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Summary 
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Summary 

Plastid localized metabolite synthesis (e.g. amino acids, fatty acids or secondary compounds) 

requires extensive solute exchange across the outer and inner envelope membranes. In this 

thesis, the topology and function of an outer envelope protein, named OEP7, and of a novel 

inner envelope protein, named FAX1, were in focus. 

OEP7 is a functionally unknown chloroplast outer envelope protein with four homologs in 

Arabidopsis. In the first part of my thesis, the so far unknown topology of At-OEP7.2 was 

analyzed by proteolysis of chloroplasts and green fluorescence protein (GFP)-fusion labeling 

in protoplasts, which indicated that OEP7.2 is an outer envelope protein with the N-terminus 

in the cytosol and the C-terminus in the inter membrane space. Furthermore, in vivo targeting 

of OEP7 deletion constructs fused with GFP in protoplasts suggested that the N-terminal 

residues 11 to 22 of At-OEP7.2 are necessary and residues 1 to 48 of At-OEP7.2 are sufficient 

for targeting to the chloroplast outer envelope membrane. I further characterized 

oep7.1/oep7.2 double mutants, but although OEP7.2 transcription is strictly regulated in a 

diurnal rhythm, the OEP7.2 protein amount is stable throughout the diurnal cycle and no 

growth phenotype of the double mutants was detectable. 

FAX1: Because fatty acid synthesis in plants exclusively takes place in plastids, export for 

further lipid metabolites is required. However, until now few data indicate the mechanism of 

fatty acid export from plastids. In the second part of my thesis, I selected FAX1 (fatty acid 

export 1), a novel membrane-spanning protein in Arabidopsis thaliana. FAX1 is a plant 

specific protein and member of the transmembrane 14C (Tmemb_14) family, which is an 

uncharacterized protein family in eukaryotes and prokaryotes. According to GFP-targeting in 

protoplasts and immunoblot analysis, FAX1 localizes to the plastid inner envelope membrane. 

Protease treatment of pea inner envelope vesicels revealed that both N-terminus and C-

terminus are in the inter membrane space. fax1 knockout mutants show a phenotype 

characterized by reduced biomass, thin inflorescence stems, and strongly impaired male 

fertility, which was complemented by 35S:: FAX1 expression in the knockout background 

plants. However, the overexpression of FAX1 in Col-0 cause increased biomass. 

Transcriptomic, metabolic and ultrastructural analysis of FAX1 mutants implies that FAX1 is 

important for synthesis of secondary metabolites, like cutin and wax (especially ketones), 

secondary cell walls and pollen exine which all require previous fatty acid export from 

plastids. Fatty acid analysis indicated that phosphatidylcholine in leaves of fax1 knockout 

plants was reduced to 60% of Col-0 wild-type levels.  
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Zusammenfassung 

Die in den Plastiden höherer Pflanzen lokalisierte Biosynthese von Metaboliten (z.B. 

Aminosäuren, Fettsäuren oder sekundäre Inhaltsstoffe) erfordert einen ausgiebigen Austausch 

und den Transport gelöster Stoffe über die äußere und innere Hüllmembran. Im Fokus dieser 

Arbeit standen daher Untersuchungen zu Topologie und Funktion von OEP7 in der äußeren 

Hüllmembran sowie die Charakterisierung von F AX1, einem bisher nicht bekannten 

Membranprotein in der inneren Hüllmembran von Chloroplasten. 

OEP7 ist ein OEP (outer envelope protein) unbekannter Funktion mit vier homologen 

Proteinen in Arabidopsis. In dieser Arbeit wurde die bisher unbekannte Topologie der Isoform 

At-OEP7.2 über Proteolyse-Experimente an isolierten Chloroplasten und die Signale von 

GFP-Fusionskonstrukten in Protoplasten aufgeklärt. Die Experimente zeigen, dass OEP7.2 

eine α-helicale Membrandomäne in der äußeren Hüllmembran besitzt und der Aminoterminus 

des Proteins im Cytosol, der Carboxyterminus im Intermembranraum lokalisiert sind. Weitere 

in vivo GFP-Studien mit verkürzten OEP7.2-Peptiden zeigten, dass die N-terminalen 

Aminosäurereste 11-22 notwendig und die Peptidkette 1-48 hinreichend für die Insertion in 

die äußere Hüllmembran sind. Weiterhin habe ich im Rahmen meiner Dissertation eine 

phänotypische Charakterisierung von Doppel-Verlustmutanten der Isoformen OEP7.1/ 

OEP7.2 vorgenommen. Obwohl hier der Transkriptgehalt von A t-OEP7.2 sehr strikt im 

Tag/Nacht-Rhythmus reguliert wurde, blieb die Proteinmenge stabil und es konnte kein 

Wachstumsphänotyp der Doppelmutanten detektiert werden. 

FAX1: Da die Synthese von Fettsäuren in Pflanzen ausschließlich in Plastiden stattfindet, ist 

der Export von F ettsäuren und D erivaten aus den Plastiden essentiell für alle weiteren 

Prozesse des Lipidstoffwechsels. Über den zugrundeliegenden Transportmechanismus ist 

allerdings noch sehr wenig bekannt. Im zweiten Teil meiner Arbeit habe ich mich daher mit 

der Charakterisierung des Proteins FAX1 (fatty acid export 1) beschäftigt. FAX1 ist Pflanzen-

spezifisch und gehört zu den "transmembrane 14C" (Tmemb_14) Proteinen, einer noch nicht 

näher beschriebenen Familie in Eu- und Prokaryoten. Nach meinen Ergebnissen der in vivo 

Lokalisierung von FAX1-GFP Signalen und einer Immunoblot-Analyse, ist FAX1 ein 

integrales Membranprotein der inneren Hüllmembran von C hloroplasten. Proteolyse-

Experimente an isolierten Vesikeln der inneren Hüllmembran von C hloroplasten aus Erbse 

zeigten, dass sich Amino- und Carboxy-Terminus des Proteins im Intermembranraum 

befinden. Verlustmutanten von F AX1 haben im Vergleich zum Wildtyp eine geringere 

Biomasse, dünnere Stängel und eine stark reduzierte männliche Fruchtbarkeit. Dieser 
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Phänotyp konnte durch die Expression von F AX1 unter Kontrolle des 35S Promoters im 

Hintergrund der knockout Mutante komplementiert werden, während eine Überexpression von 

FAX1 zu erhöhter Produktion von Biomasse führte. Analysen auf Transkript- und Metabolit-

Ebene sowie der zellulären Ultrastruktur von FAX1 Mutanten zeigten, dass die Funktion von 

FAX1 wichtig ist für die Synthese von s ekundären Inhaltsstoffen wie Kutin und W achs 

(insbesondere von Ketonen), dem Aufbau der sekundären Zellwand sowie der Pollen Exine. 

All diese Prozesse benötigen einen vorangehenden Export von Fettsäuren aus Plastiden. Die 

Analyse des Fettsäuregehalts zeigte weiterhin, dass Phosphatidylcholin in fax1 knockout 

Linien auf 60% des Wildtypniveaus reduziert ist. 
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I. Introduction 

Plastids and especially chloroplasts in green leaves are ubiquitous organelles found in plant 

and algal cells, which are responsible for photosynthesis, as well as synthesis and storage of 

many molecules and products necessary for plant cell metabolisms (Figure 1). A pair of 

membranes, named the outer (OE) and inner envelope (IE), surrounds the plastid and thus 

mediates metabolic communication with the cytosol and other organelles. Therefore, the 

envelope of plastids contains numerous proteins for transport of metabolites and ions.  

 

Figure 1: Schematic representation of plastid functions (copied from Weber et al., 2005) 
All functions shown in purple, red, and orange also take place in the stroma. Glc6P: glucose 6-
phosphate, OPDA: oxophytodienoic acid, OPPP: oxidative pentose phosphate pathway, PEP: 
phosphoenolpyruvate.  

Considering the complexity of plastid metabolite and ion transporters, only known solute 

transport proteins of the outer envelope (OEP16, OEP21, OEP24 and OEP37), OEP7 (a 

unknown outer envelope protein), some transporters with well-defined functions in the inner 

envelope and the mechanism of fatty acid export from plastids are introduced in the 

following. 

1 Metabolite and ion transport across the plastid envelope membranes 

1.1 The plastid outer envelope 

OEP16 is the best described outer envelope solute channel with a purely alpha-helical 

structure (Linke et al., 2004) and with a selectively for amino acid transport (Pohlmeyer et al., 

1997). By sequence similarity analysis, three isoforms of OEP16 in Arabidopsis thaliana: At-
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OEP16.1, At-OEP16.2 and At-OEP16.4 were classified as members of the preprotein and 

amino acid transporter (PRAT) family (Murcha et al., 2007; Pudelski et al., 2010). Recent in 

planta studies revealed that the loss of OEP16, mainly that of OEP16.2, caused metabolic 

imbalance, in particular that of amino acids during ABA-controlled seed development and 

early germination (Pudelski et al., 2011). 

OEP21 is a β-barrel forming protein with eight β-strands and is a rectifying, anion selective 

channel for phosphorylated carbohydrates and triosephosphate (Bolter et al., 1999). There are 

two ATP binding sites, one internal to the pore and one in the inter membrane space which 

can bind ATP and triosephosphate, thereby regulating anion selectivity (Hemmler et al., 

2006). 

OEP24 was characterised as a member of β-barrel forming proteins as well (12 β-strands; 

Pohlmeyer et al., 1998; Schleiff et al., 2003). In vitro reconstitution of OEP24 in liposomes 

revealed that it is slightly selective for cations and highly conductive. Furthermore, it is 

demonstrated that OEP24 carries the fluxes of triose phosphates , sugars, hexose-phosphates, 

ATP, phosphates, and charged amino acids (Pohlmeyer et al., 1998). In yeast, OEP24, which 

is targeted to the mitochondrial outer membrane, can functionally complement the 

mitochondrial voltage-dependent anion channel (VDAC; Röhl et al., 1999).  

In addition, OEP37 represents another β-barrel transmembrane channel with 12 β-strands 

(Schleiff et al., 2003). Until now, the transport function of OEP37 in plants is still unknown 

since the knockout mutant of OEP37 showed no obvious phenotype (Götze et al., 2006) 

OEP7 (outer envelope protein of 7 kDa) is an outer envelope protein of chloroplasts, which 

has only one α-helical transmembrane domain. It was first siolated from spinach chloroplasts 

and named E6.7 at the chloroplast outer envelope membrane (Salomon et al., 1990). Import of 

[35S]methionine-labeled OEP7 into intact spinach chloroplasts followed by proteolysis has 

revealed that the positively charged amino acids, flanking the transmembrane domain at the 

C-terminus are essential to retain the native Nin-Cout  orientation during insertion into 

chloroplast outer envelope (Schleiff et al., 2001). To investigate in vivo the targeting 

mechanism of OEP7 in Arabidopsis, OEP7 was expressed as a fusion protein with the green 

fluorescent protein (GFP) either transiently in protoplasts or stably in transgenic plants (Lee et 

al., 2001). It was shown that the transmembrane domain and its C-terminal neighboring 

seven-amino acid region of OEP7 were necessary and sufficient for targeting to the 

chloroplast outer envelope membrane. By an yeast two-hybrid screen to screen for proteins 

that interact with OEP7, AKR2, an Arabidopsis ankyrin repeat protein, was identified to play 
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an essential role in the biogenesis and membrane insertion of the chloroplast outer envelope 

proteins (Bae et al., 2008). However, few data on t he function of OEP7 exist only very 

recently a homolog of OEP7 in Suaeda salsa, named SsOEP8, was indicated to confer 

oxidative stress tolerance and to induce chloroplast aggregation in transgenic Arabidopsis 

plants (Wang et al., 2012). Until now four isoforms of OEP7 in Arabidopsis were found. 

1.2 The plastid inner envelope 

Plastidic phosphate translocators (pPTs) were the first and best characterized transporters in 

the plastid inner envelope, which functionally act as homodimers (Weber et al., 2005; Weber 

and Linka, 2011). According to the substrate specificity, pPT proteins are classified into three 

groups: i) the triose phosphate translocators (TPT), ii) glucose 6-phosphate (GPT)/xylulose 5-

phosphate (XPT) translocators, and iii) phosphoenolpyruvate translocators (PPT). In green 

plants, triose phosphates generated by the Calvin-Benson cycle in chloroplasts during the day 

are exported via TPT in exchange with phosphate. In vascular plants, the main function of 

TPT is to provide fixed carbon for sucrose synthesis and primary metabolism (for overview 

see Weber and Linka, 2011).  

PIC1 (permease in chloroplasts 1) in Arabidopsis was identified as an inner envelope protein 

with four α-helices and is homologous to cyanobacterial permease-like proteins (Duy et al., 

2007). Transriptomic, metabolic and ultrastructural analysis of both knockout mutants and 

overexpressors of PIC1 revealed that PIC1 functions in iron transport across the inner 

envelope of chloroplasts and is crucial for balancing plant iron metabolism in general (Duy et 

al., 2007 a nd 2011). In a yeast-two-hybrid screen for PIC1 interacting proteins, NiCo, a 

putative protein, which may function in the transport of nickel and/or cobalt, was identified. 

Thus, it is implied that PIC1 and NiCo might function together in plastid iron transport (Duy 

et al., 2011). 

2 Fatty acid export from plastids 

It is known that fatty acid biosynthesis in plants takes place in plastids (Ohlrogge et al., 1979; 

Buchanan et al., 2002). α-Linolenic acid (18:3 (n−3)) ca n contribute as much as 90% of the 

fatty acids in glycolipids in the photosynthetic tissue of some plants. Therefore, 18:3 plants, 

such as pea and rice, are the one in which glycolipids contain exclusively C18 

polyunsaturated fatty acids. And the 16:3 plants, such as spinach, Arabidopsis and Brassica. 

napus, contain glycolipids having appreciable amounts of a C16 polyunsaturated fatty acid, 

localized exclusively in the sn-2 position (Buchanan et al., 2002). The beginning of the fatty 

acid export from plastids is the de novo fatty acid synthesis product, the acyl-ACP (acyl 
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carrier protein; Figure 2). 90% of the acyl-ACP is firstly hydrolyzed to free fatty acids and 

ACP by acyl-ACP thioesterases, which possibly act at the inner side of the IE or in the stroma 

(Koo et al., 2004). Subsequently, the free fatty acids (FFA) are transported through the IE to 

the OE. Until now, two hypothesis were suggested for the free fatty acid export through the 

IE, since no FFA-export related protein was found so far: (i) Some believe that a transporter 

protein is not necessary for the fatty acid export through the IE (Kamp and Hamilton, 2006; 

Hamilton, 2007); (ii) Considering the fatty acid transport related proteins in E. coli, yeast and 

animals, and also the ABC transporter PXA1 at the membrane of peroxisomes in Arabidopsis 

(Kunz et al., 2009), it is otherwise believed that there should be transport proteins, possibly an 

ABC transporter, involved in FFA export (Benning, 2009; Li-Beisson et al., 2010).  

 

Figure 2 Fatty acid export from plastids and galactolipid biosynthesis in leaves of 16:3 plants 
(Modified according to Williams et al., 2000; Koo et al., 2004; Bate et al., 2007; Benning, 2009; 
Tjellström et al., 2012). Left, fatty acid export from plastids: Acyl-ACP is hydrolysed to FFA by 
thioesterases at the IE. Then FFA is transported to the OE by an unknown fatty acid exporter (?) or by 
a flip-flop mechanism. Acyl-CoA synthetase at the OE accepts FFA and synthesizes Acyl-CoA, 
creating an Acyl-CoA pool in the cytosol. Right, galactolipid biosynthesis consists of two pathways: a) 
the prokaryotic pathway, in the plastid stroma; b) the eukaryotic pathway in the cytosol. Acyl-ACP: 
Acyl-acyl carrier protein, Acyl-CoA: Acyl-Coenzyme A, FFA: free fatty acids, Thioesterase: Acyl-ACP 
thioesterase, Synthetase: Acyl-CoA synthetase, ACBP: Acyl-CoA binding protein, PA: Phosphatidic 
acid, DAG: Diacylglycerol, PC: Phosphatidylcholine, PE: Phosphatidylethanolamine, PS: 
Phosphatidylserine, PI: Phosphatidylinositol, PLD: Phospholipase D; TGD: TGD complex (PA 
importer), ?: unknown fatty acid exporter, PAP: PA-phosphatase, DAG: Diacylglycerol, MGDG: 
Monogalactosyldiacylglycerol, DGDG: Digalactosyldiacylglycerol, MGD1: MGDG synthase, DGD1: 
DGDG synthase, OE: outer envelope, IE: inner envelope, PLAM: the plastid envelope and ER 
membrane contact site. 
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The exogenous long chain fatty acid transport and trafficking system in E. coli consists of 

three central components, FadL, an outer membrane fatty acid transport protein (Nunn and 

Simons, 1978; Black et al., 1987), FadD, an inner membrane long chain acyl-CoA synthetase 

(Overath and Raufuss, 1967; Klein et al., 1971) and FadR, a long chain acyl-CoA regulator 

which localizes in the cytosol (DiRusso et al., 1999; DiRusso and Black, 2004). In yeast 

(Saccharomyces cerevisiae), the fatty acid transport system contains two membrane-bound 

components: i) Fat1p, fatty acid transport protein, which has significant homologies to the 

mammalian fatty acid transport proteins (FATPs); ii) the very long chain acyl-CoA 

synthetases, Faa1p or Faa4p, the fatty acyl-CoA synthetases to activate exogenous fatty acids 

(Faergeman et al., 2001; Zou et al., 2003). Unfortunately, no or thologs of FadL, Fat1p or 

FATP were identified in plant genomes until now. However, two ABC transporter system 

related to fatty acid transport provided hints for the fatty acid export function in plastids. The 

fatty acid transport from ER to plastids in Arabidopsis needs an ABC transporter complex 

which consists of the TGD1, 2 and 3 subunits: a FA-binding protein in the inter membrane 

space (TGD2), the inner envelope intrinsic permease (TGD1) and the stromal ATP-binding 

subunit (TGD3). The TGD1,2,3 transporter complex is proposed to accept and transfer the 

phosphatidic acid from the outer envelope to phosphatidic acid phosphatase (PAP) at the 

inside of the inner envelope membrane (see Figure 2; Awai et al., 2006; Lu et al., 2007; Xu et 

al., 2005; Benning, 2009). Another ABC transporter in Arabidopsis involved in fatty acid 

traffic is the peroxisomal ABC-transporter1 (PXA1), which is required for fatty acid 

respiration via peroxisomal β-oxidation (Zolman et al., 2001; Footitt et al., 2002; Hayashi et 

al., 2002; Kunz et al., 2009).  

After the free fatty acid export through the inner envelope, it is widely agreed that acyl-CoA 

synthetases are involved in the acyl-CoA synthesis at the outer envelope membrane (see 

Figure 2; Koo et al., 2004). It is known that Arabidopsis possesses an acyl-activating enzyme 

superfamily with 63 different genes, including 9 long chain acyl-CoA synthetases (LACS; 

Shockey et al., 2002, 2003). However, no acyl-CoA synthetase was identified to have a role 

during fatty acid export from plastids. One of the nine LACS, LACS9, was experimentally 

verified to localize at the envelope of chloroplasts but has no e ssential synthetase function 

during fatty acid export since the loss function of LACS9 has no phenotype (Schnurr et al., 

2002). Therefore, other members of the acyl-activating enzyme superfamily should have an 

important role in fatty acid export in vivo. 

Recently, phosphatidylcholine (PC) is predicted to play an important role during newly 

synthesized acyl chains trafficking from plastids to the endoplasmic reticulum (Tjellström et 
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al., 2012). Here, the eukaryotic pathway of galactolipid biosynthesis connects cytosolic, ER 

and OE localized PC with the plastid export of free fatty acids (Figure 2). Free fatty acids are 

transferred to be acyl-CoA by acyl-CoA synthetase in the cytosol. Kinetic labeling 

experiments with [14C] acetate, [14C] gylcerol, and [14C] carbon dioxide in pea demonstrated 

that acyl editing is an integral component of eukaryotic glycerolipid synthesis, which means 

most newly synthesized acyl groups are incorporated directly into PC through an acyl editing 

mechanism (Bates et al., 2007). Furthermore, considering that in vivo evidence for acyl-CoA 

as a carrier of acyl chains from plastid to ER is lacking and according to rapid kinetic labeling 

experiments Tjellström et al. (2012) propose that PC may be central to acyl fluxes that occur 

between plastids and the ER. It is also suggested that determining the molecular identity and 

biochemical activity of the proteins catalyzing the initial incorporation of nascent fatty acid 

into PC will provide an important breakthrough for our current understanding of fatty acid 

export from plastids (Benning, 2009). 
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3 Aim of the thesis 

The metabolite and ion transport across the outer and inner envelope of plastids is mediated 

by plastid envelope proteins. OEP7, as the smallest, functionally unknown outer envelope 

protein, was focused in this work. Considering that the characterization of the OEP7.2 

isoform in Arabidopsis has never been described and knockout mutants of OEP7.1 in 

Arabidopsis showed no phenotype, one aim of my work was to describe the topology of 

OEP7.2 and the characterization of oep7.1/oep7.2 double knockout mutant in Arabidopsis. 

As described above until now transport for fatty acid export proteins from chloroplasts are 

unknown. Therefore, the second aim of my thesis was to identify and characterise new 

envelope membrane proteins of plastids. Here the senescence related protein FAX1 at the 

inner envelope was a potential candidate. The goal of my work thus included the molecular 

and in planta characterisation of FAX1 involving studies on mutant plants (transcriptomics, 

metabolomics and ultrastructural analyses). In the long term, my work should further reveal 

the mechanism of fatty acid trafficking between plastids and ER, and the impact on secondary 

metabolism in plant development.  
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II. Materials 

1 Chemicals  

All chemicals used in this work were purchased in high purity from AppliChem (Darmstadt, 

Germany), Biomol (Hamburg, Germany), Difco (Detroit, USA), Fluka (Buchs, CH), 

GibcoBRL (Paisley UK), Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany), Roche 

(Penzberg, Germany), Sigma-Aldrich (Steinheim, Germany), or Serva (Heidelberg, 

Germany). 

2 Detergents 

n-dodecyl-β-D-maltoside (DoMa), sodium dodecyl sulphate (SDS), and Triton X-100 (TX-

100) were obtained from Roth (Karlsruhe, Germany).  

3 Enzymes 

Restriction enzymes and DNA-polymerases were purchased from Roche (Penzberg, 

Germany), MBI Fermentas (St. Leon-Rot, Germany) and New England Biolabs GmbH 

(Frankfurt am Main, Germany). T4-DNA ligases were obtained from MBI Fermentas (St. 

Leon-Rot, Germany) and Invitrogen (Karlsruhe, Germany). Reverse Transcriptase was 

purchased from Promega (Madison, USA). RNase-free DNase I was obtained from Roche 

(Mannheim, Germany) and RNase from Amersham Biosciences (Uppsala, Sweden). Cellulase 

R10 and Macerozyme R10 for digestion of the plant cell wall were from Yakult (Tokyo, 

Japan) and Serva (Heidelberg, Germany). Taq Polymerase was purchased from Diagonal 

(Münster, Germany), Eppendorf, MBI Fermentas, Clontech (Saint-Germainen-Laye, France), 

Finnzymes (Espoo, Finland) and Bioron (Ludwigshafen am Rhein, Germany).  

4 Kits 

RNA extraction from plants was isolated using the “Plant RNAeasy Kit” from Qiagen 

(Hilden, Germany). The “Plasmid Midi Kit” for high yield DNA purification and the 

“Nucleospin Extract II Kit” for purification of DNA fragments from agarose gels were 

purchased from Macherey and Nagel (Düren, Germany). For in vitro translation, the “Flexi 

Rabbit Reticulocyte Lysate System” from Promega (Madison, USA) was used. 
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5 Molecular weight markers and DNA markers 

For agarose-gel electrophoresis, PstI digested Phage DNA (MBI Fermentas) was used as a 

molecular size marker. For SDS-PAGE and Tricine-SDS-PAGE, the Low Molecular Weight 

Marker from Sigma-Aldrich (Steinheim, Germany) was used. 

6 Antisera 

The following antibodies were generated in this work: α-At-OEP7.2 NT (N-terminal region of 

At-OEP7.2), α-At-OEP7.2 CT (C-terminal region of At-OEP7.2), α-Ps-FAX1-NT (N-terminal 

region of Ps-FAX1), α-Ps-FAX1-CT (C-terminal region of Ps-FAX1) and α-At-FAX1 (N- 

terminal region of At-FAX1) (Table 1). All peptides were analyzed, synthesized and used to 

generate antiserum in rabbit by Pineda (Berlin, Germany). Primary antibodies directed against 

At-OEP7.1, Ps-LSU, Ps-LHCP, Ps-OEP16.1, Ps-Tic62 and At-PIC1 used in this work were 

available in the lab.  

Table 1: Peptide antibodies used in this work 

 

7 Strain, vectors, clones and oligonucleotides 

Cloning in E. coli was performed using the strains DH5-α (Invitrogen, Karlsruhe, Germany) 

or TOP10 (Invitrogen). The Agrobacterium tumefaciens GV3101::pMK90RK (Koncz and 

Schell, 1986) strain used for stable transformation of Arabidopsis thaliana was a kind gift of 

Dr. J. Meurer (Department Biologie I, Botany, LMU München). All plasmid vectors used in 

this work are shown in Table 2. Oligonucleotide primers in standard desalted quality used in 

this work were ordered from Qiagen /Operon (Köln, Germany) or Metabion (Martinsried, 

Germany) (Table 3). All plasmid constructs created in this work are listed in Table 4. 

 

Antibody Peptides synthesized For Protein

At-OEP7.2 NT MVEKSGGEVNFPKLEKPTGKKQ At-OEP7.2

At-OEP7.2 CT LFKKLSSSKDKSDSDDATVPPPSGA At-OEP7.2

Ps-FAX1-2 ERHEAETADTETKNTLSYAADESKLNVEEK Ps-FAX1

Ps-FAX1-CT GNPPPKKLKPSASVA Ps-FAX1 /At-FAX1

At-FAX1-2b TAEVSKPVVEKTSKPYSTVDETATNK At-FAX1
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Table 2: Plasmid vectors used in this work 

 

Table 3: Oligonucleotides used in this work 

 

Name Application Origin

pCRblunt Subcloning, sequencing Invitrogen

pJET1.2 Subcloning, sequencing Fermentas

pENTR/D/TOPO
Entry vector for GATEWAY 

recombination Invitrogen

pH2GW7 Overexpression vector Plant System biology (University of  Ghent, Belgium)

p2GWF7 GFP fusion vector Plant System biology (University of  Ghent, Belgium)

pK7WGF2 GFP fusion vector Plant System biology (University of  Ghent, Belgium)

Oligoname Sequence Application

OEP7.1 LP ATCGGTTGATACCACCGACACG Genotyping OEP7.1 gene, oep7.1-2, oep7.2-3

OEP7.1 RP GCTCAAACTGTTATGATTAAGAACACATG Genotyping OEP7.1 gene, oep7.1-2, oep7.2-3

OEP7.1 LC fw ATCGGTTGATACCACC Real time RT-PCR

OEP7.1 LC rev GCTCAAACTGTTATGATT Real time RT-PCR

OEP6.7 fw garlic TATTACCAACAAAACCCAAGACA Genotyping OEP7.2 gene, oep7.2-1

OEP6.7 rev garlic AACGTGACCAGTCGAGATATTT Genotyping OEP7.2 gene

AtOEP7.1#1-35 fw CACCATGGGAAAAACTTCGGGAGCGAAACAG cloning of AtOEP7.1#1-35 for GFP fusion

AtOEP7.1#1-35 rev GAATTTATCGAGGAAAGGCTTGAAAGCG cloning of AtOEP7.1#1-35 for GFP fusion

AtOEP7.1#10-64 fw CACCATGGCGACTGTGGTGGTCGCA cloning of AtOEP7.1#10-64 for GFP fusion

AtOEP7.1#10-64 rev CAAACCCTCTTTGGATGTGGTTGCAG cloning of AtOEP7.1#10-64 for GFP fusion

AtOEP7.2#1-49 fw CACCATGGTGGAGAAGTCAGGAGGAG cloning of AtOEP7.2#10-64 for GFP fusion

AtOEP7.2#1-49 rev CAGCTTCTTGAACAATGGCTTAAACACG cloning of AtOEP7.2#10-64 for GFP fusion

AtOEP7.2#23-69 fw CACCATGACAGCGACGGTTGTTGTGG cloning of AtOEP7.2#23-69 for GFP fusion

AtOEP7.2#23-69 rev GGCGCCCGACGGGGGAGGGACG cloning of AtOEP7.2#23-69 for GFP fusion

AtOEP7.2#11-69 fw CACCATGTTCCCAAAATTGGAGAAACC cloning of AtOEP7.2#11-69 for GFP fusion

AtOEP7.2#11-69 rev GGCGCCCGACGGGGGAGGGACG cloning of AtOEP7.2#11-69 for GFP fusion

At-FAX1 LC fw CCTATGATTCGTCCCCAG Real time RT-PCR

At-FAX1 LC rev CACTCACAACGAGACCA Real time RT-PCR

At-fax1LP TTTCTTCGCAACATTTTGACC Genotyping FAX1 gene

At-fax1RP CCTCTACTGGCTCTGTGATGC Genotyping fax1-1

At-fax1-2LP AAGGAAACCTAAGCTTAAACCAGC Genotyping fax1-2

GABI  LB1 ATAATAACGCTGCGGACATCTACATTTT Genotyping fax1-2

At-fax1RP2 AGTGGAGACACTATCAATCCC Genotyping FAX1 gene

LB1SAIL GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC Genotyping SAIL mutant lines
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Table 4: Constructs created in this work 

 

 

  

   

   

    

    

    

   

      

      

      

      

      

      

      

      

      

      

    

    

  

 

 

   

 

At-FAX1 fw CACCATGGCTTCACAAATCTCTCAGC
cloning of At-FAX1cDNA for overexpressing
lines and complementation lines

At-FAX1 rev GTATGAAGGACTAGTCGCAGATGG
cloning of At-FAX1cDNA for overexpressing
lines and complementation lines

At-fax1 (+stop codon) revTCAGTATGAAGGACTAGTCGCAGATGG cloning of At-FAX1cDNA

Ps-fax1 (cacc) fw CACCATGGCGGCGACATCTCAGGCTCA cloning of Ps-FAX1cDNA to pENTR/D/TOPO

Ps-fax1 (+stop codon) revTCAGGCTACACTGGCAGATGGCTTC cloning of Ps-FAX1cDNA to pENTR/D/TOPO

attB1 ACAAGTTTGTACAAAAAAGCAGGCT Gateway vectors related

attB2 ACCACTTTGTACAAGAAAGCTGGG Gateway vectors related

Protein Plasmid-vector Application

FAX1(at3g57280) pUNI151 Sequencing, subcloning

Ps-FAX1 contig pCRblunt Sequencing, subcloning

At-FAX1 (-stop codon) pENTR/D/TOPO Gateway recombination (GFP)

At-FAX1 (-stop codon) p2GWF7 GFP fusion

At-OEP7.1(-stop codon) pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.1(-stop codon) p2GWF7 GFP fusion (At-OEP7.1:GFP)

At-OEP7.2(-stop codon) pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.2(-stop codon) p2GWF7 GFP fusion (At-OEP7.2:GFP)

At-OEP7.1 pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.1 pK7WGF2 GFP fusion (GFP:At-OEP7.1)

At-OEP7.2 pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.2 pK7WGF2 GFP fusion (GFP:At-OEP7.2)

At-OEP7.1#1-35 pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.1#10-64 pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.2#1-48 pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.2#23-69 pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.2#11-69 pENTR/D/TOPO Gateway recombination (GFP)

At-OEP7.1#1-35 p2GWF7 GFP fusion (At-OEP7.1#1-35:GFP)

At-OEP7.1#10-64 p2GWF7 GFP fusion (At-OEP7.1#10-64:GFP)

At-OEP7.2#1-48 p2GWF7 GFP fusion (At-OEP7.2#1-48:GFP)

At-OEP7.2#23-69 p2GWF7 GFP fusion (At-OEP7.2#23-69:GFP)

At-OEP7.2#11-69 p2GWF7 GFP fusion (At-OEP7.2#11-69:GFP)
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III. Methods 

1 Plant methods 

1.1 Plant material and growth conditions 

All experiments were performed on Arabidopsis thaliana plants, ecotype columbia (Col-0, 

Lehle Seeds; Round Rock, USA). The TILLING lines oep7.1-2 and oep7.1-3 were ordered 

from the Seattle Arabidopsis TILLING Service (http://tilling.fhcrc.org; Till et al., 2003) and 

purchased from NASC (University of Nottingham, GB, Scholl et al., 2000). The T-DNA 

insertion lines (Alonso et al., 2003; Rosso et al., 2003) SAIL_813_F06 (oep7.2-1), 

SAIL_66_B09 (fax1-1) and GABI_599E01 (fax1-2) were purchased from NASC or GABI-

Kat (MPI for Plant Breeding Research, Köln, Germany), respectively. Peas (Pisum sativum) 

var. “Arvica” were ordered from Bayerische Futtersaatbau (Ismaning, Germany). 

Seeds were either sown directly on soil or on MS-plates (Murashige and Skoog, 1962) 

supplemented with 1% (w/v) sucrose. In some cases, seedlings were transferred to soil after 2-

3 weeks. Before sowing on sterile plates, seeds of Arabidopsis thaliana were surface sterilized 

in 70% (v/v) ethanol for 1-2 min, 6% (v/v) NaClO with 0.05% (v/v) Tween-20 for 3-5 min, 

followed by washing in sterilized water for 3 x 1 min, and allowed to air-dry in a laminar flow 

hood. To synchronize germination, seeds were vernalized at 4°C in the dark for 1-3 days. For 

selection of transformed plants, seeds were grown on MS media (+1% sucrose) containing the 

adequate antibiotics (25 µg/ml hygromycin or 100 µg/ml kanamycin). Unless stated 

otherwise, plants were grown in a 16 h l ight (+21°C; 100 μmol photons m–2 s–1) and 8 h da rk 

(+16°C) cycle (long-day) and plant tissues were generally harvested during early light phase 

(2-5hrs of light). 

1.2 Sub-cellular localization of GFP Fusion proteins in Arabidopsis protoplasts 

Plant transformation and sub-cellular localization of GFP fusion protein in Arabidopsis 

protoplasts was performed as described in Duy et al., (2007). 

1.3 Cross fertilization of Arabidopsis thaliana 

Crossing lists of different fax1 knockout mutants and wild type are depicted in Chapter 

IV.2.7. Cross fertilization was performed as described (Detlef and Glazebrook, 2002).  
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2 Molecular biological methods 

2.1 General molecular biological methods 

General molecular biological methods like growing of bacteria, DNA precipitation and 

determination of DNA concentration were performed as described (Sambrook et al., 1989). 

The preparation of transformation-competent cells was performed according to the protocol of 

Hanahan and co-worker (Hanahan, 1983). Preparation of plasmid DNA, restriction digests, 

ligations and agarose gel electrophoresis were performed as described (Sambrook et al., 

1989). The reaction conditions were adjusted to the manufacturer’s recommendations. 

2.2 Isolation of genomic DNA from Arabidopsis thaliana 

2-3 Arabidopsis leaves were cut and transferred to a 1.5 m l microtube, 450 μl extraction 

buffer (200 mM Tris-HCl with pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS, 100 μg/ml 

RNase) and one small iron bead were added and the sample was lysed in a TissueLyser 

(Qiagen, Hilden, Germany) for 3 minutes at maximum speed. Then the sample was incubated 

at 37°C for 5-10mins. After centrifugation for 10 min at 16,000 x g and 4°C, the supernatant 

was transferred to a fresh tube. To precipitate the genomic DNA, 300 μl of isopropanol was 

added to the sample, carefully mixed and incubated for 5 min at room temperature. After 

centrifugation for another 5 min at 16,000 x g and +4°C, the pellet was washed once with 

70% ethanol, subsequently air-dried and finally resuspended in 50 μl of sterilized H2O or 10 

mM Tris-HCl (pH 8.0) buffer. 

2.3 RNA extraction from Arabidopsis thaliana and RT-PCR 

Total RNA from leaves, stems or flowers of Arabidopsis plants was isolated using the Plant 

RNeasy Extraction kit (Qiagen, Hilden, Germany). The DNA was digested with RNase-free 

DNase I (Qiagen) and transcribed into cDNA using MMLV Reverse transcriptase (Promega, 

Mannheim). Detection and quantification of transcripts were performed as described 

previously (Philippar et al., 2004) using the LightCycler system (Roche, Penzberg). 

2.4 Characterization of plant T-DNA insertion lines and TILLING lines 

Genomic DNA of the T-DNA insertion lines was screened by PCR genotyping. To identify 

plants with the T-DNA insertion in both alleles (homozygous), a combination of gene-specific 

primers flanking the predicted T-DNA insertion sites and T-DNA-specific left border (LB) 

primers (Table 5) were used. Usage of a LB primer (in combination with a corresponding 

gene-specific primer) will only generate an amplification product in plants carrying at least 

one T-DNA allele (heterozygous or homozygous for the T-DNA insertion). On the other 
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hand, the combination of two gene-specific primers will generate a PCR product only in DNA 

of plants carrying alleles without a T-DNA (WT and heterozygous for the T-DNA insertion). 

In the TILLING lines, the site of the point mutation corresponds to the site provided by 

TILLING. The positions and orientations of the T-DNA inserts and the position of point 

mutation in TILLING line and oligonucleotide primers in oep7.1-2, oep7.1-3, oep7.2-1, fax1-

1 and fax1-2 are shown in Figure 7 and Figure 18, respectively. To verify the T-DNA 

insertion sites, PCR genotyping products were cloned and subsequently sequenced. 

Table 5: PCR primer combination for genotyping mutant lines of OEP7 and FAX1 
For primer sequence please refer to Table 1, and for position and orientation of primers please refer to 
Figure 7 and Figure 18. 

 

2.5 Microarray analysis 

150 mg tissue powder from flowers and from second to forth internode of inflorescent stems 

from more than 10 individual seven-week-old plants was used for preparation of RNA 

(identical sample pool that was used for fatty acid analysis). RNA (200 ng) of three samples 

(n = 3) from both wild type (Col-0) and fax1-2 lines was processed and hybridized to 

Affymetrix “GeneChip Arabidopsis ATH1 Genome Arrays” using the Affymetrix “3’ VIT 

express” and “Hybridisation wash and stain” kits (Affymetrix UK, High Wycombe, UK) 

according to the manufacturer`s instructions. The statistical significance of signal change was 

calculated as described in Duy et al., (2011). The hybridization of the microarrays and 

statistical analysis of data were performed by Karl Mayer and by Dr. Katrin Philippar, 

respectively (Department Biologie I, Plant Biochemistry and Physiology, LMU München). 

 

 

 

Allele Line primers for wild-type
primers for T-DNA insertion
or TILLING

oep7.1-2 TILL2 OEP7.1 fw, OEP7.1 rev OEP7.1 fw, OEP7.1 rev

oep7.1-3 TILL3 OEP7.1 fw, OEP7.1 rev OEP7.1 fw, OEP7.1 rev

oep7.2-1 SAIL_813_F06 OEP6.7 rev garlic, OEP6.7 fw garlic LB1SAIL, OEP6.7 fw garlic

fax1-1 SAIL_66_B09 fax1LP, fax1RP2 LB1SAIL, fax1RP

fax1-2 GABI_599E01 fax1LP, fax1RP2 GABI LB1, fax1-2LP

fax1-2 Complementation attB1, fax1rev attB1, fax1rev

fax1-2 Overexpressing attB1, fax1rev attB1, fax1rev
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3 Biochemical methods 

3.1 General biochemical methods 

SDS-PAGE was performed as described (Laemmli, 1970). For OEP7, Tricine-SDS-PAGE 

was used as described (Schägger, 2006). Gels were stained either by Coomassie Brilliant Blue 

R250 (Sambrook et al., 1989) or silver-staining (Blum et al., 1987, Ansorge et al., 1985). 

Determination of chlorophyll concentration was carried out as described by Arnon, (1949). 

Determination of protein concentration was performed by the Bio-Rad Protein Essay Kit 

(Bio-Rad, München, Germany) or the Pierce BCA Protein Assay Kit (Thermo Scientific, 

Rockford, USA) 

3.2 Total protein extraction from Arabidopsis thaliana 

Rosette leaves or flowers (0.1 g) of four-week-old plants were harvested and flash-frozen in 

liquid N2. The frozen material was thoroughly ground with mortar and pestle and extracted by 

one volume extraction buffer (50 mM Tris-HCl, (pH 8), 2% LDS (Lithium dodecyl sulphate), 

0.1 mM PMSF). After incubation on ice for 30 min, the sample was centrifuged at 16,000 x g 

at +4°C for 15 m in to get rid of insolube components. The protein concentration was 

determined with the Pierce BCA protein Assay Kit. 50 mM EDTA and 0.15% DTT were 

added to the protein solution for storage and further experiment. 

3.3 Immunoblotting 

3.3.1 Electrotransfer and blocking of proteins 

Proteins separated by SDS-PAGE were transferred onto either Nitrocellulose (PROTRAN 

BA83, 0.2 μm, Whatman/Schleicher & Schüll) or PVDF membranes (Zefa Transfermembran 

Immobilon-P, 0.45 μm, Zefa-Laborservice GmbH, Harthausen, Germany) by semi-dry-

blotting (Amersham Biosciences) (Kyhse-Andersen, 1984) in blotting buffers (I: 300 mM 

Tris-HCl, 20% methanol, II: 25 mM Tris-HCl, 20% methanol, III: 25 mM Tris-HCl, 40 mM 

aminocapron acid, 20% methanol ) for 1h at 0.8 mA per cm2 membrane surface as described 

(Towbin et al., 1979). To be mentioned, the PVDF membranes have to be activated in 100% 

methanol before use. Proteins of the size markers were either stained with Ponceau S solution 

or amidoblack solution. Membranes with bound proteins were first incubated for 30 min in 

blocking buffer containing skimmed milk powder (0-5% milk powder, 0-0.1M Tris, 0-0.15 M 

NaCl, 0-0.75% Tween 20). And then the membrane was incubated with the protein-specific 

primary antibody (diluted in blocking buffer 1:250-1:4000, depending on the antibody) for 2-

3h at RT or overnight at 4°C. Non-bound antibody was removed from the membrane by 
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washing for 3x10 min in TTBS (0.1M Tris, 0.15 M NaCl with 0.1% Tween 20). The 

secondary antibody was selected according to the desired method of visualization. 

3.3.2 Alkaline phosphatase (AP) detection 

If the secondary antibody was alkaline phosphatase (AP)-conjugated secondary antibody 

(goat anti-rabbit IgG (whole molecule)-AP conjugated, Sigma-Aldrich Chemie GmbH, 

Taufkirchen), detection of AP signals was performed in developing buffer (100 mM Tris-HCl 

(pH 9.5), 100 mM NaCl, 5 mM MgCl2) with 6.6 μl/ml NBT (nitro blue tetrazolium chloride, 

50 mg/ml in 70% N,N-dimethylformamide) and 13.2 μl/ml BCIP (5- bromo-4-chloro-3-

indolyl phosphate, 12.5 mg/ml in 100% N,N-dimethylformamide). The membrane was 

incubated in 50 mM EDTA to stop the reaction. 

3.3.3 Enhanced Chemiluminescence (ECL) 

If the secondary antibody was a horseradish peroxidase-conjugated secondary antibody (goat 

anti-rabbit (whole molecule)-peroxidase conjugated, Sigma), detection of signal was 

performed in 50% (v/v) solution 1 ( 100 mM Tis-HCl (pH 8.5), 1% (w/v) luminol, 0.44% 

(w/v) coomaric acid) and 50% (v/v) solution 2 ( 100 mM Tris-HCl (pH 8.5), 0.018% (v/v) 

H2O2). After incubation for 1 m in at RT in the dark, the solution was removed and the 

luminescence detected with a film (Kodak Biomax MR; PerkinElmer, Rodgau, Germany). 

3.4 Proteolysis experiments 

To identify the orientation of chloroplast envelope proteins, proteolysis of Arabidopsis 

chloroplasts or of inner envelope vesicles from pea was performed using the protease 

thermolysin. The chloroplasts or envelope vesicles were incubated in wash buffer (330 mM 

sorbitol, 50 m M Hepes (pH 7.6) and 0.5 mM CaCl2) with 10% (m/m) thermolysin and 

incubated for 0-30 min on i ce. For envelope solubilisation, 1% triton was added. The 

proteolysis was stopped with 5 mM EDTA per 1 µg protease. The proteins were separated on 

SDS-PAGE or Tricine-SDS- PAGE and analysed by immunoblot. 

4 Cell biology methods 

4.1 Isolation of Arabidopsis thaliana chloroplasts 

Chloroplast isolation was performed as described (Aronsson and Jarvis, 2002) with 

modification. Leaf material from 21-day-old plants grown on s oil or on MS-plates 

supplemented with 1% (w/v) sucrose was homogenized in 25 m l isolation buffer (0.3 M 

sorbitol, 5 mM MgCl2, 5 mM EGTA, 5 mM EDTA, 20 mM HEPES/KOH (pH 8.0), 10 mM 

NaHCO3, 50 m M ascorbic acid). After homogenisation and filtration steps, the soluble 
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homogenate was pelleted at 1000 g for 4 min and resuspended in isolation buffer. The sample 

was separated on a t wo-step Percoll gradient (30/82% (w/v) Percoll) with centrifugation at 

1500 g for 8 min. The lower band (intact chloroplasts) was transferred to a 10 ml tube and 

washed in wash buffer (50 mM HEPES/KOH (pH 8.0), 0.3 M  Sorbitol, 2 mM DTT). The 

chloroplasts were pelleted at 1000 g for 4 min and resuspended in 0.5 ml wash buffer. 

4.2 Preparation of inner and outer envelope from Pisum sativum 

For isolation of IE and OE vesicles from chloroplasts, pea seedlings grown for 9-11 days on 

sand under a 12/12 hours dark/light regime were used. All procedures were carried out at 4°C. 

Pea leaves cut from ~ 20 trays were ground in a kitchen blender in 10-15 l isolation medium 

(330 mM sorbitol, 20 mM MOPS, 13 m M Tris, 0.1 m M MgCl2, 0.02% (w/v) BSA) and 

filtered through four layers of mull and one layer of gauze (30 μm pore size). The filtrate was 

centrifuged for 5 m in at 1,500 x g, the pellet gently resuspended with a brush and intact 

chloroplasts reisolated via a discontinuous Percoll gradient (40% and 80%). Intact 

chloroplasts were washed twice with wash medium (330 mM sorbitol, Tris-base (~ pH 7.6)), 

homogenized and further treated according to the modification (Waegemann et al., 1992) of 

the previously described method (Keegstra and Youssif, 1986). 

4.3 Preparation and transient transformation of protoplasts from Arabidopsis 

Arabidopsis mesophyll protoplasts were isolated from 1 g leaves of 3 t o 4-week-old 

Arabidopsis plants grown on soil under normal growth condition and transiently transformed 

according to the protocol from Jen Sheen (http://molbio.mgh.harvard.edu/sheenweb/ 

main_page.html). GFP fluorescence was observed with a T CS-SP5 confocal laser scanning 

microscope (Leica, Wetzlar, Germany).  

5 Light and transmission electron microscopy 

Inflorescent stems, 1 cm above the first node and anthers of flower stage 11-12 (Smyth et al., 

1990) from 2-3 individual Arabidopsis thaliana plants at the age of 34 to 40 da ys were 

harvested in the morning prior to illumination. Samples were prefixed in glutaraldehyde 2.5% 

(w/v) in 75 m M cacodylate buffer (pH 7.0), subsequently rinsed in cacodylate buffer and 

fixed in 1% (w/v) osmium tetroxide in the same buffer for at least 2.5 h at room temperature. 

The samples were stained with uranyl acetate 1% (w/v) in 20% acetone, dehydrated in a 

graded acetone series and embedded in Spurr's low viscosity epoxy resin (Spurr, 1969). 

Further steps and microscopic investigation were performed by Dr. Irene Gügel (Department 

Biologie I, Plant Biochemistry and Physiology, LMU München).  
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6 Wax analysis 

The second to forth internode region of inflorescent stems from more than 10 i ndividual, 

seven-week-old plants were used for wax analysis from FAX1 mutants, wild-type and 

complementation lines. Wax analysis was conducted on pools of 3-4 stems as described 

(Prabhakar et al., 2010; Kurdyukov et al., 2006) and performed by Prof. Lukas Schreiber 

(Department of Ecophysiology, IZMB, University of Bonn)  

7 Fatty acid analysis 

Tissue of cauline leaves, second to forth internode of inflorescent stems and flowers from 

more than 10 individual, seven-week-old plants were grinded in liquid nitrogen and used for 

fatty acid analysis. Three samples of 50 mg tissue powder from homozygous fax1 mutants and 

from wild-type plants were used. Fatty acid analysis was conducted as described (Hummel et 

al., 2011; Giavalisco et al., 2011) and performed by Dr. Patrick Giavalisco (Max Planck 

Institute of Molecular Plant Physiology, Potsdam-Golm, Germany). 

8 Bioinformatical methods 

Table 6: Software, databases and algorithms used in this work 

 

Name Reference Link

NCBI BLAST Altschul et al., 1997 http://www.ncbi.nlm.nih.gov/BLAST

Vector NTI Invitrogen

TopPred

Heijne 1992; Claros 
and 
Heijne 1994

http://mobyle.pasteur.f r/cgi-
bin/portal.py?#forms::toppred

ARAMEMNON Schwacke et al., 2003 http://aramemnon.botanik.uni-koeln.de

TAIR(The Arabidopsis 
Information Resource Lamesch et al., 2011 http://www.arabidopsis.org

ChloroP 1..1 http://www.cbs.dtu.dk/services/ChloroP/

Arabidopsis eFP browser Schmid et al., 2005 http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi

Genevestigator
Zimmermann et al., 
2004 https://www.genevestigator.com/gv/plant.jsp

AtGenExpress 
Consortium

http://www.weigelworld.org/resources/microarray/At
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IV. Results 

1 At-OEP7.2 structure and function analysis 

1.1 OEP7 proteins in Arabidopsis 

OEP7 was first identified and characterised as an outer chloroplast envelope protein in 

spinach (E 6.7, Salomon et al., 1990). Currently four isoforms of OEP7 have been identified 

in Arabidopsis: At-OEP7.1 (At3g52420), At-OEP7.2 (At3g63160), At-OEP7.3 (At3g19151) 

and At-OEP7.4 (At2g34585) (ARAMEMNON plant membrane protein database, Schwacke 

et al., 2003). The highest amino acid identity is 32% between At-OEP7.1 and At-OEP7.2. All 

four OEP7 isoforms have one α-helical transmembrane domain (Figure 3) (ARAMEMNON 

plant membrane protein database, Schwacke et al., 2003). It is predicted that At-OEP7.2 is 

localized at the outer envelope of chloroplasts, while At-OEP7.3 is in mitochondria and At-

OEP7.4 of unknown subcellular localisation. Until the beginning of my thesis, no 

experimental data on the OEP7.2 topology and function was published. 

 

Figure 3: OEP7 proteins in Arabidopsis 
Identical amino acids are shaded in black, similar amino acids in grey and the transmembrane domain 
is depicted as red box. 
 
 
1.2 Membrane orientation of OEP7.2 in the outer envelope of chloroplasts 

It is known that OEP7.1, a 14 kDa protein, has the N-terminus in the intermembrane space 

and the C-terminus in the cytosol orientation (Figure 4C left; Li et al., 1996). To analyse the 

orientation of At-OEP7.2, Arabidopsis chloroplasts were treated with proteases in the 

presence or absence of detergent and further subjected to immunoblot analysis (Figure 4).  
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Figure 4: At-OEP7.2 protein topology analysis at the outer envelope of chloroplasts 
A) Thermolysin digestion sites (THL) of At-OEP7.2. Six thermolysin digestion sites, the 
transmembrane α- helix and regions for two peptide antisera (α-At-OEP7.2 NT, CT) are shown, 
respectively. B) Immunoblot analysis of At-OEP7.2 with antiserums raised against At-OEP7.2 N-
terminus (NT) or At-OEP7.2 C-terminus (CT) after protease treatment with or without 1% triton x-100. 
1.5, 3, 4.5 μg thermolysin were added to chloroplasts (equal 15 μg chlorophyll) and incubated for 20 
min on ice, respectively. P: pellet, S: supernatant. Tic110 is marker of inner envelope proteins, which 
should be prevented from thermolysin digestion. C) Topology model of At-OEP7.1 and At-OEP7.2. 
 
In the presence of triton, which breaks the membrane structure, membrane proteins are fully 

accessible to proteolysis. However, in the absence of triton, only the proteolysis sites of 

membrane proteins at the cytosol site are accessible to proteolysis. It is firstly hypothesized 

that the N-terminus is in the cytosol and C-terminus is in the inter membrane space. A 1.5 

kDa region would be digested and then a 12-13 kDa band would be recognized by the 

antiserum raised against At-OEP7.2 C-terminus (Figure 4A). In contrast, if the N-terminus is 

in the inter membrane space and C-terminus in the cytosol, only a 0.1 kDa region of OEP7.2 

would be digested and therefore a 14 kDa band, which becomes weaker with the increase of 
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thermolysin amount, would be recognized by both antisera. The three thermolysin digestion 

sites near the transmembrane domain of OEP7.2 were not considered in the hypothesis 

because of possible membrane protection. It is clear that the immunoblot analysis results 

(Figure 4B) was matched with the first hypothesis, which revealed that At-OEP7.2 has its N-

terminus in the cytosol (Figure 4C right).  

1.3 Targeting of At-OEP7.2 to the outer envelope membrane of chloroplasts 

To further confirm that At-OEP7.2 is localized at the envelope membrane of chloroplasts, I 

studied the At-OEP7.2: GFP and At-OEP fusion proteins in Arabidopsis protoplasts (in vivo 

GFP targeting; Figure 5). 

 

Figure 5: In vivo targeting of AtOEP7:GFP in protoplasts 
A) The various fusion constructs used in the experiments. At-OEP7.1:GFP or At-OEP7.2:GFP: green 
fluorescent protein (GFP) was fused to the C-terminus of At-OEP7.1 or At-OEP7.2, respectively. 
GFP:At-OEP7.1 or GFP:At-OEP7.2: GFP was fused to the N-terminus of At-OEP7.1 or At-OEP7.2, 
respectively. B) In vivo targeting of fusion constructs in Arabidopsis protoplasts. Only overlaps of GFP 
(green) and chlorophyll (red) are shown. 
 
As shown in Figure 5, At-OEP7.2, like At-OEP7.1, was targeted to the chloroplast envelope 

membrane when GFP-proteins were fused to their C-terminus. However, when GFP was 

attached to the N-terminus of both proteins, a punctate signals appeared, which revealed that 

GFP: OEP7 was mis-targeted. The results suggested that the N-terminus of At-OEP7.2 is 

critical for targeting to the outer envelope membrane. For OEP7.1, it was confirmed that the 
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seven-amino acid region at the C-terminus and the transmembrane domain are determinants 

for targeting to the chloroplast outer envelope membrane (Lee et al., 2001). 

        

Figure 6: In vivo targeting of At-OEP7 deletion constructs fused with GFP in protoplasts 
A) Scheme of the various deletion constructs fused with GFP. B) In vivo targeting of various At-
OEP7.1 and At-OEP7.2 deletion constructs, which were fused to GFP N-terminus. Protoplasts were 
transformed with At-OEP7.1#1-35:GFP, At-OEP7.1#10-64:GFP, At-OEP7.2#1-48:GFP, At-
OEP7.2#23-69:GFP and At-OEP7.2#11-69:GFP. GFP (green), chlorophyll (red), overlap of GFP and 
chlorophyll and bright-field images (bright) are shown, respectively. 
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To confirm which amino acid region is necessary and sufficient for the targeting of At-

OEP7.2, I produced various deletion constructs of At-OEP7.2 and subsequently fused them to 

GFP (Figure 6A). Two deletion constructs of At-OEP7.1 with GFP were used as markers. All 

these constructs were expressed transiently in protoplasts (Figure 6B).  

As shown in Figure 6, the fusion proteins At-OEP7.1#1-35:GFP, At-OEP7.1#10-64:GFP, At-

OEP7.2#1-48:GFP and At-OEP7.2#11-69:GFP were targeted to the envelope membrane of 

the chloroplasts. In constrast, At-OEP7.2#23-69: GFP only gave a punctate staining pattern in 

the protoplasts, which revealed that it mis-targeted. Thus, these results suggest that the 

residues 11 to 22 of At-OEP7.2 are necessary and residues 1 to 48 of At-OEP7.2 are sufficient 

for targeting to the chloroplast envelope membrane. 

1.4 OEP7 mutant analysis in Arabidopsis 

Two TILLING lines oep7.1-2 and oep7.1-3 (Seattle Arabidopsis TILLING Project, Till et al., 

2003) for OEP7.1, a T-DNA insertion mutant line (SAIL_813_F06), named oep7.2-1, for 

OEP7.2, and double mutant (d.m.) of oep7.1 and oep7.2-1 were available at the beginning of 

my thesis. In OEP7.1 TILLING lines, a point mutation at position +146 changed the 

nucleobase cytosine to thymine, which produced a stop codon at the beginning of first exon of 

the OEP7.1 open reading frame (Figure 7A). In oep7.2-1, the T-DNA insertion is localized at 

position +579 in the first exon of the OEP7.2 open reading frame (Figure 7B). For these 

single mutants and double mutants of oep7, immunoblot analysis showed that they were 

knockout mutant in Arabidopsis (Figure 7C). 
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Figure 7: Characterisation of At-OEP7.1 and At-OEP7.2 mutant lines 
A) OEP7.1 from Arabidopsis thaliana (At3g52420). Black arrows denote exons and white line denote 
introns. The location of the point mutation in the TILLING line oep7.1 is detailed in the text box, which 
indicates a premature stop codon (C to T) at amino acid 146. Binding sites for OEP7.1 gene specific 
primers for real time RT-PCT are depicted. B) OEP7.2 from Arabidopsis thaliana (At3g63160). Black 
arrows denote exons and white lines denote introns. The T-DNA insertion sites in line SAIL_813_F06 
(oep7.2-1) are depicted by triangles. Binding sites for OEP7.2 gene specific primers and T-DNA 
specific left (LB) primer used for genotyping and for real time RT-PCT are depicted. C) Immunoblot 
analysis of At-OEP7.1 and At-OEP7.2 in Arabidopsis leaf protein extract (10 µg) of mutant lines and 
Col-0 using antisera against At-OEP7.1 and At-OEP7.2, respectively. d.m.: double mutant. 
 
To further understand the function of OEP7, single and double mutant lines of oep7.1 and 

oep7.2 were grown under several growth conditions (1: 16 h light, +21°C, 100 μmol photons 
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m–2 s–1 and 8 h dark ,+16°C cycle; 2: 12 h light, +21°C, 100 μmol photons m–2 s–1 and 12 h dark 

,+16°C cycle; 3: 8 h light, +21°C, 100 μmol photons m–2 s–1 and 16 h dark ,+16°C cycle; 4: 16 

h light, +21°C, 180 μmol photons m–2 s–1 and 8 h dark ,+16°C cycle) but no obvious phenotype 

could be detected until now (data not shown). However, considering that At-OEP7.2 was 

predicted as a light-sensitive gene according to Smith et al. (2004), real time RT-PCR and 

immunoblot analysis were performed on oep7.2-1 and Col-0 throughout the diurnal cycle 

(Figure 8). 

                 

Figure 8: Expression of At-OEP7.2 throughout the diurnal cycle 
Leaves were harvested from 4 weeks old Arabidopsis Col-0 plants under standard growth conditions 
(20 °C, in a 12-h-light/12-h-dark photoperiod with an irradiance of 180 μmol m-2 s-1). A) Diurnal 
changes in amounts of At-OEP7.2 protein (shown as green triangle; n= 3±SD). Protein VDAC is one 
control which is stable expression. B) Expression patterns of OEP7.2 gene. The mRNA amount 
(arbitrary units) was normalised to 10000 actin transcripts.The curve represent mean values of n=3 
independent experiments. 
 
Under the conditions employed, transcripts of OEP7.2 showed peak amount at 19:00, two 

hours before dark and changed relatively with light over 24 h , w hich indicated that OEP7.2 

transcription is regulated in a diurnal rythm. To further identify whether OEP7.2 proteins are 

regulated as well, the same samples used for real time RT-PCR were further used for 

immunoblot. The result revealed that the OEP7.2 protein amount changed relatively little 

throughout the diurnal cycle.  
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2 FAX1, a putative permease for fatty acid export from chloroplasts 

2.1 Identification of a pre-senescence related chloroplast envelope protein 

Until now, many chloroplast proteome databases were built up for plastid envelope protein 

analysis. In our research, the AT CHLORO database (http://www.grenoble.prabi.fr/ 

protehome/-grenoble-plant-proteomics/; Ferro et al., 2010) was used for selection of new 

envelope proteins. To provide a link to senescence processes, we used mutants of SAUL1 

(Senescence-associated E3 ubiquitin ligase 1) that was identified as one E3 ubiquitin ligase 

preventing premature senescence in Arabidopsis plants (Raab et al., 2009). To identify 

premature senescence associated chloroplast envelope proteins, we performed DNA 

microarray analysis of SAUL1 knockout mutants under senescence inducing conditions 

(collaboration with Prof. S. Hoth, Plant Physiology, University of Hamburg; Vogelmann et 

al., 2012).  

Among three potential chloroplast envelope proteins from the AT CHLORO database (Ferro 

et al., 2010) transcript of the protein At3g57280 was increased 5.8 and 3.2 fold after 24h and 

48h of senescence induction in saul1-1 mutants compared to wild type, respectively (Figure 

9). 

                          
Figure 9: At3g57280 RNA content in saul1-1 under senescence inducing conditions 
Total RNA was isolated from wild-type and saul1-1 mutant seedlings grown in permissive light (60 
µmol m-2 s-1) for 11 days and then challenged with low light (20 µmol m-2 s-1) for 6h, 24h, or 48h. To 
provide biological replicates, mean values for three wild-type and three saul1-1 mutant samples were 
harvested for each time point (Vogelmann et al., 2012). Mean values for At3g57280 RNA (arbitray 
units, n= 3±SD) are shown. 
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Because of its potential function in chloroplast fatty acid transport (see Chapter IV. 2.9), the 

protein At3g57280 is named FAX1 (for fatty acid export 1) in the following. At-FAX1 was 

predicted to be an inner chloroplast envelope protein (Ferro et al., 2010) of 24.3 kDa, with an 

isoelectric point of 9.3 (TAIR, Lamesch et al., 2011) and four predicted α-helices (Table 9, 

ARAMEMNON plant membrane protein database, Schwacke et al., 2003). Further, a 

chloroplast signal peptide of 33 a mino acids was predicted (ChloroP, Emanuelsson et al., 

1999). At-FAX1 cDNA was purchased as SSP pUNI151 clone U12755 (Yamada et al., 2003). 

At-FAX1 was also described as a putative solute transporter of chloroplasts in Tyra et al. 

(2007). 

 
Table 9: Protein features of FAX1 from Arabidopsis and pea 
The name, AGI code, the isoelectric point (IP), the molecular weight (Mw) in kDa, the predicted 
chloroplast signal peptide and the predicted number of transmembrane domains (TMs; 
ARAMEMNON) are shown. At-FAX1 by proteomic analysis was identified as chloroplast envelope 
protein in the listed references. The pea EST contig is published in Franssen et al. (2011). 
 

               
For further experiments, the cDNA of FAX1 in Pisum sativum was cloned by RT-PCR using 

pea seedling cDNA as template and primers designed according to an EST pea contig 

(Franssen et al., 2011). All general data of the Ps-FAX1 are shown in Table 9, the amino acid 

sequences of At-FAX1 and Ps-FAX1 are depicted in Figure 10. The amino acid identity 

between At-FAX1 and Ps-FAX1 is 49%, and for both proteins four α-helices transmembrane 

domains are predicted (Figure 10B). 

 

Name
AGI codes/ 

contig IP (TAIR)
Mw

(kDa)
chloro signal
peptide(AraM)

TMs 
(AraM)

At-FAX1 At3g57280 9.3 24.3 33 4
References: Fröhlich et al. (2003); Kleffmann et al. (2004); Zybailov et al. (2008); Ferro 
et al. (2003), (2010).

Ps-FAX1 contig012718 9.16 25 39 4
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Figure 10: Sequence analysis of At-FAX1 and Ps-FAX1 
A) Graphical output of At-FAX1 sequence showing four predicted hydrophobic transmembrane 
domains using the TopPred program (Heijne 1992; Claros and Heijne 1994). B) Amino acid sequence 
of At-FAX1 and Ps-FAX1. Identical amino acids between At-FAX1 and Ps-FAX1 are shaded in black, 
the end of the predicted chloroplast transit peptides is marked as red triangle, the predicted 
transmembrane domains are lined in green, the regions used for peptide antisera are lined in red. 1: is 
for antiserum α-At-FAX1, 2: is for antiserum α-Ps-FAX1-NT, 3: is for antiserum α-Ps-FAX1-CT. 
 
2.2 FAX1 is localized in the inner envelope of chloroplasts 

Although At-FAX1 was predicted as an inner envelope protein according to proteomics data 

(Ferro et al., 2003, 2010), no experimental data directly showed the sub-cellular localization. 

Therefore, the chloroplast localization of FAX1 was verified by in vivo GFP-targeting 

experiments. At-FAX1 cDNA was fused C-terminally with the green fluorescent protein 

(GFP) and transiently transformed into Arabidopsis protoplasts (Figure 11).  
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Figure 11: At-FAX1-GFP signals in Arabidopsis protoplast  
At-FAX1-GFP and At-OEP7.1-GFP constructs were transiently transformed into Arabidopsis 
protoplasts. GFP, chlorophyll and overlay fluorescence of both constructs are shown. At-OEP7.1-GFP 
was used as marker for the chloroplast outer envelope. 
 
GFP fluorescence signals only appeared surrounding the chloroplasts, which indicated that the 

FAX1-GFP fusion construct localized at the envelope membrane of chloroplasts. The At-

OEP7.1-GFP fusion construct, as a marker for an envelope localized protein, also showed 

fluorescence signals only around the chloroplast. 

To further confirm whether FAX1 is uniquely localized at the inner envelope of plastids, 

immuno-blotting analysis on fractionated pea chloroplasts was performed (Figure 12). 

Antiserum raised against peptides of Ps-FAX1-NT, named α-Ps-FAX1-NT was used in 

immunoblot (see Figure 10C). 

                                              

Figure 12: Immunoblot of Ps-FAX1 in pea chloroplast fractions 
Same total protein amount (5 µg) of the pea chloroplast sub-fractions OE (outer envelope), IE (inner 
envelope), stroma (str) and thylakoid (thy) were separated by SDS-PAGE and immunoblots using 
antiserums raised against Ps-FAX1-NT were performed. LSU (large subunit of RuBisCO, 1 µg of 
protein) appears as a marker of the stroma, LHCP (light-harvesting chlorophyll a/b binding proteins, 
0.2 µg of protein) as a marker of the thylakoids, PIC1 (permease in chloroplasts 1, 5 µg of protein) as 
a marker of IE, and OEP16.1 (outer envelope protein 16.1, 5 µg of protein) as a marker of OE. 
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The antiserum α-Ps-FAX1-NT showed a 24 kDa band only in the inner envelope fraction. 

Antisera raised against LSU, PIC1, LHCP and OEP16.1 were used to recognize marker 

proteins for stroma, inner envelopes (IE), thylakoids and outer envelopes (OE) of 

chloroplasts, respectively.  

2.3 Membrane orientation of FAX1 in the inner envelope of chloroplasts 

Considering that FAX1 is a four transmembrane domain protein, it means that both the N- and 

C-terminus should be localized either in the stroma or the inter membrane space. To verify the 

orientation of FAX1 at the inner envelope membrane, pea inner envelope vesicles were 

protease treated and further subjected to immunoblot analysis (Figure 13). 

 
Figure 13: Ps-FAX1 protein topology analysis at the inner envelope of chloroplasts 
A) Accessible proteolytic sites of Ps-FAX1 (without transit peptide and 4 tramsmembrane domain 
regions). THL: thermolysin digestion sites, cTP: the chloroplast transit peptide. The molecular weight 
in kDa is given for each possible THL fragment of the protein. Four transmembrane domains and two 
regions which were designed for antisera are also shown. B) Proteolysis using thermolysin and 
immunoblot with antiserum α-Ps-FAX1-NT. Inner envelope membrane vesicles (IE) of pea 
chloroplasts were used as sample. 5 µg thermolysin was added to 50ug IE and digested the proteins 
for 0, 5, 10, 20, 30 min. For each lane 10 µg of protein was separated by SDS-PAGE. Tic62 is a 
marker of the stromal side of inner envelope vesicles, which is not accessible for thermolysin 
digestion. C) Proteolysis using thermolysin and immunoblot with antiserum α-Ps-FAX1-CT. Procedure 
is same as in B. D) Topology model for FAX1 at the inner envelope of chloroplasts. IMS: inter 
membrane space, IE: inner envelope, Str: stroma, NT: N-terminus, CT: C-terminus of FAX1, Cys: 
Cysteine residues. 
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Because inner envelope membrane vesicles are isolated in a right-side out orientation, the size 

of proteolysis fragments of membrane proteins can help to determine their orientation 

(Keegstra and Youssif, 1986; Waegemann et al., 1992). It is firstly hypothesized that NT and 

CT are in the inter membrane space, which means that only the proteolysis sites at NT and CT 

are accessible to thermolysin and in immunoblot, many shifted bands between 15- 24 kDa are 

able to be recognized by antisera α-Ps-FAX1-NT or α-Ps-FAX1-CT antisera (see Figure 

10B). However, if both NT and CT are in the stroma, which means only the proteolysis sites 

between the first and second and between third and forth transmembrane domains are 

accesible to proteolysis (Figure 13A), there would be only shift bands lower than 14 kD a 

recognized by antiserum α-Ps-FAX1-NT or lower than 10 kDa recognized by antiserum α-Ps-

FAX1-CT. The immunoblot results (Figure 13B and C) matched with the first hypothesis. In 

addition a cysteine labelling assay (not shown) revealed that both cysteine residues of Ps-

FAX1 are embedded in the membrane (Figure 13D). Conclusively, FAX1 is an inner 

envelope protein with four transmembrane domains and both NT and CT are in the inter 

membrane space. 

2.4 FAX1 is a plant specific protein and a member of the transmembrane 14C family 

Blast analysis of the At-FAX1 protein sequence (National Center for Biotechnology 

Information , NCBI, http://www.ncbi.nlm.nih.gov/BLAST) showed that FAX1 is a plant 

specific protein (Figure 14). FAX1 was also annotated as a plastid targeted solute transporter 

of putative "plantae-specific" origin (Tyra et al., 2007). FAX1 exists not only in di-, and 

monocotyledonous plants like Arabidopsis thaliana, Populus trichocarpa, Ricinus communis, 

Vitis vinifera, Plantago major, Glycine max, Pisum sativum, Picea sitchensis, Oryza sativa, 

Sorghum bicolor, Zea mays but also in the green algae Chlamydomonas reinhardtii (Figure 

14). Tyra et al. (2007) in addition identified more distantly related algae orthologs in 

Ostreococcus tauri, Ostreococcus lucimarinus and Micromonas pusilla. 

http://www.ncbi.nlm.nih.gov/BLAST�
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Figure 14: FAX1 is a plant specific protein 
Phylogenetic tree of FAX1 was created by software MEGA 5.0 (Tamura et al., 2011). At: Arabidopsis 
thaliana, Pt. Populus trichocarpa, Rc: Ricinus communis, Vv: Vitis vinifera, Pm: Plantago major, Gm: 
Glycine max, Ps: Pisum sativum, Ss: Picea sitchensis, Os: Oryza sativa, Sb: Sorghum bicolour, Zm: 
Zea mays, Chlamy: Chlamydomonas reinhardtii.  
 
Further, FAX1 is described as member of the transmembrane 14C family (Tmemb_14), which 

is an uncharacterised protein family UPF0136 with conserved membrane domains (EBI 

InterPro protein sequence analysis & classification database; http://www.ebi.ac.uk/interpro/). 

The Tmemb_14 family has members in all eukaryotes, including fungi, fruit fly, mammalians 

and plants but can be found in bacteria and cyanobacteria as well. In Arabidopsis, four 

Tmemb_14 proteins including FAX1, At2g38550, At3g43520 and At1g33265 are predicted to 

localize in chloroplasts with four similar transmembrane domains (Figure 15). Three other 

homologs At3g20510, At1g50740 and At2g26240 are predicted to localize at the plasma 

membrane. The highest amino acid identity to At-FAX1 is 23.8% with At3g20510 (putative 

plasma membrane protein). 
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Figure 15: Graphical representation of all Tmemb_14 proteins in Arabidopsis  
The Tmemb_14 conserved motif is lined in red. The four transmembrane domains are depicted in 
black boxes. The end of chloroplast transit peptides is marked by green triangles. The other three 
proteins (At3g20510, At1g50740 and At2g26240) are predicted to localize at the plasma membrane. 
 
2.5 FAX1 is expressed during all stages of Arabidopsis development 

It is revealed that FAX1 is expressed in all developmental stages and tissues of Arabidopsis, 

when screening the microarray data of the Arabidopsis eFP Browser (Winter et al., 2007), 

which depends on data from AtGenExpress (Schmid et al., 2005). According to data from 

Genevestigator (Zimmermann et al., 2004), At-FAX1 is expressed throughout all Arabidopsis 

development stages as well with the highest level in young flower stages but the lowest level 

during seed germination and in mature siliques (Figure 16). 

To further analyse the FAX1 gene expression in flowers, microarray data of pollen 

development (Honys and Twell 2004) was used (Figure 17). Here, FAX1 transcripts were high 

in young pollen stage but lower in mature pollen stages (Figure 17). Conclusively, FAX1 may 

be an essential gene in all Arabidopsis developmental stages, especially in young flowers and 

early pollen development. 
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Figure 16: Gene expression of FAX1 in different developmental stages of Arabidopsis 
FAX1 gene code is 251624_at. Microarray data is from Genevestigator 
(https://www.genevestigator.com/gv/index.jsp, Zimmermann et al., 2004). Mean signal intensities 
(arbitrary units ± SD) were averaged from 2-3 replicates. Arabidopsis development was defined as 9 
stages: germinated seed, seedling, young rosette, developed rosette, bolting, young flower, developed 
flower, flowers and siliques and mature siliques. 
 

                      
Figure 17: Transcript level of FAX1 in Arabidopsis pollen development (Honys and Twell, 2004) 
Mean signal intensity (arbitrary units±SD) of FAX1 mRNA was averaged from 1-2 replicates. 
Arabidopsis pollen development was divided into four stages: ms (microspore), bcp (bicellular pollen), 
tcp (tricellular pollen), mp (mature pollen). 
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2.6 FAX1 mutant analysis in Arabidopsis 

The gene of FAX1 in Arabidopsis consists of six exons and the mRNA is named Arabidopsis 

thaliana transmembrane 14C (At3g57280) in the NCBI database, with the reference sequence 

NM_15588. The mRNA sequence of FAX1 is 1030bp long including 180bp 5' UTR and 

169bp of 3' UTR (Figure 18). 

 
Figure 18: The FAX1 gene in Arabidopsis 
Scheme of the exon and intron localization of FAX1 and T-DNA insertion sites of Arabidopsis mutants. 
Black arrows indicate the six exons, white lines introns. Two T-DNA insertion sites in the first intron 
(fax1-1, position +526) and in the first exon (fax1-2, position +388, +405, 17bp deletion of FAX1) are 
indicated by triangles. pCSA110 is the T-DNA sequence in the SAIL_66_B09 line (fax1-1). pAC161 is 
T-DNA sequence in the GABI-Kat line 599E01 (fax1-2). Binding sites for FAX1 gene specific primers 
and T-DNA specific left (LB) border primers used for PCR genotyping and for real time RT PCR are 
depicted.  
 
To understand the function of in the chloroplast inner envelope, two mutant T-DNA insertion 

lines in the FAX1 gene were selected: SAIL_66_B09 (fax1-1) and GABI-Kat 599E01 (fax1-2; 

Figure 18). After PCR genotyping (Figure 19A and B) and sequencing of the PCR product, T-

DNA insertion sites were identified in the first intron at position +526 (fax1-1) and in the first 

exon at position +388 to +405 with a 17bp deletion of the FAX1 gene (fax1-2; Figure 18). 

Subsequent RT-PCR on RNA of homozygous FAX1 mutants (Figure 19C) showed that both 

lines represent knockouts for FAX1. 
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Figure 19: PCR genotyping of two FAX1 T-DNA insertion lines in Arabidopsis 
A) and B) PCR genotyping amplified a 648bp signal in heterozygous (he) and wild type (wt) lines by 
FAX1 gene specific primers fax1LP and fax1RP2 (A1 and B1). For the fax1-1 T-DNA insertion line, a 
595bp product was amplified in homozygous (ho) and he mutants by a T-DNA primer from SAIL (LB1 
SAIL) and the gene specific primer fax1RP (A2). For the fax1-2 T-DNA insertion line, a 682bp product 
in ho and he lines was detected by a T-DNA primer from GABI (GABI LB1) and a gene specific primer 
fax1-2LP (B2). C) RT-PCR on FAX1 RNA extracted from young leaves of fax1-1 and fax1-2 mutants. 
LCfw and LCrev amplified a product of 265bp. ho: homozygous, he: heterozygous, wt: wild type. For 
position of primers, see Figure 16. 
 
To complement the knockout of FAX1, the FAX1 cDNA under control of the 35S promoter 

(plasmid vector pH2GW7; Karimi et al., 2002), was introduced into heterozygous fax1-2 

plants. After selection of the following T1 and T2 generations and PCR genotyping, two lines 

named Comp#7 and Comp#54 containing the complementation construct were identified as 

homozygous for the original T-DNA at the FAX1 locus (Figure 20A). 

To stable overexpress FAX1 in the ecotype Columbia (Col-0), the same construct 

(35S::FAX1) used for the complementation lines was introduced into Col-0. T1 generation 

plants containing the construct 35S::FAX1 were also selected based on hygromycin resistance 

and PCR genotyping. In the T2 generation, two plants named FAX1ox2 and FAX1ox4 were 

identified as heterozygous overexpressing lines of FAX1 (Figure 20B). 

                     
Figure 20: PCR genotyping of FAX1 complementation and overexpressing lines 
PCR genotyping amplified one 725bp signal by a FAX1 cDNA specific primer (fax1rev) and a vector 
specific primer (attB1) in complemented fax1-2 and overexpressing lines. he: heterozygous, wt: wild 
type. 
 
In the following, the T-DNA insertion lines (fax1-1, fax1-2), complementation lines (Comp#7, 

Comp#54), overexpressing lines (FAX1ox2, FAX1ox4) and wild type (Col-0, wild type from 

fax1-2 line) were analyzed for their FAX1 transcript and protein content by quantitative real 

time (qRT)-PCR and immunoblot analysis, respectively. The qRT-PCR result (n=1, data no 

shown) indicated that the FAX1 mRNA amount in five weeks old cauline leaves of Comp#7 

fax1-2fax1-1
1

ho he wtho he wtho he wtho he wt
2
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1 2

A B
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and Comp#54 is 0.8 and 12.1 fold higher, and in heterozygous FAX1ox2 and FAX1ox4 lines 

is 26 and 210 fold higher than in Col-0, respectively.  

Immunoblot analysis was performed to analyze FAX1 protein expression level in five week 

old cauline leaves of all lines (fax1-1, fax1-2, Col-0, WT background of fax1-2, Comp#7, 

Comp#54, FAX1ox2 and FAX1ox4). The peptide antiserum α-At-FAX1 (see Figure 10) can 

recognize two bands between 23-25 kDa in the total membrane protein extract of cauline 

leaves (Figure 21A). Because signals in total protein extract of wild type were weak, I tested 

the FAX1 antibody on purified Arabidopsis wild type envelope, detecting two bands as well 

(Figure 21B). Alternative processing of signal peptide may cause the two bands signal. The 

results reveal that the amount of FAX1 protein in five weeks old cauline leaves of Comp#7 

and Comp#54 is 1- and 1.8-fold more and of heterozygous FAX1ox2 and FAX1ox4 lines is 

2.2- and 4-fold more than in Col-0, respectively (Signal intensities were determined by Aida 

Image Analyzer v. 3.25; Figure 21A).  

                
Figure 21: FAX1 protein expression in cauline leaves of wild-type and all mutant lines 
A) Immunoblot analysis of FAX1 in protein extracts (50 µg per lane) from 5-week-old Arabidopsis 
cauline leaves. The antiserum against FAX1 protein (α-At-FAX1) can recognize two bands at 23-25 
kDa at wild type (Col-0; wt2: WT background of fax1-2), complementation (Comp#7, #54) and FAX1 
overexpressing (FAX1ox2, 4) lines. k.o.: knockout mutant, 1: fax1-1, 2: fax1-2, WT: wild type. B) 
Immunoblot analysis of FAX1 in isolated envelopes (Env; 10 µg protein per lane) of fax1-2, Col-0 and 
FAX1ox4 lines.  
 
In summary, qRT-PCR and immunoblot analysis results indicate that the line Comp#7 

contains wild-type levels of FAX1 mRNA and protein, while the lines Comp#54, FAX1ox2 

and FAX1ox4 represent overexpressors of FAX1. 

 

2.7 Phenotype of FAX1 mutant lines 

The heterozygous fax1-1 and fax1-2 mutants showed the same phenotype as Col-0 (data not 

shown). But the homozygous knockout mutant plants grew slower than Col-0 as visible after 

30 days of growth (Figure 22A). However, the chlorophyll a and b amounts (per leaf fresh 

weight) were same as for Col-0 (data not shown). After 50 days of growth, homozygous fax1 

knockout mutant plants were smaller, with thin inflorescence stems and short siliques 

containing almost no s eeds (Figure 22B). Since the same phenotype was shown in both 

independent T-DNA insertion lines, fax1-1 and fax1-2, it is deduced that the phenotype is 

caused by the loss of FAX1 function. To further confirm this correlation, complementation 

25

A B
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1 2 Col-0 wt2 #4 Col-0#2#54#7
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and overexpressing lines were grown at the same conditions (Figure 22). Both 

complementation lines Comp#7, #54 showed the same growth phenotype as wild type at 30 

and 50 days, except shorter siliques (see Figure 25). Remarkably, the overexpressing lines 

FAX1ox2 and 4 were slightly bigger and produced thicker inflorescence stems than wild type 

(Figure 22). 

                    
Figure 22: Growth phenotypes of FAX1 mutants 
A) 30-day-old plants of FAX1 mutants and wild type. B) 50-day-old plants of FAX1 mutants and wild 
type. fax1-1, fax1-2: homozygous knockout lines; Col-0, WT fax1-2: wild-type FAX1 alleles; Comp#7, 
Comp#54: FAX1 complementation lines; FAX1ox2, FAX1ox4: FAX1 overexpressing lines. 
 

A

fax1-1 Col-0 Comp#7 FAX1ox 2

fax1-2 WT fax1-2 Comp#54 FAX1ox 4

B

fax1-1 fax1-2 Col-0 WT fax1-2 Comp#7 Comp#54 FAX1ox2 FAX1ox4
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Conclusively, the phenotypes in FAX1 knockout mutants and overexpressing lines in 

Arabidopsis are linked directly to the function of FAX1.  

With the described growth phenotype of FAX1 mutant lines, it is clear that FAX1 affects the 

biomass production, including leaves, stems, roots and flowers in Arabidopsis plants. 

Therefore, rosette weight, leaf weight, fresh stem weight, dry stem weight, root weight and 

stem diameter were measured in all FAX1 mutant lines (Figure 23).  

        
Figure 23: Plant biomass of FAX1 mutants and wild type 
Arabidopsis plants from FAX1 mutants and wild type were harvested at 50 days.and dissected into 
different organs. A) Picture of stems. Bottom part of second internode of inflorescence stem from fax1-
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2, Col-0 and FAX1ox2 was selected. B) Stem diameter in mm. Same internode part as in A (n=4-
13±SD) was selected from FAX1 mutants and wild type. C) Stem fresh weight (mg/cm, n=4-12±SD). 
1cm stem at the bottom of the second internode of inflorescence stem, washed. D) Stem dry weight 
(same sample as in C, n=4-12±SD). E) Pictures of rosettes from fax1-2, Col-0 and FAX1ox2. F) 
Rosette weight (n=8-13±SD). G) Punched leaf weight (central of rosette leaf with similar size was 
punched as one 0.09 cm-2 circle and weighted, n=6-11±SD). H) Root weight (n=4-10±SD). fax1-2, k.o.: 
homozygous knockout lines; Col-0, WT2: wild-type FAX1 alleles; Comp#7, Comp#54: FAX1 
complementation lines; FAX1ox2, FAX1ox4: FAX1 overexpressing lines. 
 
Generally, adult homozygous fax1 knockout plants were smaller, and adult overexpressing 

lines plants were larger in size than wild type and complementation lines. When measured in 

50-day-old plants, the stem diameter, stem fresh weight and stem dry weight of FAX1 mutants 

were different from the corresponding wild type alleles and complementation lines: knockout 

lines were smaller and less, overexpressing lines were bigger and more (Figure 23A-D). 

Leaves and roots also showed a biomass reduction in fax1 knockouts but an increase in 

FAX1ox lines when compared to wild type (Figure 23E-H). 

Conclusively, all measurements in FAX1 mutant tissues provided evidence that FAX1 is 

involved in plant biomass production. 

 

fax1 knockout plants show reduced male fertility  

To understand the loss of function phenotype of homozygous fax1 mutants during flower 

development, especially during the pollination and fertilization procedure, genetic analysis of 

male and female crosses between T-DNA insertion lines and wild type was performed (Table 

10).  
Table 10: The backcrossing of fax1 lines 

: pollen and female gamtophyte pollination. No.: Number of plants analysed in the filial 
generation. "he fax1-1 x he fax1-1" and "he fax1-2 x he fax1-2" are self-pollination of the heterozygous 
fax1-1, fax1-2 mutant, respectively. "wt fax1-2 x ho fax1-2" is the backcrossing of wild type fax1-2 
pollen with homozygous fax1-2 mutant female gametophyte. "he fax1-2 x ho fax1-2" is the 
backcrossing of heterozygous fax1-2 mutant pollen with homozygous fax1-2 mutant female 
gametophyte. ho%: percentage of homozygous, he%: percentage of heterozygous, wt%: percentage 
of FAX1 corresponding wild-type alleles. 
 

                 
Self-fertilization of heterozygous fax1-1 and fax1-2 mutant revealed that the segregation ratio 

of homozygous progeny was 7% and 4% respectively, demonstrating an impaired pollination 

+x

Crosses
( ) No. ho % he % wt %

he fax1-1 x he fax1-1 280 7 65 28

he fax1-2 x he fax1-2 204 4 63 33

wt fax1-2 x ho fax1-2 20* / 100 /

he fax1-2 x ho fax1-2 171 12 88 /

* mix from 10 crossing events

+x
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or fertilization procedure. When the female gametophyte from homozygous fax1-2 mutant 

was fertilized with wild-type fax1-2 pollen, normal siliques with 100% heterozygous seeds 

were harvested at the filial generation, which indicates that the female gametophyte of 

homozygous fax1-2 was fertile. However, when the wild-type fax1-2 female gametophyte was 

fertilized with homozygous fax1-2 mutant pollen, the same shorter siliques and reduced 

amount of homozygous progeny as during selfing of homozygous fax1-2 mutant plants were 

harvested and seed yield was < 0.1% of wild-type (data not shown), which indicates that the 

male gametophyte of the knockout mutant was almost sterile. Furthermore, during this 

manual crossing, it became evident that pollen grains of homozygous fax1-2 were improperly 

released by anthers. To minimize anther defects from the paternal tissue, I thus pollinated 

homozygous fax1-2 gametophytes with pollen from heterozygous fax1-2 anthers thereby 

achieving 12% of homozygous progeny (Table 10). 

In summary, the strongly impaired male fertility phenotype of homozygous fax1 mutants is 

mainly caused by impaired pollen anther development. 

 

Anther and pollen development are impaired in homozygous fax1knockout mutants 

To further analyse flower development, especially the fertilization phenotype, morphological 

studies of flower and silique development of all FAX1 mutant lines were performed. 

In wild-type alleles, complementation lines and overexpressing lines, bolting of flowers 

occurred normally and silique and seed development were also similar to each other. 

However, the stigma of homozygous fax1 knockout mutants grew slower showing non 

pollinized papillae, which caused very short siliques with few seeds inside (Figure 25). 
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Figure 24: FAX1 function related phenotypes in flower development 
6-7 flower buds and youngest siliques from one bouquet of mature FAX1 mutant lines and wild-type 
were selected. fax1-1, fax1-2: homozygous knockout lines; Col-0, WT fax1-2: wild-type FAX1 alleles; 
Comp#7, Comp#54: FAX1 complementation lines; FAX1ox2, FAX1ox4: FAX1 overexpressing lines. 
Arrow heads indicate the non-pollinated stigma papillae of fax1-1, fax1-2. 
 

After 55 days of growth, siliques of wild type alleles and complementation lines started to 

senescent, which firstly appeared at siliques on inflorescence stems (Figure 25). However, 
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WT fax1-2
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FAX1ox 2 FAX1ox 4
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homozygous fax1 knockout mutants and overexpressing lines plants still only had green 

siliques, which imply that FAX1 may have function related to senescence. 

            
Figure 25: FAX1 function related phenotypes in silique development 
8 siliques inflorescence stems of all lines (55 days old) were selected and arranged from left to right 
depending on the developmental stages (left side is the youngest, right side is the oldest). fax1-1, 
fax1-2: homozygous knockout lines; Col-0, WT fax1-2: wild-type FAX1 alleles; Comp#7, Comp#54: 
FAX1 complementation lines; FAX1ox2, FAX1ox4: FAX1 overexpressing lines. 
 
To visualize the strongly impaired male fertility phenotype of homozygous fax1 knockout 

mutants, open flowers at development stages 12-14 (Smyth et al., 1990) from all FAX1 

mutant lines and wild type were compared (Figure 26). 
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Figure 26: FAX1 function related phenotype in pollination 
Flower buds at flower stage 12-14 (Smyth et al., 1990) were selected. fax1-1, fax1-2: homozygous 
knockout lines; Col-0, WT fax1-2: wild-type FAX1 alleles; Comp#7, Comp#54: FAX1 complementation 
lines; FAX1ox2, FAX1ox4: FAX1 overexpressing lines 
 
Both two FAX1 wild-type alleles and overexpressing lines produced flowers with mature 

pollen grains being released by anthers and sticking to the papillae of stigmas. However, 

flowers of the two homozygous fax1 knockouts had almost no free pollen grains and stigma 

papilla produced long hairs, which indicates that very few pollination happened. In 
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comparison to the knockout lines, flowers of complementation lines had more pollen outside 

of anthers but fewer than wild type, indicating that complementation of pollen release by 

anthers was not 100%. Furthermore, normal wild type pollen was yellow in colour because of 

the inclusion of flavonoid and carotenoid deposits (Dobritas et al., 2011). However, impaired 

pollen of homozygous fax1 knockouts as well as of complementation lines was pale and 

colourless (Figure 27). 

 
Figure 27: FAX1 function related phenotype of Arabidopsis mature pollen on the surface of 
anthers 
Anthers after flower stage 13 were selected. fax1-1, fax1-2: homozygous knockout lines; Comp#7, 
Comp#54: FAX1 complementation lines. Arrow heads indicate the colourless and pale pollens of fax1-
1, fax1-2, Comp#7 and Comp#54. 
 
 
Ultrastructural analysis of FAX1 mutant lines 

In the following, stem, anther and pollen morphology were analyzed in the FAX1 mutants and 

Col-0 by light microscopy and transmission electron microscopy (TEM; Figure 28-30). 

Microscopic investigation were performed by Dr. Irene Gügle (Department Biologie I, Plant 

Biochemistry and Physiology, LMU München). Firstly, stems were pictured 1 cm above the 

first node of 5-week-old inflorescence stems (Figure 28). Here the amount of hypodermal cell 

layers appeared reduced (~3) in fax1-2 but increased in FAX1ox (~5), when compared with 

Col-0 (~4; Figure 28A-C). Compared with Col-0 wild type, vascular bundles were smaller 

and xylem and sclerenchyma contained secondary cell walls reduced in homozygous fax1-2 

fax1-1 fax1-2 Col-0

Col-0 fax1-2Comp#7Comp#7 Comp#54
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mutants (Figure 28A, B, D and E). In the overexpressing line FAX1ox2 however, extended 

vascular strands (2-3 originating from cambium) and a multi-layered procambium appeared 

(Figure 28C and F). TEM of xylem cells revealed that secondary cell walls of tracheids were 

strongly reduced in fax1-2 knockout stem when comparing with Col-0 wild-type (Figure 28G 

and H). 

 

 
Figure 28 Stem tissue of FAX1 mutants 
Overview and vascular tissue of stem from homozygous fax1-2 knockout (A, D, G), Col-0 (B, E, H) and 
FAX1ox2 (C, F). A, B, C: Overview of stem cross sections (light microscopy, bar=100 µm). D, E, F: 
Closeup of sclerenchyma and phloem cells (left) and xylem (right) (light microscopy, bar= 25 µm). G, 
H: Transmission electron microscopy (TEM) of cell walls of tracheids in xylem cell layer (bar=5 µm). h: 
hypodermis, s: sclerenchyma, p: phloem, x: xylem. Extended and multilayered procambium is depicted 
by arrowheads (C, F). 
 
To further understand the stem phenotype, the section of epidermal cell wall at the stem 

surface in the FAX1 mutants and Col-0 was analysed and compared (Figure 29). The 

ultrastructure revealed that the thickness of the outer epidermal cell wall was reduced in the 

homozygous fax1-1 knockout, compared with Col-0 wild-type (Figure 29A-D). Furthermore, 

the thickness of the cuticular layer was reduced in fax1-1, but increased in the overexpressing 

line FAX1ox2 when compared with Col-0 wild-type (Figure 29G-I).  
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Figure 29 Stem epidermis of FAX1 mutants 
Epidermis and hypodermis of stem from homozygous fax1-1 knockout (A, B, G), Col-0 (C, D, H) and 
FAX1ox2 (E, F, I). A, C, E: Overview of epidermal and hypodermal cell layers (light microscopy). B, D, 
F: Transmission electron microscopy closeups of epidermal cell wall (bar= 500 nm), and G, H, I: Cutin 
layer (bar= 200 nm). cut: cutin layer, cyt: cytosol, cw: cell wall. 
 
Moreover, investigation of anther and pollen prior to dehiscence of homozygous fax1-2 

knockout, Col-0 wild-type and complementation line Comp#54 by light microscopy and TEM 

was performed (Figure 30). In line with the observations from stems, the vascular bundle of 

anthers appeared collapsed and cutin was reduced in fax1-2 while comparing with Col-0 wild-

type (data not shown). In the homozygous fax1-2 knockout, the ultrastructure of anthers 

further showed that fragmented parts of tapetum still were present and bound together with 

pollen grains, while the tapetum had disappeared in Col-0 wild-type and only few parts of 

tapetum were bound with some pollen grains in the complementation line Comp#54 (Figure 

30A-I). Surprisingly, the pollen grains in the homozygous fax1-2 knockout were only 

surrounded by the intine layer, which revealed that the exine development was strongly 

impaired. In Comp#54, however bacula structures of the exine were restored, while both 

tectum and bacula of exine existed in Col-0 wild-type (Figure 30G-L). In addition 

accumulation of deposits unknown materials were detected in the complementation line 

Comp#54 (Figure 30I, L). 
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Figure 30 Anther and pollen of homozygous fax1 knockout, Col-0 and complementation line 
Anther and pollen of flowers from homozygous fax1-2 knockout (A; D, G, J), Col-0 (B, E, H, K) and 
complementation line Comp#54 (C, F, I, L). A, B, C: Overview of anther cross section prior to 
dehiscence (light microscopy, bar= 50 µm). D, E, F: Overview of areas between pollen grain and 
anther cells (TEM, bar= 5 µm). G, H, I: Closeup of areas between pollen and anther cells (TEM, bar= 1 
µm). J, K, L: Closeup of exine and intine of pollen grain (TEM, bar= 500 nm). t: tapetum, a: anther cell, 
e: exine, i: intine, tec: tectum of exine, bac: bacula of exine, * : material deposits in exine/tapetum 
region. 
 
 
2.8 Wax content in stems of FAX1 mutant lines 

Considering the ultrastructural result on the stem cuticular layer (see Figure 29), the wax 

content on inflorescence stems of FAX1 mutants and the corresponding wild-type alleles was 

analysed and compared (Figure 31-32). Wax analysis was performed by Prof. Lukas 

Schreiber (Department of Ecophysiology, IZMB, University of Bonn). 
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Figure 31: Wax analysis of FAX1 mutant lines 
A) Wax analysis of FAX1 knockout and complementation lines. Total wax coverage in μg/cm2 stem of 
surface (n= 3 ± SD, n=7 for fax1-2). For each replicate 3-4 stems (internode 2-4) were pooled. B) Wax 
analysis of FAX1 overexpressing lines and wild type. Total wax coverage in μg/cm2 stem of surface 
(n= 6 ± SD). For each replicate 3-4 stems (internode 2-4) were pooled. The asterisks indicate 
significantly different wax levels (* P< 0.05) in FAX1ox2 and 4 when compared with Col-0 wild type. 
k.o. 1 and 2: homozygous knockout lines, WT fax1 1 and 2: wild-type FAX1 alleles, Comp#7, 
Comp#54: FAX1 complementation lines, FAX1ox2 and 4: FAX1 overexpressing lines. 
 
The homozygous fax1 knockout mutants had similar amounts of total stem wax coverage as 

the corresponding wild-type alleles, and interestingly, the complementation lines slightly 

increased the stem total wax amount when comparing with wild-type (Figure 31A). However, 

the total wax levels of FAX1 overexpressing lines FAX1ox2 and FAX1ox4 were increased to 

136% and 134% of the Col-0 loads, respectively (Figure 31B).  

Furthermore, the homozygous fax1 knockout mutants differed significantly from wild type in 

the levels of ketones. The fax1-1 and fax1-2 ketone levels were reduced to 33% and 47% of 

the wild-type loads, respectively (Figure 32). But in FAX1 overexpressing lines, there is no 

difference in composition of wax, regarding aliphatic chain length or functional groups (eg. 

ketone, acid or aldehyde), when comparing with Col-0 wild type (data not shown). 
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Figure 32: Ketone analysis of FAX1 mutant lines 
Total ketone coverage in μg/cm2 stem of surface (n= 3 ± SD, n=7 for fax1-2). For each replicate 3-4 
stems (internode 2-4) were pooled. The asterisks indicate significantly different signal levels (** P < 
0.005, * P< 0.05) in homozygous fax1 knockout mutants (fax1-1 or fax1-2) and FAX1 
complementation lines (Comp#7 or Comp#54) when compared with Col-0. 
 
2.9 Fatty acid contents in fax1 knockout mutants and wild type 

Considering the phenotypes at the exine of pollen and stem outer layer of epidermis cells, the 

fatty acids composition in the flowers, stems and leaves of homozygous fax1 knockout 

mutants and corresponding wild-type alleles were measured by Dr. Patrick Giavalisco (Max 

Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Figure. 33-35). 

 
Figure 33: Polar lipid composition in flowers of wild type and the fax1 knockout mutants 
Flowers were harvested from 50 days old plants. Lipid content (n=6±SD) was normalised to fresh 
weight (FW) and the internal standard PC34:0. The asterisks indicate significantly different signal 
levels (** P < 0.005, * P< 0.05) in homozygous fax1 knockout mutants (fax1-1 or fax1-2) when 
compared with Col-0. A) Main differences of polar lipids except free fatty acids are shown. PC: 
phosphatidylcholine, TAG: triacylglycerol. B) Free fatty acids (FA) different in flowers of the 
homozygous fax1 knockout mutants and corresponding wild-type alleles. 
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The measurement and analysis of flower lipid composition revealed that the amount of 

PC36:6, TAG50:3 and TAG54:5 were significantly reduced in the homozygous fax1 knockout 

mutants comparing with Col-0 wild-type. Only amount of FA24:1 was increased in the fax1 

knockout mutants (Figure 33). 

 
Figure 34: Polar lipid composition in cauline leaves of wild type and fax1 knockout mutants 
Cauline leaves were harvested from 50 days old plants. Lipid content (n=6±SD) was normalised to 
fresh weight (FW) and the internal standard PC34:0. The asterisks indicate significantly different signal 
levels (** P < 0.005, * P< 0.05) in homozygous fax1 knockout mutants (fax1-1 or fax1-2) when 
compared with Col-0. A) Main differences of polar lipids with high expression level are shown. PC: 
phosphatidylcholine, DGDG: digalactosyldiacylglycerol, MGDG: monogalactosyldiacylglycerol. B) 
Differences of polar lipids with lower expression level than in A are shown. PE: 
phosphatidylethanolamine, PG: Phosphatidylglycerol. C) Free fatty acids (FA) different in leaves of the 
homozygous fax1 knockout mutants and corresponding wild-type alleles. 
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The measurement and analysis of leaf lipid composition of fax1 knockout mutants and wild 

type showed that DGDG36:6, MGDG34:6, MGDG36:6, PC 34:3, PC 36:5, PC36:6, 

Pheophytin, PC36:3, PE36:6 were reduced in the homozygous fax1 knockout mutants, but the 

PG34:2, PG34:3 and PG 34:4 were increased in the fax1 knockout mutants. Furthermore, free 

fatty acids like FA18:0, and FA26:0 were also slightly reduced in the fax1 knockout mutants 

(Figure 34).  

 
Figure 35: Polar lipid composition in stems of wild type and the fax1 knockout mutants 
Stem were harvested from 50 days old plants. Lipid content (n=6±SD) was normalised to fresh weight 
(FW) and the internal standard PC34:0. The asterisks indicate significantly different signal levels (** P 
< 0.005, * P< 0.05) in homozygous fax1 knockout mutants (fax1-1 or fax1-2) when compared with Col-
0. A) Main differences of polar lipids except free fatty acids are shown. PC: phosphatidylcholine. B) 
Free fatty acids (FA) different in stems of the homozygous fax1 knockout mutants and corresponding 
wild-type alleles. 
 
Polar lipid composition measurement and analysis of stems showed other lipids to be different 

between the homozygous fax1 knockout mutants and corresponding wild-type alleles than in 

flowers and leaves (Figure 35). Here the amounts of lipids like MGDG34:6 (data not shown), 

CoQ9, DGDG34:6, PC34:2, PC34:3, PC36:4, PC36:5, PG34:2, PG34:3, PG34:4 and free 

fatty acids FA16:0, FA18:2, FA18:3 were increased in mutant lines. However, none of the 

polar lipids were reduced in fax1 knockout mutants. 
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Figure 36: PC amount in flowers, leaves and stems of fax1 knockout mutants and wild type  
Flowers, leaves and stems were harvested from 50 days old plants. PC content (n=6±SD) was 
normalised to fresh weight (FW) and the internal standard PC34:0.  
 
As a summary, total phosphatidylcholine (PC) amount in leaves and PC36:3 in flowers of the 

homozygous fax1 knockout mutants were reduced significantly when compared with the 

corresponding wild-type, however in stems, total PC amount was increased (Figure 36). It is 

known that PC is a key chemical involved in fatty acid transport from plastids to ER (see 

Chapter I.2). Therefore, PC amount differences between the homozygous fax1 knockout 

mutants and wild type provides evidence that FAX1 might be an inner envelope protein 

involved in fatty acid export from chloroplasts. 

 

2.10 Transcriptomic analysis of fax1 knockout mutant and wild type 

Because of the impaired flower and stem development in homozygous fax1 knockout mutants, 

gene expression in fax1-2 versus the wild type was compared by microarray analysis 

(Affymetrix ATH1 GeneChip) in the same tissue pools that were used for lipid analysis and 

stem wax coverage analysis. The hybridization of the microarrays and statictical analysis of 

data were performed by Karl Mayer and by Dr. Katrin Philippar, respectively (Department 

Biologie I, Plant Biochemistry and Physiology, LMU München). I found that 1,058 genes 

could be identified as down-regulated and 515 genes were up-regulated in flowers of fax1-2, 

while 410 genes could be classified as down-regulated and 1136 genes were up-regulated in 

stems (Table 11). To be mentioned, the values for FAX1 in homozygous fax1-2 and wild-type 

5

10

15

20

25

PC flower PC leaf PC stem

fax1-1

fax1-2

WT fax1-2

Col-0

PC
 c

on
te

nt
/ a

rb
itr

ar
y 

un
its

 (x
 1

05
)



Results 

55 

stems are 178.6 and 774.7 (p-value 0.073), respectively. The values for FAX1 in homozygous 

fax1-2 and wild-type flowers are 151.6 and 614.2 (p-value 0.022), respectively. 
Table 11: Differential gene expression in fax1-2 flowers and stems  
Functional categories of differentially expressed genes in fax1-2 versus wild-type flowers and stem are 
shown (Fold change >1.5, signal differeence >30). Classification of genes was performed by 
MAPMAN (Thimm et al., 2004).  

 
Interestingly, fax1 knockout flowers mainly down-regulated gene expression (1058 of 1573) 

while loss of FAX1 in stems resulted in mostly increased transcript content (1136 of 1546). 

Further, the overlap of differentially expressed genes in flowers and stems was extraordinarily 

low (only 157), indicating different physiological reactions of flowers and stem tissues. 

Considering that FAX1 might function in fatty acid export across the chloroplast inner 

envelope membrane, we focused on e xpression of genes related to lipid biosynthesis or 

secondary cell wall development, which represented a hotspot of regulation with top fold 

changes. To be mentioned, none of the top regulated genes overlapped in flowers and stems. 

In stems, among 40 genes up-regulated with a fold change >10 (fax1-2 versus wild-type) were 

23 genes with a function related to lipid biosynthesis or secondary cell wall (Table 12). 

Interestingly, AtMAH1/AtCYP96A15 (At1g57750), which is highly up-regulated (FCH 

12.7), is the midchain alkane hydroxylase responsible for formation of secondary alcohols and 

ketones in stem cuticular wax (Greer et al., 2007), indicating a correlation with the changed 

ketone content found in fax1 knockouts (see Figure 32). Furthermore, both AtIRX15 

(At3g50220) and AtIRX15L (At5g67210), which encode DUF579-containing proteins that 

are essential for normal xylan deposition in the secondary cell wall (Brown et al., 2011), are 

up-regulated in homozygous fax1-2 versus wild-type Arabidopsis stem. 

flowers stems

Down, 1058 genes Up, 515 genes Down, 410 genes Up, 1136 genes
cell wall modif ication 63 24 17 85
lipid metabolism 30 7 3 32
amino acid metabolism 7 9 3 18

secondary metabolism 22 32 15 32
hormone metabolism 34 17 10 33
Biotic stress 42 26 21 34
RNA 70 70 38 121
protein 108 40 42 135
signalling 85 18 37 70
development 46 16 24 28
transport 95 27 37 37
not assigned 265 133 91 347
miscellaneous 120 39 47 83
others 71 57 25 81
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Of the 57 genes down regulated with a fold change >3 were 14 genes with a function related 

to lipid biosynthesis or secondary cell wall in fax1-2 versus wild-type Arabidopsis stems. 
Table 12: Top fold change genes in stems. 
Highly regulated genes related to lipid biosynthesis or secondary cell wall biosynthesis in homozygous 
fax1-2 versus wild-type Arabidopsis stems. u.k.: unknown. 

 

In flowers, among 19 genes up regulated with a fold changes >3 and 33 genes down regulated 

with a fold change >5 (top fold changes of fax1-2 versus wild-type) were 19 (7 up, 12 down) 

genes with a function related to lipid biosynthesis or secondary cell wall (Table 12). 

To be mentioned, in the current model of the transcriptional network of secondary cell wall 

biosynthesis in Arabidopsis (Zhao and Dixon, 2010), a key myb-type transcription factor,  

Name AGI Code Description(ARAMEMNON)
Signal,
fax1-2

Signal, 
wild type

Fold 
Change 
(FCH)

UP
lipid biosynthesis

u.k. At1g74670 putative GASA/GAST/Snakin-type protein 310.63 18.75 16.57

AtMAH1 At1g57750 mid-chain alkane hydroxylase 2567.66 202.29 12.69
secondary cell wall

AtXCP1 At4g35350 cysteine protease 2038.68 74.82 27.25
AtLAC2 At2g29130 putative laccase 2898.82 161.55 17.94

AtPGSIP1 At3g18660 putative xylan glucuronosyltransferase 3880.01 243.38 15.94
AtLAC10 At5g01190 putative laccase 559.23 37.16 15.05
AtXCP2 At1g20850 cysteine protease 5855.62 390.10 15.01
AtTED6 At1g43790 protein  involved in secondary cell wall biogenesis 3852.57 269.13 14.31
AtLAC17 At5g60020 putative laccase 3469.41 245.58 14.13
AtMYB103 At1g63910 putative Myb-type transcription factor 1785.59 129.14 13.83

AtANAC073 At4g28500 NAC-type transcription factor 2988.57 233.74 12.79
u.k. At5g01360 protein of unknown function 2045.68 170.28 12.01

AtXTH4 At2g06850 xyloglucan endotransglucosylase-hydrolase 4943.93 412.11 12.00
AtPer64 At5g42180 putative class-III peroxidase 8220.49 694.18 11.84

u.k. At1g09610 protein of unknown function 1358.05 115.56 11.75
u.k. At4g09990 protein of unknown function 1128.17 98.66 11.43

AtXTH6 At5g65730 xyloglucan endotransglucosylase-hydrolase 1889.98 169.11 11.18
AtLAC12 At5g05390 putative laccase 2584.48 231.61 11.16
AtIRX15L At5g67210 protein probably involved in xylan biosynthesis 3214.46 288.30 11.15
AtCOBL4 At5g15630 putative glycosylphosphatidylinositol-anchored protein 4853.46 441.60 10.99
AtIRX15 At3g50220 protein probably involved in xylan biosynthesis 2541.10 237.34 10.71
AtXTH15 At4g14130 xyloglucan endotransglucosylase-hydrolase 387.87 37.11 10.45
AtXyn3 At4g08160 xylanase 931.23 90.12 10.33

DOWN
secondary cell wall 

AtABCB16 At3g28360 putative subfamily B ABC-type transporter 39.31 328.67 8.36
AtVGD1 At2g47040 pectin methylesterase 66.25 458.57 6.92

u.k. At1g19510 putative MYB_related-type transcription factor 17.43 80.19 4.60
u.k. At5g07410 putative pectinesterase 15.88 68.17 4.29
u.k. At1g10770 putative pectin methylesterase inhibitor 56.05 234.11 4.18
u.k. At5g07430 putative pectinesterase 26.95 107.84 4.00

AtUGT73B5 At2g15480 UDP-dependent glycosyl transferase 36.20 138.66 3.83
u.k. At4g02250 putative invertase/pectin methylesterase inhibitor 22.59 82.06 3.63

AtNAC2 At3g15510 NAC-type transcription factor 276.34 968.72 3.51
AtCslG1 At4g23990 putative cellulose synthase-like glycosyltransferase 103.34 321.57 3.11
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MYB103 and NAC-type transcription factors were also highly regulated in homozygous fax1 

mutant versus Col-0 wild-type (Table 12 and 13). 

Table 13: Top fold change genes in flowers. 
Highly regulated genes related to lipid biosynthesis or secondary cell wall biosynthesis in homozygous 
fax1-2 versus wild-type Arabidopsis flowers. u.k.: unknown. 

 

  

Gene AGI Code Description(ARAMEMNON)
Signal, 
fax1-2

Signal, 
wild type

Fold 
Change 
(FCH)

UP
lipid biosynthesis

AtAOx1a At3g22370 alternative oxidase 2319.12 576.37 4.02
AtAOC1 At3g25760 allene oxide cyclase 261.04 78.81 3.31

secondary cell wall
AtPer49 At4g36430 putative class-III peroxidase 625.76 82.84 7.55
AtPer58 At5g19880 putative class-III peroxidase 695.83 184.47 3.77
AtPer14 At2g18140 putative class-III peroxidase 190.58 55.92 3.41
AtPer39 At4g11290 putative class-III peroxidase 1163.18 366.35 3.18
AtNTL1 At1g32870 putatively NAC-type transcription factor 551.81 174.17 3.17

DOWN
lipid biosynthesis

u.k. At5g47350 putative palmitoyl protein thioesterase 108.18 1671.07 15.45
AtANR At1g61720 dihydroflavonol 4-reductase 70.44 1023.51 14.53
AtDFR At5g42800 dihydroflavonol 4-reductase 76.63 494.19 6.45
PME49 At5g07420 putative pectinesterase 327.30 1778.40 5.43

AtPTEN1 At5g39400 phosphatidyl-inositol triphosphate phosphatase 203.49 1063.88 5.23
PME28 At5g27870 putative pectinesterase 98.03 511.79 5.22

secondary cell wall
u.k. At4g15750 putative invertase/pectin methylesterase inhibitor 94.44 3208.18 33.97

AtEXP23 At5g39280 putative expansin 73.00 561.75 7.70
AtGDPD6 At5g08030 putative glycerophosphoryl diester phosphodiesterase 27.28 195.03 7.15
AtXYLP4 At5g09370 putative xylogen-type arabinogalactan protein 70.32 422.77 6.01
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V. Discussion 

1 OEP7 

Whereas the OEP7.1 isoform has been described in the literature (see Chapter I.1.1), OEP7.2 

from Arabidopsis is firstly characterized in this work. In 1993, t ail-anchored (TA) proteins 

were classified as integral membrane proteins with a cytosolic N-terminal functional domain, 

a single transmembrane domain (TMD) and a short C-terminal hydrophilic tail (Kutay et al., 

1993). In the last few years, a considerable amount of TA proteins, especially the mechanisms 

of the targeting into specific membranes, was investigated in yeast and mammals. It is 

demonstrated that the targeting signal of almost all TA proteins is located within the C-

terminal TMDs and flanking sequences (Borgese et al., 2007; Pedrazzini, 2009). The topology 

analysis result of At-OEP7.2 (see Figure 4) revealed that OEP7.2 is a TA protein in the outer 

envelope membrane of chloroplasts. With the in vivo targeting of At-OEP7.2 in protoplasts, I 

could show that the N-terminus of OEP7.2, not the C-terminus, is critical for targeting to the 

outer envelope. These findings are novel and complement those described for OEP7.1, where 

in contrast the C-terminal part of the protein is necessary for targeting (Lee et al., 2001). 

Further in vivo targeting of At-OEP7 deletion constructs fused with GFP in protoplasts 

revealed that the N-terminal amino acid residues 11 to 22 (neighboring TMD) of At-OEP7.2 

are necessary and residues 1 to 48 (N-terminus, TMD and C-terminal flanking sequences) are 

sufficient for targeting to the chloroplast envelope membrane. Therefore, my findings on 

OEP7.2 targeting provide important evidence to understand the targeting of TA proteins into 

chloroplast membranes in plants. Furthermore, it could be demonstrated that the double 

knockout mutant of oep7.1/oep7.2 in Arabidopsis showed no phenotype under various 

conditions. Considering that there are at least four isoforms of OEP7 in Arabidopsis and that 

the polypeptide of OEP7 is very short, which means that even more OEP7 isoforms might 

exist, it is  likely that triple or quarter mutants could be necessary to investigate a plant 

phenotype of OEP7 loss of function. And as mentioned about SsOEP8, a homolog of OEP7 in 

Suaeda salsa, which was described to confer oxidative stress tolerance and to induce 

chloroplast aggregation in transgenic Arabidopsis plants (Wang et al., 2012), it could be also 

interesting to analyse the knockout mutant of OEP7.1 and OEP7.2 under oxidative stress 

conditions. 
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2 FAX1 

In the second part of this work, I identified a gene encoding a novel membrane protein in the 

chloroplast inner envelope most likely involved in fatty acid or fatty acid derivative export. 

2.1 Plastid fatty acid export and the pollen exine formation in Arabidopsis 

The Arabidopsis mature pollen grain surface consists of three layers (from inside to outside): 

i) an inner intine, made primarily of cellulose; ii) an outer exine wall, multilayered and 

composed of the chemically resistant polymer sporopollenin and interrupted by openings 

called apertures; iii) a pollen coat, composed of lipids, proteins, pigment, and aromatic 

compounds, that fills the sculptured cavities of the pollen exine (Edlund et al., 2004). The 

sporopollenin in exine layers is a complex polymer of fatty acids and phenolic compounds 

(Guilford et al., 1988; Ahlers et al., 1999). The exine itself splits into outer sexine and the 

inner nexine layers. The sexine comprises the tectum and the bacula. The nexine comprises 

the nexine I and nexine II (Ariizumi and Toriyama, 2011; Figure 37). The ultrastructural 

investigation of the pollen in FAX1 mutants showed that the pollen of fax1 knockout mutants 

lacks the sexine and parts of the nexine (see Figure 30). In the recent years, several genes 

involved in exine formation were identified in Arabidopsis, such as male sterility 2 (MS2; 

Aarts et al., 1997; Chen et al., 2011), CYP703A2 (Morant et al., 2007), CYP704B1 (Dobritsa 

et al., 2009), Acyl-CoA sythetase 5 (ACOS5; Souza et al., 2009) and an ABCG transporter 

(ABCG26; Choi et al., 2011; Dou et al., 2011; Quilichini et al., 2010), which also showed a 

pollen phenotype similar to fax1 knockout mutants. With the known function of proteins 

mentioned above, it was summarized that the pollen exine development precedure depends on 

fatty acids, which are synthesized in the plastids of tapetum cells and esterified with CoA by 

Acyl-CoA synthetase (e.g. ACOS5) and are sent to the ER, where the fatty acyl-CoAs are 

hydroxylated by CYP704B1 and CYP703A2, respectively. After the modification and other 

unknown steps, the modified fatty acids are exported from the tapetum cell for exine 

formation by the ABCG26 transporter and other unknown transporters (Choi et al., 2011). 

Recently, both MS2 and the probable ortholog of MS2, defective pollen wall (DPW) of rice 

(Oryza sativa) were identified as the plastid localized fatty acyl carrier protein reductase, 

which participates in a conserved step in primary fatty alcohol synthesis for anther cuticle and 

pollen sporopollenin biosynthesis (Chen et al., 2011; Shi et al., 2011). 
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Figure 37 A typical angiosperm pollen grain structure (adapted from Ariizumi and Toriyama, 2011) 

A) model of a pollen grain B) Transmission electron microscopy of a cross-section of exine 
architecture in Arabidopsis. Bar= 1 µm. Tc: tectum, Ba: bacula, Try: tryphine, In: intine, Cy: cytoplasm, 
Pla: plasma membrane, Ne I/II: nexine I/II. 

According to the high similarity of phenotypes it is therefore proposed that FAX1 represents 

the missing transporter for export of fatty acid derivatives from plastids in tapetum cells 

(Figure 38). Transcriptomic analysis of flowers revealed that all the above mentioned genes 

for exine formation were not highly regulated in fax1 knockout mutants while comparing with 

wild type. However, an effective genetic screen in Arabidopsis on sporopollen synthesis and 

exine assembly recently showed that many other genes are involved in the pollen morphology 

(Dobritsa et al., 2011). Surprisingly, the genes of PTEN1 (a phosphatidyl-inositol 

triphosphate phosphatase), DFR (dihydroflavonol 4-reductase), ANR (dihydroflavonol 4-

reductase) and the putative pectinesterases PME28 and PME49 were highly down regulated in 

fax1 knockout mutant versus Col-0 (see Table 13). The Arabidopsis PTEN, a protein and lipid 

dual phosphatase, homologous to animal PTEN (a tumor suppressor), was identified to 

regulate autophagy in pollen tubes by disrupting the dynamics of phosphatidylinositol 3-

phosphate (PI3P; Zhang et al., 2011; Gupta et al., 2002). Both DFR and ANR are key 

reductases during anthocyanins and flavonoid biosynthesis (Winkel-Shirley, 2001; Marinova 

et al., 2007). Considering the colorless pollen phenotype in fax1 knockout mutant plants (see 

Figure 27), it is suggested that the absence of exine layers prevents inclusion of flavonoids 

and carotenoids thus leading to the transparent pollen and secondly affecting expression of 

genes (e.g. down-regulating) involved in flavonoid biosynthesis. It was reviewed that pectin 

methylesterases (PME) belong to large multigene families and are involved in vegetative and 

reproductive processes, including pollen formation (Pelloux et al., 2007). Although the 

function of PME 28 and PME49 are unknown, another PME, named quartet, was indicated 

recently to affect the pollen tetrad separation during floral development, which may provide a 

A B
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hint to explain the sticky pollen phenotype in fax1 knockout mutant plants (Francis et al., 

2006). 

Furthermore, the complementation of fax1 by 35S:: FAX1 (Comp #7, Comp#54) is able to 

rescue fertility and most of exine structures, because of 35S promoter is not active in pollen 

but in tapetum cells (Wilkinson et al., 1997). As mentioned above, fatty acids, which are 

necessary for pollen exine formation and fertility, are delivered by the anther. However, some 

exine material, which is necessary for interrelation of flavonoid and carotenoids, should be 

delivered by the pollen, such as pollen plastid fatty acids. Therefore, the complementation 

lines of FAX1 still show transparent pollen grains (see Figure 27) 

Other interesting genes, which were highly regulated in fax1 knockout mutant versus Col-0 

and may have a function related to cutin, wax biosynthesis or structure of anther cells will be 

discussed together with the stem phenotype (see Chapter V. 2.2).  

Furthermore, the genes of some other proteins which may also have function during fatty acid 

transport and lipid biosynthesis, were also regulated in flowers of fax1 knockout mutants 

versus Col-0, such as PAP2 (purple acid phosphatase 2; down FCH= 4.28), MGD2 

(Galactosyltransferase; down FCH=3.36), LACS5 (Long-chain Acyl-CoA synthetase; down 

FCH=2.70), ACS8 (Acyl-CoA synthetase; up FCH= 2.17), FAR7 (Fatty acid reductase 7; up 

FCH= 1.99).  

Interestingly, the ultrastructure of anthers in fax1 knockout mutants clearly showed that 

fragmented parts of tapetum still were present and bound together with pollen grains, while 

the tapetum was totally degraded in Col-0 (see Figure 30). The timing of the tapetal 

programmed cell death is critical for pollen development (Ku et al., 2003; Kawanabe et al., 

2006; Phan et al., 2011). Because, FAX1 initially was identified as premature senescence 

upregulated (see Chapter IV. 2.1) and the siliques of FAX1 knockout and overexpressing lines 

showed late a senescence phenotype compared to wild-type. Proper function of FAX1 seems 

to be necessary for controlled cell death of tapetum in anther and also silique development. 

2.2 Plastid fatty acid export affects wax and cutin biosynthesis in stems 

The hydrophobic plant cuticle, which coats the epidermis to protect tissues from 

environmental stresses, consists of two types of highly lipophilic materials: i) cutin, which 

contains w- and mid-chain hydroxy and epoxy C16 and C18 fatty acids and glycerol (Heredia, 

2003; Nawrath, 2006); ii) cuticular wax, which contains straight chain C20 to C60 aliphatics 

and possible secondary metabolites. Furthermore, cuticular wax includes the intracuticular 

wax, which interspersed within the cutin layer, and the epicuticular wax on the outer surface 
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of cutin and intracuticular wax (Samuels et al., 2008). In Arabidopsis, it is  estimated that 

more than half of the fatty acids made by epidermal cells of the rapidly expanding stem are 

transported into the cuticular cutin and wax (Suh et al., 2005). During the wax biosynthesis, 

the very-long-chain fatty acids, which are elongated in the endoplasmic reticulum (ER) are 

modified into wax compositions: alcohols, esters, aldehydes, alkanes and ketones (Samuels et 

al., 2008). In line with a proposed function of FAX1 in plastid fatty acid or fatty acid 

derivative export fax1 knockout mutants showed decreased cutin and FAX1 overexpressing 

lines had increased cutin and wax contents (see Figure 31). Until now, it is known that a 

cytochrome P450 enzyme (CYP96A15) is a mid-chain alkane hydroxylase (MAH1) 

responsible for the formation of secondary alcohols and ketones in the stem cuticular wax of 

Arabidopsis. The stem wax amount of T-DNA insertion mutants of MAH1 was measured to 

be devoid or reduced of secondary alcohols and ketones (Greer et al., 2007). In this work, the 

ketones amount of fax1 knockout mutants were reduced while the MAH1 RNA level was 

highly up regulated in stem transcriptomic analysis comparing with Col-0 indicating a gene 

regulatory in response to the lack of ketone components. Considering no da ta on t he 

overexpressing of MAH1, it can be hypothesized that MAH1 not only catalyzes the 

hydroxylation reaction from alkanes to secondary alcohols and ketones but also is crucial for 

balancing ketones biosynthesis in stem cuticular wax of Arabidopsis.  

In the recent years, many proteins involved in stem wax and cutin biosynthesis were 

identified, such as ABCG11 (ABC transporter for wax and cutin precursors transport; Luo et 

al., 2007; Panikashvili et al., 2007), ABCG12 (ABC transporter working together with 

ABCG11 for wax precursors; Pighin et al., 2004; Panikashvili et al., 2007; McFarlane et al., 

2010), as well as enzymes like CER1 (Aarts et al., 1995), CER3 (Chen et al., 2003; Rowland 

et al., 2007), CER8/LACS1 (Lü et al., 2009; Jessen et al., 2011) and LACS2 (Lü et al., 2009). 

Interestingly, genes of CER1 (up FCH=5.77), CER8 (up FCH=3.87) and LACS2 (up 

FCH=2.48) are up regulated in stems of fax1 knockout mutant versus Col-0. The analysis of 

stem wax of cer1 mutants revealed that CER1 has the function as an aldehyde decarbonylase 

during the conversion of aldehydes to alkanes (Aarts et al., 1995). Both CER8/LACS1 and 

LACS2 are members of the nine Arabidopsis long-chain acyl-CoA synthetases. Analysis of 

the double mutant of lacs1-1lacs2-3 revealed that LACS1 and LACS2 have overlapping 

functions in both wax and cutin synthesis, furthermore, LACS1 preferentially modifies both 

very long-chain fatty acids (VLCFA; > C24) for wax and long-chain (C16) fatty acids for 

cutin synthesis (Lü et al., 2009). Considering the ultrastructural phenotype of stem cuticle of 

FAX1 mutants and the transcriptomic analysis result mentioned above, it is suggested that 
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FAX1, by exporting fatty acids across the inner envelope protein of plastids, affects wax and 

cutin biosynthesis. 

Interestingly, some genes which also relate to lipid biosynthesis are also up regulated in stem 

of fax1 knockout mutant versus Col-0: At1g06120 (fatty acid desaturase; up F CH=8.22), 

At1g65890 (putative thioesterase; up FCH=4.52) and LACS3 (At1g64400; up F CH=2.23). 

The detailed connection of fatty acid biosynthesis, transport and the LACS family will be 

discussed in V. 2.4.  

 

Figure 38: The function of FAX1 in plastid fatty acid or fatty acid derivative export affects 
pollen exine formation, wax and cutin synthesis in epidermis cells as well as secondary cell 
wall formation 
Up-regulated genes related to lipid biosynthesis or secondary cell wall in fax1 knockout mutant versus 
wild-type are colored red, down-regulated blue. All abbreviations and names are described in text. 
 
2.3 Plastid fatty acid export and plant cell wall formation in stems 

The plant cell wall functions as regulator of cell expansion, cell adhesion, a barrier to pests 

and pathogens and so on, and consists of three layers: i) the primary cell wall, which is 

created in the cell plate during cell division and rapidly increases in surface area during cell 

expansion; ii) the middle lamella, which forms the interface between the primary walls of 
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neighboring cells, and the cell corners, which are often filled with pectin-rich 

polysaccharides; iii) the secondary cell wall, which builds up complex structures exclusively 

suiting to different cells' functions (Buchanan et al., 2002; Brown et al., 2005; Caffall and 

Mohnen, 2009; Figure 39). In Arabidopsis, the xylem and interfascicular cells of the 

inflorescence stem form a thick secondary cell wall, which predominantly consists of 

cellulose, lignin and xylan (Turner and Somerville, 1997; Nieminen et al., 2004). As 

mentioned in Chapter IV 2.7, in the fax1 knockout mutants, the vascular bundles were smaller 

and the secondary cell walls of xylem tracheids reduced while comparing with Col-0 wild 

type (see Figure 28). Therefore, I fcouse on the highly regulated genes which may function in 

xylem vascular bundles or the secondary cell walls of xylem in fax1 knockouts. 

                          

Figure 39 The cell wall of Arabidopsis thaliana (copied from Caffall and Mohnen, 2009) 

The primary cell wall (pw), middle lamella (ml), and secondary cell wall (sw) of WT Arabidopsis 
thaliana Col-0 transverse root section are shown. pm: plasma membrane, c: cytosol, v: vacuole. Bar= 
2 µm. 

 

Here, the transcripts of xylem cysteine proteases XCP1 and XCP2, which were identified to 

aid micro-autolysis within the central vacuole of xylem tracheary elements during xylogenesis 

and secondary cell wall thickening (Avci et al., 2008), were highly up regulated in stem of 

fax1 knockout mutant versus Col-0. Tracheary elements form xylem vessels strands, which 

are strengthened with secondary cell walls including cellulose, hemicellulose and lignin 

(Turner et al., 2007; Endo et al., 2009). Therefore, it is suggested that the phenotype of fax1 

knockout mutant stems may relate to the highly efficient micro-autolysis with increased 
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XCP1 and XCP2 proteases activity. Furthermore, it was described that inhibition of both 

TED6 (differentiation-related 6; transcripts up regulated in fax1 knockout mutant stem versus 

Col-0) and TED7 enhanced the aberrant secondary cell wall formation of root vessel 

elements, but co-overexpression of TED6 and TED7 increased tracheary elements 

differentiation in cultured Zinnia cells (Endo et al., 2009). Another up regulated transcript in 

fax1 is COBL4, which is known as a regulator that controls the culm mechanical strength and 

cellulose content in the secondary cell walls of sclerenchyma (Sato et al., 2010). Although 

cellulose synthase genes are not regulated in fax1, I found the gene TBL3 (Bischoff et al., 

2010), TBR-like, to be highly up regulated in fax1 knockout mutant versus Col-0. TBL3 is 

described to significantly contribute to deposition of secondary cell wall cellulose. 

As a potential abundant source of carbohydrate, xylan limits the ability of cell wall degrading 

enzymes to access other cell wall polymers such as cellulose, and therefore contributes to the 

lignocellulosic biomass (Yang and Wyman, 2004). Transcripts of three key proteins involved 

in xylan deposition (GUX1, IRX15 and IRX15L) were highly up regulated in fax1 knockout 

mutant versus Col-0. GUX1 is required for the addition of both glucuronic acid and 4-O-

methylglucuronic acid branches to xylan in Arabidopsis stem cell walls. The T-DNA 

insertions of IRX15 (irregular xylem 15) and IRXL15 (irregular xylem like 15) contain less 

xylose because of decreased xylan content and exhibit mildly distorted xylem vessels (Brown 

et al., 2011). 

Lignin is a product of the plant phenylpropanoid pathway. It is found mainly at the secondary 

cell wall of sclerenchyma and water-conducting cells of the xylem (high levels of G lignin) 

and in the structural fibers (higher level of S subunit; Ralph et al., 2004; Zhong and Ye, 

2009). The lignified secondary cell wall formation occurs only after cells have attained their 

final shape and size, under the control of a complex network of tissue specific transcription 

factors, which mainly are NAC or MYB transcription factors (Umezawa, 2010; Zhong and 

Ye, 2007; Bonawitz and Chapple, 2010). It has been shown that class III peroxidases and 

laccase, two major classes of cell wall-related oxidoreduction enzymes, are involved in the 

polymeriations of lignin precursors (Berthet et al., 2011; Huis et al., 2012; Marjamaa et al., 

2009). In the transcriptomic result of stems and flowers in fax1 knockout mutant, transcripts 

of many class III peroxidases and laccases were regulated. Furthermore, recently, it was 

revealed that disrupting of LACCASE17 (highly up regulated in fax1 knockout mutant) 

principally affected the deposition of G lignin units in the interfascicular fibers (Berthet et al., 

2011). The transcripts of cinnamic acid 4-hydroxylase (C4H; up 2.72) and two members of 

cinnamyl alcohol dehydrogenase (CAD-C (down 2.71) and CAD-F (up 4.35)), the enzymes 
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involved in the monolignol biosynthesis (Schilmiller et al., 2009; Sibout et al., 2005), were 

also regulated in fax1 knockout mutant versus Col-0. 

As mentioned above, transcription factors, especially NAC or MYB transcription factors, 

regulate the secondary cell wall formation. Interestingly, many MYB and NAC transcription 

factors were regulated in stem and flower of fax1 knockout mutant versus Col-0: MYB103 

(up 13.83), SND2/ANAC073 (up 12.79), MYB63 (up 8.27), MYB58 (up 7.54), SND3 (up 

6.89), MYB46 (up 6.72), NST2 (up 4.80), MYB4 (up 4.54), MYB83 (up2.86), NAC2 (down 

3.51), NTL1 (flower; up 3.17) . In Arabidopsis, the NAC transcription factors NST2 and 

NST1 regulates secondary wall thickenings and are required for anther dehiscence, the latter 

providing a link to the fax1 pollen phenotypes (see Chapter V. 2.1; Mitsuda et al., 2005). 

MYB58 and MYB63 are lignin-specific transcription factors which only affect lignin 

biosynthesis. MYB46 and MYB83 are direct downstream targets of NST transcription factors 

(Zhao and Dixon, 2011). 

Another major component of plant cell walls, pectin, is methylesterificated ubiquitously by 

pectin methylesterases (PME). PMEs comprise a large multigene family, which has functions 

involved in vegetative and reproductive processes. Except the function of PME mentioned 

above on the exine development, PMEs play important roles in plant development, such as 

cell wall extension and stiffening (Moustacas et al., 1991; Al-Qsous et al., 2004), cellular 

separation (Sobry et al., 2004; Wen et al., 1999) and internode stem growth (Saher et al., 

2005; Pelloux et al., 2007). In the fax1 knockout mutant, transcripts of many putative PME 

and PME inhibitors were highly down regulated while comparing with Col-0.  

Transcripts of proteins, which are involved in senescence (SAG21; down 2.68) and acyl 

activating enzyme (AAE12; up 4.80), are also regulated in fax1 knockout mutant stem versus 

Col-0. 

In summary, transcript regulation and stem secondary cell wall phenotypes of fax1 knockout 

mutant do not  directly relate to fatty acid or lipid transport and thus most likely represent 

secondary effects due to the lack of fatty acid compounds like phosphatidylcholine (see 

Chapter IV. 2.9).  

2.4 Acyl-activating enzymes 

The acyl-activating enzymes (AAE) superfamily includes the acyl-coenzyme A synthetases, 

4-coumarate-coenzyme A ligases, luciferases, and non-ribosomal peptide synthetases. All 

members contain a 12-amino acid motif that activates their acid substrates by ATP via an 

enzyme-bound adenylate intermediate (Shockey et al., 2003). Until now, all nine members of 
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the long-chain acyl-coenzyme A synthetases (LACS) were cloned and isolated from 

Arabidopsis (Shockey et al., 2002). As mentioned in V. 2.2, LACS1 and LACS2 have 

overlapping functions in both wax and cutin synthesis and LACS1 preferentially modifies 

both very long chain fatty acids for wax synthesis and long-chain fatty acids for cutin 

synthesis (Lü et al., 2009). LACS1 and LACS4 together are required for proper pollen coat 

formation in Arabidopsis (Jessen et al., 2011). LACS6 and LACS7 might have overlapping 

functions to initiate β-oxidation in plant peroxisomes (Fulda et al., 2002). LACS1 and LACS9 

have overlapping functions in triacylglycerol biosynthesis (Zhao et al., 2010). Furthermore, 

LACS9, which was localized at the outer envelope membrane of chloroplasts, is not identified 

to play a key role during fatty acid export, since the knockout mutants of LACS9 in 

Arabidopsis were indistinguishable from wild type in growth and appearance (Schnurr et al., 

2002). Interestingly, LACS1 (stem, up 3.87), LACS2 (stem, up 2.48), LACS3 (stem 2.23) and 

LACS5 (flower, down 2.70) were regulated in fax1 knockout mutant versus Col-0. 

Furthermore, LACS4 is a gene, expressed with FAX1 (ATTED-II database; Obayashi et al., 

2011; http://atted.jp/top_search.shtml#CoExSearch). Therefore, it is hypothesized that 

potential fatty acid or fatty acid derivative export by FAX1 plays an important role during the 

lipid biosynthesis procedure which has neighboring relation with the function of LACS.  

Furthermore, long chain acyl-CoA synthetases exist in all fatty acid transport and trafficking 

systems in E.coli, yeast and mammalian, which were named FadD, faa1p/faa4p and ACSL, 

respectively (see Chapter I.2). Recently, the only homologous protein of LACS9 in the 

cyanobacteria Synechoccystis sp. PCC 6803, named SynAas, was identified to be essential 

and sufficient to mediate transfer of fatty acids across a b iological membrane (Berlepsch et 

al., 2012). Therefore, the understanding of the function of the AAE superfamily, especially of 

LACSs, and the connection between FAX1 and LACS provide an important evidence to 

interpret the role of FAX1 during the fatty acid export procedure from plastids. 

 

2.5 The role of phosphatidylcholine 

As described in I.2, more knowledge on t he proteins catalyzing the initial incorporation of 

nascent fatty acid into phosphatidylcholine (PC) will provide an important breakthrough for 

our current understanding of fatty acid export from plastids. The reduced PC content of fax1 

knockout mutant leaves clearly shows that FAX1 severely affects the procedure during fatty 

acid export to PC formation. Although it is unknown if the measured PC are mainly from ER 
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or outer envelope membrane, the result indicates that FAX1 is a key protein involved in 

plastid fatty acid export and subsequent PC formation. 

 

2.6 Predicted role of FAX1 

With the discussion above, I can conclude that FAX1 is involved in export of fatty acids or 

fatty acid derivatives from chloroplasts. Considering the other three homologs of FAX1 

predicted in the envelope of plastids, it is implied that FAX1 is a key protein in lipid export 

from plastids but that the other three proteins have some redundant functions (Figure 40). 

 

Figure 40 Model of plastid fatty acid export and the hypothesized function of FAX1 and its 
homologs 
FAX1 is involved in export of free fatty acids (FFA) across the inner envelope of plastids. 2, 3, 4: three 
homologs of FAX1 in plastid inner envelope. For pathway description see Figure 2. 
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VI. Outlook 

To investigate a potential role of FAX1 in fatty acid or fatty acid derivative export from 

plastids, it would be necessary to express the cDNA of FAX1 and its Arabidopsis homologs in 

the plasma membrane (such as At3g20510) in the yeast fat1 mutant, which is defective in 

fatty acid uptake through the plasma membrane of yeast cells (Zou et al., 2002). Similar 

assays recently showed that the function of the acyl-acyl carrier protein synthetase (SynAas) 

from the cyanobacteria Synechocystis sp. PCC 6803 is involved in mediating transfer of fatty 

acids across biological membrane (Berlepsch et al., 2012). 

The ultrastructural investigation of FAX1 mutants revealed that the thickness of the cuticular 

layer was affected. It is suggested that this layer most likely consists of cutin, since waxes 

were removed by fixation and embedding of tissue during microscopy sample preparation. 

Therefore, to be sure of the difference of cuticular layer phenotype in FAX1 mutants, analysis 

of cutin content will be performed soon. 

Transmission electron microscopy of xylem cells showed that secondary cell walls of 

tracheids were reduced in fax1-2 knockout stem when comparing with Col-0 wild-type. 

However, as mentioned in V.2.3, secondary cell walls mainly consist of cellulose, 

hemicellulose and lignin. Lignin amount will be analyzed and compared between FAX1 

mutants and Col-0 to clarify the content difference of secondary wall of xylem cells. 

It is clear that the ongoing lipid analysis and transcriptomic analysis of FAX1 overexpressing 

lines will provide more evidence for the characterization and function of FAX1. 

FAX1 is a member of Tmemb_14 family, which is an uncharacterized protein family. 

Therefore, the characterization of the other homologs in Arabidopsis and other origin, such as 

from green algae like Chlamydomonas reinhardtii, and the generation of double or triple 

mutants in Arabidopsis will be necessary.  
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