 10004 4966 5.95

2-D 15 1 24712 12328 20.41

2-D 15 5 10207 5079 10.58

2-D 20 1 12104 6016 7.13

2-D 20 5 10488 5208 5.72

2-D 25 1 13496 6712 15.0

2-D 25 5 10820 5374 7.38

2-D 30 1 17188 8558 6.44

2-D 30 5 11220 5574 4.56

2-D 35 1 17304 8616 6.64

2-D 35 5 10388 5158 4.17

2-D 40 1 17475 8701 6.74

2-D 40 5 10808 5368 4.83

2-D 45 1 33793 16867 19.81

2-D 45 5 9163 4553 3.75

Table 5: Three-dimensional finite element results for the
test case presented in Fig. 3

FEM
model

Rotor
angle

Scale
factor

Degrees of
freedom

Number of
elements

Magnetic
energy, J/m

3-D 0 1 517599 120573 Unable to
solve

3-D 0 5 183738 40467 2.0011

2-D 0 1 12068 5998 2.0201
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Figure 5 provides comparisons between the flux
densities in the air gap for the scaled and unscaled
problems. Discrepancies are practically negligible. Figure 6
illustrates that agreement is reasonable in non-linear stator
regions.

The 3-D results given in Table 5 are also for the machine
described in Figs. 3 and 4. End effects have been ignored to
permit comparison with the 2-D models. Poor aspect ratios,
especially in 3-D problems, can result in such a large

2-D no scaling
2-D scaled by 5
3-D scaled by 5

2-D no scaling
2-D scaled by 5

2-D no scaling
2-D scaled by 5
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Fig. 5 Mid-air-gap magnetic flux density 7B7 (finite element
analysis using adaptive meshing)
a with poles aligned
b with poles 15 degrees from alignment
c with poles 30 degrees from alignment
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Fig. 6 7B7 at the root of one of excited stator poles (rotor
angle¼ 0 degrees)
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number of elements that a solution cannot be calculated
with available computing resources. The results given in
Table 5 demonstrate that the scaling technique has the
potential to rectify this problem.

7 Conclusions

The scaling techniques presented here have been developed
to allow more efficient meshing for finite element analysis
of electrical machines with relatively thin air gaps. Two sets
of transformation equations have been presented, one
for the scaling of the air gap of radial flux machines and
the other for axial flux machines. The transformation
equations allow a machine with a relatively thin air gap
to have its geometry transformed into one which can
be analysed with a significant reduction in the number
of elements. These equations also allow the field solutions
to the scaled problem to be simply converted into solutions
to the original problem. Since no simplifying assump-
tions have been made in the development of the
transformation equations, the proposed scaling techniques
are potentially useful for all low frequency electromagnetic
problems. In the case of axial flux machines, a major
advantage of the proposed scaling method is that it can be
implemented using any finite element package. To apply the
method to radial flux machines, the finite element software
should support position dependence for material properties.
The scaling process involves only simple manipulation of
data during the pre- and post- processing stages of an
analysis.
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