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Zusammenfassung
Dunkle Materie macht einen Großteil der Masse von elliptischen Galaxien aus. Jedoch sind
die genaue Menge und die räumliche Verteilung dieser dunklen Materie noch unklar. Ferner
schrumpfen Galaxien in einer dichten Umgebung, wie sie in Zentren von Galaxienhaufen zu
finden ist, da die äußeren Teile ihrer dunklen Materie Halos abgelöst werden. Das Ziel dieser
Arbeit ist es, den Anteil dunkler Materie im Zentrum und den Außenbereichen elliptischer
Galaxien mit Hilfe des von ihnen verursachten starken Gravitationslinseneffekts zu messen.
Gravitationslinsen sind gut geeignet für die Untersuchung dunkler Materie, da sie auf alle
Arten von Materie reagieren, ungeachtet ihres dynamischen oder evolutionären Zustandes.
Wir stellen Untersuchungen der durch die Sloan Lens ACS Studie entdeckten außergewöhn-
lichen Gravitationslinsen SDSS J1538+5817 und SDSS J1430+4105 vor. Als Linsen dienen
elliptische Galaxien bei Rotverschiebungen zl = 0.143 bzw. zl = 0.285. Für SDSS J1538+5817
zeigen wir, daß beide Quellen die gleiche Rotverschiebung zs = 0.531 haben. Die Mehrfach-
bilder überdecken einen Bereich von 1 kpc bis 4 kpc in der Linsenebene. Für SDSS J1430+4105
ist die Quelle bei einer Rotverschiebung zs = 0.575 in einen ausgedehnten Einsteinring gelinst,
der einen radialen Bereich von 4 kpc bis 10 kpc in der Linsenebene abdeckt. In beiden
Fällen können die gelinsten Bilder mit verschiedenen Modelansätzen übereinstimmend re-
produziert werden. Wir erhalten für SDSS J1538+5817 eine projizierte Gesamtmasse von
8.11+0.27

−0.59×1010M⊙ innerhalb des Einsteinradius von 2.5 kpc, für SDSS J1430+4105 erhalten
wir 5.37 ± 0.06 × 1011M⊙ innerhalb von 6.5 kpc. Die leuchtende und dunkle Materie werden
getrennt modelliert, woraus Anteile an dunkler Materie von 0.1+0.2

−0.1 bzw. 0.40+0.14
−0.10 innerhalb

des Einsteinradius folgen. Wir nehmen ein De Vaucouleurs–Profil für die Lichtverteilung in
jeder der beiden Galaxien an. Aus der stellaren Masse, die mit dieser Lichtverteilung verbun-
den ist, können wir ein Masse–zu–Leuchtkraft–Verhältnis von MdeVauc

LB
≈ (5.5 ± 1.5) M⊙

L⊙,B
für

SDSS J1430+4105 bestimmen. Ähnliche Ergebnisse erhalten wir für das zentrale Masse–zu–
Leuchtkraft–Verhältnis von SDSS J1538+5817. Ein Vergleich dieser Masse–zu–Leuchtkraft–
Verhältnisse mit denjenigen, welche photometrisch bestimmt werden, zeigt die beste Über-
einstimmung bei Verwendung der Salpeter IMF. Außergewöhnliche Gravitationslinsensysteme
wie die hier untersuchten mit einem Ansatz aus zwei Komponenten zu modellieren, verbessert
deshalb unser Verständnis der Eigenschaften der zentralen dunklen und leuchtenden Materie.
Weiterhin wird die dunkle Materie auf mittleren Skalen um elliptische Galaxien in einem
Galaxienhaufen untersucht. Mit dem Galaxienhaufen MACSJ1206.2-0847 wird der seltene
Fall einer Hintergrundquelle untersucht, die zu einem Arc gelinst und zusätzlich von einigen
benachbarten Galaxien verzerrt wird. Diese Verzerrungen erlauben uns die Gesamtmassen-
verteilung dieser benachbarten Galaxien auf größeren als den üblicherweise mit starken Grav-
itationslinsen oder Dynamik-Studien zugänglichen Skalen zu bestimmen. Wir beschreiben
den Galaxienhaufen mit einem elliptischen NFW–Profil und die Galaxien mit zwei Param-
etern für die zentrale Masse und Ausdehnung einer Referenzgalaxie. Basierend auf dem
beobachteten Nah–Infrarotlicht werden Skalierungsrelationen zwischen dieser Referenzgalaxie
und den übrigen Haufengalaxien angenommen. Die Positionen der beobachteten gelinsten
Abbildungen von 12 mehrfach abgebildeten Hintergrundgalaxien können mit einer mittleren
Abweichung von 0.85′′ reproduziert werden. Darauf aufbauend kann die Flächenhelligkeit
des Arcs und seines Gegenbildes mit erstaunlicher Genauigkeit rekonstruiert werden. Die
Längenskala für die bestmögliche Bestimmung der eingeschlossenen Galaxienhalomasse beträgt
etwa 5 Effektivradien. Die Geschwindigkeitsdispersion und Größe eines Halos mit Helligkeiten
mAB,160W = 19.2 und MB,Vega = −20.7 betragen σ = 150kms−1 und r ≈ 26 ± 6kpc. Die in
dieser Arbeit durchgeführte Auswertung kann auf andere ähnliche Fälle ausgeweitet werden.
Damit wird die Lücke zwischen Ergebnissen geschlossen, welche einerseits auf starken Gravi-
tationslinsen und dynamischen Methoden auf kürzeren Skalen und andererseits auf schwachen
Gravitationslinsen auf längeren Skalen basieren.
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Abstract
Dark matter constitutes a large fraction of the mass of early–type galaxies. However, the
exact amountand spatial distribution of the dark matter, especially in the galaxies’ center
is still unclear. Furthermore, galaxies in dense environments such as the centers of galaxy
clusters shrink in size, since parts of their outer dark matter halo is stripped away. The aim
of this thesis is to measure the dark matter content in the centers and outskirts of ellipti-
cal galaxies by analyzing the strong gravitational lensing effect they produce. Gravitational
lensing is well–suited for investigating dark matter, since it is sensitive to all forms of matter,
regardless of its dynamical or evolutionary state.
We present gravitational lensing studies of the exceptional strong lensing systems SDSS
J1538+5817 and SDSS J1430+4105, identified by the Sloan Lens ACS survey. The lenses
are elliptical galaxies at zl = 0.143 and zl = 0.285, respectively. For SDSS J1538+5817 we
show that both multiple imaged sources are located at the same redshift zs = 0.531. Its
multiple images span a range from 1 to 4 kpc in the plane of the lens. For SDSS J1430+4105,
the source at redshift zs = 0.575 is imaged into a broad Einstein ring, covering radii from
4 kpc to 10 kpc in the plane of the lens. In both cases, the lensed images can be accurately
and consistently reproduced with different modeling approaches. We get projected total
masses of 8.11+0.27

−0.59 × 1010M⊙ within the Einstein radius of 2.5 kpc for SDSS J1538+5817
and 5.37 ± 0.06 × 1011M⊙ within 6.5 kpc for SDSS J1430+4105. The luminous and dark
matter were traced separately, resulting in dark matter fractions within the Einstein radius
of 0.1+0.2

−0.1 and 0.40+0.14
−0.10 for SDSS J1538+5817 and SDSS J1430+4105, respectively. We as-

sume a de Vaucouleurs profile to trace the light distribution of both galaxies. From the
stellar mass associated with this light, we can explicitly derive a stellar mass–to–light ratio of
MdeVauc

LB
≈ (5.5 ± 1.5) M⊙

L⊙,B
in the case of SDSS J1430+4105. Similar results are obtained for

the central mass–to–light ratio of SDSS J1538+5817. Comparing these mass–to–light ratios
with photometric estimates for the mass–to–light ratios shows the best agreement with a
Salpeter IMF. Modeling extraordinary systems like SDSS J1538+5817 or SDSS J1430+4105
using a two–component approach leads to a better understanding of galaxies’ central dark
and luminous matter properties.
We also study dark matter on intermediate scales around elliptical galaxies embedded in a
cluster environment. In the galaxy cluster MACSJ1206.2-0847, we describe the rare case of a
background source lensed into a giant gravitational arc and additionally distorted by several
nearby cluster galaxies. These distortions allow us to constrain the total matter distribution
of these galaxies beyond regions normally accessible by strong lensing or dynamical studies.
We model the cluster mass distribution with an elliptical NFW profile and the cluster galaxies
with two parameters for the central mass and extent of a reference halo. We assume scaling
relations from the reference halo to the other member galaxies based on their observed NIR-
light. We can match the observed lensed positions of 12 multiply lensed background objects
at an r.m.s. level of 0.85′′, and can reconstruct the surface brightness distribution of the giant
arc and its counterimage to an amazing accuracy. We find the length scale where the enclosed
galaxy halo mass is best constrained to be at about 5 effective radii. The velocity dispersion
and halo size of a galaxy with mAB,160W = 19.2 or MB,Vega = −20.7 are σ = 150kms−1 and
r ≈ 26±6kpc. The analysis carried out in this work can be extended to other cases similar to
MACSJ1206.2-0847, which constitute ideal objects for the study of total matter distributions
of galaxies at intermediate scales. This closes the gap between strong lensing and dynamical
studies on shorter scales and weak lensing studies on longer scales.
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Chapter 1
Introduction

When we observe the night sky – with or without telescopes – we see a large variety of different
structures: from individual asteroids with diameters over 100 meters, moons, planets, stars,
star clusters, and galaxies, to galaxy groups and even clusters of galaxies with sizes of the order
of 1023 meters. However, all we can directly observe is the electromagnetic radiation emitted,
reflected or absorbed by the baryonic components of these objects. All these structures,
however, form only less the 5% of the energy content of the universe (Komatsu et al., 2011;
Larson et al., 2011). The rest of the universe is filled with two components termed dark
matter and dark energy – thus named because as yet we do not have a better description
of their nature. Dark matter and dark energy make up approximately 22% and 73% of the
universes’ current energy content, see Fig. 1.1. Here, a qualitative summary of the framework
of the thesis will be given, followed by a more detailed overview in the next chapters.

The dark universe

Dark matter, being approximately 5 times more abundant than baryonic matter, is – almost
hundred years after its discovery – still a puzzle to us. We know some of its properties –
such as that it interacts gravitationally and exists around all galaxies – and can derive some
implications from that, for example how it clumps and forms invisible halos around galaxies,
groups, and clusters of galaxies (e.g. Blumenthal et al. 1984, Davis et al. 1985, Kaiser &
Squires 1993, Navarro et al. 1997, Clowe et al. 2004), that it formed the first potential wells
or that it bends light the same way as barionic matter. Despite that, we still lack a definite
answer about its constituents, despite dedicated searches (e.g. Bravin et al. 1999; Bernabei
et al. 2004; Sanglard et al. 2005; EDELWEISS Collaboration et al. 2011). Dark matter itself
was proposed the first time by Fritz Zwicky in the 1930s to explain how the Coma Cluster
can be gravitationally bound despite its large peculiar motions (Zwicky, 1933). After that,
dark matter again gained some attention in the 1970s, when Rubin and Ford published their
measured rotation curve of M31, showing that it was flat on the outskirts although a decline
would be expected according to its light profile (Rubin & Ford, 1970). In 1978, dark matter
was also used to explain the mass of the Virgo cluster measured from X-ray observations
(Mathews, 1978). Other studies also in the 1970s and earlier confirmed the reality of dark
matter, e.g. Kahn & Woltjer (1959), Ostriker & Peebles (1973). Thus, at the beginning of the
1980s most astronomers believed in the existence of dark matter, although they did not have
unambiguous evidence of its nature. That dark matter was composed of light, relativistic
neutrinos was proposed (e.g. Doroshkevich et al. (1981)) but was soon ruled out by observing
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Figure 1.1: The energy content of the universe today as found by Komatsu et al. (2011); Larson et al. (2011).

and predicting the galaxy clustering in the universe (e.g. White et al. (1983)), confirming
that a substantial part of dark matter is cold dark matter. Here, cold means that the kinetic
energy of the dark matter particles is small compared to the rest energy at the time matter
decoupled from radiation, therefore the individual dark matter particles have velocities much
smaller than the speed of light. The idea of dark matter being (mainly) composed of compact,
massive M ∼ M⊙ objects (so called MACHOs) rather than smoothly distributed elementary
particles is ruled out by observations (Alcock et al., 2000; Riffeser et al., 2008). This leads to
the currently most widely accepted view of dark matter as (predominantly) cold, dark and
smoothly distributed. Prior to the discovery of dark energy in 1998, this cold dark matter
(CDM) component was considered to dominate the energy content of today’s universe.
The history of dark energy, however, is somewhat longer than that. The two starting points
are: the discovery of the expansion of the universe by E. Hubble 1929 (Hubble, 1929) and,
even earlier, the introduction of the constant Λ in the field equations, see Einstein (1916,
1917). While Einstein introduced Λ to balance gravity and prevent a static universe from
collapsing due to its own gravitational attraction, Hubble observed that objects further away
from us tend to recess with increasing speed, allowing the universe to be non–static, hence
making Λ appear dispensable. Until the detection of acceleration of the expansion of the
universe by the High–z Supernova Search Team and the Supernova Cosmology Project(SCP)
(Riess et al., 1998; Perlmutter et al., 1998) in 1998, different models for the energy content
of the universe and the curvature of spacetime existed. To explain the accelerated expansion,
some term was needed in the field equations of the universe that drives it apart, hence Λ
was revived and termed the dark energy parameter or cosmological constant. We have as yet
no definite knowledge about its nature or even know whether Λ is indeed constant in time.
Nonetheless this dark energy must be the dominant energy component in today’s universe.
Thus, at this point in time, the most accepted picture of the universe is a ΛCDM model with
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a dominant dark energy component. Unfortunately, we lack a clear picture of the nature
of these dark components. One way ascertain the nature of these dark components of the
universe is to measure their properties. E.g. the dark matter density profiles, the distribution
of matter on different mass scales, the spatial clustering of structures and the development
of these properties over time are some of the probes used nowadays. Another successful
probe used is the temperature fluctuation of the Cosmic Microwave Background (CMB), for
example measured by the Wilkinson Microwave Anisotropy Probe (WMAP) (Komatsu et al.,
2011; Larson et al., 2011). To further our knowledge of the dark components of the universe,
we can compare predictions of the above described properties for different physical models
of the dark components with observations so as to find the models that best describe the
observations.

Gravitational lensing

Although we only see 5% of the energy content of today’s universe directly, we can still observe
the other 95 % by its influence on the visible, baryonic matter or by its influence on light
itself. The dynamics of celestial objects, e.g. stars in galaxies or galaxies in galaxy clusters is
influenced by the presence of dark matter, allowing us to determine the dark matter profiles
of galaxies and clusters of galaxies. For example, the motion of stars in a galaxy is determined
by the gravitational potential of this galaxy, hence the dark matter distribution is imprinted
on the motion of the stars, (e.g. Bacon et al. 2001, Cappellari et al. 2011).
Another way of measuring the dark components of the universe is by measuring their influence
on the propagation of light itself. The accelerated expansion of the universe was discovered
by comparing the redshift and dimming of distant supernovae.
This thesis, however, focuses on another powerful physical effect: the deflection of light
by matter present around its propagation path is independent of this matter’s baryonic or
dark nature. Therefore, this effect is particularly useful for investigating the dark matter
component. The effect was described correctly for the first time in the framework of general
relativity, (Einstein, 1916, 1922):

α(R) =
4GM

c2R
,

with α being the deflection angle of light passing a mass M at a radius R in the weak–field limit.
However, the idea of light being deflected when passing a mass is more than a century older.
For short reviews of the history of gravitational lensing, see e.g. Wambsganss (1998), Sauer
(2010). Although the idea that distant galaxies could act as gravitational lenses was proposed
as early at 1937 (Zwicky, 1937a,b), it took more than 40 years until the first extragalactic
lens was discovered: The first observed multiple imaged background source was the distant
quasar Q0957+561 identified by Walsh, Carswell and Weymann in 1979 as a double image
of one quasar, lensed by a galaxy along our line of sight (Walsh et al., 1979). However, it
was several years before the first gravitational arcs – highly distorted images of background
galaxies by foreground lenses – were observed (Lynds & Petrosian, 1986; Soucail et al., 1987),
although interestingly Soucail et al. considered the arc in Abell 370 to be more likely a star
formation region in the cluster in their publication. This arc is shown in Fig. 1.2.

Since then, gravitational lensing has developed into a useful tool for investigating mass distri-
bution in galaxies and galaxy clusters. The strong gravitational lensing effect in the centers
of galaxies or clusters of galaxies – meaning that one background source is imaged multiple
times – can be used to study total mass distributions in these inner regions. In the outer
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Figure 1.2: A color image of the galaxy cluster Abell 370 located at Ra:02h39m50.5s Dec:-01d35m08s with a
redshift of z = 0.375, composed of the filters F435W, F625W and F814W, centered at wavelengths of 4297Å,
6318Å and 8333Å, respectively. The giant arc visible in this image was the first detected arc. At the redshift of
the cluster, 1′′ = 5.13 kpc. Credit: NASA, ESA, the Hubble SM4 ERO Team, and ST-ECF.



5

regions weak gravitational lensing – measuring only small distortions imprinted on the shapes
of background objects which are detected statistically – can be used to study the mass dis-
tributions there. Large surveys aim to observe a statistical relevant number of clusters of
galaxies so as to increase our knowledge about clusters, e.g. LoCuSS (Zhang et al., 2008) or
CLASH (Postman et al., 2012). MACSJ1206.2-0847, which is studied in detail in Chapter 7,
is part of the CLASH survey.
As previously mentioned, individual galaxies can also act as gravitational lenses. Since the
typical image separation due to galaxy–scale lenses in the strong lensing regime is about 1′′,
high resolution images are needed to identify and investigate this effect. This technique is
mostly used to derive properties about the lensing galaxies itself (e.g. Bolton et al. 2004, 2006;
Belokurov et al. 2007; Smail et al. 2007; Suyu et al. 2009; Suyu & Halkola 2010), especially
about its baryonic and dark matter distribution. However, it can also be used to investigate
cosmology (Suyu et al., 2010a; Grillo et al., 2008b; Jullo et al., 2010), e.g. to investigate
the expansion rate of the universe. Surveys have been carried out in order to find galaxy
scale lenses, such as the CASTLe Survey1 aimed at imaging all known strong gravitational
lensing systems on galaxy scales from space so as to provide high resolution images in order
to obtain properties of the lens galaxies as well as to learn something about the expansion
rate of the universe. The survey collected more than 100 galaxy scale gravitational lensing
systems so far. Another survey that should be mentioned here is the SLACS survey2 (Bolton
et al., 2006). It collected approximately 100 lensing systems found in the spectra of the Sloan
digital sky survey3. SDSS J1538+5817 and SDSS J1430+4105, which are studied in detail as
part of this thesis, are part of this survey.

Elliptical galaxies

Elliptical galaxies are, in terms of numbers of galaxies, only a minor member of the family of
galaxy types. However, they host the largest fraction of baryonic mass (Fukugita et al., 1998;
Bell et al., 2003; Renzini, 2006). Their most striking feature, which is responsible for their
name, is the elliptical shape of isophotes (contours of constant surface brightness). In reality
this is not entirely true. For example, Bender et al. (1988) measure the shapes of 69 bright
elliptical galaxies and find small (disk–like or box–like) deviations from the pure elliptical
forms, as well as small twists of the major axis and changes in the ellipticities. However, we
stick with this simple approximation of the form. The radial distribution in these galaxies is
well-described by a so called de Vaucouleurs profile (de Vaucouleurs, 1948). The light emitted
by elliptical galaxies is dominated by wavelength larger than 4000Å, hence these galaxies
appear red in the visible spectrum. (e.g. Peletier et al. 1990), pointing to an older stellar
population (Thomas et al., 2005). Consequently, elliptical galaxies (or their progenitors) must
have existed for long times, making them very interesting objects. Furthermore, elliptical
galaxies dominate in dense environments (Dressler, 1980; Bamford et al., 2009) hence, the
environment must influence the evolution of (elliptical) galaxies. There are indications that
elliptical galaxies are the results of dissipationless mergers of progenitor galaxies (Lacey &
Cole, 1993; Baugh et al., 1996). A summary of the properties of elliptical galaxies is given in
Chapter 4.

1http://www.cfa.harvard.edu/castles/
2http://www.slacs.org/
3http://www.sdss.org/
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Motivation for this thesis

Elliptical galaxies represent a class of highly evolved structures in the universe. Mergers with
other galaxies and the evolution of their stellar components have lead to their present day
appearance. Conversely studying elliptical galaxies as they appear today yields information
about their assembly and interaction history. Dark matter contributes the most mass to
these galaxies, and thus the evolution of the dark matter distribution is imprinted on the
observed distribution of elliptical galaxies. We can therefore learn about the history and the
main evolutionary processes of elliptical galaxies by analyzing their total and dark matter
distributions. This work focuses on understanding the distribution of total (dark and lumi-
nous) matter using strong gravitational lensing because gravitational lensing is sensitive to
all kinds of matter, regardless of its nature or state. Consequently, direct information can be
obtained about dark matter as well. We investigate the inner mass profiles of 2 extraordinary
elliptical lensing galaxies and the truncation of elliptical galaxies in the dense environment of
one cluster. To derive the (inner) mass profiles of galaxies by lensing, tracking the signal over
a considerable distance is necessary. We therefore search for elliptical galaxies in the SLACS
survey that have multiple sources (SDSS J1538+5817, see Chapter 5) or have one source that
is lensed over a broad radial range (SDSS J1430+4105, see Chapter 6). We construct the
inner mass profile from lensing alone for these 2 objects and dissect their mass profile into
a luminous and dark part to gain information about both. We utilize the observed SDSS
photometry to compare the stellar masses derived by photometric estimates with the lensing
derived ones for these two galaxies. The techniques presented here could be extended to a
larger sample size. Chapter 7 takes a slightly different approach: we use the fortunate situa-
tion that in MACSJ1206.2-0847 a giant arc, produced by the lensing potential of the galaxy
cluster, gets distorted further by some elliptical cluster galaxies. Consequently, the arc light
passes the galaxies at various different distances from the galaxies’ centers. This allows us to
trace the matter distribution of the lenses at radii beyond the visible radii. Reconstructing
the surface brightness of this distorted arc, we can learn something about the dark matter
distribution of the cluster galaxies. In this rare case, we can study the truncation of the
galaxies’ dark matter halos by tidal interaction with strong lensing. Furthermore, we can also
investigate the basic mass properties of elliptical galaxies in a cluster environment, showing
agreement with scaling relations derived independently in local elliptical galaxies. Again, the
same methods can be applied on other clusters or groups of galaxies, gaining information
about the processes governing the evolution of elliptical galaxies in dense environments.

Organization

This thesis is organized as follows: the Chapters 2, 3 and 4 give a summary of the theoretical
framework of this thesis while Chapters 5, 6 and 7 present the results obtained in the course
of this work. Chapter 2 presents the foundations of the cosmological framework of this
work. Most of the work presented depends heavily on gravitational lensing, hence Chapter 3
describes the basic theory of this. Chapter 4 concludes the more theoretical part of the thesis
by summarizing the basic properties of elliptical galaxies as these are the objects studied in
this work. The experimental work conducted in the course of this thesis begins with Chapter
5, in which we present the observed inner mass profile measured by gravitational lensing for
the early–type galaxy SDSS J1538+5817. This is followed by Chapter 6 where we present
a similar analysis for SDSS J1430+4105. Chapter 7 uses strong gravitational lensing by the
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galaxy cluster MACSJ1206.2-0847 to constrain scaling relations and sizes of inner cluster
members in this galaxy cluster. Finally, Chapter 8 provides a summary of the results and
some outlook for subsequent work of the near future.
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Chapter 2
A short review of cosmology

2.1 The Homogeneous Universe

2.1.1 The Cosmological principle and the Robertson-Walker Metric

Let us begin with the cosmological principle: the universe is homogeneous and isotropic on
large scales. Also, we assume that no preferred location exists in the universe1. A general
form of a metric describing this universe was found by Robertson and Walker, see Robertson
(1935), Robertson (1936a), Robertson (1936b), Walker (1937), Peacock (1999), Ryden (2002):

ds2 = −c2dt2 + a(t)2
[

dx 2

1 − kx 2/R2
0

+ x 2dΩ2

]
, (2.1)

where c is the speed of light, t is the time difference between two events, a(t) is the scale factor
at time t, k ϵ {+1, 0,−1} is the curvature parameter, and R0 is the scale radius of the universe
today. x is defined as the comoving distance, meaning that it is constant for observers moving
with the expansion (or contraction) of the universe.

A widely used alternative notation (the notations for Eqs. 2.1 and 2.2 follow Ryden 2002)
with a somewhat different definition of the comoving distance2 is:

ds2 = −c2dt2 + a(t)2
[
dr2 + Sk(r)2dΩ2

]
, (2.2)

with

Sk(r) =


R0 sin

(
r
R0

)
, for k = +1

r , for k = 0

R0 sinh
(

r
R0

)
, for k = −1 .

Without expansion, a(t ) = 1, and curvature, k = 0, this gives the Minkowski metric of special
relativity. This notation is also used in Peacock (1999).

1These 3 assumptions are somewhat redundant, e.g. an isotropic universe with no preferred location must
be homogeneous.

2x = Sk(r), meaning that the radial coordinate is different in curved spaces.
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2.1.2 Friedman equation

The Einstein field equations, derived in Einstein (1916) and Einstein (1917), are, written in
a compact manner:

Gµν + gµνΛ =
8πG

c4
Tµν . (2.3)

Here, Gµν denotes the so-called Einstein Tensor, derived from the metric tensor gµν which
is connected to Eq. 2.1 via ds2 = gµνdxµdx ν(dxµ and dxν denote the coordinates of space
and time where µ, ν ∈ {0, 1, 2, 3})3, Λ the so-called cosmological constant and Tµν the energy
momentum tensor. In this case, we use a positive sign for the rhs of the equation, see Peacock
(1999).

From Eqs. 2.1 and 2.3 the first Friedman equation can be derived (Friedman, 1922). For
that, we assume the universe to be filled with a perfect fluid and use its energy momentum
tensor4: (

ȧ(t)

a(t)

)2

=
8πGε(t)

3c2
+

Λc2

3
− kc2

R2
0a(t)2

. (2.4)

This equation describes the expansion of the universe, connecting the change of the scale
factor a(t) with the energy density of the universe ε, its curvature and the cosmological
constant.

2.1.3 Cosmic expansion and redshift

First, we define the Hubble parameter as the ratio of the rate of change of the scale parameter
and its value at time t:

H(t) =
ȧ(t)

a(t)
. (2.5)

This quantifies the expansion of the universe, since it provides the ratio between the recession
velocity of an object (given by the change of the scale factor ȧ(t)) and its distance (given by
the scale factor a(t)). The value of H(t) at present day is abbreviated with H0 and called the
Hubble constant, see Hubble (1929) who described a linear correlation between the distance
of an object and its recession velocity observed on earth. Hubble’s diagram of this correlation
is shown in Fig. 2.1.

Its value today, measured from the CMB, is H0 = 71.0 ± 2.5 km
sMpc , see Komatsu et al. (2011).

This expansion of the universe shifts the emitted spectra of all cosmological objects we can
observe towards longer wavelengths, that is, redshifting them. The redshift z we measure is
defined by the ratio of observed λobs to emitted wavelength λem:

1 + z :=
λobs
λem

=
a(tobs)

a(tem)

a(tobs)=1
=

1

a(tem)
. (2.6)

The change in wavelength is given just by the change of the scale factor between emission
and observation.

3For the Robertson Walker metric, Eq. 2.1, we get the following non-zero components for the tensor:

gtt = −1, gxx = a(t)2

1−kx2/R2
0
, gΘΘ = a(t)2x2, gφφ = a(t)2x2 sin2 Θ, see Weinberg (2008).

4For Tµν , we get T00 = ε
c2
,Ti0 = 0 and Tij = a(t)2pg̃ij, p denoting the pressure of the fluid and g̃ij the

three-metric for i, j ∈ {1, 2, 3}, see Weinberg (2008).
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Figure 2.1: The first attempt to measure the Hubble constant. ’Radial velocities, corrected for solar motion, are
plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black
discs and full line represent the solution for solar motion using the nebulae individually; the circles and broken line
represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to
the mean distance of 22 nebulae whose distances could not be estimated individually.’ Hubble (1929). While the
value was wrong by at least an order of magnitude, this indicated the evidence of an expanding universe. Credit:
Hubble (1929).

Assuming a flat universe without a cosmological constant that is dominated by cold matter,
ε ≈ ρc2, we can define a critical density from Eq. 2.4.

ρc(t) =
3

8πG
H(t)2 . (2.7)

We now can give all energy densities in units of this critical density:

Ωm :=
ρm
ρc
, Ωr :=

εr
ρcc2

, ΩΛ :=
Λc2

3ρcH(t)2
.

We have three components that possibly contribute to the total energy density Ω of the
universe: radiation Ωr, matter Ωm and the cosmological constant ΩΛ. Therefore, we get an
explicit form for the Hubble parameter, see Peacock (1999):

H(a)2 = H2
0

[
ΩΛ + Ωma−3 + Ωra

−4 − (Ω − 1)a−2
]

, (2.8)

where Ω = 1 is true for a flat universe. This dependency is plotted in Fig 2.2.
As can be seen, the Hubble parameter is closely linked to the dominant component of the
universe, and it is getting constant in recent times due to the cosmological constant. In the
case of a universe dominated by a positive cosmological constant Λ > 0, Eq. 2.4 gives an
exponentially increasing scale factor:

a ∝ e
√
Λt .

This exponential increase of the scale factor has been measured recently, see Riess et al.
(1998), Perlmutter et al. (1998). Fig. 2.3 shows one of the 2 measurements suggesting
the accelerated increase of the scale parameter in recent history. The driving force for this
acceleration is termed dark energy, the simplest explanation which is still in agreement with
current observations being a cosmological constant over time. The physical nature of this
cosmological constant is as yet unknown.



12 CHAPTER 2. A SHORT REVIEW OF COSMOLOGY

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0.01 0.1 1 10 100 1000 10000 100000

H
 (

km
s-1

M
pc

-1
)

z

matter-lamda-equalityrecombination
matter-radiation-equality

matter-lamda-equalityrecombination
matter-radiation-equality

Figure 2.2: Development of the Hubble parameter with redshift, see Eq. 2.8 and Fig. 2.5. The values for ΩΛ,
Ωm and Ωr are taken from Eq. 2.17. The Hubble parameter can be seen to be declining with redshift throughout
almost the entire history of the universe, only becoming constant in recent times due to the cosmological constant.

2.1.4 Distances in cosmology

Next, we need to define distances between objects in cosmology, e.g., see Peacock (1999),
Ryden (2002) and Schneider et al. (2006).
The proper distance defines the distance two objects have at one instance of time, if this
distance could be measured. We follow the notation of Ryden (2002) for the discussion of
distances:

Dp(t) := a(t)

∫ r

0
dr ′ = a(t)r . (2.9)

This is the comoving distance r times the scale factor at that instance of time. This is not
a measurable quantity, since we cannot get information of a distant position instantaneously.
Since we are interested in observations, we need to define observable distances, taking into
account the finite speed of light. For that we calculate the distances between an object
emitting light at tem and an observer receiving this light at tobs. The comoving distance
can be calculated from Eq. 2.2:

0 = ds2 = −c2dt2 + a(t)2dr2 .

Using ȧ = da
dt , we get for the comoving distance:

r =

∫ a(tobs)

a(tem)

c

a2H
da

Eq.2.8
=

∫ a(tobs)

a(tem)

c

H0

[
ΩΛa4 + Ωma + Ωr − (Ω − 1)a2

]−1/2
da . (2.10)

For the following, we assume a(tobs) = 1 . First, we introduce the angular diameter distance,
since this is the quantity required for lensing. The basic idea is: If we can measure the angular
size δΘ of an object for which we know the physical size lA, we can determine the distance5

5We can safely assume DA ≫ lA, hence δΘ ≪ 1.
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Figure 2.3: In this plot, the distance to Supernovae Ia is plotted, estimated in 2 different ways. On the x-axis, the
redshift is plotted. On the y-axis, the distance modulus is plotted, giving the (logarithmic) difference in emitted
and observed fluxes. The expected curves for 3 different sets of cosmologies are plotted together with the observed
supernovae data. The open symbol marks SN 1997ck (z = 0.97). As can be seen, a model with a cosmological
constant (solid line) follows the observations best. Credit: Riess et al. (1998). Reproduced by permission of the
AAS.

DA:

tan δΘ ≈ δΘ =
lA
DA

.

Using Eq. 2.1, we can connect δΘ with ds by putting the object (lets assume a bar with
length lA for now) on the plane of the sky (dx = 0) and assuming dt = 0, meaning that light
rays from both ends of the bar arrive at our position at the same instance of time:

lA = ds = a(tem)Sk(r)δΘ .

Putting all together, we get the angular diameter distance:

DA = a(tem)Sk(r) =
Sk(r)

1 + zem
. (2.11)

Another way to define distances is by looking at the flux f received from an object with
intrinsic luminosity L at a distance DL:

f =
L

4πD2
L

.
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Figure 2.4: The comoving (Eq. 2.10), angular (Eq. 2.11) and luminosity (Eq. 2.12) distance plotted versus
redshift. We assume a flat universe with parameters taken from Eq. 2.17. As can be seen, different distance
definitions give different results since their dependencies on the scale factors are different.

First, we need the surface area of the sphere A on which the luminosity L is distributed in
order to calculate the flux. Again, Eg. 2.1 with dt = 0 (since we want the size at one instance
of time) and dx = 0 (since the radius of the sphere is constant), helps us:

A =

∫
ds2 = 4πSk(r)2 .

Second, the observed luminosity also changes. Due to the change in scale factor, the wave-
length changes, and additionally the time between two consecutive photons changes by the
scale factor. This means that the received energy per second changes by a factor a(tem)2.

L′ = a(tem)2L =
L

(1 + zem)2
.

Again, combining all of these factors we get for the luminosity distance DL:

DL = Sk(r)(1 + zem) . (2.12)

For a flat universe, the comoving, angular-diameter and luminosity distances for an observer
with zobs = 0 are plotted in Fig 2.4.

2.1.5 Today’s Universe

We want to describe the development of the universe over time. We omit the very early
universe, since we are mainly interested in its later development. In order to do that, we need
two more equations, see e.g. Ryden (2002):

First, we need the equation of state for the components of the universe, connecting the
pressure P with the energy density ε:

P = wε . (2.13)
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w is the proportionality factor and differs for different types of components6. Consider a small
volume of the comoving universe. With no heat flow in or out of this volume - this is fulfilled,
e.g., for a homogeneous and isotropic universe - we get from the first law of thermodynamics
as the second equation:

Ė + PV̇ = 0 .

using E = V ε and V = (ra)3, we get the fluid equation:

ε̇+ 3
ȧ

a
(ε+ P ) = 0 . (2.14)

For the three components matter, radiation and the cosmological constant, we therefore
calculate the following scaling with the expansion of the universe:

εradiation ∝ a−4 , εmatter ∝ a−3 , εΛ = const . (2.15)

This result has already been used for Eq. 2.8. Since these energy densities scale differently
with the scale factor, the universe was dominated by different energy densities at different
times7. From that, we can also calculate the lookback time depending on redshift, using Eq.
2.4:

t =
1

H0

∫ z1

0

dz

(1 + z)
√

Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ + (1 − Ω)
. (2.16)

Todays values of the energy densities for a flat ΛCDM universe are, see Larson et al. (2011):

ΩΛ = 0.734 ± 0.029, ΩCDM = 0.222 ± 0.026, Ωbaryons = 0.0449 ± 0.0028,

Ωmatter = ΩCDM + Ωbaryons = 0.267 ± 0.026, Ωradiation

zeq=3196+134
−133

= (8.4 ± 0.9) × 10−5 .
(2.17)

zeq gives the redshift of matter–radiation equality, meaning the point in time at which the
energy densities of matter and radiation were the same. This is also marked in Fig. 2.5. The
development of these different components over time can be seen in Fig. 2.5.

Since the universe is close to being flat today, see Komatsu et al. (2011), Larson et al.
(2011), we do not consider Eq. 2.4 in case of a non-zero curvature here. An observationally
important time in cosmology is the era of recombination, in which neutral hydrogen atoms
could be formed, making the universe transparent to the background radiation at that time.
This took place when the background radiation photons were not energetic enough to reionize
this formed hydrogen which is at a background temperature of ≈ 3000 K. From Fixsen et al.
(1994), we get a temperature for the CMB today of 2.714 ± 0.022 K. Therefore, we get
zrecombination ≈ 1100. The CMB provides the earliest cosmic radiation we can still detect
today because in earlier times the photons were scattered from the free electrons present
before recombination.

6w = 0, w = 1/3,w = −1 for non-relativistic matter, radiation and Λ respectively.
7We could input these dependencies into the Friedman equation, Eq. 2.4, to get the Hubble parameter, Eq.

2.8.
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Figure 2.5: The development of the energy density of the different components of the universe. Starting from
today’s values, Eq. 2.17, the different components scale differently with the scale factor (or redshift) of the universe.
Therefore, different components dominate the evolution of the scale factor at different times. While the early universe
was dominated by radiation, it is now dominated by dark energy, having passed through an intermediate phase of
matter domination. Vertical lines mark the time of matter–radiation equality, the time of recombination and the
time of Λ–matter equality.

2.2 Structure formation

2.2.1 Linear theory

Moving from scales of ≥ 100 Mpc to smaller scales, we see that the universe is not isotropic
and homogeneous on these smaller scales. In fact, we find structures on any scales below
≈ 100 Mpc, such as clusters of galaxies, galaxies, globular clusters, stars, planets, moons, and
so on, see Fig. 2.6.

From the WMAP (Komatsu et al., 2011), we know that the temperature T of the CMB
radiation at the epoch of recombination (z ≈ 1100) (Jones et al., 2004.) was homogeneous to
δT
T = 10−5. Since the baryonic matter was coupled to the radiation via Thompson scattering,

we assume the same temperature fluctuations for the baryonic matter. Hence the density
fluctuations of the universe must have been smaller than δρ

ρ = 3 × 10−5, assuming an ideal
gas and adiabatic fluctuations. This marks the starting point of observations of structure
formation since matter and radiation decouple only at this time.

The growth of structure can be approximated by a linearized perturbation theory, as long as
the deviations from an unperturbed expanding universe are small, see Peacock (1999) and
Schneider (2006) for the following.

We start with the Euler, energy conservation and Poisson equations for small perturbations
in a matter dominated, expanding universe, using δ = δρ

ρ0
:

dδv⃗
dt = − ∇⃗δp

ρ0
− ∇⃗δΦ − (δv⃗ · ∇⃗)v⃗0

dδ
dt = −∇⃗ · δv⃗

∇⃗2δΦ = 4πGρ0δ

c2s = ∂p
∂ρ

. (2.18)
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Figure 2.6: Galaxies from a slice around declination δ = 0 ± 1.25◦ form the SDSS 3rd year data release. Each
dot marks an observed galaxy. The coloring goes from red (old) to blue (young) according to the age of the stellar
population. The outer circle marks a distance of ≈ 650Mpc. While on large enough scales this distribution tends
to be homogeneous and isotropic, this is not the case on scales of ≈ 50Mpc and below. Credit: M. Blanton and
the Sloan Digital Sky Survey (SDSS) Collaboration, http://www.sdss.org.
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All variables with a leading δ (δv⃗, δΦ, δp) denote small perturbations to the local undisturbed
values of the velocity field v⃗0, the density ρ0, the pressure p0 and the gravitational potential
Φ0. The last equation defines the sound speed for adiabatic perturbations. After some cal-
culations, see e.g. Peacock (1999), we get the following differential equation for the evolution
of the density fluctuations:

δ̈ = δ(4πGρ0 − c2sk
2) , (2.19)

when using an ansatz for the spatial distribution δ ∝ e−ik⃗·r⃗ with a proper wavevector k⃗.
Depending on the rhs of Eq. 2.19, we get solutions with amplitudes that decay, oscillate
or grow over time. Since we study structure growth, we are only interested in the growing
solutions, for which the rhs of Eq. 2.19 is positive. Therefore only modes with a wavelength
bigger than

λ >
2π

k
= cs

√
π

Gρ0
(2.20)

can grow in this scenario. This length is also known as the Jeans length. It is governed
by two variables: The sound speed cs and the density of the universe ρ0. Since the early
universe before recombination is mainly radiation-dominated8, the sound speed is cs = c√

3
.

For the radiation dominated era, the rhs of Eq. 2.19 changes: 4π changes to 32π
3 , see Peacock

(1999); this changes the Jeans length by a factor
√

3
8 . We see that only large clumps of

matter (of the order 1016M⊙ or above) can grow (Jones et al., 2004.) continuously up to
recombination, while on all other scales overdensities cease to grow at some time before.
Furthermore, perturbations in the density field smaller than ≈ 1012M⊙ are wiped out by
Silk damping (Silk, 1968) before the beginning of recombination. After recombination, the
baryonic matter is decoupled from the photons, therefore the sound speed now depends on
its temperature:

cs =

√
dp

dρ
=

√
5kT

3m
, (2.21)

for an ideal gas and adiabatic sound waves with m denoting the mass of the gas particles k
the Boltzmann constant and T the temperature of the baryonic gas.

The wavelength and therefore the according mass drops to ≈ 106M⊙ (Jones et al., 2004.),
meaning that structures with this mass9 and above can now grow. For a matter dominated,
flat universe (which was the case for most of the time after recombination), the linear density
contrast grows like the scale factor, δ ∝ a(t) (Peacock, 1999). Therefore, the linear density
contrast now would be of the order of 10%, much smaller than that observed today. Hence,
we need something additional to explain this discrepancy. We can solve that problem by
introducing dark matter: Since it does not interact with radiation (hence dark), the density
contrast of dark matter can also grow before recombination, giving a higher contrast at
recombination than what is observed for the baryonic matter. Depending on its sound speed,
this dark matter clumps on different scales: hot dark matter particles are considered to be

8The epochs of recombination and matter-radiation equality are two different epochs, but this difference
does not change this argument since the baryons are coupled to the photons before recombination.

9This is the typical mass scale for the oldest structures of the universe: globular clusters and dwarf galaxies.
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relativistic at the time of decoupling, therefore this kind of matter forms large structures first.
Afterwards smaller structures would be formed by fragmentation of larger structures, that
is, clusters of galaxies form first then fragment in groups of galaxies then galaxies and so on.
This is also referred to as top–down structure formation.
Cold dark matter particles are non-relativistic, hence, according to Eq. 2.21 and Eq. 2.20,
also small scale structures can grow from the beginning. Since smaller scale structures collapse
faster, smaller structures form first in this scenario. This is also termed bottom–up structure
formation.

2.2.2 Hierarchical growth following Press-Schechter

Press & Schechter (1974) also assumed a hierarchical growth of structure from small scales
to larger scales, beginning after recombination. We work in comoving distances, and follow
(Peacock, 1999) for the rest of this section. We assume a random density field δ(x⃗). for which
we can define the following correlation function

ξ(x⃗, x⃗′) = ⟨δ(x⃗)δ∗(x⃗′)⟩ = ξ(|x⃗− x⃗′|) .

The brackets denote averaging over the volume of the density field, δ∗ denotes the conjugate
of δ. The last equality is only true for a homogeneous and isotropic universe, meaning that
the correlation function only depends on the distance between x⃗ and x⃗′. We can derive the
variance of the density field from the correlation function:

σ2(R) =

∫ ∫
ξ(|x⃗− x⃗′|)fR(x⃗)fR(x⃗′)dx 3dx ′3 ,

where fR(x⃗) denotes a filter or weight function with a characteristic length scale R, e.g. a
Gaussian or a Top Hat.

An equivalent description of the correlation function is its Fourier transformation, the power
spectrum:

P(k) = ⟨|δ
k⃗
|2⟩ ,

where the brackets denote the ensemble average and ξ and |δ
k⃗
|2 are connected by Fourier

transformation:

ξ(r⃗) =
V

2π3

∫
|δ
k⃗
|2e−ik⃗r⃗d3k .

For the power spectrum, we assume a single, featureless power law:

P(k) ∝ kn . (2.22)

In absence of mixing between scales, the linear theory can still represent the mass spectrum
of collapsed objects, assuming that an object collapses as it reaches a critical overdensity. For
a universe with critical density and no cosmological constant, its value extrapolated to the
present is δc = 1.68, derived from a spherical collapse model. According to Mo et al. (2010)
this value can be used for all realistic cosmologies, since the dependency on Ωm is weak in
scenarios both with and without a cosmological constant. Objects that form before some
redshift z need to have a higher extrapolated density contrast by the linear growth factor:
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δc(z) = (1 + z)δc. In order to derive the mass of these objects, we smooth the initial density
field by the filter function:

δR(x⃗) =

∫
δ(x⃗′)fR(x⃗− x⃗′)d3x ′ .

Furthermore, we can assign a characteristic mass for this density fluctuations:

M ∼ 4

3
πρ0R

3 .

For the Press-Schechter formula, we now calculate how often regions of a characteristic mass
with densities higher than the critical density δc(z) exist for an initial Gaussian density field
and get the comoving number density f(M)dM . Peacock (1999) states for this:

f(M, z) =

√
2

π

∣∣∣∣ dσ

dM

∣∣∣∣ ρ0M
(
δc(z)

σ(M)2

)
e
− δc(z)

2

2σ(M)2 . (2.23)

A closer look at Eq. 2.23 shows several different points: First, there will be a characteristic
mass M⋆(z) above which the number density will decrease exponentially. Second, since the
variance σ(M)2 decreases with mass, small mass structures are more frequent than high mass
structures. Third, since δc(z) increases with redshift, there is less structure at higher redshift,
but smaller structures are more numerous at the same time. Therefore, this gives a bottom
up mass assembly, as favored by a cold dark matter scenario. Both Press-Schechter and the
linear growth of structures describe the properties of the large scale structure and its forma-
tion history well. Thus, we get a basic description of the history of our Universe’s structural
growth by following this two approaches.

In Fig. 2.7, Girardi et al. (1998) measure this mass function at the high–mass end from
cluster measurements. They compare it with different predictions for different variances
σ(M)28, giving the density variation within a sphere of 8h−1Mpc radius and Γ defining the
transfer function of the matter power spectrum.
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Figure 2.7: This plot shows the mass function, Eq. 2.23, for the Press-Schechter high-mass end. The data points
represent different mass bins from cluster measurements. In the upper panel, the effect on the mass function for
different shapes of the initial power spectrum is shown, on the lower panel, different rms fluctuations are assumed.
Credit: Girardi et al. (1998). Reproduced by permission of the AAS.
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Chapter 3
Gravitational Lensing

3.1 Basic theory of gravitational lensing

The theory of gravitational lensing treats light as rays which are deflected by gravitational
fields they pass. The deflection angle α̂ generated by a mass M passed by a lightray in
distance r is given by:

α̂(r) =
4GM

c2r
, (3.1)

where G denotes the gravitational constant and c the speed of light in vacuum, see Einstein
(1916, 1922); Schneider et al. (1992); Narayan & Bartelmann (1996); Schneider et al. (2006).
This is sketched in Fig. 3.1.

light
M

r

α̂

Figure 3.1: The concept of the light deflection: The light ray passes from left to right, passing the deflector with
mass M in distance r. The light ray gets deflected by α̂.

It is valid in the weak field limit, meaning that r is large compared to the Schwarzschild radius
of the mass M , a condition which is always fulfilled in the cosmological cases considered in
this work. From that, we can derive the lens equation. Reviews of the theory of gravitational
lensing can be found in Schneider et al. (1992); Narayan & Bartelmann (1996); Schneider et al.
(2006). This section follows Narayan & Bartelmann (1996). First, we use the so called “thin
lens approximation”, meaning that we simplify the physics by projecting all the lens’ mass
onto one sheet and call that the lens plane. This can be done since the distances Dds and Dd

(see Fig. 3.2) are large compared to the size of the lens in all cosmologically relevant cases.
The following definitions, also of the different angles, are taken from (Narayan & Bartelmann,
1996, pp. 9,10). We define the surface mass density Σ(ξ⃗) on the lens plane by projecting the
mass along the line of sight (LOS) l on the lens plane:

Σ(ξ⃗) =

∫
ρ(ξ⃗, l)dl , (3.2)
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with ξ⃗ being the position defined in the lens plane. Combining Eqs. 3.1 and 3.2 gives the
deflection of each mass element in the lens plane. The deflection angle of an extended mass
distribution is simply the integral over all mass elements:

⃗̂α(ξ⃗) =
4G

c2

∫
R2

(ξ⃗ − ξ⃗′)Σ(ξ⃗′)

|ξ⃗ − ξ⃗′|2
d2ξ′ , (3.3)

where ξ⃗ and ξ⃗′ are vectors in the lens plane to the intersection of the light ray and the position
of the mass element Σ(ξ⃗′), respectively. The origin of the coordinate system and the optical
axis can be chosen randomly. A widely used choice for this optical axis is given by the lens’
center of mass.
In Fig 3.2, the basic lensing situation is sketched. β⃗ is defined as the angle between the true
source position and the optical axis, Θ⃗ as the angle between the image position and the optical
axis and α⃗ as the difference between these two (Narayan & Bartelmann, 1996, pp.9,10).
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Figure 3.2: The basic lensing situation: The light propagates from the source S to the observer and gets deflected
by the angle α̂ in the lens plane by the lens by the mass M. Backprojection of the observed ray to the source plane
gives the image position I with angle Θ. In angular coordinates, the source position would be seen with angle β,
the angular difference between source and image position is called α.

Geometry connects the true deflection angle ⃗̂α with the reduced deflection angle α⃗. We refer
to the later when using the term deflection angle in the following. We get

α⃗ =
Dds

Ds

⃗̂α . (3.4)
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For the deflection angle and the lens equation we get

β⃗ = Θ⃗ − α⃗(Θ⃗) , (3.5)

which relates the true source angle (β⃗) with the observable image angle (Θ⃗) and the deflection
angle α⃗. The deflection angle depends on the mass distribution of the lens, Eq. 3.3, and
therefore on ξ⃗ = DdΘ⃗. All the angles are defined on the plane of the sky, so they all are
2-dimensional vectors.
The following discussions of the gravitational potential, the convergence and shear and the
definition of the local Jacobian lens mapping are taken from (Narayan & Bartelmann, 1996,
pp. 23,24). Rewriting Eq. 3.3 in angular coordinates and using Eq. 3.4 gives for the deflection
angle:

α⃗(Θ⃗) =
4G

c2
DdsDd

Ds

∫
R2

(Θ⃗ − Θ⃗′)Σ(DdΘ̃′)

|Θ⃗ − Θ⃗′|2
d2Θ′ . (3.6)

We now define:

κ(Θ⃗) =
Σ(Θ⃗)

Σcrit
with Σcrit =

c2

4πG

Ds

DdsDd
, (3.7)

and term κ(Θ⃗) the convergence and Σcrit the critical surface density of the lens. Thus Eq.
3.6 can be rewritten as

α⃗(Θ⃗) =
1

π

∫
R2

κ(Θ⃗′)
(Θ⃗ − Θ⃗′)

|Θ⃗ − Θ⃗′|2
d2Θ′ . (3.8)

Using the derivative of ∇ ln |x⃗| = x⃗/x⃗2, we can define an effective lensing potential ψ(Θ⃗)
requesting the condition ∇Θ⃗ψ(Θ⃗) = α⃗(Θ⃗):

ψ(Θ⃗) =
1

π

∫
R2

κ(Θ⃗′) ln |Θ⃗ − Θ⃗′|d2Θ′ . (3.9)

This effective lensing potential can be related back to the Newtonian potential by integrating
along the LOS:

ψ(ξ⃗) =
2Dds

c2DdDs

∫
ϕ(ξ⃗, l)dl . (3.10)

The Laplacian of the potential, Eq. 3.9, gives twice the convergence, using ∇2 ln(x) = 2πδ(x):

∇2
Θ⃗
ψ(Θ⃗) = 2κ(Θ⃗) . (3.11)

Up to now, we have only examined the deflection of one light ray by an extended mass
distribution. Next we want to consider the mapping of an extended light source. Using the

abbreviation ψij = ∂2ψ
∂Θi∂Θj

, we get the local Jacobian matrix of the lens mapping:

A =
∂β⃗

∂Θ⃗
= (δij − ψij) , (3.12)

where we used the lens equation 3.5 and the Kronecker symbol δij. This matrix (or more
accurately its inverse) gives the change of the image position induced by a change of the
source position.
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We can rephrase Eq. 3.12 using Eq. 3.11 and the following definition of the shear tensor:

γ1(Θ⃗) =
1

2
(ψ11 − ψ22) = γ(Θ⃗) cos(2ϕ(Θ⃗))

γ2(Θ⃗) = ψ12 = ψ21 = γ(Θ⃗) sin(2ϕ(Θ⃗)) , (3.13)

with γ(Θ⃗) := |γ⃗(Θ⃗)|. We get:

A =

(
1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)
. (3.14)

It can be shown that the eigenvalues of this matrix are

λ1,2 = 1 − κ± γ , (3.15)

meaning that a circular source gets (de-)magnified by the convergence1 and distorted to
an ellipse by the shear since it has a different sign for the two eigenvalues, see Fig 3.3 for
illustration.

image planesource plane

dβ dΘ

λ2

λ1

Figure 3.3: The basic image mapping situation in lensing: The source vector dβ is mapped into the image vector
dΘ via Eq. 3.12. In this process, the image gets also distorted. While on the source plane, the two eigenvalues λ1

λ2 have the same length, this changes on the image plane according to Eq. 3.15.

The magnification of the image is given by the flux ratios of the source and the image. Since
A describes the mapping from the image to the source plane, a circular source with radius
r is transformed into an ellipse with the axes: r

λ1
, r

λ2
. Considering a circular small source

with homogeneous surface brightness f (i), we get for the magnification:

µ =
FI

FS
=

πf (i)

πr2f (i)
rr

λ1λ2
=

1

λ1λ2
= (detA)−1 . (3.16)

Let us briefly consider a circular lens. The deflection angle is in this case, using Eq. 3.8, a
function of the mean convergence ⟨κ⟩(Θ) within radius Θ :

α(Θ) =
1

πΘ
⟨κ⟩(Θ)πΘ2 with ⟨κ⟩(Θ) =

1

πΘ2

∫ Θ

0
2πΘ′κ(Θ′)dΘ′ . (3.17)

With a source at angular position β = 0, Eq. 3.5 together with Eq. 3.17 gives

1Since A describes the mapping of the image to the source plane, a source with radius r has an image radius
of r/(1− κ) when only considering the convergence.
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0 = Θ − ⟨κ⟩(Θ)Θ , (3.18)

which is only true for ⟨κ⟩(Θ) = 1. For a lens with a radially monotonically declining surface
density, this only occurs at one value of Θ, the so called Einstein radius or Einstein angle ΘE.
There, the mean surface density equals the critical surface density in Eq. 3.7. This Einstein
angle is the most characteristic quantity for a lensing system.

3.2 The regime of strong lensing

Depending on the exact properties of the source–lens–observer system, there are different
regimes of the previously outlined theory: Micro-, weak and strong lensing. Since the rest of
the work uses the framework of strong lensing, we will briefly discuss its basic concepts.
Lensing is termed strong lensing when one source can be imaged multiple times to the observer,
resulting in several images of the same source. From Eqs. 3.16 and 3.14, we can calculate the
magnification:

µ(Θ⃗) = ((1 − κ(Θ⃗))2 − γ(Θ⃗)2)−1 . (3.19)

Since κ and γ are both functions of the position Θ⃗, there can be cases where the magnification
µ is infinite2. These curves in the image plane are called critical curves, their lens equation
mapping back onto the source plane are called caustics. These critical curves separate regions
of the image plane where the multiplicity of the images is different, meaning that each time a
source crosses the caustic in the source plane, images appear or disappear at the corresponding
critical line in the image plane. This is sketched in Figs. 3.4 and 3.7.

3.2.1 The case of an axisymmetric lens

For now, let us again assume a circular lens with an arbitrary mass profile; its deflection angle
is defined in Eq. 3.17. We put this into the lens equation 3.5 and get:

β = Θ − ⟨κ⟩(Θ)Θ . (3.20)

Assuming a lens with a continuous, monotonic and convex declining radial density profile and
some radius where ⟨κ⟩(Θ) > 1, we can write down more than one solution for the equation
above3 for some range of β. In general, we get 3 solutions:
One with positive Θ1 = β

1−⟨κ⟩(Θ1)
with ⟨κ⟩(Θ1) < 1, one with negative Θ2 = β

1−⟨κ⟩(Θ2)
with

⟨κ⟩(Θ2) > 1 meaning that this image is on the opposite side of the lens center with respect to
the source position, and a 3rd image close to the center with ⟨κ⟩(Θ3) ≫ 1, see e.g. the case
of β2 in Fig. 3.4.
For this 3rd image, the magnification in Eq. 3.19 tends to be very small µ ≪ 1 and, in the
case of a singular lens (meaning lim

Θ→0
κ = lim

Θ→0
⟨κ⟩(Θ) = ∞), this image disappears completely.

In Fig. 3.4, this is plotted for different convergence profiles, each of the curves representing
a different convergence profile. Along the curves Eq. 3.20 is fulfilled, meaning that a source
at position β is imaged to the image position(s) Θ. For a given source position (e.q. β3),

2Since real sources have a finite size, the magnification of such a source will still be finite. Also, the geomet-
rical optics assumption has to be replaced with wave optics in that case, giving finite magnifications(Schneider
et al., 2006).

3Without loss of generality, we can assume β > 0 here.
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the intersections with the curve representing the lens’ convergence profile give the positions
of the (multiple) images.
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Figure 3.4: Graphical representation of Eq. 3.20. The horizontal lines mark different source positions, each
intersection with one of the curves mark a lensed image position of this source position for this lens. The Einstein
radius of each profile is defined by the intersection of the curves with the β1 = 0 line. All curves have 2D density
profiles of the form κ ∼ (Θ2 +Θ2

c)
−n. The red curve represents the case of a singular profile, Θc = 0, n = −0.5.

The red and the green curve share the same n, with Θc > 0 for the green curve, while for the blue (purple) curve,
Θc > 0 and n > −0.5 (n < −0.5). This form of diagram is also called Young diagram.

As one can see, there exist values of β (e.g. β2 and the “green” lens) for which we get three
solutions, meaning that the same source is imaged three times. We note that the exact image
positions for these depend on the properties of the mean convergence ⟨κ⟩(Θ). Furthermore,
since only the mean convergence enters the Eq. 3.20, this is the property that one can really
measure for axisymmetric lenses.
In Fig. 3.4, two points are of special interest: First the Einstein radius (i.e. the angle Θ to
which a source at β1 = 0 is lensed to) and, for the non-singular profiles, the radii at which
images seem to appear or disappear (e.g. β3 for the green lens, marking the transition between
3 images for smaller β and 1 image for larger β).
To study the local properties of the lens mapping for an axisymmetric lens, we consider Eq.
3.12. Using Eq. 3.20, we get, see Schneider et al. (2006):

A =

(
1 − ⟨κ⟩(Θ) 0

0 1 − ⟨κ⟩(Θ)

)
− ⟨κ⟩′(Θ)

Θ

(
Θ2

1 Θ1Θ2

Θ1Θ2 Θ2
2

)
. (3.21)

The derivative can be rewritten as

⟨κ⟩′(Θ) =
d⟨κ⟩(Θ)

dΘ
=

2(κ(Θ) − ⟨κ⟩(Θ))

Θ
. (3.22)

This matrix A has the two eigenvalues of

λ1 = (1 − ⟨κ⟩(Θ)) λ2 = (1 − ⟨κ⟩(Θ) − ⟨κ⟩′(Θ)Θ) . (3.23)

The determinant of A is zero if one of the eigenvalues is 0. In that case, the magnification
grows to infinity and we get a critical line in the image plane. So, in general, there are two
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critical lines, since there are 2 eigenvalues. In order to obtain the image behavior at these
critical lines, we look at the eigenvectors of this matrix. Without loss of generality, we can
set Θ1 = 0.

We get

A =
∂β⃗

∂Θ⃗
=

(
1 − ⟨κ⟩(Θ) 0

0 1 − ⟨κ⟩(Θ) − ⟨κ⟩′(Θ)Θ2

)
, (3.24)

and the eigenvectors

v1 =

(
1
0

)
v2 =

(
0
1

)
. (3.25)

A defines the backprojection from the image to the source plane, hence a vanishing eigenvalue
means that the image will be stretched in this direction4. Since we are on the Θ2 axis, we
get a stretching along the Θ1 direction for λ1 = (1 − ⟨κ⟩(Θ)) → 0 and therefore term this
a tangential critical line (since the stretching is tangential to the line connecting the image
position with the lens center). We see that the position of this image is again the Einstein
angle.
Likewise we get a stretching along the Θ2 axis for λ2 = (1 − ⟨κ⟩(Θ) − ⟨κ⟩′(Θ)Θ) → 0, calling
this a radial critical line. This is illustrated in Fig. 3.5, where the relative tangential/radial
magnification, defined as the inverse of the respective eigenvalues | 1

λ1
| / | 1

λ2
|, is plotted.

If we remap this tangential / radial critical lines back into the source plane, we get the
corresponding caustics. For our spherical example, this could be done using Fig. 3.4 with the
high magnification image positions from Fig. 3.5.
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Figure 3.5: Graphical representation of Eq. 3.23. The colors mark the same profiles as in Fig. 3.4 and both plots
have the same scale on the horizontal axis. The solid / dashed lines are | 1

λ1
| and | 1

λ2
|, respectively, i.e. the relative

magnifications in tangential and radial direction.

For all the profiles shown, we only get a tangential caustic at β = 0, meaning that the caustic
shrinks to a point in the center behind the lens. As mentioned above, the image appears now

4A big change of position on the image plane gives only a small change on the source plane, meaning that
an extended source gets stretched by a big factor in that direction.
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at the Einstein angle ΘE. Since, the source, lens and observer are all aligned on one optical
axis, this system is spherical symmetric: The Einstein angle defines a ring of formally infinite
magnification. As mentioned before, the magnification of a finite source is still finite. The
magnification of a point-source is also not infinite when wave optics are taken into account,
see Schneider et al. (2006).
Conversely, the caustic belonging to the radial critical line is circular with a radius which
depends on the exact profile of the lens. As mentioned earlier the critical lines mark the lines
at which multiple images appear (or disappear) as soon as the source crosses the corresponding
caustic moving inward (or outwards).

3.2.2 The case of an elliptical lens

For an elliptical mass profile there is no general analytic solution for the lens equation 3.5.
Therefore, for most of the cases, the lens equation for an elliptical mass distribution has to
be calculated numerically. However, we can get an analytic description in one special case
which is appropriate to most properties of elliptical lenses at least qualitatively. We use a
(non-)singular isothermal ellipsoid (NSIE5) with a minor to major axis ratio6 q to discuss the
qualitative properties. We take the definition of (Kochanek, 2004):

κ(Θ1,Θ2) =
b

2ω(Θ1,Θ2)
, ω(Θ1,Θ2)

2 = q2(Θ2
1 + Θ2

c) + Θ2
2 , (3.26)

here b denotes some lensing strength, q the minor to major axis ratio and Θc the core radius.
It can be shown (e.g. by differentiation) that the deflection angle of this profile is (Kochanek,
2004):

α1(Θ1,Θ2) =
b√

1 − q2
arctan

(
Θ1

√
1 − q2

ω(Θ1,Θ2) + Θc

)
, (3.27a)

α2(Θ1,Θ2) =
b√

1 − q2
arctanh

(
Θ2

√
1 − q2

ω(Θ1,Θ2) + q2Θc

)
. (3.27b)

The resulting right hand side (rhs) of the lens equation in the form

0 = Θ⃗ − α⃗(Θ⃗) − β⃗ (3.28)

for two different source positions is plotted in Fig. 3.6. The red and blue surfaces represent
the two components of the vector of the rhs. The black surface represents the left hand
side(lhs) and is therefore 0, identical for both components. First, we want to consider several
source positions so as to understand the imaging properties of this system. We start with a
galaxy behind the center of the lens, shown in red in Fig. 3.7. Looking at the lens equation
Eq. 3.5 with β1 = β2 = 0 and Eq. 3.27, we see that in order to fulfill the lens equation in
this case, 0 = Θ⃗− α⃗(Θ⃗) has to be fulfilled at the positions of the multiple images. In Fig. 3.6
the lhs (black) and rhs (red & blue) of Eq. 3.28 are plotted. Therefore, multiple images will
occur on the simultaneous intersections of all three surfaces. As can be seen in Fig. 3.6(a),
these positions lie along the coordinate axes where either Θ1 = α1 = 0 or Θ2 = α2 = 0 is true

5We will discuss some profiles, also including this one, later on in Chapter 4.
6The axis ratio is defined for the isodensity contours of the convergence κ.
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all along this axis, giving four images. If the profile has a finite core radius, there is also a
fifth image in the center of the lens plane. We do not get any more solutions than these five
multiple images. This is shown in Fig. 3.6(a): The case of α1 − Θ1 = 0 and α2 − Θ2 = 0,
necessary to fulfill the lensing equation for a source at β1 = β2 = 0, is only true at some
distinctive positions along the coordinate axes. This explains the red images seen in Fig. 3.7,
resulting in five multiple images. A configuration like this also occurs in Fig. 3.8. This object
is also called the Einstein cross.
If we move the source off center along one of the coordinate axes (right hand plot in Fig. 3.7)
we again get three images along this coordinate axis, similar to the circular case. Along the
perpendicular axis (Θ1 in Fig. 3.7) however, we do not get any solutions, see the green case
in Fig. 3.7. The case of Θ1 − α1 = 0 and Θ2 − α2 − β2 = 0 is only fulfilled simultaneously at
distinct positions off the perpendicular axis, see Fig. 3.6(b). This again defines the positions
of the five multiple images. Similarly, we can reconstruct the images for all the different
source positions seen in Fig. 3.7 and explain its (multiple) image positions.
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Figure 3.6: These 2 plots represent the lens equation 3.5 for two different source positions. The red and blue
areas show the two rhs parts of Eq. 3.28, Θ1 − α1 − β1 and Θ2 − α2 − β2, respectively. The black area marks the
area where the values are 0, the lhs of Eq. 3.28. Therefore, intersections of the red (blue) and black area mark
lines where the lens equation is fulfilled for Θ1 − α1 − β1 = 0 (Θ2 − α2 − β2 = 0). This means that intersection
points of the red, blue and black area mark points at which the lens equation 3.5 is fulfilled simultaneously for both
dimensions and multiple images occur. The left image shows β1 = β2 = 0, the right shows β1 = 0,β2 > 0. While
on the left image, these multiple images occur along the coordinate axis, the ones along the Θ2 axis move off this
axis if the source has β2 ̸= 0. For both plots a NSIE model with Θc = 0.3 and q = 0.8 is used.

To describe the image mapping further, we again want to find the critical lines and corre-
sponding caustics for this elliptical lens. For that, we need the magnification (Kochanek,
2004):

µ(Θ1,Θ2)
−1 = 1 − b

ω
− b2Θc

ω
(
(ω + Θc)2 + (1 − q2)Θ2

1

) . (3.29)

The radial critical line and its corresponding caustic behaves similar to the circular case,
except that they are ellipses instead of circles, as can be seen in Fig. 3.7. The tangential
caustic, however changes from being only one point behind the center of the lens in the circular
case. Without losing qualitative information, we can set Θc = 0. With this simplification, we
get for the tangential critical line using µ−1 = 0:
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(a) (b)

Figure 3.7: These two plots show how a source at different positions in the source plane is mapped into the image
plane. In each of the plots 3.7(a) 3.7(b) the lens and source planes are shown on the left and right. Images with
the same color originate from the source with the corresponding color in the source plane. Depending on the source
position, we get up to five images of the same source with different positions, image distortions and magnifications.
Credit: Narayan & Bartelmann (1996).

Θ2 = ±
√

b2 − q2Θ2
1 . (3.30)

Inputting this into the lens equation 3.5 and using the deflection angles Eq. 3.27, we get
the asteroid shapes seen in Fig. 3.7. Now, putting it all together, we can understand Fig.
3.7, taken from Narayan & Bartelmann (1996). Depending on the source position, we get a
different number of multiple images: one image if the source lies outside of the caustics (e.g.
the light blue source in Fig. 3.7(b)), three if the source is between both caustics (e.g. the dark
blue source in both Figs. 3.7(a) and 3.7(b)) and five if the source is inside both caustics (the
green and red sources in Figs. 3.7(a) and 3.7(b)). The images are also distorted, as derived
earlier in this chapter. The most prominent cases are the green sources in Fig. 3.7(a) and
3.7(b) as some of the multiple images start to merge and have high magnifications. These
configurations give the spectacular giant arcs, as for example seen in Fig. 1.2. Depending on
the exact position of the source on the tangential caustic, this is called fold arc (Fig. 3.7(a))
or cusp arc (Fig. 3.7(b)), as the source is close to the fold or cusp of the caustic. Another
interesting case is the light blue source in Fig. 3.7(a). In the image plane, the two images
close to the radial critical line start to merge, giving a radial arc.
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Figure 3.8: The well-known Einstein cross. A distant quasar is lensed into four images almost forming a cross
on the sky. The configuration is similar to the red configurations in Fig. 3.7 demonstrating the link between the
prediction of multiple image positions and the observed ones. Credit: NASA, ESA and STSci.
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Chapter 4
Elliptical galaxies

In his book, Hubble (1936) classified galaxies according to their apparent morphology into
mainly three different classes,the famous Hubble sequence: elliptical galaxies, (barred) spiral
galaxies and irregular galaxies1, see Fig. 4.1. At that time, galaxies were considered to evolve
from the left to the right along the fork, hence calling elliptical galaxies early–type and spiral
galaxies late–type galaxies2. In this work, we only concentrate on the left part of the fork,
the elliptical galaxies. This galaxies are numbered from E0 to E7, denoting the flattening of
their isophotes.

Figure 4.1: The well-known hubble fork. Elliptical galaxies are on the left-hand side, spiral galaxies on the right-hand
side. Credit: Galaxy Zoo, http://blog.galaxyzoo.org/2010/05/12/types-of-galaxies/ c⃝Galaxy Zoo 2007, under the
terms of the Creative Commons Attribution-Noncommercial-No Derivative Works Wales License.

4.1 Light distribution

The surface brightness distribution (SFB) I(R) of elliptical galaxies follows the de Vaucouleurs
law (de Vaucouleurs, 1948):

1Actually missing the regime of dwarf galaxies which happen to have the highest number counts.
2We now know that galaxies evolve in the other direction, from right to left on the figure.
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I(R) = I(Reff) exp

(
−7.669

[(
R

Reff

)0.25

− 1

])
, (4.1)

with Reff denoting the effective radius (the radius of the aperture containing half of the total
light). In Fig. 4.2, one example is shown for the surface brightness of an elliptical galaxy
which follows this profile.

Figure 4.2: This plot shows the surface brightness of the elliptical galaxy NGC4472 in different infrared bands.
Shown is the surface brightness versus R1/4. Since the surface brightness is given in mag× arcsec−2 a straight line
in this representation follows Eq. 4.1. As can be seen the light profiles follow Eq. 4.1 well. Credit: Temi et al.
(2008). Reproduced by permission of the AAS.

As can be seen, this description fits well with observations. However, there are a few gener-
alizations that should be mentioned here: Firstly, the light profile’s steepness in Eq. 4.1 can
be generalized to the so-called Sérsic law, see (Sérsic, 1963):

I(R) = I(Reff) exp

(
−b

[(
R

Reff

) 1
n

− 1

])
,

with n being the sérsic index. We get the de Vaucouleurs law back for n = 4.
Secondly, bright elliptical galaxies tend to have a core radius, meaning that the light profile
essentially gets flat within this radius, see e.g. Lauer et al. (2005) for a sample of 77 elliptical
galaxies.
Besides the spatial distribution of light, the spectral light distribution of an elliptical galaxy
also has some typical features: The visible parts of the spectral energy distribution (SED) of
elliptical galaxies are dominated by the redder parts of the spectrum, see Fig. 4.3.

There are no emission features present, which would be typical for short-lived OB type stars.
The line spectrum is dominated by many metal absorption lines, further reddening the galax-
ies’ colors. These spectra typically exhibit a break in its fluxes around 4000Å (the so–called
4000Å-break), a coincidence of various metallic absorption lines. Both the spatial and spec-
tral distribution of light traces the properties of the stars emitting this light.
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Figure 4.3: The spectra of 4 elliptical galaxies are plotted here. As you can see, there are some features typical
for this galaxies: There is the so called 4000Å break, a flux increase around this wavelength. Also, the spectra a
dominated by the redder parts of the visible light, making the galaxies appear red in multi-color images. Credit:
Kennicutt (1992). Reproduced by permission of the AAS.

4.1.1 Initial mass function and mass–to–light ratio

The stellar component is characterized by the mixture of stars it consists of: This is given
by the so–called initial mass function (IMF). Three main IMFs are used today: Salpeter
(Salpeter, 1955), Kroupa (Kroupa, 2001) and Chabrier (Chabrier, 2003). Specifically, the
IMF describes the number of stars N(m) initially present within a mass interval m, m+ dm.
Salpeter (1955) obtains a behavior of N(m) ∼ m−2.35 from star counts in the solar neighbor-
hood. This is a steep function of the star’s mass, meaning that a Salpeter IMF predicts few
high mass and many low mass stars. Kroupa (2001) and Chabrier (2003) keep the same slope
at the high mass end, but weaken the steep power law for less massive stars, e.g. Kroupa
(2001) introduces N(m) ∼ m−1.3 and N(m) ∼ m−0.3 for stars below 0.5 M⊙ and 0.08 M⊙,
respectively. Hence for Kroupa (2001) and Chabrier (2003) IMFs fewer low mass stars are
present for the same number of high mass stars compared to Salpeter (1955). Since high mass
stars are much more luminous per mass than low mass stars, this different IMF behavior at
the low mass end directly influences the stellar mass of galaxies: For a Salpeter IMF, there is
more mass in stars for the same luminosity than in Chabrier or Kroupa IMF. For example,
Grillo et al. (2009) calculate the stellar masses for an ensemble of different strong lensing
galaxies and directly observe this trend. However, the question of which IMF is the correct
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one is not yet resolved, see e.g. Cappellari et al. (2012b,a) who see different IMFs agreeing
better with the observed dynamical masses depending on the stellar mass of the galaxy. The
actually observed spectral energy distribution (SED), however, is not only depending on the
IMF, but also on the amount of dust present in the galaxy, the stars’ metalicity and its for-
mation age. Very briefly, the formation age determines which types of stars are still present
at the time of the light emission, since more massive stars have a bluer color and higher
luminosity, but also a shorter life span. Therefore an older stellar population has a redder
color. Dust present in galaxies also reddens the galaxies’ color since it absorbs preferentially
blue light and reemits this at longer (redder) wavelengths. However, the amount of dust in
elliptical galaxies is small (104 − 105 M⊙) (Goudfrooij et al., 1994). The metalicity also makes
stellar spectra redder, since metal–rich stars are cooler than metal–poor stars for the same
mass. Hence, there are several effects shifting the galaxies’ light more towards red colors,
making it hard to distinguish these effects.

One important descriptive quantity relating the observed light profile with its mass profile is
the mass–to–light ratio (MtoL) of the galaxy. The stellar (total) MtoL gives the ratio of the
stellar (total) mass of the galaxy and its luminosity (in units of mass to luminosity of the sun).
E.g. Faber & Jackson (1976) get a typical value of the central MtoL of ≈ 10 in the restframe
B-band3 for elliptical galaxies, measured in that case from velocity dispersions. Cappellari
et al. (2012a) measure MtoLs for the stellar components of early–type galaxies by modeling
the observed dynamics of these galaxies and report values of 2 to 10 for the restframe r-band4.
While the stellar and central MtoL is one value that describes the galaxy’s stars, the total
MtoL also includes some statement about the dark matter component. Since the total mass
and light profiles of galaxies do not follow the same radial behavior, the total MtoL necessarily
changes with radius. If we integrate both the light and total mass of a galaxy, we can give
a total, integrated MtoL. Hoekstra et al. (2004) find a value of ML−1

B ∼ 60M⊙L−1
⊙,B for the

integrated MtoL in the RCS survey using weak lensing. In Fig. 4.4, the stellar MtoL for the
inner parts of different coma galaxies is plotted derived from photometric estimates.
By observing a galaxy’s stellar mass or MtoL, e.g. by measuring the dynamics of the stars
or the total enclosed projected mass by lensing, we can infer properties of these elliptical
galaxies, such as the IMFs.

4.1.2 Elliptical galaxies: components, formation and environment

The above summarized characteristics of early–type galaxies are closely connected to the com-
ponents, formation and environment of elliptical galaxies. Some elliptical galaxies observed
in X–ray wavelengths exhibit bright X–ray halos around them. The X–rays are emitted from
hot gas, see e.g. Fabbiano (1989). Hence, elliptical galaxies contain a halo of hot gas. In Fig.
4.5 an example of a measured X–ray profile is shown.
In contrast to the hot gas, little cold gas is observed in elliptical galaxies (Knapp, 1999) im-
plying that almost no recent star formation is occurring in these galaxies, in agreement with
the star formation history presented earlier.
Besides the visible stars and the gas, these galaxies contain large amounts of dark matter,
although this was a matter of debate for a long time (Carollo et al., 1995; Kronawitter et al.,
2000; Dekel et al., 2005). We discuss the most common dark and total matter profiles in

3B denotes a filter typically centered around 4400Å.
4A filter typically centered around 6200Å.
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Figure 4.4: This figure shows the radial MtoL ratios for different elliptical galaxies of the Coma cluster. Plotted is
the stellar MtoL in R-band assuming a Salpeter IMF at each radius along the major (filled circles) and minor (open
circles) axis. The dotted line gives the light-weighted average of the Salpeter MtoL within the effective radius, the
solid line represents the MtoL ratio as calculated from dynamical modeling of the shown galaxies. Credit: Thomas,
J., Saglia, R. P., Bender, R., Thomas, D., Gebhardt, K., Magorrian, J., Corsini, E. M., Wegner, G., & Seitz, S. 2011:
Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar initial mass
function and the distribution of dark matter, MNRAS, 415, 545. Reproduced by permission of Oxford University
Press.

Sec. 4.2.
The environment and formation history of elliptical galaxies are closely connected. As dis-
cussed above, the IMF defines which type of stars are formed. The red color and absence of
short–lived OB stars show that these galaxies’ stellar population is dominated by long–lived,
redder and older stars. This implies that significant star formation has not recently taken
place, so the formation of these systems’ stellar components was completed fairly far in the
past, see e.g. Thomas et al. (2005) and their derived star formation history in Fig. 4.6.

We see in Fig. 4.6. that the formation age of an elliptical galaxy also depends on the en-
vironment. Elliptical galaxies are dominant in dense environments, see Dressler (1980), i.e.
elliptical galaxies reside preferentially in groups or clusters of galaxies. Therefore, it is com-
monly believed that (massive) elliptical galaxies are products of mergers of smaller galaxies
(Lacey & Cole, 1993; Baugh et al., 1996). Toomre & Toomre (1972), Tinsley et al. (1977),
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Figure 4.5: The radial X–ray surface brightness for the elliptical galaxy NGC4472. The datapoints for this figure
are taken from Fabbiano (1989).

Barnes (1988), Barnes (1989) and Barnes & Hernquist (1992) have shown that elliptical galax-
ies form from dissipationless merging of progenitor galaxies and, due to the redistribution of
angular momentum, turn into the amorphous assemblies that follow the light profiles of ellip-
ticals. During and after such mergers, the star formation in the merger remnant is suppressed
if no cold gas is present in the merger process, which gives the elliptical galaxies its red colors
mentioned above, see e.g. Springel et al. (2005). Many details of these merger processes are
not yet fully understood, such as the preferred mass ratio of the progenitor galaxies. The
concept of mergers fits into the ΛCDM structure formation scenario: the structures in the
universe are assembled in a hierarchical way, meaning that smaller structures formed earlier
than larger ones, see Blumenthal et al. (1984) and the larger structures are assembled from
merging of smaller structures.
Since elliptical galaxies exist predominantly in dense environments (clusters and groups of
galaxies), they are interacting with their environment. Here, we focus on tidal stripping of
dark halos, see e.g. Merritt (1983): Due to the interactions of the galaxies with each other,
they lose fractions of their outer halos to the cluster dark matter halo. This effect is stronger
the closer a galaxy is to the center of the cluster (Merritt, 1983; Warnick et al., 2008). This
effect has been observed several times, see e.g. Natarajan et al. (2002a); Halkola et al. (2007);
Limousin et al. (2007a). More details on that topic will be given in Chapter 7.

4.1.3 Clusters of galaxies

As mentioned before, elliptical galaxies reside preferentially in clusters of galaxies and dom-
inate the population of galaxies in a cluster (Dressler, 1980). These clusters are the biggest,
gravitationally bound structures in the universe with typical total masses of 1014 − 1015 M⊙.
Fig. 1.2 shows a typical image of a rich galaxy cluster. Many elliptical galaxies in a cluster
share a tight relation between their color and brightness. This fact is called the red sequence,
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Figure 4.6: Plotted are the star formation histories for early type galaxies of different stellar masses. As can be
seen, the star formation for galaxies in high density environments has its peak earlier in time. All elliptical galaxies
have its vast majority of star formation far in the past, giving it its red color by evolution of the stellar components.
Credit: Thomas et al. (2005). Reproduced by permission of the AAS.

e.g. many of the galaxies visible in Fig. 1.2 appear to have a similar color, forming the red
sequence of this cluster. This fact is used to find clusters by looking at spatial clustering of
galaxies which follow such a red sequence (e.g. Postman et al. 1996 Gladders & Yee 2000).
Typically, in the very center (Lin & Mohr, 2004) of a cluster of galaxies an elliptical galaxy re-
sides, often being the brightest cluster galaxy (BCG), see e.g. Fig. 7.2. This BCG is probably
formed through merging processes (Dubinski, 1998). Besides galaxies, a cluster also contains
hot, X–ray luminous gas which accounts for ∼ 10% of the total mass of a cluster (Evrard,
1997). This gas can be successfully used to find galaxy clusters (Giacconi et al., 1972), and
has already been applied to the whole sky (Böhringer et al., 2000; de Grandi et al., 1999).
The most massive component of a galaxy cluster, however, is its dark matter halo. The
distribution of the dark matter can be described with the same profile as the galaxy halos
(Navarro et al., 1997). Weak gravitational lensing is especially suited for the investigation of
the spatial distribution of this component at large radii, e.g. Umetsu et al. (2012).

4.1.4 Elliptical galaxies scaling relations

As seen before, elliptical galaxies show remarkable similarity in some of their properties.
Hence, some characteristics of these can be described with simple scaling relations. First, a
relation exists between a galaxy’s measured stellar velocity dispersion and its luminosity Lx,
measured in some filter x. This relation is called Faber-Jackson relation (FJ), as it was first
described by Faber & Jackson (1976):

σ ∼ Lδx . (4.2)
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Traditionally, the B-filter has been used for measuring the FJ relation in local galaxies, see Fig.
4.7. The exponent δ has values close to 0.25, although it is subject to change depending on
e.g. the mass range, the method and the wavelength considered, see e.g. Rusin et al. (2003a);
Matković & Guzmán (2005); Nigoche-Netro et al. (2010). In Fig. 4.7 the first measurement
of the Faber-Jackson relation is plotted.
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Figure 4.7: This figure shows the Faber-Jackson relation for elliptical galaxies, as published in Faber & Jackson
(1976). The logarithm of the line–of–sight velocity dispersion is plotted versus the absolute B-band magnitude.
The points mark the measured values for different galaxies, while the line marks the δ = 0.25 reference line. The
data for this plot is taken from Faber & Jackson (1976).

Another important scaling relation is the so-called Fundamental Plane (FP) (Djorgovski &
Davis, 1987; Bender et al., 1992; Saglia et al., 2010), linking the effective radius Reff , mean
surface brightness Ieff within this radius and the stellar velocity dispersion σ:

log Reff = a log σ + b log Ieff + c , (4.3)

with fit parameters a ∼ 1.5, b ∼ −0.75 and c ∼ −8.8, as taken from Bernardi et al. (2003a)
for the g∗, r∗, i∗ and z∗ filters. Bender et al. (1992) show that this relation can be transformed
into a new coordinate system:

κ1 = (log σ2 + log Reff)/
√

2

κ2 = (log σ2 + 2 log Ieff − log Reff)/
√

6

κ3 = (log σ2 − log Ieff − log Reff)/
√

3 .

(4.4)

A measurement of early-type galaxies in this κ–space is shown in Fig. 4.8.
As can be seen, the galaxies form a tight plane in this representation. This relation holds for
local early-type galaxies. Saglia et al. (2010) see some hints that this plane might rotate for
higher redshifts (z ≳ 0.7 for galaxies in clusters).
As stated above the MtoL describes the relation of total / stellar mass to observed luminosity.
Considering elliptical galaxies with different luminosity, we see that this MtoL is a function
of it:

Mtot

Lx
∼ Lϵx . (4.5)
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Figure 4.8: This Figure shows the Fundamental Plane of early–type galaxies as observed from the Sloan Digital
Sky Survey. Plotted is the κ–space (see Bender et al. 1992) for one of the g∗, r∗, i∗ and z∗ filters in each of the 4
panels.. As can be seen, the galaxies form a tight plane in this space. Credit: Bernardi et al. (2003a). Reproduced
by permission of the AAS.

The value of ϵ is not universal but depends on the filter in which the luminosity is measured
and the mass range that is considered, see Barbera et al. (2011). For the fundamental plane
stated above, e.g. Bender et al. (1992) get a value ϵ ∼ 0.2 in the B–band for the central,
dynamical mass.

4.2 Matter profiles

Elliptical galaxies typically have a mass in the range of 109M⊙ to 1012M⊙ and a luminos-
ity greater than ≈ 3 × 109L⊙,B, otherwise, they are counted as dwarf ellipticals (dE), see
Sparke & Gallagher (2000). We will briefly summarize the different descriptions for the mass
distributions in an elliptical galaxy. To do that, we present common mass profiles for ellipti-
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cal galaxies. Since gravitational lensing measures only LOS-projected mass profiles, we only
present these. The most common one is the so-called isothermal sphere.

4.2.1 Isothermal profile

This profile is widely used in lensing because the measured velocity dispersions are nearly
constant with radius for elliptical galaxies without ordered rotation (see e.g. Bender et al.
1994 and Fig. 4.9).

Figure 4.9: For four elliptical galaxies, the velocity dispersion σ and rotation velocity v of stars along the major and
minor axis is plotted. H3 and H4 mark higher moments of the rotation that we do not consider here. As can be
seen, the velocity dispersions are approximately independent of the radius, at least for cases with negligible rotation
velocities, justifying the approximation of an isothermal profile. Credit: Bender, R., Saglia, R. P., & Gerhard, O. E.
1994: Line-of-Sight Velocity Distributions of Elliptical Galaxies, MNRAS, 269, 785.

Hence we assume a constant velocity dispersion σv. We treat the stars in an elliptical galaxy
as particles of an ideal gas now, therefore a constant σv implies a constant temperature T of
that gas. We start with the equation of state for an ideal gas, see e.g. Narayan & Bartelmann
(1996):

p =
ρkT

m
, (4.6)

with p denoting the pressure, k the Boltzmann constant, T the system’s temperature and
m the test particle’s mass. If we require thermal and hydrostatic equilibrium mσ2v = kT,
dp
dr = −GMρ

r2
(σv denoting the one-dimensional velocity dispersion and M the mass enclosed

in radius r), we get for the density:
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ρ(r) =
σ2v

2πGr2
. (4.7)

Projection along the LOS gives for the surface density and convergence:

Σ(ξ) =
σ2v

2Gξ
, κ(Θ) =

2πσ2v
c2Θ

Dds

Ds
. (4.8)

From that, we can calculate the deflection angle via Eq. 3.8:

α(Θ) = ΘE =
4πσ2v

c2
Dds

Ds
. (4.9)

As one can see, this implies that the deflection angle is constant for this profile. Since most of
the galaxies are not spherical, as we have seen before, for real galaxies we need to extend this

to “elliptical models”: we can introduce some ellipticity by Θ =
√

Θ2
1 +

Θ2
2
q2

, where q is the
axis ratio of the surface density. Further, to remove the central singularity, we can introduce
a core radius Θc. We then get a convergence of5:

κ(Θ) =
2πσ2v

c2
Dds

Ds

1(
Θ2

c + Θ2
1 +

Θ2
2
q2

)β . (4.10)

In Eq. 4.10, we also allowed the actual steepness of the profile to vary by introducing β (in
the case of an isothermal model β = 0.5), and call that a (non–)singular isothermal ellipsoid
((N–)SIE) in the isothermal case or a power–law (PL) model in case of a β ̸= 0.5.

BBS–profile Looking closely at Eq. 4.7, one might notice a flaw in it: the mass enclosed
in radius r increases linearly with r. This is problematic since it is nonsensical for objects
in the universe to grow to an infinite mass. Therefore, we add a truncation radius rtrunc at
which the steepness of the profile changes to get a finite mass when integrating out to infinite
radius. One way of implementing this was done by Brainerd et al. (1996):

Σ(ξ) =
σ2v
2G

(
1

ξ
− 1√

ξ2 + rtrunc2

)
κ(Θ) =

2πσ2v
c2

Dds

Ds

(
1

Θ
− 1√

Θ2 + Θ2
trunc

)
. (4.11)

For Θ ≪ Θtrunc, this profile is isothermal, see Eq. 4.8. The other limit Θ ≫ Θtrunc gives Θ−3

as the asymptotic behavior, therefore the integrated mass stays finite.

In Fig. 4.10 some of the above mentioned mass profiles are plotted.

The core radius makes the profile essentially flat within this radius while the profiles follow
their singular counterparts on larger radii. We also note that the BBS profile follows its
untruncated counterpart well inside the truncation radius, while at larger radii, the density
declines faster than the isothermal model.

5This is only conceptual, actual implementations in lensing modeling codes will have a slightly different
appearance for numerical reasons.
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Figure 4.10: This plot shows the different radial isothermal surface density profiles in a log–log scale. We use
different kinds of models: A singular isothermal sphere (SIS), Eq. 4.8, two models following its extension Eq. 4.10
for spherical cases (NSIS,NSPL), the BBS model, Eq. 4.11. For both the NSIS and NSPL model, we additionally
use the indicated core radius, the NSPL model also has a modified steepness β = 0.7. For the BBS model, we
utilize the indicated truncation radius.

4.2.2 NFW–profile

While the isothermal profile describes the total mass profile, the so called NFW profile Navarro
et al. (1997) explicitly describes the cold dark matter halo of a galaxy. In numerical studies
of structure formation in a ΛCDM scenario, the halo profiles follow the form

ρ(r) =
δcρc

r
rs

(
1 + r

rs

)2 (4.12)

in the spherical case. ρc is the critical density of the universe, δc the characteristic overdensity
of the halo and rs is the so–called scale radius which marks a transition in the profile steepness.
Most of the time, the NFW-halo is parametrized with a parameter c, called concentration,
and r200 the radius of the sphere that has an average density of 200ρc:

r200 = rsc , δc =
200c3

3 ln(1 + c) − c
1+c

. (4.13)

Wright & Brainerd (2000) investigate the lensing properties of this halo model, so interested
readers are referred to their work. For the convergence, they state (R refers to the projected
radius on the sky, to avoid ambiguity the speed of light is cl in this case.):
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Figure 4.11: Different NFW-like halo convergence maps, the numbers give the concentration c and r200 for the
plotted curves. As one can see, a higher concentration leads to a higher central density, while a higher r200 leads
to a higher density on the outskirts of the halo.

κ(R) =
Σ(R)
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=

8πGrsδcρc
c2l

DdDds
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This convergence for typical values of the concentration c and r200 is plotted in Fig. 4.11.
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This chapter is a reproduction of the publication Grillo, C., Eichner, T., Seitz, S., Bender, R.,
Lombardi, M., Gobat, R., & Bauer, A. 2010: Golden Gravitational Lensing Systems from the
Sloan Lens ACS Survey. I. SDSS J1538+5817: One Lens for Two Sources, ApJ, 710, 372.

5.1 Abstract

We present a gravitational lensing and photometric study of the exceptional strong lensing
system SDSS J1538+5817, identified by the Sloan Lens ACS survey. The lens is a luminous
elliptical galaxy at redshift zl = 0.143. Using Hubble Space Telescope public images obtained
with two different filters, the presence of two background sources lensed, respectively, into
an Einstein ring and a double system is ascertained. Our new spectroscopic observations,
performed at the Nordic Optical Telescope, reveal unequivocally that the two sources are
located at the same redshift zs = 0.531. We investigate the total (luminous and dark) mass

1Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive
at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astron-
omy, Inc. under the NASA contract NAS 5-26555.

2Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly
by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos
of the Instituto de Astrofisica de Canarias.
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distribution of the lens between 1 and 4 kpc from the galaxy center by means of parametric
and non-parametric lensing codes that describe the multiple images as point-like objects.
Bootstrapping and Bayesian analyses are performed to determine the uncertainties on the
quantities relevant to the lens mass characterization. Several disparate lensing models provide
results that are consistent, given the errors, with those obtained from the best-fit model of
the lens mass distribution in terms of a singular power law ellipsoid model. In particular, the
lensing models agree on: (1) reproducing accurately the observed positions of the images; (2)
predicting a nearly axisymmetric total mass distribution, centered and oriented as the light
distribution; (3) measuring a value of 8.11+0.27

−0.59× 1010M⊙ for the total mass projected within
the Einstein radius of 2.5 kpc; (4) estimating a total mass density profile slightly steeper

than an isothermal one [ρ(r) ∝ r−2.33+0.43
−0.20 ]. A fit of the Sloan Digital Sky Survey multicolor

photometry with composite stellar population models provides a value of 20+1
−4 × 1010M⊙ for

the total mass of the galaxy in the form of stars and of 0.9+0.1
−0.2 for the fraction of projected

luminous over total mass enclosed inside the Einstein radius. By combining lensing (total) and
photometric (luminous) mass measurements, we differentiate the lens mass content in terms
of luminous and dark matter components. This two-component modeling, which is viable
only in extraordinary systems like SDSS J1538+5817, leads to a description of the global
properties of the galaxy dark matter halo. Extending these results to a larger number of lens
galaxies would improve considerably our understanding of galaxy formation and evolution
processes in the ΛCDM scenario.

galaxies: elliptical and lenticular, cD − galaxies: individual (SDSS J1538+5817) − galaxies:
structure − dark matter − gravitational lensing

5.2 Introduction

Early-type galaxies host the majority of the baryonic mass observed in galaxies in the Universe
(e.g., Fukugita et al. 1998; Renzini 2006); hence, deciphering the processes that lead to their
formation and the mechanisms that rule their subsequent evolution is a key cosmological
issue. For instance, it is still debated whether early-type galaxies form at relatively high
redshift (z ≲ 2) as a result of a global starburst and then passively evolve to the present (e.g.,
Eggen et al. 1962; Larson 1974; Arimoto & Yoshii 1987; Bressan et al. 1994) or whether they
assemble from mutual disruption of disks in merging events (e.g., Tinsley et al. 1977; White
& Rees 1978). Information with which to distinguish these scenarios lies in the characteristics
of galaxy dark-matter halos. However, the lack of suitable and easily interpreted kinematical
tracers, such as HI in spirals, has made comprehensive studies on the dark matter component
in early-type galaxies rather difficult (e.g., Bertin et al. 1992; Saglia et al. 1992; Thomas et al.
2007, 2009).

In the last few years, strong gravitational lensing has allowed astrophysicists to make great
progress in the understanding of the internal structure of early-type galaxies. Through lens-
ing, it has become possible to address in detail some fundamental problems related to the
mechanisms of formation of early-type galaxies, like the determination of the amount and
distribution of dark matter (e.g., Gavazzi et al. 2007; Grillo et al. 2008c, 2009; Barnabè et al.
2009) or the investigation of the total mass density profile and its redshift evolution (e.g., Treu
& Koopmans 2004; Koopmans et al. 2006). Several algorithms have been developed in order
to fit the observational data of a strong gravitational lens system and, thus, to reconstruct
the properties of a lens.
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Simplifying, a first difference between codes is the use of a parametric model (e.g., gravlens3,
Keeton 2001c,a; Seitz et al. 1998; Warren & Dye 2003; Halkola et al. 2006; Rzepecki et al.
2007; Grillo et al. 2008c) or a non-parametric model (e.g., PixeLens4, Saha & Williams 2004;
York et al. 2005; Suyu et al. 2009) to describe the mass distribution of a lens. In the former
case, the mass distribution of a lens is assumed to be accurately described by an analytical
expression; the fundamental scales of the model are determined by comparing the observed
and model-predicted properties of the multiple images. In the latter case, a pixelated map or
a multipole decomposition of the surface mass density of the lens is usually estimated through
a statistical analysis that requires, in addition to the observational information, some extra
physically plausible constraints, called priors, on the surface mass density distribution (e.g.,
positive-definite and smooth) of the lens. On the one hand, parametric models provide a
great deal of freedom and complexity, but they do not cover “naturally” all the possible
realistic mass distributions (for instance, surface mass density distributions with twisting
isodensity contours); on the other hand, even if non-parametric models are more general, their
number of degrees of freedom is often much larger than the constraints and this can result in
three-dimensional density distributions that are dynamically unrealistic or unstable. A viable
solution to obtain physically significant density distributions is to consider a framework where
the mass distribution of the lens is reconstructed by combining in a fully self-consistent way
both gravitational lensing and stellar dynamics measurements (e.g., Barnabè & Koopmans
2007).

Figure 5.1: SDSS gri image centered on the lens galaxy.

Lensing codes are further distinguished by the fact that the multiple images and the corre-
sponding sources can be modeled as point-like (e.g., gravlens; PixeLens; Seitz et al. 1998;
Halkola et al. 2006) or extended (e.g., Warren & Dye 2003; York et al. 2005; Rzepecki et al.
2007; Grillo et al. 2008c; Suyu et al. 2009) objects. In the context of point-like algorithms,
the best-fit model is defined as that which minimizes the chi-square between the measured
positions of the centroids of the images and the positions reproduced by the model, weighted
by the measurement uncertainties. Additional chi-square terms that quantify the agreement
between the observed and model-predicted relative fluxes and time delays of the multiple

3http://redfive.rutgers.edu/∼keeton/gravlens/
4http://www.qgd.uzh.ch/projects/pixelens/
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Figure 5.2: SDSS spectrum obtained within an aperture of 3” diameter centered on the lens galaxy.

Table 5.1: The lens galaxy.

RA Dec zl qL θqL θe u g r i z

(J2000) (J2000) (deg) (”) (mag) (mag) (mag) (mag) (mag)

15:38:12.92 +58:17:09.8 0.143 0.82 157.3 1.58 19.50 ± 0.06 18.17 ± 0.01 17.17 ± 0.01 16.74 ± 0.01 16.43 ± 0.01

References – Bolton et al. 2008a.

Notes – Magnitudes are extinction-corrected modelMag (AB) from the SDSS.

images can also be included. For extended algorithms, the goodness of a model is estimated
by comparing on a pixelated grid the image surface brightness morphology and distribution
which are observed to those which are reproduced by the model (after convolution with the
relevant point spread function).

The relative positions of a multiply imaged system can sometimes be measured with an accu-
racy of a few milli-arcseconds (e.g., Patnaik & Kemball 2001) and these positions represent
the most important constraints on the mass distribution of the lens. In fact, although the
flux ratios of the multiple images can be easily estimated and offer another important source
of information, the sensitivity of the flux measurements to details such as the dark matter
substructure of the lens, the extinction in the interstellar medium of the lens, the microlens-
ing effects of the stars present in the lens, and the time variability in the source decrease
their potential. Time delays can also help to determine the mass distribution of a lens, but
a statistically significant number of measurements of this kind is just starting to become
available.

The projected total mass enclosed within a cylinder of radius equal to the Einstein radius
of a lensing system can be accurately measured by only fitting the observed positions of
the multiple images (e.g., Kochanek 1991; Grillo et al. 2008c), whereas a detailed fit of the
possible arcs and rings associated with an extended source is necessary if the interest is in the
properties of both lens and source (e.g., Swinbank et al. 2007; Vegetti & Koopmans 2009).
By combining lensing and multiband photometric measurements, the amount of mass present
in a lens galaxy in the forms of dark and visible matter can be determined (e.g., Grillo et al.
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Figure 5.3: Color images of a 5”× 5” field around the gravitational lensing system SDSS J1538+5817, before (on
the left) and after (on the right) the subtraction of an elliptical model, fitted on the luminosity profile of the lens
galaxy. The images are obtained by combining the F606W HST/WFPC2 and the F814W HST/ACS filters.

2008a, 2009).

In addition to projected total mass, lensing analyses allow one to estimate also the total mass
density profile of lens galaxies (e.g., Rusin et al. 2003b; Rusin & Kochanek 2005). This can
be achieved either by combining in a statistical way lensing and stellar dynamics data in a
sample of lens galaxies that are assumed to have a homologous structure (e.g., Koopmans
et al. 2006), by performing a joint lensing and extended stellar kinematics study in a single
lens galaxy (e.g., Barnabè et al. 2009; Treu & Koopmans 2004), or by using lensing only
in exceptional lensing systems that show multiple images of different sources probing wide
angular and radial ranges of the lens mass distribution (e.g., Sykes et al. 1998; Nair 1998).

In this paper, we study the lensing system SDSS J1538+5817, discovered by the Sloan Lens
ACS (SLACS) survey5. This system is particularly interesting because two different sources
are lensed, one into an Einstein ring with four luminosity peaks and the other into two
images, by an early-type galaxy that has an almost circular projected light distribution. The
large number of images at various angular distances from the galaxy center and the nearly
perfect axisymmetric lensing configuration of the ring makes this system the ideal laboratory
to disentangle the luminous and dark components of the lens mass distribution.

The paper is organized as follows. In Sect. 5.3, we describe the observational data for the
complex strong lensing system SDSS J1538+5817. We perform parametric lensing analyses
of this system in Sect. 5.4. Then, in Sect. 5.5, we investigate the luminous and dark matter
composition of the lens galaxy. In Sect. 5.6, we summarize the results obtained in this
study. Finally, in the Appendix, we model the lens mass distribution on a pixelated grid
and compare these non-parametric results to those from Sect. 5.4. Throughout this work we
assume H0 = 70 km s−1 Mpc−1, Ωm = 0.3, and ΩΛ = 0.7. In this model, 1” corresponds to
a linear size of 2.51 kpc at the lens plane.
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Table 5.2: Astrometric and photometric measurements for the multiple images.

xa ya zs δx,y f δf da

(”) (”) (”) (”)

D1 0.88 1.31 0.531 0.05 1.00 0.30 1.58
D2 −0.33 −0.40 0.531 0.05 0.17 0.09 0.52
Q1 0.96 0.33 0.531 0.05 1.02
Q2 −0.75 0.60 0.531 0.05 0.96
Q3 −0.15 −0.98 0.531 0.05 0.99
Q4 0.95 −0.19 0.531 0.05 0.97

a With respect to the galaxy center.

Figure 5.4: Observational configuration for the spectroscopic measurements obtained at the NOT telescope with
the ALFOSC instrument: position of the 1” long-slit.
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Figure 5.5: The NOT/ALFOSC 1D (on the top) and 2D (on the bottom) spectra of the lensing system SDSS
J1538+5817. In the wavelength range shown here, the most prominent spectral features at the redshift of the lens
(zl = 0.143) and sources (zs = 0.531) are marked, respectively, with dashed and dotted lines. The shaded regions
indicate the principal telluric lines. The flux is given in arbitrary units.
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Figure 5.6: Intensity (in arbitrary units) of the three Hδ, Hβ , and [OIII] λ5007 emission lines along the slit width.
The dashed lines mark the positions of three observed peaks that trace closely the geometrical configuration of the
D1, Q1, and Q4 images.

5.3 Observations

The SLACS survey was started in 2003 and aims at studying, from a lensing and dynamics
perspective, a statistically significant number of galaxies acting as strong lenses and located at
redshifts lower than 0.5. The candidate lenses were spectroscopically selected from the Sloan
Digital Sky Survey (SDSS)6 database by identifying those objects that show, in addition to
the continuum and absorption lines of a possible lens galaxy at redshift zl, one or multiple
emission lines of a hypothetical source at a higher redshift zs. The most promising candidates
were then observed at least once with the Hubble Space Telescope (HST) Advanced Camera
for Survey (ACS) to confirm the lens hypothesis (for further information, see Bolton et al.
2006, 2008a). This procedure resulted in the sample of 63 “grade-A” strong gravitational
lensing systems presented in Bolton et al. (2008a). SDSS J1538 + 5817 is one of the lens
galaxies discovered by the SLACS survey. The photometric and spectroscopic observations
taken by the SDSS are shown in Figs. 5.1 and 5.2. As described above, the redshifts of the
lens galaxy and a source (zl = 0.143 and zs = 0.531) were measured from different spectral
features.

By making use of the publicly available observations in the F814W and F606W filters of
the HST/ACS and Wide Field Planetary Camera 2 (WFPC2) respectively, we model the
luminosity distribution of the lens galaxy and subtract the best-fit model from the images.
In detail, a model for the lens galaxy is constructed by using an iterative procedure: first,
presumable background source images are masked and isophotal contours of the lens galaxy
are derived for surface brightness levels separated by 0.1 mag arcsec−2. Then, all isophote
contours (even if partially masked) are fitted by ellipses following the method of Bender &
Moellenhoff (1987). This provides five parameters (center coordinates, major and minor axis,
and position angle) per surface brightness level. The resulting table of these parameters and

5http://www.slacs.org/
6http://www.sdss.org/
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associated surface brightnesses is employed to calculate a smooth elliptical model for the lens
galaxy. This model is subtracted from the image, leaving as residuals only the images of
the background source galaxy. The residuals are used to check and improve the masking
of the source galaxy. This procedure is repeated twice until the final model for the lens
galaxy is obtained. In addition, images taken in different wavelength bands provide color
information for lens and source which is of additional help to identify and separate lens and
source components. Color composite images of the strong lensing system and the residuals
after the lens galaxy subtraction are shown in Fig. 5.3.

The excellent angular resolution of the HST allows us to identify two systems of multiple
images (for labels, see Fig. 5.7): a double (D1 and D2) and a quad (Q1, Q2, Q3, and Q4).
The images of the two systems have different colors, but the average distances from the galaxy
center of D1 and D2 and Q1, Q2, Q3, and Q4 are consistent within the errors. This fact would
imply approximately the same redshift for the two sources, if the lens total mass were close to
an isothermal distribution. In addition, the absence in the SDSS spectrum of evident emission
lines at a possible third redshift supports the hypothesis that the two sources are at the same
distance to the observer.

Since the precise knowledge of the redshift of the two sources plays a crucial role in the deter-
mination of the total mass distribution of the lens galaxy, we decided to perform additional
spectroscopic measurements to understand whether the emission lines observed in the SDSS
spectrum are associated to one or both of the lensed sources. The data were obtained on
June 25, 2009 as a Fast-Track Observing Program (P38-428) with the Andalucia Faint Ob-
ject Spectrograph and Camera (ALFOSC) at the 2.5-m Nordic Optical Telescope (NOT) on
La Palma (Spain). We positioned a 1”-wide long-slit centered in Q1 and passing through D1

and Q4, as shown in Fig. 5.4. We used ALFOSC with the 8 grism, that covers a wavelength
range between 5825 and 8350 Å with a dispersion of 1.3 Å per pixel. In good atmospheric con-
ditions (seeing between 0.7 and 1”) and in the same observational configuration, we obtained
six exposures of 24 minutes each, resulting in a total integration time of 2.4 hrs.

In Fig. 5.5, we show the wavelength-calibrated 1D and 2D spectra. We identify several
prominent absorption lines at redshift 0.143 and at least six secure emission lines (Hδ, G,
Hγ , Hβ, [OIII] λ4959, and [OIII] λ5007) at redshift 0.531. At the emission line positions, the
presence of two intensity peaks, below and above the continuum, is visible in the 2D spectrum.
In Fig. 5.6, we plot the intensity of the Hδ, Hβ, and [OIII] λ5007 emission lines as a function
of spatial position along the slit’s cross-section. This corresponds to a representation of three
sections of the 2D spectrum at the emission line abscissas. For these three emission lines,
we distinguish three intensity peaks located, with respect to the continuum (lying between
Q1 and Q4), at angular positions consistent with those of the three images D1, Q1, and
Q4. The measurement of the same emission lines at the same observed wavelengths proves
in a conclusive way that the two sources D and Q are equally distant from the observer.
We remark that the intensity values of the emission lines shown in Fig. 5.6 are differently
contaminated by the lens galaxy flux.

In Table 5.1, we summarize the photometric and spectroscopic properties of the lens galaxy:
the coordinates (RA, Dec, zl), the minor to major axis ratio (qL) and its position angle (θqL ,
degrees east of north), and the SDSS multiband magnitudes (u, g, r, i, z). In Table 5.2, we
report the coordinates of the multiple images (x, y, zs) and the adopted position uncertainty
on the first two coordinates (δx,y), the relative flux of the double system components (f) and
the respective error (δf ), and the distance of the images to the galaxy center (d).
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Table 5.3: The best-fit (minimum χ2) parameters of the different models.

Model b xl yl q θq θe γ χ2 d.o.f.
(”) (”) (”) (deg) (”)

deV (nf) 1.97 −0.02 0.03 0.782 148.0 1.58 1.02 3
deV (wf) 1.83 −0.02 0.02 0.871 147.9 1.58 2.93 4
SIE (nf) 1.08 −0.03 0.04 0.866 147.5 2.00 1.15 3
SIE (wf) 1.05 −0.02 0.02 0.919 147.6 2.00 3.77 4
PL (nf) 0.82 −0.02 0.03 0.800 147.9 2.33 0.36 2
PL (wf) 0.71 −0.01 0.02 0.820 148.0 2.47 0.99 3

Notes – The notation (wf) and (nf) indicates, respectively, if the flux measurements of the
double system are included in the modeling or not.

5.4 Strong gravitational lensing

We address parametric (Sect. 5.4.1) point-like modeling of the strong gravitational lensing
system. We focus mainly on projected total mass and total mass density profile measure-
ments. A comparison with the results obtained from non-parametric models is provided in
the Appendix.

5.4.1 Parametric models

Gravlens (Keeton 2001c) is a publicly-available lensing software that, starting from the mea-
sured observables of a strong lensing system, reconstructs the properties of a lens in terms
of an adopted model that is defined by some relevant parameters. By using this code, we
perform a parametric analysis in which we describe the total mass distribution of the lens
galaxy in terms of either an elliptical de Vaucouleurs model (deV), or a singular isothermal
ellipsoid (SIE) model, or a singular power law ellipsoid (PL) model (for further details on the
model definitions, see e.g. Keeton 2001a). Both a deV and an SIE model are characterized
by five parameters: a length scale b̃ (corresponding to the value of the Einstein angle θEin in
the circular limit), the two coordinates of the center (xl, yl), the minor to major axis ratio
q, and its position angle θq. For the deV model, we fix the value of the effective angle (θe)
to that shown in Table 5.1. A PL model is more general than an SIE model. In particular,
the former requires as an additional parameter the value of the exponent γ of the three di-
mensional density distribution ρ(r) ∝ r−γ (an SIE model is retrieved by setting γ equal to
2). The convergence κ(x, y) of a PL model, defined as the surface mass density of the model
divided by the critical surface mass density of the studied lensing system (for definitions, see
Schneider et al. 1992), depends on the previous parameters as follows

κ(x, y) ∝ b̃γ−1(
x2 + y2

q2

) γ−1
2

. (5.1)

Due to the normalization used in the code, gravlens provides values of a length scale b that
are related to the values of b̃ by a function f(·) of the axis ratio q:

b = b̃ f(q) . (5.2)
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Varying the parameters of the two adopted mass models and the positions of the sources
[(xD, yD); (xQ, yQ)], we minimize a chi-square χ2 function. This function compares first only
the observed (see Table 5.2) and predicted positions of the multiple images [deV(nf), SIE (nf),
and PL (nf) models] and then also the measured (see Table 5.2) and reconstructed fluxes of
the double system [deV (wf), SIE (wf), and PL (wf) models]. In the latter case, the flux of the
source imaged twice is an additional free parameter of the models. In our lensing analysis,
we decide to neglect the flux constraints relative the quad system because the presence of
the Einstein ring prevents us from separating accurately the individual components. For the
multiple images, we assume position uncertainties equal to the size of one pixel of ACS (0.05′′)
and flux uncertainties as reported in Table 5.2 and determined by considering the different
level of contamination on the flux estimates by the surface brightness of the lens galaxy.
To estimate the statistical errors in the parameters characterizing each model, we perform
2000 χ2 minimizations on simulated data sets. These are obtained by extracting the image
positions and fluxes from Gaussian distributions centered on the measured values and with
standard deviations equal to the observational errors reported in Table 5.2. In addition,
starting from the sets of optimized parameter values, we estimate the total projected mass
M tot

len (≤ Ri) enclosed within seven different circular apertures of radii Ri. The first three radii
are chosen as the projected distances from the lens galaxy center of the inner image of the
double system, the “average” Einstein circle, and the outer image of the double system. The
remaining four radii are given by the values of the midpoints of the three segments defined
by the previous three points and a further point at the same distance from the outer double
image as the first point is from the second one [i.e., (0.26, 0.52, 0.75, 0.98, 1.28, 1.58, 1.84)”].
The best-fit (minimum chi-square) parameter and χ2 values of the different models are sum-
marized in Table 5.3. For all the models, we find that the best-fit χ2 values are smaller than
the corresponding number of degrees of freedom (d.o.f.). This implies that the reconstructed
positions of the images are angularly very close to the measured positions of Table 5.2. In this
section, we concentrate on the results given by the one-component PL and, as a comparison
with the results of previous studies, simpler SIE models and only in the next section we will
address the two-component mass decomposition.
In Fig. 5.7, for the best-fit SIE (nf) model we show the reconstructed positions of the sources
and the caustics, the observed and reconstructed positions of the images and the critical
curves, and the Fermat potential (for definition, see Schneider et al. 1992) with its stationary
points. The inclusion of the fluxes of the double system does not change significantly the
best-fit parameters of the models. Moreover, the projected total mass estimates, which are
presented below, are not particularly sensitive to the flux constraints. For these reasons, in the
following we will mainly concentrate on the properties of the models that omit the additional
source of information coming from the fluxes of the double system, i.e., the SIE (nf) and PL
(nf) models. We note that the best-fit b values are on the order of 1”, the typical distance
of an image of the quad system from the center of the lens (see Tables 5.2 and 5.3). The
best-fit values of the lens center and ellipticity show that the lens mass distribution is well
centered and aligned with the galaxy light distribution (see Tables 5.1 and 5.3). In particular,
we remark that the total surface mass of the lens is well approximated by an axisymmetric
distribution. The best-fit values of the parameter γ of the PL models suggest that the lens
total density profile is slightly steeper than an isothermal one. We estimate maximum time
delays of approximately 30 and 3 days for the double and quad systems, respectively (see Table
5.4 and Fig. 5.7). Finally, as far as the positions of the sources are concerned, the model
predicted angular distance of the two sources is between approximately 0.5 and 0.7”(see Table
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5.5), corresponding, respectively, to 3.2 and 4.5 kpc at a redshift of 0.531.

Table 5.4: The model-predicted time delays for the best-fit model parameters given in Table 5.3.

Model ∆tD2,1 ∆tQ1,3 ∆tQ4,3 ∆tQ2,3

(days) (days) (days) (days)

SIE (nf) 24.8 0.66 0.70 2.88
PL (nf) 33.5 0.82 0.87 3.26
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Figure 5.7: Best-fit SIE (nf) model. Left: source plane with caustics. The predicted source positions of the
double and quad systems are represented by a plus and a cross symbol, respectively. Left middle: image plane with
critical curves. The observed and predicted image positions of the double (diamond and plus symbols, respectively)
and quad (square and cross symbols, respectively) systems are shown. Right middle: contour levels of the Fermat
potential for the double system. The images are one minimum (D1) and one saddle point (D2). Right: contour
levels of the Fermat potential for the quad system. The images are two minima (Q1 and Q3) and two saddle points
(Q2 and Q4).

In Figs. 5.8 and 5.9, we plot, respectively, the joint probability distributions of the SIE (nf)
and PL (nf) model parameters, with the 68% and 95% confidence regions and the 68% confi-
dence intervals. These intervals are determined by excluding from the 2000 χ2 minimizations
the 320 smallest and the 320 largest values for each model parameter. We have checked that
the error estimates determined in this way are unbiased and equivalent to the uncertainties
provided by a full Markov chain Monte Carlo analysis. The comparison Figs. 5.8 and 5.9
shows clearly that adding the exponent of the total mass distribution among the parameters
increases their degeneracies, hence their error estimates. The probability distribution of the
position angle θq is bimodal, with a secondary peak located nearly 90◦ away from the primary
one, found at approximately 150◦. From the last column of plots in Fig. 5.8, we see that
the secondary peak is included only in the 95% CL regions, and, from the last panel of the
same figure, we note that the low values of θq are associated with almost circular models (i.e.,
q ≃ 1). The bimodal distribution of the values of the lens position angle can then be explained
by looking at the source plane of Fig. 5.7. If the axis ratio of a model is close to one, the

Table 5.5: The model-predicted source positions for the best-fit model parameters given in Table 5.3.

Model (xD, yD) (xQ, yQ) dD,Q
(”,”) (”,”) (”)

SIE (nf) (0.27,0.46) (0.00,0.00) 0.53
PL (nf) (0.39,0.60) (0.02,−0.01) 0.72
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Figure 5.8: Estimates of the errors and correlations in the parameters for an SIE (nf) model. Results of the χ2

minimizations on 2000 Monte-Carlo simulated data sets. Thick bars on the co-ordinate axes and contour levels on
the planes represent, respectively, the 68% confidence intervals and the 68% and 95% confidence regions. For each
model parameter, the 68% confidence interval is determined by excluding from the 2000 χ2 minimizations the 320
smallest and the 320 largest values.
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Figure 5.9: Estimates of the errors and correlations in the parameters for a PL (nf) model. Results of the χ2

minimizations on 2000 Monte-Carlo simulated data sets. Thick bars on the co-ordinate axes and contour levels on
the planes represent, respectively, the 68% confidence intervals and the 68% and 95% confidence regions. For each
model parameter, the 68% confidence interval is determined by excluding from the 2000 χ2 minimizations the 320
smallest and the 320 largest values.
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Figure 5.10: Comparison of the projected total mass estimates for the SIE (nf), SIE (wf), and PL (nf) models.
For each aperture, the 1σ confidence intervals are determined from 2000 Monte-Carlo simulations by excluding the
320 smallest and the 320 largest mass estimates. The arrows show the projected distances of the observed multiple
images from the lens center.

shape of the tangential caustic is approximately symmetric with respect to the center of the
lens and the surface enclosed by this caustic is small. In the same limit, the radial caustic
is well approximated by a circle centered on the lens center. From these considerations, it
follows that the expected positions of the images are almost invariant under a rotation of 90◦

of the lens mass distribution (supposing the positions of the sources are fixed).

The degeneracies between b, q, and γ are connected to their relations defined in Eqs. (5.1)
and (5.2). In particular, the strong anti-correlation between the value of the length scale and
the steepness (see the fifth panel of Fig. 5.9) is caused by the fact that the Einstein ring of a
circular lens model defines a region on the image plane within which the average value of the
convergence κ is equal to one. In order for this equality to be approximately valid inside the
average circle defined by the positions of our quad system, from Eq. (5.1) and by holding the
value of q fixed, it follows that a higher value of b requires a lower value of γ, and vice versa.

The previous considerations on the almost model-independent average value of κ inside the
Einstein ring can also be translated in terms of total mass estimates within the same ring.
Distinct models, defined by different parameters, that can reproduce well an approximately
complete Einstein ring, provide total mass measurements inside this typical aperture that
differ by only a few percent. This is shown in Fig. 5.10. There, we plot the median values
and the 68% confidence intervals (obtained by excluding from the 2000 χ2 minimizations the
320 smallest and the 320 largest mass estimates) of the lens projected total mass within the
Einstein ring and measure values of 8.35+0.20

−0.18×1010M⊙ for an SIE (nf) model and 8.11+0.27
−0.59×

1010M⊙ for a PL (nf) model. We notice that the median values of the 2000 Monte-Carlo
cumulative total mass estimates do not necessarily follow a global PL model, but they have
in principle more freedom. In fact, even if the total mass values of each of the 2000 models
do follow a power law model precisely at all radii, the median values shown in Fig. 5.10 and
used in the following for the luminous and dark matter decomposition are more general and
do not provide the same value of the steepness γ at each radial position. In general, for the
two different models the total mass estimates, that are measured within various apertures
(approximately between 1 and 4 kpc from the lens center), are consistent, given the errors.
We remark that fixing the exponent of the total mass profile (i.e., γ equal to 2 for the SIE
models) result in significant smaller uncertainties in the total mass values. As mentioned
above, by modeling also the fluxes of the double system we find total mass measurements
that are consistent within 1σ with the estimates obtained by fitting the image positions only.

We generalize our result by emphasizing that the adoption of an isothermal model for strong
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lenses often provides a good fit of the observed images, but the errors on the projected mass
estimates may be considerably underestimated already at projected distances from the center
of the lens that differ from the Einstein radius by half its value. This fact has non-negligible
consequences on the inferred properties of a lens dark matter distribution (see below).
We notice that the value of 205±13 km s−1 for the central stellar velocity dispersion σ0, which
is determined by rescaling the value of the SDSS spectroscopic stellar velocity dispersion
measured inside an aperture of 1.5” [σ = (189±12) km s−1] to an aperture of radius equal to
θe/8, is consistent, within the errors, with the value of 215±5, which is obtained by converting
the total mass estimates shown in Fig. 5.10 for the SIE (nf) model into an effective velocity
dispersion σSIE.
We remark that the best-fit parameters of our SIE point-like models are consistent, given
the errors, with the best-fit parameters of the SIE extended model measured by Bolton et al.
(2008a). We also note that previous studies (Kochanek 1993, 1994; Treu et al. 2006; Grillo
et al. 2008b) agree on finding that the central stellar velocity dispersion of early-type galaxies
is a good estimator of the velocity dispersion of a one-component isothermal model.

5.5 Luminous and dark matter

We combine the surface brightness distribution measurement obtained from the HST images
(see Sect. 5.3) with the multicolor photometric observations of the SDSS (see Table 5.1) and
the projected total mass estimates determined from the lens modeling (see Sect. 5.4) to study
the amount and distribution of luminous and dark matter in the lens galaxy.
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Figure 5.11: Light and mass distributions. Isodensity contours of the best-fit surface brightness (on the left)
and parametric (SIE (nf), on the right) total surface mass profiles. The observed image positions of the double
(diamond) and quad (square) systems are shown.

First, we compare in Fig. 5.11 the surface brightness and the total surface mass [for the SIE
(nf) model] isodensity contours of the best-fit models described in the previous section. We
use two images with the same area and pixel size, normalize the images to the sum of the
values of all their pixels, and plot the same contour levels in both images. We observe that the
distributions of light and total mass from the best-fit SIE (nf) model are nearly axisymmetric,
but the former is slightly more concentrated than the latter. This can be inferred by looking
at the positions of the inner and outer contour levels. The position angle of the surface
brightness and total surface mass distributions are consistent within the errors. Thus, we
conclude that the light distribution is approximately circular symmetric in projection and it
is a good tracer of the total mass distribution.
Next, we fit the lens spectral energy distribution (SED), consisting of the SDSS ugriz magni-
tudes (see Table 1), with a three-parameter Bruzual & Charlot composite stellar population
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Figure 5.12: SED and best-fit model of the lens galaxy SDSS J1538+5817. The observed total flux densities,
measured in the u, g, r, i, and z passbands, and their 1σ errors are represented by circles and error bars. The
best-fit is obtained by using Bruzual & Charlot 2003 models. On the bottom, the best-fit values of the age (T ),
the characteristic time of the SFH (τ), and the luminous mass (M∗

phot) are shown.
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photometric information. In each panel, the arrows show the projected distances of the observed multiple images
from the lens center and the curves the 1σ confidence intervals.

(CSP) model computed by adopting a Salpeter initial mass function (IMF) and solar metal-
licity (for further details, see Grillo et al. 2009). The best-fit model, shown in Fig. 5.12,
provides a photometric (luminous) mass M∗

phot of the lens of 20+1
−4 × 1010M⊙. We then esti-

mate the value of the mass in the form of stars M∗
phot(≤ R), at a projected distance R from

the center of the lens, by multiplying M∗
phot by an aperture factor fap(≤ R), that represents

the fraction of light measured within a circular aperture of radius R divided by the total light
of the galaxy. The quantities introduced above are explicitly defined as

M∗
phot(≤ R) = M∗

phot fap(≤ R) (5.3)

and

fap(≤ R) =

∫ R
0 I(R̃)R̃ dR̃∫∞
0 I(R̃)R̃ dR̃

, (5.4)

where I(R) is the de Vaucouleurs profile

I(R) = I0 exp

[
− 7.67

(
R

Re

) 1
4

]
, (5.5)
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with Re equal to Dol θe. As discussed above, the circular symmetry of the light distribution
assumed in the previous three equations is a plausible approximation for the lens surface
brightness. In Fig. 5.13, we plot at different radii the projected total and luminous mass
estimates obtained from the best-fit SIE (nf) and PL (nf) models of Sect. 5.4 and the best-fit
SED model.

In the same figure, we show the fraction of projected mass in the form of stars

f∗(≤ R) :=
M∗

phot(≤ R)

M tot
lens(≤ R)

(5.6)

and the total mass-to-light ratio

M tot

LB
(≤ R) :=

M tot
lens(≤ R)

LB(≤ R)
(5.7)

plotted versus the projected radius R. We compare this last quantity with the values of the
stellar mass-to-light ratio estimated from the best-fit SED model (M∗

phot L
−1
B = 5.0+0.1

−1.0M⊙L
−1
⊙,B)

and the evolution of the Fundamental Plane [M∗
FPL

−1
B = (6.1 ± 1.8)M⊙L

−1
⊙,B] (for more in-

formation, see Grillo et al. 2009).

The need for a dark component to be added to the luminous one to reproduce the total mass
measurements of the SIE (nf) models is suggested by looking at the outer galaxy regions
probed by lensing. Due to the larger error bars, the evidence on the presence of dark matter
is reduced if the total mass estimates obtained from the PL (nf) models are considered.
According to all the lensing models (i.e., deV, SIE, and PL), a value of 0.9+0.1

−0.2 for the fraction
of projected mass in the form of stars over total is estimated at a projected distance from the
galaxy center of approximately 2.5 kpc, and at 4 kpc from the galaxy center a value of one
for the same quantity is excluded by the SIE (nf) models at more than 3σ level. Moreover,
at the same distance, the value of the total mass-to-light ratio determined from the SIE
(nf) mass measurements is not consistent with the value of the mass-to-light ratio of the
luminous component estimated from the galaxy SED modeling. Between 1 and 4 kpc, the
same decrease of f∗(≤ R) and deviation of M tot L−1

B from M∗
phot L

−1
B are also indicated by

the values of the PL (nf) mass estimates, but these results are not highly significant because
of the large uncertainties.

Finally, by taking advantage of the total mass measurements available at different distances
from the center of the lens (not only in the vicinity of the Einstein angle, as in the major-
ity of the known lensing systems), we decide to investigate the dark matter component in
greater detail. To make possible a direct comparison of our results with those obtained from
dynamical analyses or cosmological simulations, we consider two-component models in which
the luminous ρL(r) and dark ρD(r) matter density distributions are parametrized by

ρL(r) =
(3 − γL)MLrL

4πrγL(r + rL)4−γL

ρD(r) =
(3 − γD)MDrD

4πrγD(r + rD)4−γD
, (5.8)

where ML/D is the total mass, rL/D a break radius, and γL/D the inner density slope of the
luminous and dark matter distributions. The density profiles of Eq. (5.8) are projected along
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the line-of-sight to give the corresponding surface mass density profiles ΣL/D(R):

ΣL(R) = 2

∫ ∞

R

ρL(r)r dr√
r2 −R2

ΣD(R) = 2

∫ ∞

R

ρD(r)r dr√
r2 −R2

, (5.9)

which, once integrated, result in the following cumulative mass distributions ML/D(≤ R):

ML(≤ R) =

∫ R

0
ΣL(R) 2πR dR

MD(≤ R) =

∫ R

0
ΣD(R) 2πR dR . (5.10)

The total density ρT(r), surface mass density ΣT(R), and cumulative mass MT(R) distribu-
tions are defined as the sum of the luminous and dark contributions

ρT(r) = ρL(r) + ρD(r) ,

ΣT(R) = ΣL(R) + ΣD(R) ,

MT(≤ R) = ML(≤ R) +MD(≤ R) . (5.11)

We notice again that the circular approximation is plausible for this particular lens.
The luminous quantities introduced in the above equations are completely determined from
the photometric observations. In fact, for the luminous component we have estimated the
total mass ML by modeling the SED and, to obtain a surface brightness profile close to a
de Vaucoleurs profile, we assume a Hernquist (1990; γL = 1 and rL = Re/1.8153) or a Jaffe
(1983; γL = 2 and rL = Re/0.7447) density profile. Then, we construct a grid of 13671 models
for the dark component. The total mass MD, the break radius rD, and the inner density slope
γD can assume values included between 0.1 and 100 times ML, 0.1 and 10”, and 0.5 and
2.5, respectively. The first two intervals are divided logarithmically into 31 and 21 points
respectively, the last one linearly into 21 points. The best-fit dark matter profile is found by
minimizing the following chi-square function:

χ2(MD, rD, γD) =

6∑
i=2

[
M tot

lens(≤ Ri) −MT(≤ Ri)

σMtot
lens(≤Ri)

]2
. (5.12)

In order to estimate the errors in the best-fit parameters, we perform 500 Monte-Carlo sim-
ulations varying the total mass of the luminous component according to the corresponding
measurement errors and the luminous break radius by assuming a realistic 10% uncertainty.
In Fig. 5.14, we show the luminous and dark mass decomposition obtained from the best-fit
(minimum chi-square) model and in Fig. 5.15 the parameter joint probability distributions.
We decide to plot the best-fit dark matter model obtained by assuming a Jaffe profile (no
significative differences are present if a Hernquist profile is adopted) for the luminous com-
ponent and considering the projected total mass estimates coming from the PL (nf) models.
The confidence levels on the parameter space of the dark matter component are expressed in
terms of the luminous mass fraction fL = ML/(ML +MD), i.e., the mass in the form of stars
to the total mass of the galaxy, the ratio of the dark to luminous break radius rD/rL, and γD.
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Figure 5.14: Best-fit (minimum chi-square) luminous and dark matter decomposition, determined by assuming a
Jaffe profile for the three-dimensional luminous density and projected total mass measurements as estimated from
the PL (nf) model. The arrows show the projected distances of the observed multiple images from the lens center.

We find a best-fit χ2 value of 0.8 with two degrees of freedom (derived from the total mass
measurements at the five central radii fitted by three-parametric models). We measure that
the values of the dark matter density overcome those of the luminous matter density at radii
larger than approximately 1.5 times the effective radius of the galaxy (Re = 4.0 kpc). As in
the previous sections, a three-dimensional total density profile close but not exactly equal to a
function decreasing as 1/r2 (i.e., an isothermal profile) is found. We note that the uncertainties
in the dark matter parameters determined by using the projected total mass estimates of the
PL (nf) models are significantly larger than those coming from the measurements of the SIE
(nf) models. This is a consequence of the different error sizes of the two sets of projected total
mass estimates. For the same reason, as already discussed looking at Fig. 5.13, large values
of fL are excluded at a 95% CL only if the lens three dimensional total density profile is fixed
to be isothermal. We observe that the dark matter component is in any case more diffused
than the luminous one. In fact, rD/rL is larger than 2 at more than a 95% CL. Given the
assumed parametrization, we also find that the dark matter density profile ρD(r) is probably
shallow in the inner galactic regions. The value of γD is indeed lower than 0.7 at a 68% CL.

5.6 Summary and conclusions

By means of HST/ACS and WFPC2 imaging and NOT/ALFOSC spectroscopy, we have
established that SDSS J1538+5817 is a rare lensing system composed of a luminous elliptical
galaxy, located at redshift zl = 0.143, that acts as a lens on two distinct and equally-distant
(zs = 0.531) sources. The two sources are lensed into a double and a quad (with an almost
complete Einstein ring) system, covering rather large angular and radial scales on the lens
plane. This exceptional configuration has allowed us to investigate in great detail the lens
total mass distribution within the effective radius of the galaxy, through parametric and non-
parametric point-like lensing programs and perform a complete statistical study of the errors
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Figure 5.15: Estimates of the errors and correlations in the parameters related to the dark matter component: the
luminous mass fraction fL, the dark to luminous break radius ratio rD/rL, and the dark matter inner density slope
γD. The projected total mass measurements of the PL (nf) (on the left) and SIE (nf) (on the right) models are
used. The small squares on the three left panels show the best-fit parameters corresponding to the dark matter
density profile represented in Fig. 5.14.

and correlations on the lens model parameters. Then, by fitting the lens SED with CSP
models, we have estimated the luminous mass of the galaxy and combined the lensing and
photometric measurements to examine the characteristics of the galaxy dark-matter halo.
In detail, our main results can be summarized in the following points:

− Parametric models predict image positions that match closely the observed lensing ge-
ometry, and describe lens total mass distributions that are almost circular in projection,
moderately steeper than an isothermal profile, and well aligned with the lens light dis-
tribution.

− The value of the total mass projected within the Einstein circle of radius 2.5 kpc is
slightly larger than 8 × 1010M⊙ and approximately 10% of this mass is in the form of
dark matter.

− In the inner galactic regions, the galaxy dark-matter density distribution is shallower
and more diffuse than the luminous one. The former starts exceeding the latter at a
distance of roughly 6 kpc from the galaxy center, corresponding to 1.5 times the value
of the luminous effective radius.

We conclude by remarking that strong gravitational lens systems with configurations compa-
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rable to or more complex than that of SDSS J1538+5817 are excellent laboratories to study
the distribution of luminous and dark matter in early-type galaxies. However, to achieve re-
alistic results on the dark matter component, it is essential to verify the commonly accepted
isothermality of the total mass distribution at a higher level than done so far. Strong lens-
ing systems with an Einstein radius significantly larger than the effective radius of the lens
galaxy would be invaluable to determine the dark matter properties of the halos of early-type
galaxies.
We acknowledge the support of the European DUEL Research Training Network, Transre-
gional Collaborative Research Centre TRR 33, and Cluster of Excellence for Fundamental
Physics and the use of data from the accurate SDSS database. We thank Piero Rosati for
useful suggestions and the NOT staff for carrying out our observations in service mode. We
are grateful to the NOT Scientific Association for awarding some observing time solely on
the basis of scientific merit and supporting the NOT Summer School where CG gained some
observational experience with the ALFOSC spectroscopic data.

5.7 Appendix: Non-parametric models

PixeLens (Saha & Williams 2004) is a non-parametric lensing program that generates an
ensemble of models consistent with the observed data of a lensing system. Each model is
composed of a pixelated surface mass density map of the lens, the reconstructed position of
the source, and, optionally, an estimate of the value of the Hubble parameter. These results
are obtained by using the observed positions of the multiple images (ordered by arrival time,
even if time delays are not known), the redshifts of the lens and the source, and some priors
based on previous knowledge of general galaxy mass distribution (for further details, see Saha
& Williams 1997; Coles 2008). Interestingly, PixeLens has been employed to measure the
value of the Hubble parameter from samples of strong lensing systems with measured time
delays (e.g., Saha & Williams 2006; Coles 2008).
We model here the surface mass density of the lens on a symmetric circular grid of 2” radius
divided into 20 pixels. We consider 400 models with fixed cosmological values and with
decreasing total projected mass profiles [i.e., Σ(R) ∝ R−α, where α > 0].

Total projected mass

0 1 2 3 4 5
R (kpc)

0

5

10

15

M
(<

R
) (

10
10

M
O •
 )

NP (nf)
PL (nf)

-2 -1 0 1 2
xl (arcsec)

-2

-1

0

1

2

y l
 (

ar
cs

ec
)

NP (nf) surface mass density γ probability distribution

1.5 2.0 2.5 3.0 3.5
γ

0.0

0.2

0.4

0.6

0.8

β=+0.25

β=0

β=−0.25

Figure 5.16: Left: Comparison of the total projected mass estimates, with 1σ confidence intervals, from parametric
[PL (nf)] and non-parametric [NP (nf)] modeling. The arrows show the projected distances of the observed multiple
images from the lens center. Middle: Isodensity contours of the best-fit non-parametric [NP (nf)] total surface
mass profile. The observed image positions of the double (diamond) and quad (square) systems are shown. Right:
Marginal probability distribution (histogram) of the three-dimensional total density exponent γ from non-parametric
modeling. The thick bar on the x-axis shows the 1σ confidence interval. The same probability distribution as
obtained by combining strong lensing and stellar dynamics measurements is represented by the smooth curves.

The cumulative total projected mass, the total surface mass density profile of the average



70 CHAPTER 5. GOLDEN GRAVITATIONAL LENSING SYSTEMS. SDSSJ1538+5817

model, and the marginalized probability distribution of the three-dimensional total density
exponent γ are shown in Fig. 5.16. We measure a value of the total mass projected within the
Einstein radius of 8.59+0.13

−0.12×1010M⊙, at a 68% CL. At the same confidence level, we estimate
a value of γ included between 1.62 and 2.87. We observe that the contour levels of the non-
parametric total surface mass show non-negligible values of ellipticity in the inner regions.
The differences between the surface brightness of Fig. 5.11 and total surface mass of Fig. 5.16
are significant within the area defined by the Einstein radius. This is not surprising since here
the total surface mass density distribution is almost completely unconstrained by the lensing
observables. This is the equivalent of Gauss’ law in gravitational lensing (see Kochanek 2004).
We notice that these differences are less evident outside the Einstein ring, where the positions
of the multiple images limit the freedom of the non-parametric models in determining the
lens total mass distribution. In Fig. 5.16, we also show for comparison the mass estimates
obtained in the equivalent parametric modeling [PL (nf)] and the probability distribution
of the density exponent that is expected by combining strong lensing and stellar dynamics
measurements. In detail, the combined lensing and dynamical probability distribution for γ
is obtained by using the following expression

c2

4π

θEin
σ20

r̃(zl, zs; Ωm,ΩΛ) =

(
8θEin
θe

)2−γ
g(γ, δ, β) (5.13)

that relates through the spherical Jeans equations the values of the central stellar veloc-
ity dispersion σ0, Einstein angle θEin, effective angle θe, exponent of the three-dimensional
luminosity density profile δ, anisotropy parameter of the stellar velocity ellipsoid β, and ra-
tio of angular diameter distances between observer-source and lens-source r̃(zl, zs; Ωm,ΩΛ)
[g(γ, δ, β) is a numerical factor that depends on the three cited quantities; for definitions
and further details, see Koopmans 2006]. In the plots of Fig.5.16, we fix δ equal to 2 and
choose two values of β (−0.25 and +0.25) representative of small tangential and radial orbit
anisotropy. By doubling the size of the grid but keeping the same size of the pixels, we have
checked that the choice of a circular grid with a radius of 2” to reconstruct the total surface
mass density distribution of our not perfectly circular lens galaxy does not introduce any
artificial shear component and does not affect significantly the results.

According to these results and looking at Fig. 5.16, we can conclude that the two indepen-
dent parametric and non-parametric analyses are in general consistent, within the errors, as
far as total projected mass and three-dimensional total density exponent measurements are
concerned, but small differences and some considerations are worth noticing.

The projected total mass estimates obtained with PixeLens are systematically larger than
those obtained with gravlens. This can be caused by a combination of the mass-sheet degen-
eracy (see Falco et al. 1985; Schneider & Seitz 1995) and the prior on the positive definiteness
of every pixel of the grid of the total surface mass density. Among all the arbitrary constants
that can be added to the convergence κ, leaving though the image positions unchanged, those
which provide a negative value of κ somewhere on the grid are excluded, a priori, from the
non-parametric lensing analysis. This fact may bias the projected total mass measurements
to slightly larger values.

As far as γ is concerned, the larger uncertainty coming from the non-parametric reconstruction
with respect to the parametric one is probably just a consequence of the more general allowed
models. A bias towards small values of γ may be associated to the prior present in PixeLens
that constrains the value of κ on one pixel of the grid to be lower than twice the average value
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of the neighboring pixels. For large values of γ, two adjacent pixels located in the central
region of the lens may have very different values of κ, hence these models may not be included
in the statistical ensemble.
Finally, we remark on the overall agreement between the lensing only and lensing plus dynam-
ics probability distributions of γ. We notice, though, that lensing alone does not reach the
precision needed to distinguish among models with different values of the stellar anisotropy
parameter β.
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6.1 Abstract

We study the Sloan Lens ACS survey (SLACS) strong lensing system SDSS J1430+4105 at
zl = 0.285. The lensed source (zs = 0.575) of this system has a complex morphology with
several subcomponents. Its subcomponents span a radial range from 4 kpc to 10 kpc in the
plane of the lens. Therefore we can constrain the slope of the total projected mass profile
around the Einstein radius from lensing alone. We measure a density profile that is slightly
but not significantly shallower than isothermal at the Einstein radius. We decompose the
mass of the lensing galaxy into a de Vaucouleurs component to trace the stars and an addi-
tional dark component. The spread of multiple image components over a large radial range
also allows us to determine the amplitude of the de Vaucouleurs and dark matter components
separately. We get a mass to light ratio of MdeVauc

LB
≈ (5.5 ± 1.5) M⊙

L⊙,B
and a dark matter

fraction within the Einstein radius of ≈ 20% to 40%. Modelling the star formation history
assuming composite stellar populations at solar metallicity to the galaxy’s photometry yields
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a mass to light ratio of
M⋆,salp

LB
≈ 4.0+0.6

−1.3
M⊙
L⊙,B

and
M⋆,chab

LB
≈ 2.3+0.3

−0.8
M⊙
L⊙,B

for Salpeter and

Chabrier IMFs, respectively. Hence, the mass to light ratio derived from lensing is more
Salpeter-like, in agreement with results for massive Coma galaxies and other nearby massive
early type galaxies. We examine the consequences of the galaxy group in which the lensing
galaxy is embedded, showing that it has little influence on the mass to light ratio obtained for
the de Vaucouleurs component of the lensing galaxy. Finally, we decompose the projected,
azimuthally averaged 2D density distribution of the de Vaucouleurs and dark matter com-
ponent of the lensing signal into spherically averaged 3D density profiles. We can show that
the 3D dark and luminous matter density within the Einstein radius (REin ≈ 0.6Reff) of this
SLACS galaxy is similar to the values of Coma galaxies with the same velocity dispersions.
gravitational lensing: strong – galaxies: elliptical and lenticular, cD –
galaxies: haloes – galaxies: individual: SDSSJ 1430+4105

6.2 Introduction

Early-type galaxies contain a large fraction of the total stellar mass observed in the Universe
(e.g., Fukugita et al. 1998; Bell et al. 2003). Studying the internal structure of early-type
galaxies is crucial for understanding the baryonic physics that plays a key role in the for-
mation and evolution of these objects. Several studies have shown that the stars assembled
in early-type galaxies are embedded in massive dark matter haloes (e.g.,Gavazzi et al. 2008;
Lagattuta et al. 2010; Weijmans et al. 2008), but the precise amount of dark matter contained
in the galaxies’ inner regions is still under debate.
Dark matter only simulations have found indications of a universal density profile for dark
matter haloes, present also in galaxies (the so called NFW profile; Navarro et al. 1997). Nev-
ertheless, more recent and realistic simulations that include also the physics of baryons (e.g.,
Gnedin et al. 2004; Duffy et al. 2010; El-Zant et al. 2001; Bertin et al. 2003; Ma & Boylan-
Kolchin 2004; Blumenthal et al. 1986; Jesseit et al. 2002), like radiative cooling and supernova
and black hole feedback, have suggested that the inner profile of the dark matter component
can be significantly affected by the interactions between baryonic and dark matter.
The internal structure of nearby early-type galaxies has been for decades the object of intense
dynamical analyses (e.g., Saglia et al. 1992; Gerhard et al. 2001; Thomas et al. 2007; Thomas
et al. 2009; Thomas et al. 2011; Pu et al. 2010). One focus of these studies is to compare
stellar with dynamical mass to light ratios. The dynamical studies, e.g. Gerhard et al. (2001),
Thomas et al. (2011) find ratios for nearby elliptical galaxies of M/LB ≈ 4 to 10. Similar
values are also found by Cappellari et al. (2006). Only in the last few years has gravitational
lensing also contributed significantly to our understanding of the luminous and dark matter
composition of early-type galaxies beyond the local Universe (Barnabè et al. 2009; Grillo et al.
2010; Barnabè et al. 2010). Strong gravitational lensing in early-type galaxies has also proved
to be a powerful cosmological tool to probe the geometry of the universe independently from
other diagnostics (e.g., Grillo et al. 2008b; Suyu et al. 2009, 2010b).
By combining strong gravitational lensing and stellar dynamics in a sample of first 15, then
58 early-type galaxies, Koopmans et al. (2006) and Koopmans et al. (2009) have found that
the average total (luminous and dark) mass density distribution within the effective radius –
the radius of the isophote containing half of the total light of the galaxy – is well represented
by an isothermal distribution (ρ ∝ r−2), although significant deviations from this result can
be observed in individual galaxies. Only rare systems where an extended or several distinct
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sources are gravitationally lensed over an extended radial area on the lens plane can be used
to determine the total mass density profile of the lens galaxy over a wide radial range through
lensing only (e.g. Grillo et al. 2008c, 2010; Fadely et al. 2010). Moreover, combining lensing
total mass measurements with photometric stellar mass estimates in these systems offers a
unique way to disentangle their luminous and dark matter components.
In this paper, we study the gravitational lensing system SDSS J1430+4105 that is composed
of a massive early-type galaxy acting as a lens for an irregular background source. This galaxy
was part of the SLACS survey2 and has been studied as part of their lens sample, especially in
Bolton et al. (2008a), Auger et al. (2009) and Auger et al. (2010): Bolton et al. (2008a) fit a
singular isothermal lens model to the observed multiple images, while Auger et al. (2009) and
Auger et al. (2010) combine the measured Einstein radii and masses with photometric and
dynamical data. The surface brightness distribution of the lensed source shows several peaks
that extend from 4 to 10 kpc from the lens galaxy centre. This fact provides the opportunity
to investigate the lens galaxy mass distribution on radial ranges larger than those explored in
similar analyses of other gravitational lensing systems (e.g., Xanthopoulos et al. 1998, Cohn
et al. 2001,Grillo et al. 2010).
The paper is organised as follows: Section 2 gives an overview of the observations and data
used in this work and introduces the environment of SDSSJ 1430+4105; Section 3 describes
the details of the strong lensing models. Section 4 states the implications for the total mass
and the mass profile. In Section 5 the mass to light ratio for the de Vaucouleurs component
is constrained, in Section 6 the results are discussed. Appendix A contains further variants of
strong lensing models. Appendix B gives further details of the environment implementation.
The cosmological model adopted in this paper is parametrized by Ωm = 0.3,ΩΛ = 0.7,H0 =
70 km s−1 Mpc−1. In the cosmology assumed, 1 arcsec in the lens (zl = 0.285) and source
(zs = 0.575) plane corresponds to 4.30 and 6.55 kpc.

6.3 Observations

The SLACS Survey aimed at finding strong gravitational lenses among the galaxies observed
in the SDSS. The lens detection strategy is presented in Bolton et al. (2004) and is based
on the examination of the SDSS galaxy spectra, taken with a 3 ”diameter fibre, to identify
emission lines not associated with the primary target galaxy but with an additional source,
aligned with the first galaxy and located at a higher redshift. The lens candidates are then
ranked in terms of their probability of being lensing systems and are consequently observed
with the HST/ACS and WFPC2.

Up to now, 85 confirmed (grade-A) lenses (Bolton et al. 2006, Auger et al. 2009) were dis-
covered in this way, and SDSSJ 1430+4105 is one of these. In Fig. 6.1 we show the SDSS
spectrum, from which lens and source redshifts of zl = 0.285 and zs = 0.575 are measured,
together with the lens aperture velocity dispersion of σSDSS = (322 ± 32) km s−1.

6.3.1 Galaxy light profile and lensing observables

The basic photometric and spectroscopic properties of SDSSJ 1430+4105, taken from Bolton
et al. (2008a), are stated in Table 6.1.

2http://www.slacs.org
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Figure 6.1: The SDSSJ 1430+4105 spectrum as observed by the SDSS 3 ”diameter fibre. On the bottom,
the observed wavelength is stated, while on the top, this is converted into the restframe wavelength of the lens
(z = 0.285). The dotted vertical lines give the SDSS emission / absorption line sample at the redshift of the lens.
The dashed vertical lines give some prominent emission lines at the redshift of the source. Overplotted in the lower
part of the figure is the flux uncertainty given again by SDSS. The spectrum shows several absorption lines typical of
an early type galaxy at z = 0.285 and some additional emission lines at redshift z = 0.575 (e.g. the lines at 5872Å,
7661Å and 7813Å, which can be identified as the redshifted [OII]3728, Hβ and [OIII]4960 lines respectively). Data
taken from from www.sdss.org, York et al. (2000)

Table 6.1: Photometric and spectroscopic quantities of the lens system

RA Dec zl zs qL Θq,L Θeff σSDSS

(J2000) (J2000) ( ba) (◦) (”) (km s−1)

14:30:04.10 +41:05:57.1 0.285 0.575 0.79 -12.81 2.55 322 ± 32

Given are the position of the galaxy(RA, Dec), the redshifts of galaxy and source (zl zs),
the axis ratio(qL), the orientation (Θq,L), the effective radius (Θeff) of the lens’ light
distribution and the velocity dispersion σSDSS. Values are taken from Bolton et al.

(2008a)
1This angle is equivalent to −59.3◦ in the WCS coordinate system, defined as (-E) over

N.

For these, Bolton et al. (2008a) fitted a de Vaucouleurs (de Vaucouleurs, 1948) profile with
elliptical isophotes to the galaxy’s surface brightness distribution. They obtained an effective
radius of Θeff = 2.55′′ = 10.96 kpc, a minor to major axis ratio of qL = 0.79, and a major
axis angle of Θq,L = −12.8◦. The angles are transformed to the adopted local reference frame
shown in Fig. 6.2, and measured counterclockwise with the y-axis equals to 0◦.
We retrieve the public HST images from the Hubble Space Telescope archive at ESO3. Three
filters were available for this system: HST/WFPC2 F606W with a total integration time
of 4400s (ua1l4501m, ua1l4502m, ua1l4503m, ua1l4504m), HST/ACS F814W with a total
integration time of 2128s (j9op36010) and HST/WFC3 F160W with a total integration time
of 2497s. For the lensing analysis we use the ACS F814W filter observations, since the PSF
of the ACS camera is smaller than the one of the WFPC2 and WFC3. First, we subtract the
lensing galaxy’s light contribution with GALFIT (Peng et al. 2002) by using a de Vaucouleurs
profile, with the parameters of Table 6.1. Then, in order to refine the lens galaxy subtraction
and especially remove the residuals still present in the central region, an additional Sersic

3http://archive.eso.org/archive/hst/
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Figure 6.2: The multiple image systems that are identified after the lens galaxy subtraction and used as input for
the lensing analysis. The labels A1 to E2 mark the positions used for the strong lensing analysis. The same letters
correspond to images coming from the same source feature, the labelling is done according to Table 6.2. The cross
marks the centre of the subtracted lens galaxy light. Also indicated are the derived shear direction from Sec. 6.9.1
and the direction of galaxy I. For orientation north is given as well. Angles are measured in the local coordinate
system counterclockwise as (-x) over y if not otherwise stated. The image is rotated relative to the WCS J2000 by
47.21◦.

profile (Sérsic 1963) with index 1.2 is subsequently subtracted.
Fig. 6.2 shows the final galaxy subtracted image. The lensed source has a complex surface
brightness distribution, with 5 surface brightness maxima which are imaged 2 times each. We
mark and label the 5 × 2 multiple image positions, identified as the brightest pixels, in Fig.
6.2. Their coordinates are reported in Table 6.2 together with approximate error estimates.

We assume in the following that all subcomponents A-E are at the same redshift and not
unlikely line-of-sight projections at different redshifts. The distances of the multiple images
from the centre of the lens galaxy light distribution span a range from 0.93′′ to 2.32′′. In the
rest of the paper, if not otherwise stated, we adopt the coordinate system introduced in Fig.
6.2 which is rotated relative to the WCS J2000 (world coordinate system) by 47.21◦.

6.3.2 Observed environment

SDSSJ 1430+4105 is not an isolated galaxy. It coincides in redshift and location with a galaxy
group at z = 0.287, listed in the maxBCG cluster catalogue, (Koester et al., 2007). Therefore,
we should consider the light deflection by the lens’ environment when we model this lens. We
show the environment of SDSSJ 1430+4105 (labelled as A) in Fig. 6.3.

The galaxy labelled as I was proposed to be the brightest cluster galaxy (BCG) of this group
found in Koester et al. (2007). The photometric redshift of the group GI is estimated to
be z = 0.287 with a typical redshift error in the maxBCG catalogue of 0.01. Within this
error the photometric redshift of the group is identical to the spectroscopic redshift (0.28496)
of the lensing galaxy. The group consists of 12 members within the R200 of this group,
N(gal,200) = 12. At this richness level, the maxBCG cluster is typically more than 90% pure
and complete, based on tests with mock catalogues. We now estimate the group members
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Table 6.2: Observed positions of the multiple image systems

ID Θ1
1 Θ2

1 zs δΘ d1

(′′) (′′) (′′) (′′)

A1 -1.99 -0.32 0.575 0.05 2.02
A2 0.69 0.62 0.575 0.05 0.93
B1 -2.08 0.47 0.575 0.05 2.13
B2 1.08 0.08 0.575 0.05 1.08
C1 -2.28 0.42 0.575 0.05 2.32
C2 0.93 0.03 0.575 0.05 0.93
D1 -1.84 0.27 0.575 0.05 1.86
D2 0.84 0.80 0.575 0.05 1.35
E1 0.39 -1.21 0.575 0.05 1.27
E2 -1.64 1.11 0.575 0.05 1.98

1relative to the centre of the galaxy light distribution

based on astrometric and photometric data from SDSS DR7 (Abazajian et al. 2009). We
consider each galaxy within 10 from the main lens of SDSS J1430+4105. We allow for galaxies
which have at least one of the photometric redshift estimates (template based (Template-z)
(Adelman-McCarthy et al. 2007) or neural network based (CC2 z and D1 z) (Oyaizu et al.
2008)) consistent within one standard deviation with the spectroscopic redshift value of SDSS
J1430+4105 and the photometric redshift of the group GI. The neighbours which pass these
requirements are listed in Table 6.3.

This table shows that for our definition the galaxy A is a group member from both its
photometric and spectroscopic redshift. The magnitudes of the galaxies A and I in the ugriz
filters are 20.43, 19.02, 17.74, 17.12, 16.87 and 22.54, 19.44, 17.92, 17.35, 17.00 for A and I
respectively, and thus A is formally the brightest galaxy (’BCG’) of this group. Since the
group membership and group redshift estimate of the maxBCG catalogue (Koester et al.,
2007) is mostly based on the g-r colour, the contaminated g-r colour of A due to lensing has
likely led to A not being considered as a group member and therefore as the BCG. Using the
same definition for the r200 as stated in Koester et al. (2007) we find 11 group members from
Table 6.3.
From Johnston et al. (2007), who tested the maxBCG cluster finder on simulated groups
and clusters of galaxies, we derive the probability that a group of the richness given in the
maxBCG catalogue N(gal,200) = 12 is centred on the correct BCG in the maxBCG cluster
catalogue to be pc(N200 = 12) = 0.63. Therefore both A or I could be the true mass centre
of the group GI. Finally, the Koester et al. (2007) group catalogues could also contain false
positive detections. Song et al. (2012) have shown that the false detection rate of such groups
can be as large as 40%. This motivates why we will consider lens models with and without an
external group contribution. We will show that including a galaxy group centred on galaxy I
has only minor influence on the lens parameters.
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Figure 6.3: The observed environment of J1430+4105, taken from SDSS. All galaxies with a photometric redshift
consistent with the spectroscopic redshift of SDSSJ 1430+4105 (labelled with A and marked with a diamond) within
1 standard deviation are marked by squares. The galaxy marked as I is the BCG for the group identified by Koester
et al. (2007). In the image, north is up and east is left. This image is rotated relative to Fig. 6.2 by 47.21◦. The
size is 7.5 × 7.5. For the properties of the galaxies, see Table 6.3.

6.4 Strong gravitational lensing

In this section we model the lens mass distribution with the public gravlens (Keeton
(2001b)) code (Sec. 6.4.1) assuming point sources and with the lensview (Wayth & Webster
(2006)) code (Sec. 6.4.3) using the 2–dimensional surface brightness distribution of the same
system. Both approaches give consistent results. We give a description of the influence of the
environment on the lens model of SDSSJ 1430+4105 in Sec. 6.4.2.

6.4.1 Parametric modelling using gravlens

gravlens4 is a public code that uses parametric lens models to reconstruct the properties of
an observed lensing system. The lens-modelling we implement here is similar to the one of
Grillo et al. (2010) where the reader can find more details. In this subsection, we use peaks in
the surface brightness distribution of the lensed images as point-like position constraints for
the lens model (see Table 6.2 and Fig. 6.2). Since the complex surface brightness distribution
of the lensed galaxy makes it difficult to associate reliably a flux measurement to each multiple
image, we neglect flux constraints. In gravlens the convergence κ for a (non–)singular
isothermal ellipsoid ((N–)SIE) or an ellipsoidal powerlaw (PL) is parametrized as

κ(Θ1,Θ2) =
bβ−1

2(1 − ϵ)
β−1
2

(
Θ2

c
1−ϵ + Θ2

1 +
Θ2

2
q2

)β−1
2

(6.1)

4see http://redfive.rutgers.edu/˜keeton/gravlens
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with

ϵ =
1 − q2

1 + q2
,

where b is the lensing strength, β denotes the steepness of the density profile (β = 2 in the
case of an isothermal profile), Θ1 and Θ2 are the coordinates on the plane of the sky relative
to the centre of mass of the lens, Θc is the core radius and q is the axis ratio of the isocontours
of the convergence (q = 1 for a circular mass model). In the special case of a circular lens
without core radius, b equals the Einstein radius ΘEin of the lens defined as κ(Θ ≤ ΘEin) = 1.
Further we use a de Vaucouleurs Model (de Vaucouleurs, 1948) parametrized as

I(R) = Iee
−7.67

[
( R
Reff

)1/4−1
]

, (6.2)

with Reff being the effective radius (the radius which contains half the light) and Ie the surface
density at this radius. In gravlens this is implemented as

κ = bdeVe
−7.67

[
(Θ2

1+Θ2
2/q

2)1/2

Θeff

]1/4
. (6.3)

In this parametrisation, bdeV is the value of the central convergence. The Einstein radius,
however, depends also on Θeff and q. Also a Navarro, Frenk and White (NFW) profile
(Navarro et al., 1997) is used, defined as

ρ(r) =
δcρc

r/rs(1 + r/rs)2
, (6.4)

with ρc denoting the critical density of the universe at the redshift of the lens, and rs and δc
are characteristic properties of the individual halo. For an overview of its lensing properties,
see Wright & Brainerd (2000).

The relation for the LOS projected surface mass density Σ of the lens and lensing convergence
κ is

κ =
Σ

Σcrit
with Σ−1

crit =
4πG

c2
DdDds

Ds
,

where Dd, Ds and Dds are the angular diameter distances from the observer to the lens, the
source and from the lens to the source, respectively. The goodness of a model is judged by
the χ2:

χ2
lens =

∑
i

∥ Θ i −Θ0,i ∥2

δ2Θi

, (6.5)

where Θ i denote the model-predicted positions of the i-th images, Θ0,i is its observed position,
and δΘi its observed positional uncertainty.

Any priors described in the text are added to this χ2 in Gravlens via

χ2
tot = χ2

lens + χ2
prior

with

χ2
prior =

(p − pprior)
2

σ2prior
,
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Table 6.4: Minimum-χ2 values and parameter estimates derived with gravlens for the isothermal and pow-
erlaw models

b q Θq β χ2 d.o.f. χ2

d.o.f
(′′) (◦)

Model I SIE 1.49 0.71 -21.6 2.001 11.5 7 1.6
1.47 – 1.51 0.69 – 0.73 -24.1 – -19.3

Model II PL 2.76 0.86 -21.9 1.59 10.1 6 1.7
1.60 – 2.72 0.74 – 0.85 -24.7 – -20.1 1.60 – 1.94

1fixed value

where p is the used parameter value, pprior its prior and σprior its 1σ error. Results give
best-fitting parameters and their 1σ errors. The likelihood of a parameter set is given by
L ∝ e−χ

2
tot/2. In almost all cases, the best-fitting values are within the 68% error interval of

the marginalised distributions.

The values of the parameters for the minimum χ2 models are given in Tables 6.4 and 6.5.

There, we give the model number, type, the best-fitting parameters of the model together

with the resultant χ2, the number of degrees of freedom (d.o.f.) and the reduced χ2
red = χ2

d.o.f.
of each model. Also, the 1σ error intervals are given. These error estimates of the parameters
are carried out using Monte Carlo Markov Chains (MCMC) methods with several thousand
steps each. For each model, 10 chains are calculated with different starting points. Conver-
gence is reached by comparing the variance of the point distribution of each of this chains
with its combined distribution, see Fadely et al. (2010), Gelman et al. (1995). From the final
chains, the 2nd half of each chain is combined to the final MCMC point distribution. The ac-
ceptance rate typically lies between 0.25 and 0.3. We explore potential parameter correlations
from these and derive 68% confidence intervals5 on the parameters by exclusion of the lowest
and highest 16 % of the MCMC points’ distribution; the central value is given by the median
value of the MCMC points’ distribution, since there are only small deviations between the
median and the average values of the 68% and 90% error intervals.
We describe the most important different models without the lens’ environment in the fol-
lowing: To check for the basic properties of the system, we model the lens as one component
SIE (Model I) and PL (Model II) model. To derive the de Vaucouleurs masses in this lens,
we combine a de Vaucouleurs component with a dark matter halo model (Model III) and
show that this result is not significantly affected by also taking the environment into account
(Models IV, V).

Model I The lens is modelled as a SIE (Eq. 6.1 with β = 2); the environment of the lens
is ignored. The free parameters of this model are the lensing strength b, the axis ratio q, and
its position angle Θq. The best-fitting model is shown in Fig. 6.4.

The results of the MCMC are shown in Fig. 6.5.

The density contours describe the probability density for the parameter values, whereas the
best-fitting model is marked with a cross. The reason for the apparent correlation of q and b
in Fig. 6.5 lies in the definition of κ in Eq. 6.1. The marginalised 68% confidence errors are:

5all given errors in this section are the 68% confidence values of the marginalised distributions, unless
otherwise stated
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(a) (b)

Figure 6.4: The best-fitting model derived with gravlens for the SIE case (Model I) (see Table 6.4), both the
image plane and the source plane are plotted. On the image plane triangles mark the input positions, while crosses
mark the best-fitting model positions. On the source plane, the predicted source positions are plotted. Further, the
respective critical lines (caustics) on the image (source) plane are plotted.

b = (1.49+0.02
−0.02)

′′, q = (0.71+0.02
−0.02) and Θq = (−21.8+2.5

−2.3)
◦. These values are in very good (≈ 1σ)

agreement with the values derived by Bolton et al. (2008a) using a similar parameterisation
for the lens total mass distribution.

Model II Model II follows a power law (PL) (Eq. 6.1 with arbitrary β within the lim-
its [1, 2.7]), and thus has one more free parameter relative to Model I. The values for the
parameter distributions are shown in Fig. 6.6.

The marginalised distributions change to b = (2.12+0.60
−0.52)

′′, q = (0.81+0.04
−0.07), Θq = (−22.2+2.1

−2.5)
◦

and β = (1.73+0.21
−0.13). We observe again (see Fig. 6.6) that the parameters b, q and β are

correlated with each other. This is entailed by the definition of the convergence κ in Eq.
6.1. The steepness parameter β is constrained to a value shallower than isothermal on a 1.3σ
level. The orientation Θq stays at the same angle as in the SIE case, while its axis ratio moves
towards rounder solutions, now being comparable to the axis ratio of the light distribution.

Model III In the following, we split the mass distribution into different components. We
use a de Vaucouleurs like component as traced by the stellar component and add dark matter
with different profiles if needed. Since the de Vaucouleurs component for galaxy A alone
does not provide a good model, see Appendix 6.8, we add a dark matter component centred
at galaxy A. We add an elliptical NFW-like component to the de Vaucouleurs profile. This
composition resembles the common picture of galaxy mass distribution. For the dark matter
halo, we impose a prior on the axis ratio based on the Bolton et al. (2008b) work of qdark,prior =
(0.79±0.12). Also we set the limit of the scale radius to values < 500′′, approximately 10 times
the value we find from Sec 6.9.2 for the scale radius. The total mass of the de Vaucouleurs
component is MdeV = (8.8+1.3

−1.9) × 1011M⊙ while the parameters of the dark matter halo are,

see Fig. 6.7: qd = (0.72+0.1
−0.1), Θq = (−26.0+2.7

−2.3)
◦, cd = (1.8+1.0

−0.4) and r200 = (406+128
−129)

′′.

We note that there is some degeneracy between the concentration c and r200. Further we have
no constraints on r200 from the data, since we do not have observables outside 2.32′′. Using a
NSIE-like dark matter component yields similar results, as described in Appendix 6.8, Model
IIIb.
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Figure 6.5: Error estimates of the MCMC for the SIE case (Model I), plotted are the individual points of the MCMC
together with the 68 and 90 % confidence regions of the distribution, indicated by the density contours. The crosses
mark the minimum-χ2 value from Table 6.4. The bars on the axes mark the respective 68 % marginalised error
intervals.

6.4.2 Lens modelling of the environment

As mentioned before, this galaxy is not an isolated field galaxy, hence we investigate the
possible impact on the derived lens parameters by taking the environment into account. In
the following, we centre a smooth group contribution at galaxy I and calculate its convergence
and shear at the position of SDSSJ 1430+4105. Further modelling of the group contribution by
summing up the contributions of the individual members (“clumpy group”), and by centreing
it at galaxy A itself is discussed in Appendix 6.9.

Smooth group mass distribution centred at galaxy I

According to Rozo et al. (2009), we can transform the group richness into a group mass of
M500 = (0.72±0.29)×1014M⊙ within 1σ. This mass can be converted into a velocity dispersion
of σgroup = 519 ± 107km s−1, using the critical density of the universe 500ρc(z) = 3M500

4πr3500
and

the singular isothermal sphere equation: M500 = M(r500) =:
2σ2

groupr500
G . There ρc(z) denotes

the critical density of the universe at redshift z and σgroup the velocity dispersion of the group.
Subsequently this gives an Einstein radius of ΘEin = 3.6±1.5′′, using again a SIS assumption
(see Sec. 6.4.1 for details). This results in a convergence of and shear of

κSIS group
A = 0.029 ,

γSIS group
A = 0.029

(6.6)

at galaxy A if galaxy I is assumed to be the group centre.
Alternatively, we model the smooth group as a ’typical’ richness 12 galaxy group NFW
(Navarro et al. (1997)) halo with concentration c = 4.22 and r200 = 848 kpc from Johnston
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Figure 6.6: Error estimates of the MCMC for the PL case (Model II), plotted are the individual points of the
MCMC together with the 68 and 90 % confidence regions of the distribution. The crosses mark the minimum-χ2

value from Table 6.4. The bars on the axes mark the respective 68 % marginalised error intervals.

et al. (2007). We obtain a convergence and shear of

κNFWgroup
A = 0.025 ,

γNFWgroup
A = 0.026 .

(6.7)

Further, we note that the angle of A towards I is −26◦, therefore forming an angle of 16◦

with the external shear value derived in Sec. 6.9.1. We examine the HST and SDSS frames
which cover galaxy I and its vincinity for group–scale multiple images to further constrain
the group mass distribution but do not find any sign for strong lensing.

Model IV From Section 6.3.2 we expect that there is some environment dark matter present
in this galaxy. We check whether using this group dark matter contribution with a de Vau-
couleurs component for galaxy A is sufficient to explain the observations, even though mod-
elling this system with a pure de Vaucouleurs component fails, see Appendix 6.8. Therefore,
in this model, we combine the de Vaucouleurs profile with a group halo centred at galaxy I. To
account for the environment, we include the galaxy group explicitly as a SIS profile centred at
galaxy I in Table 6.3. We use a prior on the group Einstein radius of bgroup,prior = (3.6±1.5)′′.
The de Vaucouleurs component has shape parameters as stated in Table 6.1. The group acts
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Figure 6.7: Error estimates of the MCMC for the NFW+de Vaucouleurs model (Model III), plotted are the 68 and
90 % confidence regions of the distribution. The crosses mark the minimum-χ2 value from Table 6.5. The bars on
the axes mark the respective 68 % marginalised error intervals. The individual points of the MCMC are omitted for
clarity.
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almost as a mass sheet. We get a χ2 = 18.9 for the best-fitting model. We get parameter
estimates of MdeV = (13.5+0.2

−0.2) × 1011M⊙ and bgroup = (8.0+0.7
−0.7)

′′ as can be seen in Fig. 6.8.

6 7 8 9
bgroup (′′ )

13.0
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14.0

M
 (

10
11
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o)

Model IV

Figure 6.8: Error estimates of the MCMC for the de Vaucouleurs+GI model (Model IV), plotted are the individual
points of the MCMC together with the 68 and 90 % confidence regions of the distribution, indicated by the density
contours. The crosses mark the minimum-χ2 value from Table 6.5. The bars on the axes mark the respective 68 %
marginalised error intervals.

Besides being a worse fit than most of the other models, this model also needs a much more
massive group present than what is likely from the observations. Therefore, dark matter that
is distributed almost uniformly within ΘEin of the galaxy does not provide a good model for
the system.

Model V This model adds environmental effects to Model III. Therefore we add the group
GI explicitly as above, yielding 3 components: the group GI, the dark matter associated with
the galaxy as an elliptical NFW profile and a stellar component modelled as a de Vaucouleurs
profile. We use the same constraints as for Model III. We get the following parameters, see also
Fig. 6.9: MdeV = (10.4+1.4

−1.7) × 1011M⊙, qd = (0.79+0.11
−0.11), Θq = (−21.6+8.8

−5.4)
◦, cd = (1.4+1.2

−0.4),

r200 = (321+141
−153)

′′, and for the galaxy group bgroup = (4.9+1.6
−1.7)

′′.

We note that these parameter estimates do not significantly change compared to Model III,
therefore the inclusion of group GI has only a small influence on the estimated galaxy param-
eters; the MdeV for the de Vaucouleurs component is slightly increased. Again, we are not
able to constrain the concentration c or r200 of the dark matter halo. Models Va and Vb in
Appendix 6.8 employ a NSIE-like galaxy dark matter halo (Model Va) and an external shear
contribution instead of a explicit group contribution (Model Vb) and again give results very
similar to Model V regarding the parameters for the lensing galaxy.

6.4.3 Full surface brightness distribution using lensview

We also use lensview (Wayth & Webster (2006)) to derive models and mass estimates for
SDSSJ 1430+4105 and to reproduce the full surface distribution of the lensed galaxy and its
unlensed source. Lensview is a publicly available program that fits parametric lens models
to image data and uses the best-fitting lens model to reconstruct the source and image. The
code uses the image data, a corresponding noise map, and an image mask to minimise χ2−λS,
where χ2 is the chi square difference between the reconstructed image and the data, S is the
entropy in the source, and λ is internally adjusted such that χ2 approaches its target value.
If the data are well fit by the model, the entropy term serves to smooth the source. Because
the flux of each unmasked data pixel is used in the fit, lensview is well-suited to systems
with extended flux like SDSS J1430+4105. The profile used here is defined, following Barkana
(1998), as
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Figure 6.9: Error estimates of the MCMC for the de Vaucouleurs+NFW model (Model V), plotted are the 68 and
90 % confidence regions of the distribution. The crosses mark the minimum-χ2 value from Table 6.5. The bars on
the axes mark the respective 68 % marginalised error intervals. The individual points of the MCMC are omitted for
clarity.
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Table 6.6: Minimum-χ2 values derived with lensview

b q Θq γ1 Θγ β χ2
red

(′′) (◦)

SIE 1.49 0.69 -19.5 02 02 2.002 1.4
SIE+ES 1.45 0.80 -23.0 0.046 -105 2.002 1.02

PL 1.53 0.77 -20.2 02 02 1.83 1.02
PL+ES 1.50 0.85 -22 0.047 -106 1.89 0.99

1The external shear at the position of the galaxy A
2fixed value

κ(Θ1,Θ2) =
b′

2

(
3 − β

q

)β−1
2

(Θ2
1 +

Θ2
2

q2
)
1−β
2 , (6.8)

where b′ gives the Einstein radius, q the axis ratio and β again the power law exponent of the
profile. We note that the normalisation of the profiles is different from Eq. 6.1, resulting in
different values for the Einstein radius in both approaches.

The minimum-χ2 results are stated in Table 6.6.

The SIE best-fitting parameter values derived here agree with those found in Sec. 6.4.1, when
directly compared to Model I in Table 6.4. For the PL model, we see a consistency of the
different models from gravlens and lensview within the stated errors for q, Θq and β.
Since, as mentioned before, the normalisation of the convergence profiles is different, the b /
b′ values do not compare directly to each other. For the models including the environment,
the direct comparison of the SIE+ES model with Model Ia shows again a consistency within
the errors derived in Appendix 6.8 for the lens parameters. However, the external shear angle
shows a discrepancy, the angle is offset relative to the expected value derived in Sec. 6.3.2.
Since the external shear contributes no mass, this will not have a significant effect on the
mass estimates in Sec. 6.5. The same is true for the PL+ES case, the comparison with Model
IIa gives an agreement within the given errors in all parameters besides Θγ . The best–fitting
SIE model, residual and source are shown in Fig. 6.10.

(a) (b) (c)

Figure 6.10: best-fitting model for the SIE case 6.10(a), its residuals 6.10(b) and the corresponding source 6.10(c).
For the images 6.10(a) and 6.10(b), the pixel size is the same as in Fig. 6.2; the source has a 3 times smaller pixel
size. The same flux scaling has been used on all images.
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6.4.4 Tests on the strong lensing assumptions

For all but the single, pure de Vaucouleurs model, the centre of the light and mass distribution
do not necessarily have to coincide. To address possible systematic effects of the assumption
that the mass model profiles are centred on the centre of light, we use Model I with a free
centre with priors on the centre position of uncertainty σΘ1,l

= σΘ2,l
= 0.2′′. In this case, we

find: b = (1.51+0.02
−0.02)

′′, q = (0.69+0.06
−0.04) and Θq = (−26.1+2.3

−2.4)
◦. The lens total mass centre

moves to Θ1,l = (−0.02+0.05
−0.07)

′′ and Θ2,l = (−0.11+0.04
−0.04)

′′. The lensing strength b and the axis
ratio q agree within the errors with the values derived for Model I, but the uncertainty on q
increases. While the lens position Θ1,l is still consistent with 0, there is a dependency of Θ2,l

and Θq. This has no effect on the mass profiles M(< R), so we conclude that we can fix the
lens total mass centre to its centre of light without inducing systematic effects on the derived
masses.
In the previous sections we restricted the smooth mass model of the group GI to be spherically
symmetric. We alter the shape of group GI to an elliptical isothermal profile (SIE) and study
the changes on the best-fitting SIE lens models. This model is analogous to Model Ia, but
combines a SIE lens with a SIE instead of a SIS galaxy group centred on galaxy I. Therefore,
we create 2000 random representations of group GI as a SIE. For each of these representations,
the axis ratio is randomly chosen between qGI = [0.6, 1] with a random orientation. The centre
of this SIE group model is taken from a gaussian distribution, centred on galaxy I, with a
width of σx,GI = σy,GI = 1.5′′. We recalculate the best-fitting parameters for each of these
SIE+GI(SIE) models and evaluate the scatter of the best-fitting parameters to estimate the
systematic uncertainties emerging from the assumption of a simple SIS group halo. This
results in 68% c.l. distributions of the best-fitting parameters for this modified Model Ia:
blens = [1.44, 1.46]′′, qlens = [0.79, 0.82], Θq = [−18.4,−16.2]◦ and bgroup = [4.27, 4.42]′′.
These intervals are small compared to the statistical uncertainties for Model Ia derived from
the MCMC sampling. We conclude that the details of the group model representation do not
change the results for the lensing galaxy significantly, therefore including the most simple SIS
model for group GI is sufficient.

6.5 Results for the galaxy mass profile

The total masses M(< R) within a cylinder of radius R and their derivatives obtained from
the lensing analysis for Models I to V are shown in Figs. 6.11 and 6.13. We have calculated
these values within several concentric apertures with radii ([0.46 0.92 1.26 1.59 1.95 2.32 2.78]
′′), chosen to lie in the radial regions covered by the lensed images plus extrapolations towards
smaller / larger radii. For the Models I to V of Secs. 6.4.1 and 6.4.2, the masses are estimated
by randomly taking 1000 MCMC points and creating convergence maps for each one of these
1000 models. The 68 % (90 %) errors are estimated by taking the central 680 (900) models
at each radius.

6.5.1 Mass profiles for the single component isothermal and powerlaw
models

First we focus on the masses derived for Models I and II in Table 6.4. The Einstein radii
are defined as the radii within which the mean convergence equals 1. For this, we calculate
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the mean convergence around the Einstein radius in 0.03′′ distance bins. The results of this
calculation are stated in Table 6.7.

Since all models agree on an Einstein radius of ΘEin = 1.51′′=̂ 6.48 kpc = RE, we adopt this
value as “the” Einstein radius of this lens with an uncertainty of 0.03′′=̂ 0.13kpc. We get a
mean Einstein mass of (5.37 ± 0.06) × 1011M⊙ for the Models I and II with a fixed Einstein
radius of ΘEin = 1.51′′. This values are in good agreement with the ones stated by Auger
et al. (2009) for this system also based on strong lensing.
We also extrapolate the models to the effective radius reff = 2.55′′=̂ 10.96 kpc of the galaxy,
and calculate the mass and its derivative. We find an enclosed mass between Mtot,enc =
8.9× 1011M⊙ and Mtot,enc = 11.3× 1011M⊙ on a 1σ level, depending on the model used. The
azimuthally averaged results of the included masses are plotted in Fig. 6.11.
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Figure 6.11: The mass within radius R, M(< R), from the models I and II, analysed in Sec. 6.4 is plotted in Fig.
6.11(a). For each model, 1000 random entries from the MCMC are used to calculate the errors. Each time, the means
and 90 % errors are shown, with the respective means in bold lines. The bars at the bottom mark the radii of the
apertures used to calculate the enclosed projected masses. The masses are in units of 1011M⊙, the radii are stated in
kpc in the lens plane. The mass estimates for the Models I and II are shown as solid (I) and dashed (II) lines. Vertical
lines indicate the Einstein and effective radius in both plots. Fig. 6.11(b) shows the same as Fig. 6.11(a) but for the
lensview derived masses. The errors are estimated by an increase of the reduced χ2 of the extended model by 1. As
can be seen, the masses agree with each other in terms of derived masses within the errors.

For an SIE model, the mass included within radius r grows linearly with the radius, so the
derivative of it is expected to be independent of the radius. This is the case for the singular
isothermal model (Model I) in Table 6.4. If we allow the steepness to vary (Model II) the
mass profile tends to be steeper at the Einstein and effective radius. For the radial mass
derivative at the Einstein radius, we calculate values between

dMtot,enc

dR = 0.8 × 1011M⊙kpc−1

and
dMtot,enc

dR = 1.2 × 1011M⊙kpc−1 . The extrapolation to the effective radius ranges from
dMtot,enc

dR = 0.8 × 1011M⊙kpc−1 for Model I to
dMtot,enc

dR = 1.6 × 1011M⊙kpc−1 for Model II.
This values are plotted in Fig. 6.12. Here and in Table 6.4 we state the 68 % c.l. errors.
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Figure 6.12: The masses and radial derivatives for the Models stated in Table 6.7 and Table 6.8. Plotted are the
mean values together with its 1 σ error bars. For Models I and II, the black asterixes mark the values at the Einstein
radius (fixed to 1.51′′), while the blue triangles mark the extrapolations to the effective radius of the galaxy. For
the de Vaucouleurs like models III and V, the green squares are the values at the Einstein radius, the red crosses are
the ones at the effective radius. While the total mass within the Einstein radius is tightly constrained independent
of the model used, the mass within the effective radius depends on the mass model used.

6.5.2 Mass profiles for the de Vaucouleurs plus dark matter halo models

From the single component lens analyses in Sec. 6.5.1, we conclude that the total projected
mass density profile is isothermal or slightly shallower than isothermal. The de Vaucouleurs
mass density drops faster with radius than the isothermal profile. Therefore, we expect the
pure de Vaucouleurs profile to be a poor description of this lens’ mass profile (as seen in
Model IV in Sec. 6.4.2 and Model IVa in Appendix 6.8) and expect that we need to add some
component which follows a shallower than isothermal density profile. In principle a constant
mass sheet, like a nearby group halo would approximately provide, could do this, given that
it provides enough mass at the position of the lens. In Model IV, we see that this model is
a poor fit to the data. Therefore a (dark) matter component centred at the position of the
lens is necessary. We model this in Models III, IIIa and IIIb in Sec. 6.4.1 and Appendix
6.8 with different types of dark matter halo profiles. A SIE-like dark matter component
(Model IIIa) suppresses the de Vaucouleurs part of the matter profile, effectively yielding a
single component model. Because the light distribution is well-fit by a de Vaucouleurs profile,
we require a non-zero de Vaucouleurs component for this 2 component fit, hence we do not
consider Model IIIa in the following. The Models IIIb, Va and Vb in Appendix 6.8 give
similar results to Models III and V in Sec. 6.4.1. Therefore, in the following, we mostly
consider Models III and V, which model the lens using an NFW profile for the dark matter
component.
Besides the stars and the dark matter, an elliptical galaxy or a galaxy group also contains
some amount of gas. Since we do not model this component individually, this gas needs to be
incorporated in either the dark matter or the de Vaucouleurs component, effectively limiting
the accuracy of our mass estimates to the gas mass fraction in elliptical galaxies and groups
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of galaxies. Young et al. (2011) get typical molecular gas masses of early-type galaxies in the
ATLAS3D project of M(H2) ≤ 109M⊙, less than 1% of the total galaxy masses derived here.
The hot gas component in an elliptical galaxy or a group of galaxies can contribute up to 10%
of the total mass in the centre of the galaxy or group of galaxies, see e.g. Sanderson et al.
(2003). Hence the uncertainty of our mass estimates due to the neglected gas is ≈ 10%.
We again adopt ΘEin = 1.51′′ for the Einstein radius. First we focus on the masses within
this radius, see Table 6.8.

For the total masses within the Einstein radius of the models III and V, we measure Mtot,Ein =

(5.33 ± 0.04) × 1011M⊙ The radial mass derivative is
dMtot,enc

dR = 0.86+0.09
−0.07 × 1011M⊙kpc−1 .

The extrapolations to the effective radius give Mtot,eff = 9.5+0.6
−0.5 × 1011M⊙ for the mass and

dMtot,enc

dR = 1.00+0.16
−0.14 × 1011M⊙kpc−1 for its derivative. This values are plotted in Fig. 6.12.

As can be seen, the enclosed masses and its derivatives at the Einstein radius and the effective
radius agree with each other throughout Models I, II, III and V. We state the de Vaucouleurs
mass within the Einstein and effective radius of Model III as Component IIIA in Table 6.8.
We get a mass of MdeV,Ein = (3.2+0.5

−0.7)×1011M⊙, meaning that
MdeV,Ein

MdeV,tot
≈ 35% of the total de

Vaucouleurs mass is concentrated within the Einstein radius for this lens. For Model V, we
get similar values for the de Vaucouleurs component, see Component VA in Table 6.8. In Fig.
6.13 and Fig. 6.20 in Appendix 6.8, the projected, enclosed lens masses and their derivatives
are plotted versus radius for the different 2 component strong lensing models.

The measurements are done using circular apertures, so all of these values are azimuthally
averaged. As one can see, including an explicit group halo GI (Model V) has only a minor
influence on the mass estimates and their derivatives. The total masses agree very well with
the one component estimates in Fig. 6.11. Also, all models agree very well on the total
masses and their radial derivatives, tending to give a shallower than isothermal mass profile
in the centre. For the Models III and V in Fig. 6.13, the dark matter haloes modelled as
NFW-haloes agree very well with each other, meaning that the environment has only minor
influence on the mass estimates. This is also true for the de Vaucouleurs component. We
note that the uncertainties on the individual components are larger than the uncertainties on
the total masses and derivatives, giving a well-constrained total mass.

6.5.3 3d spherical reconstruction

Further, we also reconstruct the 3d matter densities from the 2d data for Model III. For this,
we employ the inverse Abel-transform:

ρ(r) = − 1

π

∫ ∞

r

dΣ

dR

dR√
R2 − r2

, (6.9)

transforming a 2d circular density function Σ into a 3d sperical density function ρ. Since
this only transforms circular to spherical profiles and vice versa, we start from the mass
measurements within a cylinder in Fig 6.13(a) for the azimuthally averaged profile. In Eq.
6.9 the integration extends to infinity, which is not possible due to our limited range of reliable
data. To estimate the radial range at which we can use Eq. 6.9 only integrating up to our
last data bin we test it on a SIS toy model. For a SIS toy model, we know both the spherical
and the projected circular density. We then consider this radial range reliable where the
deviation of the reconstructed 3d density from the analytical SIS density does not exceed
2 × 107M⊙kpc−3. From this comparison, we conclude that this inverse Abel transformation
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Figure 6.13: The mass within radius R, M(< R) from the Models III and V analysed in Sec. 6.4. For each model, 1000
random entries from the MCMC chains are used to calculate the errors. All errors plotted are the 90 % error intervals
with the respective means in bold symbols. The bars at the bottom mark the radii of the apertures used to calculate
the enclosed projected masses or its derivatives. The masses are in units of 1011M⊙, the radii are stated in kpc in the
lens plane. In 6.13(a), the mass estimates of Model III for the de Vaucouleurs (dashed line), NFW (dot–dashed line)
and its sum (solid line) are plotted. While the sum of these two is fairly well constrained, the errors on the individual
parts are bigger. In 6.13(b), the same mass estimates are plotted for Model V, together with its 90 % error intervals,
splitted in de Vaucouleurs (dashed line ), NFW (dot–dashed line) and GI (dotted line) parts and its total sum (solid
line). The radial mass derivatives are plotted in 6.13(c) for Model III and 6.13(d) for Model V, keeping the line coding.
Plotted is the change in enclosed mass with radius. This can also be interpreted as the mass in a thin ring with width
dR at radius R, M(R). Again, vertical lines indicate the Einstein and effective radius in both plots.
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is only reliable up to ≈ 6.5 kpc with a systematic error smaller than 30%, given our limited
radial range of data. The reconstructed 3d profile is shown in Fig. 6.14.
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deVauc
NFW

Figure 6.14: The 3d densities for the stellar (dashed) and the dark (dash-dotted) component, as well as the total
matter (solid) For this, the data of Model III is used. Plotted are the median (thick) and the 90 % c.l. intervals.
Spherical symmetry is assumed for this reconstruction.

The errors plotted are only statistical, not taking any systematic effects into account. The
dark matter accounts for only a minor fraction of the total mass in the 3d centre of the
galaxy. We now turn to Fig. 7 in Thomas et al. (2011). In the lower part of Fig. 7 they
have displayed the ratios of the mean dark matter density and mean total density within the
Einstein radius of Coma galaxies as a function of their velocity dispersion. (For the definition
of the synthetic Einstein radius for Coma galaxies, see Thomas et al. 2011). To see whether
there are structural differences for the Coma and the higher redshift SLACS sample one would
like to enter the corresponding deprojected values for SLACS galaxies in these figures as well.
These were not available until now because the dark to total matter fractions were only
calculated for the line of sight projected densities within the Einstein radii (i.e. cylindrical
averages) by gravitational lensing. The corresponding projected values are shown for SLACS
(and Coma) galaxies in the upper part of Fig. 7 of Thomas et al. (2011). The projected and
deprojected values differ, since the projection along the line of sight mixes scales: parts of the
matter that have a large physical distance from the centre of the galaxy but lie on the line
of sight are taken into account when calculating the projected dark matter fractions. Due
to the monotonic increase of the dark to total matter density ratios as a function of radius,
the projected ratios displayed in the upper part of Fig. 7 of Thomas et al. (2011) are upper
limits to the central, 3–dimensional density ratios at the Einstein radius. With the analysis
described in this work we are able to measure the 3–dimensional densities of the (spherically
averaged) dark matter and de Vaucouleurs components of the lensing galaxy separately from
gravitational lensing alone due to the large radial coverage of multiple images in the image
plane by one source. Since the source is only one background object, we do not need to take
the systematic uncertainties into account that arise in systems with multiple image systems
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from sources at different redshifts like e.g Gavazzi et al. (2008). At the Einstein radius we
obtain (using Fig. 6.14, displaying Model III (de Vaucouleurs+NFW)) a dark to total density
ratio of 22 per cent for the dark to total density. Doing the same for the Model V where
SDSSJ 1430+4105 (consisting of de Vaucouleurs and dark matter component) is embedded
in a DM halo centred on galaxy I we find that the ratio of dark to total matter density at the
Einstein radius is about 14%. Since the dark matter fraction increases towards the outskirts,
these ratios of densities at the Einstein radius are upper limits for the mean dark matter to
total matter density ratios of galaxy SDSSJ 1430+4105 within the same Einstein radius. On
a (90 per cent c.l.) basis, the density ratios at the Einstein radius are larger than 15 per cent
(Model III) and 5 per cent (Model V) for the dark to total matter density.

6.6 Mass to light ratios for the de Vaucouleurs component and
dark to total mass ratio

Since we calculated the de Vaucouleurs masses for this galaxy, we now want to estimate the
rest–frame mass–to–light ratios of this galaxy. Further, we evolve these mass–to–light ratios
to present–day values in order to compare it with those of Coma galaxies. First, we calculate
the dark matter fractions within the Einstein radius. In Fig. 6.15, we plot the dark over total
enclosed mass fraction within the Einstein radius.
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Figure 6.15: Dark over total enclosed mass ratio for this galaxy. Shown are Models III (solid) and V (dashed).
For Model V the group contribution is ignored, meaning that we only consider the dark matter associated with the
galaxy itself as dark matter and only the sum of de Vaucouleurs and dark matter as the total matter. The vertical
line indicates the effective radius of the galaxy. As one can see, both models predict dark matter contributions in
the centre of this galaxy, with changing amounts depending on the modelling details. Plotted are the 68 % and 90
% errors, respectively.

The error bars are estimated as before from the central 68 and 90 per cent entries of the
random sample drawn from the MCMC for Models III and V, respectively. The fractions for
Model III and V are: MNFW

Mtot
= (0.40+0.13

−0.09) and MNFW
Mtot

= (0.27+0.12
−0.11). These fractions indicate
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Table 6.9: Galaxy luminosity evolution factors for the different IMF and metallicity models

(B − R)rf T τ
LB,rf

LB,z=0

LR,rf

LR,z=0
M⋆

ABmag Gyrs Gyrs
(
1011M⊙

)
A 0.77 8 2 1.77 1.48 6.7
B 0.85 8 2 1.92 1.55 4.4
C 0.81 9 2 1.66 1.42 4.0

a substantial amount of dark matter within the Einstein radius of this lens. As can be seen,
this picture is not significantly altered by locating the group at I in Model V. Although the
actual numbers change, we still need dark matter associated with the lens in the centre of the
galaxy. Since we ignore the dark matter contribution associated with the group GI in Model
V for the total mass, we get a lower dark matter fraction for Model V compared to Model
III.
For the Models III and V, we calculate the mass to light ratios for the de Vaucouleurs compo-
nent at the redshift of the lens. We use the masses from lensing and the light (in rest frame B
and R) as obtained from photometric data. To compare the mass to light ratios with present
day galaxies, we also need the luminosity evolution to redshift zero in these bands. We take
the observed griz SDSS photometry for this system which covers the rest frame B and R filters
to calculate the B-R rest frame colour.6 We calculate a colour of (B−R) = (0.80± 0.03) and
luminosities of LB,rf = (1.66 ± 0.03) × 1011L⊙,B and LR,rf = (1.92 ± 0.02) × 1011L⊙,R from
the absolute rest frame magnitudes. To estimate the luminosity evolution until today, we fit
3 extinction-free BC (Bruzual & Charlot, 2003) composite stellar population (CSP) models
to the observed griz SDSS photometry: A Salpeter initial mass function (IMF) (Salpeter,
1955) with solar metallicity (Model A) and 2 models with Chabrier IMF (Chabrier, 2003)
and solar / super–solar metallicity (Models B,C), respectively, see Drory et al. (2001, 2004).
The best-fitting results are stated in Table 6.9 together with the luminosity evolutions in B
and R bands and the best-fitting stellar masses, which agree with Grillo et al. (2009).

From the best-fitting star formation histories (SFH) to the spectral energy distribution (SED)
we obtain a stellar age of typically 8 Gyrs and a B-R colour of 0.8. Therefore, this galaxy has
a formation redshift of approximately 2 to 3 which is a typical value for elliptical galaxies. If
we divide the de Vaucouleurs masses derived by lensing in Sec. 6.4 by the luminosities derived
from the SDSS photometry we obtain the mass to light ratios (MtoL) for the de Vaucouleurs
component of this galaxy. For Models III and V, we find a MtoL of MdeV

LB
= (5.3+0.8

−1.1)
M⊙
L⊙,B

and
MdeV
LB

= (6.2+0.9
−1.0)

M⊙
L⊙,B

in the B-band rest frame at the redshift of the lens. These two Models

give the same MtoL within the errors, although including the group GI explicitly increases
the most-likely MtoL. We compare this with the total light of the galaxy and the stellar mass
derived in Grillo et al. (2009), who use composite stellar population models with a Salpeter
or Chabrier IMF, a delayed exponential star formation history, and solar metallicity to model
the SDSS multi band photometry. First, we compare in the rest frame B band. In Fig. 6.16
we plot the cumulative distribution function for the stellar mass to light ratios derived from
the respective de Vaucouleurs parts of the Models III and V and Models IIIb and Va from
Appendix 6.8.

6All magnitudes are given in AB.
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Figure 6.16: Cumulative probability distribution functions of the mass to light ratios for the de Vaucouleurs
components of the models III and V. Models III, IIIb, V and Va are marked by red, blue, turquoise and green. The
vertical lines mark the derived stellar mass to light ratios with its 1 σ errors from Grillo et al. (2009) for this system
fitting SFH to broad band SDSS photometry using a Salpeter IMF (solid line) and Chabrier IMF (dashed line). The
mass to light ratios are as observed at z = 0.285 and not corrected for luminosity evolution to redshift zero.

We overplot the stellar MtoL ratios derived in Grillo et al. (2009) for this system and get the
best agreement for a NFW like halo and a Salpeter IMF.
In the R-band, we get a MtoL for Models III and V of MdeV

LR
= (4.6+0.8

−1.1)
M⊙
L⊙,R

and MdeV
LR

=

(5.4+0.7
−0.9)

M⊙
L⊙,R

. To compare the lensing galaxy SDSSJ 1430+4105 with present day Coma

galaxies (Thomas et al., 2011) we have to account for the luminosity evolution between redshift
0.285 and now. We use the average evolution factor from the SFH models stated in Table
6.9, derived from the extrapolations of the fitted SFH models to redshift 0, which increases
the MtoL in the R band by a factor of 1.48 for z=0, giving (MdeV

LR
)pres = (6.8+1.2

−1.6)
M⊙
L⊙,R

and

(MdeV
LR

)pres = (8.0+1.1
−1.3)

M⊙
L⊙,R

for Models III and V, respectively. In Fig. 6.17, we plot this

R-band de Vaucouleurs mass to light ratio at redshift zero against the present day R-band
mass to light ratio for a Kroupa-IMF (Kroupa 2001), obtained again from the SFH fit of
Grillo et al. (2009), translated to R-band and evolved to redshift zero.

We added the results from a dynamical study of Coma galaxies by Thomas et al. (2011). This
allows us to conclude that SDSSJ 1430+4105 evolves into a galaxy with mass to light ratio
similar as the Coma galaxies, and shows the same conflict with respect to a Kroupa IMF as
they do. This conflict to a Kroupa IMF would be resolved if, for example, the de Vaucouleurs
component is not made of stars only but contains dark matter as well.

6.7 Discussion and conclusions

In this paper, we studied the lensing properties of SDSS J1430+4105. From the complex
source, we identified 5 double image systems, spanning a radial range from below 0.9′′ to
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Figure 6.17: Mass–to–light in R from lensing versus stellar mass using a Kroupa IMF (see Grillo et al. 2009). Both
values are evolved passively to the redshift 0. The lensing estimate is taken from Model III. The black points show
the mass to light ratios derived from stellar dynamics analysis of the COMA cluster galaxies versus their stellar
mass–to–light ratio derived from photometry for a Kroupa IMF, taken from Thomas et al. (2011). The solid line
marks the one–to–one correspondence.

almost 2.1′′. The source is spectroscopically confirmed at a redshift of 0.575. Parametric
models can match the observed image positions well with an average scatter in the position
comparable to the pixel size of the ACS camera input image, which is 0.05′′. Our results are:

I) The best-fitting reconstruction of the profile favours a profile slope shallower than
isothermal for the best-fitting model. However, profiles with free slope for the den-
sity steepness are consistent with an isothermal profile at 90% c.l.. This is also true
when combining an explicit model for the de Vaucouleurs-like light distribution with
a NFW-like dark matter component. Auger et al. (2010) found a steepness for the 3d
density profile for this system of ρ ∼ r−(2.06±0.18) by using the location of the Einstein
radius only and combining this with stellar dynamics, in agreement with our results

for the one component powerlaw total mass distribution of ρ ∼ r−(1.73+0.21
−0.13) within the

errors.

II) The galaxy is part of a group of galaxies listed in the maxBCG cluster catalogue.
Using a lens mass component following the stellar light, we can not model the strong
lensing signal for this galaxy if we use this component alone or combine it with a dark
matter halo not centred on SDSS J1430+4105, called galaxy A. Therefore, this leads
to two possibilities: Either A is indeed the centre of the galaxy group, or the galaxy
A is a satellite of this group, residing in its own dark matter halo. Since we cannot
distinguish between these 2 cases, neither from the lensing signal nor from external
data, we model both scenarios and show that these lead to similar results regarding
the mass distribution of the galaxy. We show that the dark matter halo of galaxy A
must not be singular and isothermal at the same time, since this would suppress the
de Vaucouleurs component. Both a non-singular, isothermal halo and a NFW-like halo
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for the dark matter halo of galaxy A fit the data well. We find agreeing dark matter
fractions and distributions for both cases. From the lensing data, we cannot distinguish
whether the dark matter halo follows a NFW or NSIE profile in the centre, since we
cannot constrain the concentration c and r200 – or Θc for a NSIE dark matter halo –
of the dark matter component well. From the models taking explicitly the environment
into account we conclude that the dark matter and the light of the galaxy have the
same axis ratio and are likely coaligned.

III) We estimate the rest frame B-band mass to light ratios for the lensing galaxy from the
de Vaucouleurs lensing component. For the case of a deVauc+NFW mass model, we
obtain a total mass of MdeV,tot = (8.8+1.3

−1.9)×1011M⊙ for the de Vaucouleurs component.
Grillo et al. (2009) have obtained stellar mass estimates for the luminous component
using the ugriz broad band SDSS photometry and SFH fits. They assumed solar metal-
licity composite stellar populations with a delayed exponential SFH, and examined the
Salpeter IMF (with BC and MAR (Maraston, 2005) single stellar populations (SSP)),
and the Chabrier and Kroupa IMF (based on BC-SSPs). They obtained stellar masses
of M⋆ = (5.6+0.8

−1.8) × 1011M⊙, M⋆ = (3.9+1.6
−2.2) × 1011M⊙, M⋆ = (3.2+0.4

−1.1) × 1011M⊙, and

M⋆ = (2.9+0.6
−1.8)×1011M⊙ for these four cases. The stellar mass agrees best with the mass

of the de Vaucouleurs component obtained from lensing if we assume a Salpeter IMF.
In principle, the mass to light ratios also depend on the age of the galaxy and its metal-
licity. According to De Lucia et al. (2006), solar metallicity and a formation redshift of
3 to 5 as used in Grillo et al. (2009) are good assumptions for a galaxy of the measured
stellar mass. Thus, the IMF must not be Chabrier or Kroupa like unless a fraction of the
de Vaucouleurs component is not of stellar origin, i.e. part of the dark matter follows
the light distribution. We measure a mass to light ratio for the stellar component of
MdeV
LB

= (5.3+0.8
−1.1)

M⊙
L⊙,B

using gravitational lensing and assuming a NFW-like dark matter

halo. If we allow for a group halo at galaxy I, we obtain MdeV
LB

= (6.2+0.8
−1.0)

M⊙
L⊙,B

. These

results again favor a Salpeter IMF, and are in agreement with the Fundamental Plane
results M

LB
= (4.8± 1.4) M⊙

L⊙,B
for this galaxy from Grillo et al. (2009). These results hold

as long as the metallicity is approximately solar. We compare the mass to light ratio,
passively evolved to z=0, to those of Coma galaxies analysed in Thomas et al. (2011).
We confirm their trend towards a Salpeter IMF, again disfavouring a Kroupa-IMF. This
trend also is seen in Cappellari et al. (2012a) for the most massive galaxies. Their data
indicate a more Salpeter-like IMF for high velocity dispersion galaxies. The dark to
total mass fraction of SDSSJ 1430+4105 rises from the centre outwards, giving a value
of Mdark

Mtot
= (0.4+0.14

−0.10) at the Einstein radius. In this galaxy, we need a significant amount
of dark matter in its projected centre to explain the observations.

IV) We compare the 3d densities of total, dark and luminous dark matter with to those
of Coma galaxies analysed by Thomas et al. (2007), based on dynamical modelling,
especially their Figure 5. Our galaxy has an effective radius of 10.96kpc and a velocity
dispersion of 322 ± 32kms−1. Concerning the effective radius it is most similar to the
Coma galaxies GMP 0144, GMP 4928 and GMP 2921, a cD galaxy, which have effective
radii of 8.94 kpc, 14.31 kpc and 16.43 kpc (Thomas et al. 2007) and effective velocity
dispersions of 211.8±0.4 kms−1 and 314.8±2.9 kms−1 and ≈ 400 kms−1 (Thomas et al.
2007, Corsini et al. 2008). Since our 3 dimensional matter densities are reliably known
only between 3 kpc and about 6.5 kpc we decide to compare the matter densities at 3
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kpc. At this radius the matter density values of Thomas et al. (2007) are reliable as
well. At the same time this radius is within the core radius (rc in Table 2 of Thomas
et al. 2007) for all 3 GMP galaxies and thus the densities at this radius define the
central dark matter densities in these galaxies. We read off dark matter and total
densities of 6×10−2Mpc−3 and 3×10−1Mpc−3 for GMP 0144, of 1.5×10−2Mpc−3 and
2× 10−1Mpc−3 for GMP 4928 and 1× 10−1Mpc−3 and 3× 10−1Mpc−3 for GMP 2921.
For SDSSJ 1430+4105 these numbers are 4× 10−2Mpc−3 and 3.5× 10−1Mpc−3 for the
dark matter and the total density at 3 kpc with fractional errors of about 25%. This
means that the dark matter and total densities at 3 kpc for our galaxy and the 3 Coma
galaxies are comparable, and that the ratio of dark to total matter density of about 1:10
is consistent within the error with the ratios of 1:5 and 1:13 for the non-central Coma
galaxies.
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6.8 Appendix: Additional strong lensing models

To check for the robustness of the previously derived lensing results, we also examine some
different strong lensing models to the ones presented in Secs. 6.4.1 and 6.4.2. These models
confirm the previous results without adding new implications for the results, therefore we
add these models in this appendix. The minimum χ2 values and parameter estimates of the
models are shown in Tables 6.10 and 6.11.

Model Ia To account for the environment, we include the galaxy group explicitly as a
SIS profile centred at galaxy I in Tab. 6.3. We use a prior on the group Einstein radius of
bgroup,prior = (3.6±1.5)′′, as derived in Sec. 6.4.2. The results and 68 % c.l. marginalised errors
of this SIE+GI (Model Ia) case are: b = (1.45+0.02

−0.02)
′′, q = (0.81+0.04

−0.04), Θq = (−17.4+3.9
−4.0)

◦ and

bgroup = (4.6+1.6
−1.4)

′′, see Fig. 6.18 for the derived parameter errors.

0.7 0.8 0.9
q

1.40

1.45

1.50

b 
(′′

)

Model Ia

-30 -20 -10
Θq (

o)

1.40

1.45

1.50
b 

(′′
)

0 3 6 9
bgroup (′′ )

1.40

1.45

1.50

b 
(′′

)

-30 -20 -10
Θq (

o)

0.7

0.8

0.9

q

0 3 6 9
bgroup (′′ )

0.7

0.8

0.9

q

0 3 6 9
bgroup (′′ )

-30

-20

-10

Θ
q 

(o )

Figure 6.18: Error estimates of the MCMC for the SIE case with GI (Model Ia), plotted are the individual points of
the MCMC together with the 68 and 90 % confidence regions of the distribution. The crosses mark the minimum-χ2

value from Table 6.4. The bars on the axes mark the respective 68 % marginalised error intervals.

This plot shows an anti-correlation of b and bgroup. This is expected since the total con-
vergence needed at the position of the main lens can either be provided by the main lens
or by the mass associated with GI. We also include the environment as external shear, as
calculated in Sec 6.9.1, see Model Ib in Appendix 6.8. This has only small effects on the
derived parameter values.
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Model Ib Model Ib is for a SIE with external shear γ, hence it has 1 more free parameter
relative to Model Ia. The external shear priors are based on the environment models derived
in Sec. 6.3.2 and Appendix 6.9: We use γprior = (0.012 ± 0.031) and Θγ,prior = (−10 ± 25)◦.
The marginalised errors are: b = (1.50+0.02

−0.02)
′′, q = (0.81+0.08

−0.07), Θq = (−13.4+12.5
−8.7 )◦, γ =

(0.050+0.025
−0.025) and Θγ = (−29.6+7.9

−15.8)
◦. There is a correlation present between the axis ratio q

and the external shear γ, reflecting the fact that the shear and the ellipticity can compensate
each other in its effects on the deflection angle, since both are pointing in the same direction
within ≈ 16◦.

Model IIa If we add the group GI, we obtain a marginalised steepness value of β =
(1.71+0.33

−0.13) together with b = (2.09+0.80
−0.69)

′′, q = (0.91+0.05
−0.11), Θq = (−15.3+10.2

−5.6 )◦ and bgroup =

(4.5+1.5
−1.5)

′′. Since there is no correlation between β and bgroup, the details of the environment
implementation have no systematic influence on the derived steepness of the lens mass profile.
The shear and convergence provided by the group are γGI = κGI = 0.037 in agreement with
our expectations.

Model IIb A mass density profile which is flatter than isothermal at the Einstein radius can
also be achieved by an isothermal mass distribution with a finite core radius. Therefore, Model
IIb is for an isothermal ellipsoid with a core radius (NSIE) with β = 2 and arbitrary value for
the core radius Θc. For such a model one expects to also find a demagnified third image, which
is not observed. We assume that the demagnified third image in the centre produced by a
non-singular mass profile could be detected if its flux exceeds 3σ of the sky+object noise in the
image for the brightest source pixel. We exclude a region of 0.2′′ in the centre due to residuals
of the galaxy subtraction, where we have no limits on the image fluxes at all. We then get
the following marginalised errors: b = (1.63+0.17

−0.10)
′′, q = (0.75+0.03

−0.03), Θq = (−21.5+2.0
−2.3)

◦ and

a core radius of Θc = (0.11+0.13
−0.075)

′′. However, the best-fitting model is identical to Model I,
i.e. purely isothermal. There is a linear dependency between b and Θc due to the definition
of the non-singular profile: A larger core radius needs to be compensated by a larger lensing
strength b to get the same enclosed mass within the Einstein radius.

Model IIIa In Model IIIa we allow for a dark matter component that is centred on the
lensing galaxy. Here, we test if we can improve the modelling by combining the de Vaucouleurs
profile with a SIE halo. For the dark matter SIE halo, we impose a prior on the axis ratio
based on the Bolton et al. (2008b) work of qdark,prior = (0.79 ± 0.12). For the errors, we get
b = (1.43+0.05

−0.08), qd = (0.71+0.02
−0.02), Θq,d = (−21.9+2.1

−2.6)
◦ and MdeV = (0.6+0.7

−0.4) × 1011M⊙. Since
the best-fitting model has a χ2 = 11.8 and almost zero de Vaucouleurs mass, this implies that
a de Vaucouleurs like mass model for the light plus a purely isothermal density profile for the
dark matter are not compatible with the data. The Einstein radius of the SIE component
and the de Vaucouleurs mass are anticorrelated, forcing the total projected mass within the
Einstein radius to be constant.

Model IIIb Instead of the NFW component, we can also model the dark matter component
with a NSIE. We limit the core radius of this component to be between 0 and 50′′, and use
the same prior on the axis ratio as before. For the mass of the de Vaucouleurs component,
we get: MdeV = (8.5+1.1

−0.7) × 1011M⊙. For the other parameters, we get (see Fig. 6.19):

qd = (0.78+0.05
−0.08), Θq = (−26.0+2.6

−2.4)
◦, bd = (19.2+13.0

−10.1)
′′ and Θc = (24.7+15.5

−12.9)
′′.
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Figure 6.19: Error estimates of the MCMC for the de Vaucouleurs+NSIE model (Model IIIb), plotted are the
individual points of the MCMC together with the 68 and 90 % confidence regions of the distribution. The crosses
mark the minimum-χ2 value from Table 6.5. The bars on the axes mark the respective 68 % marginalised error
intervals. The individual points of the MCMC are omitted for clarity.
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Again, we note that there is a degeneracy between bd and Θc, emerging from the profile
definition. Since there are no observed images for radii larger than 2.32′′, this leaves the
upper limit of the core radius Θc totally unconstrained. Large Θc make this dark matter
distribution flat at the Einstein radius, with bd giving its density value. The radial mass
estimates and their derivatives are plotted in Fig. 6.20

Model IVa We model the mass distribution by a de Vaucouleurs model with the shape
parameters following the light profile as stated in Table 6.1 Therefore, the mass of the de
Vaucouleurs component is the only free parameter in this model. The best-fitting light model
(Model IVa) in Table 6.11 has a χ2 = 118, meaning that a pure de Vaucouleurs profile is a
bad fit to the observations.

The de Vaucouleurs mass in this case is MdeV = (15.0+0.2
−0.2)× 1011M⊙. This badness of the fit

implies that there must be a (dark) mass component not following a de Vaucouleurs profile.

Model Va Here we do the same as in the Model V before: We combine the 2 component
model (Model IIIb) with an explicit description for the galaxy group GI. For the de Vau-
couleurs component, we get: MdeV = (11.5+0.7

−1.5) × 1011M⊙. For the other parameters, we

get qd = 0.74+0.11
−0.10, Θq = (−21.8+6.7

−5.3)
◦, bd = (5.5+4.1

−3.0)
′′, Θc = (16.4+12.1

−9.1 )′′, and for group

GI bgroup = (5.1+1.3
−1.6)

′′. As one can see, again there is no significant difference between this
model’s parameters and the one of Model IIIb. As for the NFW-like dark matter halo, the
MdeV is increased relative to Model IIIb by introducing the group halo GI. Again, the radial
mass estimates and their derivatives are plotted in Fig. 6.20

Model Vb Model Vb is motivated by the fact that for the preceding models (Models III
and V), the axis of the dark matter halo is always offset from that of the light by about −10◦,
which is statistically significant on a more than 3σ level for Models III and IIIb, see Figs. 6.7
and 6.19. At the same time, the axis ratio of the dark matter haloes are consistent with the
axis ratio of the stellar component, see Table 6.1. This could be mimicked by a non accounted
external shear which is present if galaxy A is not the centre of the group. From the results
for Models Ia, IIa, V and Va, we conclude that if we include the group explicitly as centred
on galaxy I the matter gets more aligned with the light. Looking at Model Ib we see that
using an external shear instead of GI changes the best-fitting orientation of the total mass
distribution more towards the observed light’s angle. So, in this Model, we combine Model
IIIb with the external shear of Model Ib. In numbers, we get here: MdeV = (9.9+2.1

−2.7)×1011M⊙,

qd = (0.77+0.10
−0.10), Θq = (−14.2+13.0

−11.2)
◦, cd = (4.1+4.1

−1.7), r200 = (166+61
−55)

′′, and for the external

shear γ = (0.038+0.023
−0.021) and Θγ = (−35.2+9.2

−15.2)
◦. We also note that with this improvement,

the dark matter profile becomes more concentrated, at a level expected for galaxies.

6.9 Appendix: Alternative descriptions for the lens environ-
ment

In this Appendix, we discuss 2 alternative scenarios for the environment, firstly a scenario in
which the group is only consisting of its members (“clumpy group”) without a reference to
a group halo, secondly a scenario where the group is a typical group with 12 members, but
centred on galaxy A instead of galaxy I.
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Figure 6.20: The same as Fig. 6.13, only for Models IIIb and Va.
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6.9.1 Clumpy group

A clumpy group model is obtained if all group mass is considered to be associated to the group
galaxies. We describe the galaxies as singular isothermal spheres (SIS) without truncation of
their mass profiles and obtain at the position of the lens:

κclumpy group
A =

∑
n

κSIS,n ,

γclumpy group
A =

∑
n

γSIS,n .
(6.10)

In this model, the shear and surface density at the location of the lens depends on the 2-
dimensional galaxy distribution and not at all on the centre of mass of the group. The galaxies
themselves are parametrized only by their positions and velocity dispersions σn. The value of
the velocity dispersion σA for SDSS J1430+4105 is taken from the central velocity dispersion
measured by the SDSS. The estimates σn for the neighbouring galaxies are obtained from the
Faber-Jackson relation (Faber & Jackson 1976),

σn = σA

(
in
iA

)0.25

,

where i is the SDSS i band flux of the neighbours and iA the flux of the lens galaxy A. The
shear γn(dn) and convergence κ(dn) for a SIS at a projected angular distance dn from its
centre are

κ(dn) = γn(dn) =
2πσ2n
c2dn

(
Dds

Ds

)
,

with c denoting the speed of light and Dds and Ds mark the angular diameter distances from
the lens to the source and from the observer to the source, respectively. The proper (vector)
addition of these convergence and shear values yields a prediction of

γclumpy group
A = 0.012 ,

κclumpy group
A = 0.023 .

(6.11)

The angle of the shear is −10◦ in the local coordinate system. The fact that we model
the galaxies as SISs, ignoring the finite halo sizes which would keep the mass associated to
galaxies limited, is not relevant, since finite halo sizes can only lead to lower estimates for the
convergence and shear at the position of galaxy A. Therefore, we get an upper limit of the
clumpy group estimates using this assumption. As we see in Sec. 6.4.2, the parameters of the
lensing galaxy only mildly depend on the assumptions about the group as long as it is centred
on galaxy I. To calculate the mass of this clumpy group, we first need the r200. We adopt
the definition of Koester et al. (2007) of r200 as a function of number of group members. We
sum up all mass contributions of member galaxies in Table 6.3 within this r200 = 3.8 centred
on A or I, respectively and calculate the total projected mass of the group within its r200:
M200 = 5.5×1014 M⊙. This value gives an upper limit of the mass associated with the group,
since SIS profiles for its members overestimate the densities of each member at large radii.

6.9.2 Smooth group mass distribution centred at galaxy A

In principle, the assumption of the group being located at A could already be in conflict with
the lensing observables. The most secure strong lensing estimate is the observed critical mass
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πR2
EinΣcrit = 5.43+0.15

−0.16 × 1011M⊙ within the Einstein radius, obtained from all models in Sec.
6.5 consistently. We now can model the group – located at A as an NFW or SIS (see Sec.
6.4.1 for details) profile and estimate its projected mass within the observed Einstein radius.
If this halo mass estimate exceeds the observed critical mass, the assumption of this group
being a typical group with 12 members and with galaxy A as its centre is already in conflict
with the lensing observables.
In Fig. 6.21 we show the c-r200 diagram for a NFW profile.
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Figure 6.21: This figure shows the concentration c - r200 properties for a NFW halo profile. The levels of grey
show the virial masses of the dark matter haloes. Overplotted are several different lines: The dashed lines are the
Bullock et al. (2001) c-r200 relation with its 1σ error. This marks the area typically populated by galaxy groups.
Further we overplot the c-r200 values for a typical richness N=12 group halo as found by Johnston et al. (2007)
with its errorbars. This shows where we expect the group halo to lie approximately in this plane. The dash-dotted
lines mark the transition above which more than 55, 62 and 74 % of the observed critical mass within the observed
Einstein radius would be made up by the dark matter halo of the group. All group haloes above this dash-dotted
line in this c-r200 plane overpredict the observed total mass within the Einstein radius, therefore this lines mark
regions with excluded group haloes. Since the typical Johnston et al. (2007) group halo lies below this lines, the
observed critical mass within the Einstein radius does not exclude A as the group centre. The thick, solid 1.00 line
marks the transition where the dark matter group halo alone would provide the observed critical mass within the
Einstein radius. Hence along this line no baryons (or dark matter) in the lensing galaxy A would be required at all.

The levels of grey indicate the virial M200 mass of a group with parameter values c and
r200. The thick solid line marks the transition where the NFW group halo mass within the
observed Einstein radius alone (without baryons and dark matter of the galaxy A) exceeds
the critical mass, predicting a bigger than the observed Einstein radius. Therefore all groups
that lie above this line would – from its group halo mass alone – overpredict the observed
total projected mass within the Einstein radius and cannot be centred at galaxy A.
In reality, some of the observed mass within the Einstein radius has to be contributed by
the stars, giving an even smaller upper limit for the dark matter mass within the Einstein
radius. Hence, we plot the analogous curves for the case where the dark matter makes up
only a fraction of the total critical mass within the Einstein radius. The dark to total matter
fractions shown also in Fig. 6.21 as dash-dotted lines are fdark = 0.55, 0.62, 0.74. To obtain
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these numbers, we subtract the stellar mass measurements within the Einstein radius done
in Grillo et al. (2009) from the derived lensing mass within the Einstein radius in this work.
If we attribute the missing mass to the group dark matter halo, we get again upper limits for
the possible group halo mass contribution within the Einstein radius, allowing us to exclude
all groups that would exceed this upper mass limits. Grillo et al. (2009) fit composite stellar
population models to the SDSS photometry of this galaxy to derive its stellar mass within
the observed Einstein radius. We use the Salpeter IMF stellar masses of Grillo et al. (2009),
since these give the highest mass in stars. Now we plot the model group with richness 12 in
Fig. 6.21 to see where it resides. From Johnston et al. (2007), we obtain c-r200 values of 4.22
and 848 kpc for a richness 12 group. Since this group therefore does not fall into the excluded
regions of Fig. 6.21, we cannot exclude A as the group centre from the lensing observables.
This conclusion also holds in the picture where the group is modelled as SIS. If the group
follows a SIS matter profile it has an Einstein radius of ΘEin = 3.6 ± 1.5′′, see Sec. 6.4.2.
This is consistent within the errors with the value derived from the strong lensing models
in Sec. 6.5. Therefore a typical group with richness 12, as seen in the vicinity of SDSSJ
1430+4105, does not violate the observed critical mass within the Einstein radius, nor the
Einstein radius itself. Hence, galaxy A could also be the group centre without violating the
lensing observables for a typical group of this richness.



Chapter 7
Galaxy halo truncation from Giant Arc
Surface Brightness Reconstruction in the
Cluster MACSJ1206.2-0847

This chapter is submitted for publication to the Astrophysical Journal.

Thomas Eichner1,2,*, Stella Seitz1,2, Sherry H. Suyu3,4, Aleksi Halkola5, Keiichi Umetsu6, Adi
Zitrin7, Dan Coe8, Anna Monna2,1, Piero Rosati9, Claudio Grillo10, Italo Balestra2, Marc
Postman8, Anton Koekemoer8, Wei Zheng11, Ole Høst10, Doron Lemze11, Tom Broadhurst13,
Leonidas Moustakas14, Larry Bradley8, Alberto Molino15, Mario Nonino16, Amata Mercurio17,
Marco Scodeggio18, Matthias Bartelmann7, Narciso Benitez15, Rychard Bouwens19, Megan
Donahue20, Leopoldo Infante21, Stephanie Jouvel12,22, Daniel Kelson23, Ofer Lahav12, Elinor
Medezinski11, Peter Melchior24, Julian Merten14, Adam Riess8,11

TE and SS conducted the analysis presented in this Chapter. SHS and AH provided the
strong lensing analysis software. DC provided the photometric redshifts, PR provided the
spectroscopic ones. WZ did the original data reduction of the CLASH survey observations.
KU compared the enclosed masses. All authors contributed input to the general discussion
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7.1 Abstract

In this work we analyze the mass distribution of MACSJ1206.2-0847, especially focusing on
the halo properties of its cluster members. This cluster appears already relaxed in Xray data,
but its huge amount of not yet centrally diffuse intra cluster light is a sign of its recent built
up enforcing cluster galaxy halo stripping and tidal disruption. The cluster lenses 12 back-
ground galaxies into multiple images and one galaxy at z = 1.033 into a giant arc and its
counterimage. The multiple image positions and the surface brightness distribution (SFB) of
the arc which is bent around several cluster members are sensitive to the cluster galaxy halo
properties. We model the cluster mass distribution with a NFW profile and the galaxy halos
with two parameters for the mass normalization and extent of a reference halo assuming scal-
ings with their observed NIR–light. We match the multiple image positions at an r.m.s. level
of 0.85′′ and can reconstruct the SFB distribution of the arc in several filters to a remarkable
accuracy based on this cluster model. The length scale where the enclosed galaxy halo mass
is best constrained is about 5 effective radii – a scale in between those accessible to dynamical
and field strong lensing mass estimates on one hand and galaxy galaxy weak lensing results
on the other hand. The velocity dispersion and halo size of a galaxy with m160W,AB = 19.2
or MB,Vega = −20.7 are σ = 150kms−1 and r ≈ 26 ± 6kpc. We also reconstruct the unlensed
source (which is smaller by a factor of ∼ 5.8 in area), demonstrating the increase of morpho-
logical information due to lensing and conclude that this galaxy has likely star–forming spiral
arms with a red (older) central component.
Galaxies:clusters:individual:MACSJ1206.2-0847 Galaxies:halos Galaxies:elliptical and lentic-
ular, cD Galaxies:interactions Gravitational lensing:strong

7.2 Introduction

For elliptical galaxies the half light radii, central velocity dispersions and surface brightness
within their half light radii form a fundamental plane (Bender et al., 1992). This fundamental
plane relation is very similar for field and cluster galaxies at the same redshift (Andreon,
1996; Saglia et al., 2010). The redshift evolution of the ellipticals’ mass to light ratio is
independent of the cluster velocity dispersion; it is compatible with passive evolution of the
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stellar population (Bender et al., 1998; van Dokkum & van der Marel, 2007; Saglia et al.,
2010) and slightly stronger for field galaxies. The effective radii and velocity dispersion of
ellipticals evolve with time, but not depending significantly on the galaxy environment.
Studying elliptical dark matter halos with stellar dynamics, Thomas et al. (2005) & Thomas
et al. (2009) have shown that (1) the stars of ellipticals form at high redshift (z=3-5), (2) the
dark matter halos of (Coma) ellipticals formed earlier than spiral galaxies of same brightness
and environment and (3) the halos of ellipticals mostly formed at least as early as their stars
(see Fig. 13 of Wegner et al. (2012))
In general, however, galaxy environment plays a major role for the formation of galaxies and
the transforming of galaxy types according to the morphology-density relation of Dressler
(1980) and their evolution with redshift (Dressler et al., 1997). Dressler et al. (1997) conclude
that “the formation of elliptical galaxies predates the formation of rich clusters, and occurs
instead in the loose-group phase or even earlier”.
Wilman & Erwin (2012) confirmed this picture in a quantitative way: According to their
interpretation ellipticals are centrals or they are satellites which have been centrals in halos
before they have been accreted; Taken together this implies that the central stellar dynamics
and the stellar population content of elliptical galaxies depend on the present day environment
on a minor level. Elliptical galaxies stay elliptical galaxies when larger scale halos like groups
and clusters form, but depending on whether they become central or satellite galaxies their
dark matter halos undergo growth or stripping.
The stripping of dark matter halos embedded in group and cluster halos by tidal fields is
theoretically expected (Merritt (1983), Merritt (1984)) and gets stronger the denser the envi-
ronment is. Stripping has also been studied in N–body dark matter simulations (Ghigna et al.,
1998; Limousin et al., 2009). Gao et al. (2004) have shown that on average 90 percent of mass
associated with halos accreted at z=1 are removed from the accreted halos and contribute to
the smooth host halo at z=0. Highest mass accreted halos reach the centers more quickly, due
to dynamical friction, and thus become stripped most quickly. Diemand et al. (2007) have
shown that subhalo mass is removed from outside, in agreement with the observations that
any changes of fundamental plane (FP) relation with environment can be explained by slight
age differences of the stellar populations, i.e. that the structural parameters of ellipticals do
not change during the build up of groups and clusters. Warnick et al. (2008) have shown,
that on average surviving subhalos lose about 30 percent of their mass per orbit in group and
cluster halos (this excludes tidally disrupted halos), where halos with radial orbits may lose
80 per cent or even more per orbit. Their Fig.4 illustrates the subhalo mass loss sorted as
a function of subhalo distance to the halo center, for different central halo masses. Within
10 percent of the virial radius the majority of subhalos has lost more than 50 percent of its
original mass. Limousin et al. (2009) have studied galaxy dark matter halo truncation in high
density environments with hydrodynamical N–body simulations. They predict half light radii
of galaxies in a Coma and Virgo like cluster as a function of 3D and 2D projected separation
to the cluster center, finding a measurable effect in both, at a level stronger than that of
Ghigna et al. (1998). According to their work the total mass of galaxy halos is a few times
larger than its stellar mass in the center and up to about 200 (50) times larger in the outskirts
of the cluster at z=0.7 (z=0).
Galaxy halo stripping in clusters has been measured with planetary nebula kinematics in local
galaxies (Ventimiglia et al. (2011) and references therein). Pu et al. (2010) have analyzed
the stellar kinematics of massive local ellipticals and measured halo sizes of orders of 60 kpc
based on the Mgb absoprtion line strength vs escape velocity relation. These methods for



118 CHAPTER 7. GALAXY HALO TRUNCATION IN MACSJ1206.2-0847

analysis of individual galaxy halos do not work for large samples and larger distances yet.
Galaxy halo sizes can be also measured with weak galaxy galaxy lensing for field galaxies
(Schneider & Rix, 1997; Hoekstra et al., 2004) and also for cluster galaxies using statistical
methods and large samples. In clusters the effect is stronger per galaxy since the signal is
boosted by the matter of the cluster itself (Geiger & Schneider, 1999), but this imposes also
a degeneracy in measuring the galaxy halos (Geiger & Schneider, 1999). Nevertheless halo
truncation has been measured with weak galaxy galaxy lensing (Narayan (1998), Geiger &
Schneider (1999), Natarajan et al. (2002a), Natarajan et al. (2002b), Limousin et al. (2007a))
and truncations in half mass radii by a factor of 4 to field galaxies or more have been reported.
Halkola et al. (2007) have worked out a different idea: Using strong gravitational lensing,
they described the mass distribution in the massive strong lensing cluster Abell 1689 with a
smooth dark matter component and a smaller scale component traced by the cluster galaxies.
The combined ’granular’ mass distribution maps multiply imaged galaxies differently than
the best fitting pure smooth cluster component. Making use of the fundamental plane and
Faber Jackson scaling relations for the cluster galaxies the properties of a reference halo
could be measured. This method finds the statistically best fitting reference galaxy halo mass
distribution to reproduce the astrometry of multiply imaged sources best. It relies on a very
precise global mass model (Broadhurst et al. (2005), Halkola et al. (2006), Limousin et al.
(2007b), see also Diego et al. (2005), Coe et al. (2010)) constrained by a huge number of
multiple images (in this case 32 background galaxies mapped into 107 images) spread over
the Einstein radii corresponding to the various source redshifts.
Studying the impact of substructure in the lens with multiple images positions does not make
use of the full information, since this just makes use of the differences of deflection angles
between multiply imaged sources and not of higher order or local derivatives of the deflection
angle. This can be done when mapping the full surface brightness distribution of the images
and adjusting the model such that for every image system of a reproduced source the SFBs
match the observations. Colley et al. (1996) were the first to measure the unlensed surface
brightness distribution of the 5 image system in Cl0024 and thereby helping to constrain
the mass distribution of the cluster. Seitz et al. (1998) analyzed the lensing effect of the
cluster MS1512 using several multiply imaged systems and obtained the surface brightness
distribution of the highly magnified galaxy cB58 to a unprecedented spatial resolution. In
this analysis it was important to account for the mass distribution of a galaxy perturbing
the cB58arc such that it was bent away from the cluster center – although measuring galaxy
halos was not the aim of this work. Later on Suyu & Halkola (2010) analyzed the surface
brightness distribution of a source multiply imaged by a galaxy with a satellite as perturber
and could indeed measure the satellite halo size in this way, showing that the sensitivity of
this method can be extended to (still massive) satellites in favorable lensing systems. On
cluster lens scale Donnarumma et al. (2011) used a method similar to Halkola et al. (2007),
to constrain halo sizes in another cluster. In this case one of the sources is mapped into a
giant arc system, of which they used several corresponding surface brightness knots for lens
modeling, thus partially making use of the surface brightness distribution of the arc in this
cluster.
In this work we will study galaxy halo truncation in the cluster MACSJ1206.2, since this is an
ideal target for several reasons: MACSJ1206.2 is a massive cluster at redshift z = 0.439 (for
a summary on properties and lensing, Xray and SZE results see Umetsu et al. 2012, Zitrin
et al. 2012b). This cluster shows still signs of its recent assembly, since there is a ’trail’ of
intra cluster light along its major axis (in mass and light), indicating previous tidal strippings
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down to the core of galaxies or tidal disruption of galaxies. On the other hand its central
galaxy is almost at rest relative to the center of mass (as obtained from cluster members’
velocities),see Biviano et al. in preparation. Further, this cluster appears relaxed from its
Xray contours (Ebeling et al., 2009; Umetsu et al., 2012). This means that cluster members
orbited each other for at least a significant fraction of the crossing time, were exposed to the
dense cluster environment and had the necessary (and short) time to become tidally stripped.
Due to its deep multi-band HST photometry this cluster has many multiple image systems
(Zitrin et al. (2012b)) and furthermore has a giant arc, which is bent around several cluster
members, making the light deflection of galaxy halos already visible to the eye. Using the
SFB distribution of the arcs and the multiple images positions, this cluster thus offers the
opportunity to provide very strong constraints on halo sizes.

This paper is organized as follows: In Section 2 we give an overview of the data used, in
Sect. 3 we present the models for the mass distribution of the cluster and the halos traced
by cluster galaxies, in Sect. 4 we introduce the scaling relations connecting galaxy luminosity
and dark matter halo properties. In Sect. 5 we obtain a strong lensing model using only
point source constraints from multiple images and the giant arc. Section 6 then also includes
the full surface brightness distribution of the arc and its counterimage in the analysis. In
Sect. 7 we will discuss our results concerning the scaling of cluster galaxies’ luminosity with
their velocity dispersion and halo sizes and the properties of the unlensed source of the arc’s
counterimage. We use WMAP71 (Komatsu et al., 2011) cosmology throughout the paper.
This gives a scale of 5.662 kpc/′′ at the redshift of the cluster, z = 0.439. Einstein radii,
convergence and shear values are given in units of the ratio of the angular diameter distances
from the lens to the source (Dds) and the observer to the source (Ds), DdsD

−1
s if not otherwise

stated.2 All angles are defined as N over (-E).

7.3 Data

The data used in this work are described in Postman et al. (2012), Zitrin et al. (2012b) and
Ebeling et al. (2009). All raw and reduced HST imaging data taken by CLASH are public.
We obtain position and shapes of cluster galaxies with Sextractor (Bertin & Arnouts,
1996) from the F606W filter data. The F435W, the F606W and the F814W filter data are
used to extract the surface brightness distribution of the arc and its counterimage for the
lens modeling. We need a r.m.s.-noise estimate for each pixel of the giant gravitational arc
and its counterimage for the surface brightness reconstruction. We obtain the pre-reduced,
publicly available FLT images for the F435W, F606W and F814W filters, respectively. The
pre-reduction, done by calacs, includes overscan and bias correction as well as flat-fielding
of the single images. Afterwards, Multidrizzle has been used for the alignment, background
subtraction, cosmic–ray rejection and weighted coaddition of the individual frames and the
r.m.s.–noise estimate. The weighting scheme used is the ERR–scheme, where the weighting is
done by the inverse variance of each pixel. From this inverse variance, we calculate the r.m.s.–
noise estimate for each pixel. For these frames, we choose a pixel scale of 0.05′′ resembling
the natural pixel scale of the ACS camera in these filters. We verify that the corresponding
star positions in the different filters are accurate to ≈ 0.5pix.

1H0 = 71kms−1Mpc−1, ΩM = 0.267, ΩΛ = 0.734
2Another interpretation would be DdsD

−1
s = 1, which is theoretically ill–defined.
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7.4 Modeling the cluster and its galaxy component

Since we want to measure the parameter values for halo truncation, we use parametric lens
models. The main cluster component is modeled by a NFW (Navarro et al., 1997) halo. Its
lensing properties are described in Wright & Brainerd (2000) and Golse & Kneib (2002):

Σ(X) = 2rsδcρc × ×


1

X2−1

[
1 − 2√

1−X2
arctanh

√
1−X
1+X

]
X < 1

1
3 X = 1

1
X2−1

[
1 − 2√

X2−1
arctan

√
X−1
1+X

]
X > 1 .

(7.1)

Here rs, δc and ρc are the scale radius and the characteristic overdensity of the halo and the
critical density of the universe for closure at the redshift of the halo. For the spherical case,
X = R

rs
denotes the dimensionless distance in the image plane. Following Golse & Kneib

(2002); Halkola et al. (2006), we introduce elliptical isopotential contours by introducing the
axis ratio q = ba−1 with major and minor axes a and b, respectively. X =

√
x21/q + x22q

then denotes the non–spherical extension of the spherical case above, with x1 and x2 being
the Cartesian coordinates in the major axis coordinate system. In the following we will only
consider the elliptical case, calling that the NFW profile.
We model the cluster galaxies as Brainerd et al. (1996) with their so called BBS: The density
profile is an isothermal sphere with a “velocity dispersion” σ and a truncation radius rt:

ρ(r) =
σ2

2πGr2
r2t

r2 + r2t
. (7.2)

The projected surface mass density is:

Σ(R) =
σ2

2GR

[
1 −

(
1 +

r2t
R2

)−0.5
]

. (7.3)

This gives an enclosed mass within a cylinder of radius R of

M(< R) =
πσ2

G

[
R+ rt −

√
R2 + r2t

]
, (7.4)

and a total mass of

Mtot =
πσ2rt

G
, (7.5)

where G is the gravitational constant and R the 2D-radius. For its exact lensing properties,
see Brainerd et al. (1996). Following Halkola et al. (2006), ellipticity is again introduced in the
potential in the same way as in the NFW case. The truncation radius rt marks the transition
region from a density slope ρ ∼ r−2 to a slope of ρ ∼ r−4. At rt the projected density is half
the value of the SIS model with the same σ. For the 3D density the truncation radius is equal
to the half-mass radius of the profile, see Eĺıasdóttir et al. (2007); Limousin et al. (2009). For
the 2D projected density the 2D half mass radius is smaller, r1/2,2D = 0.75rt.

7.5 Galaxy scaling relations

We are likely not able to constrain galaxy halos individually. Therefore we use scaling relations
between the different galaxy halos based on the luminosity of the individual galaxies. As in
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Table 7.1: The scaling parameters for different values of δ, ϵ and α.

Field galaxies Stripped galaxies
δ ϵ α

δ α δ α
δ α ϵstripped

0.3 0.2 2 0.6 0.30 1 0.30 -0.10
0.25 0.0 2 0.5 0.25 1 0.25 -0.25
0.25 0.2 2.8 0.7 0.233 1 0.233 -0.30
0.3 0.0 4/3 0.4

Halkola et al. (2006, 2007); Limousin et al. (2007a) we make use of the Faber-Jackson (Faber
& Jackson, 1976) relation connecting the luminosity (L) of early type galaxies with their
central stellar velocity dispersion σstar and halo velocity dispersion σ:

σ = σ⋆
(
L

L⋆

)δ
. (7.6)

The truncation radius is assumed to scale with luminosity as

rt = r⋆t

(
L

L⋆

)α
= r⋆t

( σ
σ⋆

)α/δ
. (7.7)

Here, σ⋆, L⋆ and r⋆t are the parameter values for a galaxy halo with reference luminosity L⋆.
With Mtot ∝ σ2rt (Eq.7.5), we obtain for the mass luminosity relation

Mtot

L
∝ Lϵ ∝ σ2+α/δ−1/δ = σϵ/δ (7.8)

and for the relation of the power law indices we obtain

α

δ
=
ϵ

δ
− 2 +

1

δ
. (7.9)

For elliptical galaxies the scaling relations between dark matter halo mass and light, Mtot/L ∝
Lϵ, has a slope of about ϵ ≈ 0.2 (see e.g. Grillo et al. (2009); Auger et al. (2010), who measure
the central Mtot/L from strong gravitational lensing of early-type galaxies). The ratio for their
central dynamical mass and their light is very similar Mdyn/L ∝ LϵFP , with a fundamental
plane slope of ϵFP ≈ 0.2 (Bender et al., 1992). The exact value depend also on the filter used
to measure the luminosity, see Barbera et al. (2011). If ϵ = 0 then the total mass to light
ratio is independent of luminosity and mass.
The values for the Faber-Jackson slope δ quoted in literature depend on the wavelength range
used for the luminosity measurement and on the considered magnitude range (Nigoche-Netro
et al., 2011; Focardi & Malavasi, 2012). For the B-band relation we will in the following
consider slopes between δ = 0.3 (Ziegler & Bender (1997)) and δ = 0.25 (see also Fritz et al.
(2009), Kormendy & Bender (2012) and Focardi & Malavasi (2012)). Therefore the scaling
between truncation radius and velocity dispersion varies between power law indices of one
and three, and the scaling between truncation radius and luminosity varies between a power
law index of 0.4 and 0.7 as can been seen from Table 7.1.
For halos in a dense environment, however, we expect the stripping radius to be (Merritt,
1983)

rt ∝M
1/3
tot (7.10)
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and with Mtot ∝ σ2rt we obtain α/δ = 1. The mass velocity relation is Mtot ∝ σ3. This gives
for the mass to light ratio using Eq. 7.6:

Mtot,stripped

L
∝ Lϵstripped ∝ σ3−δ

−1
(7.11)

and thus

ϵstripped = 3δ − 1 = 3α− 1 . (7.12)

Thus, as expected for stripped halos, the power law index for the mass to light ratio as
function of light is negative and of order ϵstripped = −0.1 to ϵstripped = −0.3, depending on
the value of δ, see Table 7.1.
As we will see later, we cannot distinguish the different exponents of the truncation law with
this work, but only the truncation scale. Hence we fix the values of ϵ and δ. On the one hand,
the galaxy cluster MACSJ1206.2-0847 represents a dense environment, on the other hand,
since galaxy clusters are relatively young objects, the halo stripping might not be entirely
complete. Therefore, we choose values somewhat in between field and cluster galaxies; we
take ϵ = 0 as an intermediate value for the mass-to-light ratio evolution with luminosity. For
δ, e.g. Bernardi et al. (2003b) find empirically a value of δ = 0.25 from the Sloan Digital Sky
Survey. There are, however indications for an increase in δ for fainter elliptical galaxies (see
e.g Matković & Guzmán (2005) and references therein). To take that increase into account,
we take δ = 0.3, as empirically derived in Rusin et al. (2003a) from gravitational lensing of
field elliptical galaxies and get the following equation for the truncation scaling:

rt = r⋆t

( σ
σ⋆

) 4
3

. (7.13)

This scaling relation between the velocity dispersion and truncation radius is the one adopted
in most parts of the paper. Therefore, one aim of the paper is to measure σ⋆ and r⋆t .

7.6 Strong lensing model for point-like sources

A first strong lensing model for cluster MACSJ1206.2-0847 was published by Ebeling et al.
(2009), based on 2 surface brightness peaks multiply mapped into knots on the giant arc
and its counterimage. The CLASH data allowed Zitrin et al. (2012b) to identify 12 multiply
imaged systems lensed into 52 multiple images. Distances for the lensed galaxies were inferred
from spectroscopic redshifts if available or precise photometric redshifts. In the following, we
use a parametric strong lensing model for the dark matter and we also model the cluster
members close to the strong lensing area. We describe the model input first, followed by the
results.

7.6.1 Model ingredients

For the point-like strong lensing analysis, we need two ingredients: The point-like multiple
image positions and models for the cluster scale mass distribution and the substructure as
traced by the cluster galaxies.
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Multiple image systems

We start with similar sources as Zitrin et al. (2012b), Table 1, but modify this selection.
In Table 7.2 we present our multiple image identifications; their positions are given in Fig
7.2. The differences to (Zitrin et al., 2012b) are as follows: First, we keep the systems
2,3,4,5,6,7,8,12,13 unchanged. We split the Arc system 1 into 3 subsystems at the same
redshift, labeled “1a”, “1b” and “1c”, using corresponding surface brightness peaks, see also
Fig. 7.13. Since systems 2 and 3 are two brightness peaks in the same source, we replace
these systems by numbers 2b and 2c. For the systems 9 and 10, Zitrin et al. (2012b) state
an ambiguity of images 9.3, 9.4, 10.3 and 10.4. We implement these images as 10.3 and 10.4
only: First, the surface brightness distribution of 10.3 and 10.4 looks more similar to 10.1
and 10.2 than 9.1 and 9.2 and second, also the best-fit model gives a significantly better fit
to this identification of the observations than 9.3 and 9.4. Also, for these systems, we neglect
the only probable counterimages 9.5 and 10.5 of Zitrin et al. (2012b). For system 11, we also
neglect the candidate images 11.1 and 11.2, keeping 11.3 to 11.5 as a triple imaged system
only. Our best fit model does indeed not predict the multiple images 11.1 and 11.2 and gives
model positions 9.5 and 10.5 6.2′′ and 9.5′′ away from the positions given in Zitrin et al.
(2012b), respectively. However there is no certain identification possible for these images.
We use the spectroscopic redshift of image systems measured as part of the VIMOS campaign
at the VLT where these are available. Otherwise, we combine the available photometric
redshifts in Zitrin et al. (2012b) into an error weighted mean redshift and mean error for each
multiple image system belonging to the same source. The mean redshift becomes the central
value for a Gaussian shaped redshift prior, and the mean redshift error becomes the 1σ width
of this prior. This gives an approximate, more conservative estimate for the uncertainties of
the redshifts than the r.m.s.–error of the mean. Any systematic uncertainty in the photometric
redshift estimate is equally present in the estimate of each multiple image, since they have
the same color. Therefore a pure statistical error would underestimate the true uncertainty
of the photometric redshift. These photometric redshifts constraints of the multiple image
systems are used as priors in the model optimization.
For the positional uncertainty of the multiple images, we adopt a value of 0.5′′. This value
is driven by line–of–sight (LOS) structure and substructure not accounted for in the lens
modeling, since the measurement error of the positions of the multiple images is usually only
a fraction of a pixel. Jullo et al. (2010) estimate the LOS structure to produce an r.m.s.
image position scatter of ≈ 1′′ for a cluster like A1689. Host (2012) estimates a relative LOS
structure deflection angle depending on the distance from the cluster center and the redshift
of the source to be 0.5′′ to 2.5′′ for typical strong lensing situations.

Cluster galaxies tracing dark matter substructure

We use the BPZ Photometric redshifts (Beńıtez, 2000; Beńıtez et al., 2004; Coe et al., 2006)
as described in Postman et al. (2012) and spectroscopic information for this cluster (Rosati
et al, 2012, in prep), wherever available for the cluster member selection. For simplicity, we
consider as cluster members galaxies with spectroscopic redshifts between z=0.43 and 0.45;
all other galaxies with different spectroscopic redshifts are excluded.
For galaxies lacking spectroscopic redshifts we use the photometric redshift estimates and
consider all galaxies with a photometric redshift estimate between 0.39 and 0.49 and a 95 %
confidence interval width smaller than 0.5 (i.e. c.l.(95%)max − c.l.(95%)min < 0.5) as cluster
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Table 7.2: Multiple image positions

Obj Θ1
1 Θ2

1 zinput zmodel

id (′′) (′′)
1a.1 12.85 19.73 1.0332 1.0332

1a.2 20.76 3.46 1.0332 1.0332

1a.3 19.56 -6.79 1.0332 1.0332

1b.1 13.72 18.91 1.0332 1.0332

1b.2 20.71 4.96 1.0332 1.0332

1b.3 19.71 -7.54 1.0332 1.0332

1c.1 12.46 20.26 1.0332 1.0332

1c.2 19.56 -5.84 1.0332 1.0332

2a.1 -35.30 -28.95 3.032 3.032

2a.2 -42.15 -14.20 3.032 3.032

2a.3 -42.65 15.40 3.032 3.032

2b.1 -33.60 -30.95 3.032 3.032

2b.2 -42.15 -12.85 3.032 3.032

2b.3 -42.30 14.65 3.032 3.032

2c.1 -34.00 -30.45 3.032 3.032

2c.2 -42.11 -13.15 3.032 3.032

2c.3 -42.30 14.85 3.032 3.032

4.1 14.37 12.57 2.542 2.542

4.2 -6.43 21.42 2.542 2.542

4.3 -15.10 2.74 2.542 2.542

4.4 0.62 3.63 2.542 2.542

4.5 6.36 -39.21 2.542 2.542

5.1 -21.60 17.60 1.73 ± 0.173 1.59
5.2 -22.30 -2.80 1.73 ± 0.173 1.59
5.3 -6.50 -30.45 1.73 ± 0.173 1.59
6.1 13.95 28.15 2.73 ± 0.153 1.86
6.2 22.36 -23.50 2.73 ± 0.153 1.86
6.3 26.25 11.30 2.73 ± 0.153 1.86
7.1 -56.30 -15.10 3.82 ± 0.33 2.90
7.2 -55.60 -19.30 3.82 ± 0.33 2.90
7.3 -53.10 -24.30 3.82 ± 0.33 2.90
7.4 -56.29 -13.62 3.82 ± 0.33 2.90
7.5 -56.61 -12.68 3.82 ± 0.33 2.90
8.1 -2.67 34.72 5.46 ± 0.293 5.03
8.2 23.27 13.86 5.46 ± 0.293 5.03
8.3 -16.33 -0.46 5.46 ± 0.293 5.03
8.4 13.01 -40.68 5.46 ± 0.293 5.03
9.1 8.95 14.05 1.73 ± 0.233 1.64
9.2 2.40 16.55 1.73 ± 0.233 1.64
10.1 0.35 18.95 1.34 ± 0.263 1.69
10.2 12.30 10.70 1.34 ± 0.263 1.69
10.3 -5.55 2.00 1.34 ± 0.263 1.69
10.4 -2.45 2.25 1.34 ± 0.263 1.69
11.3 -10.79 19.02 1.35 ± 0.443 1.44
11.4 -13.87 -0.56 1.35 ± 0.443 1.44
11.5 2.38 -28.57 1.35 ± 0.443 1.44
12.1 -19.04 33.42 3.84 ± 0.523 3.28
12.2 -24.78 -7.58 3.84 ± 0.523 3.28
12.3 -3.95 -36.07 3.84 ± 0.523 3.28
13.1 -10.99 -37.61 3.18 ± 0.993 2.34
13.2 -29.83 -1.72 3.18 ± 0.993 2.34
13.3 -28.73 17.18 3.18 ± 0.993 2.34

1relative to the center of the BCG at 12:06:12.134 RA (J2000) -08:48:03.35 DEC (J2000)
2spectroscopic redshift, fixed 3photometric redshift estimate, weighted mean and error
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members as well. From these cluster galaxies, we use only a subsample which fulfill 2 criteria:
First, we only use those within a 3×3-sized box centered on the BCG. Second, these galaxies
have to trace a sufficiently massive halo to be relevant for the lens modeling: From the galaxy
sample we pick the second brightest galaxy of this cluster, located at 12:06:15.647 RA (J2000),
-08:48:21.88 DEC (J2000) as the reference galaxy (called hereafter GR), see Fig. 7.2.

We use the F160W fluxes of the cluster members in units of GR and use Eq. 7.6 to scale the
velocity dispersions relative to GR. We convert the velocity dispersions in a “cosmology-free”
Einstein radius by

ΘE =
4πσ2

c2
(7.14)

with c being the vacuum speed of light. We explicitly model only those cluster galaxies which
have an Einstein radius larger than 3% of the Einstein radius of GR. An Einstein radius of
1′′ corresponds to a velocity dispersion σ = 186kms−1. Looking at Eq. 7.13 we note that we
need to measure 2 values to fully determine the halo properties: σ⋆ and r⋆t . We use 2 different
sets of parameters: rt,1′′ , for a reference σ = 186kms−1 which gives the value for a galaxy
with an Einstein radius of 1Θ′′

E, and rt,GR, which gives the truncation radius for galaxy GR
itself.
With this procedure, we obtain 92 galaxies. We take their positions, orientations and ellip-
ticities from a Sextractor (Bertin & Arnouts, 1996) run on the HST/ACS F606W band.
A list of all cluster galaxies in our model is stated in Table 7.9. A comparison with the
HST/ACS F814W shows consistent values for the orientations and ellipticities of the cluster
members.

16 18 20 22 24
mag(F814W)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F4
75

W
-F

81
4W

red galaxies
blue galaxies

Figure 7.1: The color-magnitude diagram of the selected cluster galaxy lenses. Plotted is the F475W-F814W color
against the F814W magnitude of the galaxies. We mostly select red galaxies with similar color. Since we do not
select by galaxy color but by photometric and spectroscopic redshift, we also identify some bluer galaxies as cluster
members, which would not have been possible based on a pure red sequence cut. The typical error on the magnitude
and color is smaller than the symbol size. The color indicates the SED type of galaxies, separated in red and blue
galaxies.

With Eqs. 7.6 and 7.13 we now have a complete description of all cluster galaxy lenses with
only 2 free parameters, the normalizations of equations 7.6 and 7.13. Since we take L⋆ for
GR, the only free parameters in our galaxy model are σGR, thus fully determining Eq. 7.6
and rt,GR fully determining Eq. 7.13 for σGR.3 We will attribute these two parameters to
the reference galaxy GR, but we should however keep in mind that the derived parameters of
GR are due to the combined signal of all the galaxies and that it is irrelevant which galaxy
was chosen as reference. For this reference galaxy, we measure an effective radius Reff of

3However, we can equivalently use rt,1′′ with σ = 186kms−1 as the full determination of Eq. 7.13.



126 CHAPTER 7. GALAXY HALO TRUNCATION IN MACSJ1206.2-0847

Table 7.3: Model lens input parameters and priors. Stated are the parameter, its prior type, the minimal and
maximal allowed value and the most likely and its 95 % CL error.

parameter prior min max model result(95% c.l.)

γ uniform 0 0.4 0.20+0.03
−0.03

Θγ uniform −90◦ 90◦ 25.7+3.0 ◦
−2.5

xNFW
1 uniform −8′′ 8′′ 0.19+0.44

−0.47
′′

yNFW
1 uniform −8′′ 8′′ 0.78+0.23

−0.23
′′

qNFW uniform 0.35 1 0.686+0.014
−0.016

ΘNFW uniform −20◦ 44◦ 19.0+1.2 ◦
−1.0

ΘE,NFW uniform 25′′ 200′′ 43.8+1.2
−1.4

′′

rs,NFW uniform 50′′ 650′′ 175+23
−20

′′

rt,1′′ uniform 11kpc 142kpc 31+36
−14kpc

σGR uniform 59kms−1 395kms−1 236+29
−32kms−1

1relative to the center of the BCG at 12:06:12.134 RA (J2000) -08:48:03.35 DEC (J2000)

5kpc to 6kpc from a Sérsic, (Sérsic, 1963), a de Vaucouleurs (de Vaucouleurs, 1948) and a
de Vaucouleurs+exponential disc in the F160W and F814W filters consistently using Galfit
(Peng et al., 2010). This effective radius agrees well with measurements (in the HST-F814W
and VLT-FORS-I-band filters) of other elliptical galaxies in various clusters of similar red-
shift, see Figure 10 in Saglia et al. (2010).

Modeling of the cluster component

We model the cluster as a NFW (Navarro et al., 1997) halo. We have also used a non singular
isothermal elliptical (NSIE) profile for the halo, but this results in worse fits to the positions
of the multiple image systems. The best fit χ2 for the NFW is χ2

NFW = 227, while a NSIE
cluster scale halo with the same number of free parameters gives a χ2

NSIE = 434, for the full
model using point–like images. A similar difference for a NSIE vs NFW model has been
reported already for the stacked weak lensing signal of clusters and groups of galaxies in the
SDSS (Mandelbaum et al., 2006).
We also add external shear as a free parameter to allow for a contribution of the large scale
environment in the vicinity of the cluster.
This gives in total 6 free parameters for the NFW halo, 2 for the external shear, 2 for the
galaxy lenses, 9 for the source redshifts and 32 free parameters for the (RA,DEC) source
positions of the 16 sources. The lens model parameters and its priors are posted in Table 7.3.

We use flat priors with defined minimum and maximum values for each of the parameters.
From the multiple images, we get 104 constrains, leaving this model with 53 d.o.f.

7.6.2 Results of the point-like modeling

Putting all together, we can now reconstruct the lensing signal for this cluster. We use
the strong lensing code Glee, a lens modeling software developed by S. H. Suyu and A.
Halkola (Suyu & Halkola, 2010; Suyu et al., 2012). This method does not only yield the
best fitting model (using either source plane or image plane minimization) but in addition
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Figure 7.2: A 110′′ × 100′′ cutout of the cluster center. The multiple image systems are labeled according to
Tab 7.2. We have added the critical lines for a source at the redshift of the arc (z = 1.03) in cyan and for a
source at z = 2.54 in red. The critical lines are calculated from a pixelated magnification map, enclosing the high
magnification areas of the image. The BCG and the reference galaxy GR are marked in the image. North is up and
east is left. This color composite image is made from the F435W, F606W and F814W HST/ACS filter data.
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includes a Monte Carlo Markov Chain (MCMC) sampler yielding the most likely parameters
with their confidence limits. We obtain the best–fitting cluster model by maximizing the
posterior probability distribution function. For that, the likelihood is multiplied with the
priors, see Halkola et al. (2006, 2008); Suyu & Halkola (2010). The likelihood is proportional
to ∼ exp(−χ2/2). The χ2 is calculated from the difference between the observed and the
model predicted image position:

χ2 =
∑
i

∥ Θi −Θ0,i ∥2

δ2Θi

,

where Θi and Θ0,i mark the model predicted and observed position of multiple image i and δΘi

its input uncertainty. The MCMC sampling procedure is described in Dunkley et al. (2005)
and Suyu & Halkola (2010). We get acceptance rates of typically ∼ 0.25 for the MCMC, the
covariance matrix between parameters is derived from a previous run of the MCMC procedure
for the same model parameters. Convergence is achieved based on the power spectrum test
given in Dunkley et al. (2005).

Results for the cluster–scale model

For the best-fit values4, we get: rt,1′′ = 23.7kpc, σGR = 246kms−1, γ = 0.19, Θγ = 26◦,
xNFW = 0.15′′, yNFW = 0.74′′, b/aNFW = 0.69, ΘNFW = 19◦, ΘE,NFW = 44.1′′ and rs,NFW =
174′′. As explained already the external shear and the Einstein radius are given in units of
DdsD

−1
s . The redshift estimates of the best-fit model are given in Table 7.2. Most of the

redshifts agree with their photometric estimates within the errors, only system 6 is a clear
outlier. The critical lines for the arc redshift and a redshift of z = 2.54 are plotted in Fig.
7.2.
In Fig. 7.3, we show the differences of the input and model output positions for our best-fit
model.
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Figure 7.3: The radial error dependence for the best fit model is shown in this plot. Plotted is the distance between
observed and model predicted multiple image position on the y-axis against its distance from the center of the BCG.
Overplotted are the respective median and mean of the images. The vertical dotted line marks the mean distance
of the giant arc and its counterimage to the center of the BCG. There is no radial dependence of the error visible
in this Model.

As one can see, the mean and median differences are 0.86′′ and 0.82′′. This justifies the used
input uncertainty of 0.5′′, since this is a good estimate of the reconstruction uncertainty.
The MCMC sampling provides us with estimates for the parameter uncertainties. The prob-
ability densities for the parameter estimates are shown in Fig. 7.4.

4The error erstimates from the MCMC sample will be discussed below
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Figure 7.4: Parameter estimates from the MCMC sampling of the parameter space. The shaded regions give the
68.3% 95.5 % and 99.7 % uncertainty areas, from dark to light gray, respectively.
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We want to discuss some of the parameters here, quoting the 95 % confidence intervals: First,
the external shear values are: γ = 0.20+0.03

−0.03 and Θγ = 25.7+3.0 ◦
−2.5 . This shear can originate

from external structure present in the vicinity of the cluster or from substructure present
in the cluster, but not accounted for in the model. Indeed, the cluster mass reconstruction
map of Umetsu et al. (2012) (see their Fig. 8) shows two additional structures, one in the
southeast one in the northwest of the cluster center. We take the 2D mass reconstruction
map of Umetsu et al. (2012), and subtract the surface mass density of the their best–fitting
cluster NFW-profile, leaving us with the residual mass map. We calculate the shear that these
additional masses cause in the cluster center, and obtain a values of γ ⪅ 0.13 for DdsD

−1
s = 1.

This thus explains a part of the shear present in the model. In addition there is a faint, bar
like intra–cluster–light structure in the center of MACSJ1206.2-0847, visible mostly in the
NIR, see Fig. 7.5.

Figure 7.5: The center of the cluster MACSJ1206.2-0847 as observed with the F160W HST/WFC3 filter. The
faint, bar-like structure in the intra-cluster light is marked with a white box. It extends ∼ 1.5 radially outwards from
the BCG to the SE. The mass associated with this ICL acts as further substructure. We use logarithmic scaling for
the fluxes in this image.

The mass associated with this light causes an additional shear. To verify this, we model this
bar as an isothermal, highly elliptical mass profile (qbar < 0.4) with similar values for the
core and truncation radii. A best–fit total bar mass of a few times 1012M⊙ is sufficient to
lower the required external shear values down to the expectation5 from the environment and,
at the same time, further improve the overall fit quality of the model significantly. We check
that including this intra–cluster–light bar does not change the rt,1′′ significantly and ignore
it for the rest of this work. A detailed study of the mass associated to the intra cluster light
is beyond the scope of this paper.
Second, the cluster–scale NFW halo has the following most likely parameter estimates: xNFW =
0.19+0.44

−0.47
′′, yNFW = 0.78+0.23

−0.23
′′, qNFW = b/aNFW = 0.686+0.014

−0.016, ΘNFW = 19.0+1.2 ◦
−1.0 , ΘE,NFW =

43.8+1.2
−1.4

′′, rs,NFW = 175+23
−20

′′. The results regarding the cluster-scale dark matter halo are
within our expectations:

• The halo center’s position follows the same trend as the X-ray center in Ebeling et al.
(2009), i.e., the center has a slight tendency to move towards positive values of x and
y relative to the BCG center. In total, the center of mass is shifted by approximately
(0.8 ± 0.3)′′. Ebeling et al. (2009) report a displacement of the X-ray center from the
BCG center of (1.7 ± 0.4)′′ in approximately the same direction implying that these
displacements agree on a 2σ level. The level of displacement between the BCG and the
dark matter halo center is comparable to Zitrin et al. (2012a).

5For the bar model, we get an external shear value of γ = 0.13+0.04
−0.04.
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• The orientation of the NFW-major axis follows the major axis of the BCG within ≈ 5◦

• There is some degeneracy between the orientation of the cluster halo and the external
shear, since both can compensate each other partially. The same is true for the axis
ratio of the halo and the value of the external shear.

• For the Einstein and scale radius of the NFW halo, we get: ΘE,NFW = 43.8+1.2
−1.4

′′,

rs,NFW = 175+23
−20

′′. The total mass included within a cylinder of radius R is shown in
Fig. 7.6.

Figure 7.6: The projected mass estimates within circular apertures are shown in this figure. The black area shows
the 68 % confidence interval for the combined mass, the black solid and dashed lines show the mass contributions
for the NFW halo alone and the galaxies for the best-fit model, respectively. The small uncertainty for the mass
estimate comes from the fact that we use a parametric model, which needs to reproduce the correct Einstein radius,
therefore giving too small errors in the intermediate radii. We overplot the mass estimates from Umetsu et al.
(2012), more explicitly their NFW fit to the weak and strong lensing data in gray, their weak lensing mass estimates
alone (red area), and the Zitrin et al. (2012b) strong lensing estimate in blue. The mass estimate in this work
agrees in the range of ∼ 4kpc to ∼ 150kpc with our previous work.

Comparisons with Zitrin et al. (2012b) and Umetsu et al. (2012) show that we derive
the same mass estimates within 68 % c.l. in the range up to ≈ 150kpc. Our errors
on the measured masses are derived from the mass distribution of 200 random cluster
models from the MCMC points. Since we use a parametric model for the lens, we only
measure the uncertainty within this parametric model, not taking into account that
different parameterizations could give similar good fits with a slightly different mass
profile, hence underestimating the true error on the radial mass profile.

• We fit a circular NFW6 halo to the total azimuthally averaged mass in Fig. 7.6 to
estimate the concentration c200 and rs,NFW from the total included mass with a least
square fit. We get a concentration of c200 = 3.7 ± 0.2 and a scale radius of rs,NFW =
677 ± 48kpc. When we exclude the central 70kpc from the fit, we get c200 ≈ 3.2 and
rs,NFW = 827kpc. Our radially averaged mass distribution agrees with the results of
Umetsu et al. (2012) in the center. Our scale radius value is an extrapolation beyond
the scales of strong lensing datapoints. Since Umetsu et al. (2012) do a combined

6We give the values for an overdensity of ∆ = 200. The conversion to Umetsu et al. (2012), who use
∆ = 132, is c132 ∼ 1.2c200.
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strong and weak lensing analysis constraining the profile on a much larger scale than
our work can do, confidence intervals for these two parameters are smaller than ours
and their conclusions are much more firm. Regarding results of MACSJ1206.2-0847’s
mass–concentration relation we therefore refer the reader to the work of Umetsu et al.
(2012).

Results for galaxy halos tracing the cluster–substructure

Using the F160W flux of the galaxies and scaling relations, the mass distribution of the
galaxies is described as a function of the two (free) parameters, the velocity dispersion of
GR σGR, and the normalization of the truncation radius scaling rt,1′′ . This truncation scale
rt,1′′ is not to be confused with rt,GR, which gives the truncation radius for galaxy GR and is
shown in Fig. 7.7.

20 30 40 50 60 70
rt,GR (kpc)

200

220

240

260

280

σ G
R
 (

km
s-1

)

MCMC-sampling
Enclosed mass

Figure 7.7: Here we show the probability contours for the 2 parameters governing the profile of the GR for the
point source modeling: The truncation radius rt,GR = rt,1′′(σE,GR(186kms−1)−1)1.333 and the velocity dispersion
of the GR σE,GR. We also show the best fit for the enclosed mass within an effective radius as dashed lines, which
gives a radius of Rmass,eff = 26.6kpc and a enclosed mass of M(< Rmass,eff) = 7.3± 0.6× 1011M⊙ for the GR.

For these 2 values, we get the most likely values of: rt,GR = 41+34
−18kpc and σGR = 236+29

−32kms−1.
We apply the Faber-Jackson relation and show the velocity dispersions for all cluster members
galaxies as a histogram in Fig. 7.8.

Since the lenses’ impacts scale like ∝ σ2, most of the low velocity dispersion galaxies have
a minor influence on the lensing signal. There is however a secondary effect, i.e. that the
deflection angle that a galaxy can impose on the LOS to a multiple image position depends
also on the transverse distance to it. We therefore now weight each cluster galaxy by its
deflection angle (it imposes on all multiple images) and obtain the effective velocity dispersion
histogram for the cluster members. It shows that the major impact is caused by galaxies with
velocity dispersion between 100kms−1 and 200kms−1 (55% of cluster galaxies light deflection
for multiple images) or 250kms−1 (60%).
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Figure 7.8: The velocity dispersion distribution for the galaxy cluster MACSJ1206.2-0847 is shown here for the best
fit. Marked are the brightest cluster galaxy (BCG) and the second brightest galaxy (GR) which is used as a reference
for the Einstein radius scaling in this work. For the same galaxies, the dashed histogram gives the weighted velocity
dispersion distribution. As a weight, the mean deflection angle of a galaxy on all multiple images is used. As can
be seen, the galaxies with lower velocity dispersions get down-weighted, meaning that they contribute on a minor
level to the summed galaxies’ lensing signal. The BCG has a velocity dispersion of ∼ 290kms−1 from the best fit
scaling law. This agrees with Sand et al. (2004) who measure a stellar velocity dispersion of σ ∼ 250 ± 50kms−1

in the central ∼ 1.5′′ of the BCG.

For the galaxies, we get the following scaling law on a 95% CL basis:

rt,1′′ = 31+36
−14kpc

( σ

186kms−1

) 4
3

. (7.15)

We translate the output of the MCMC sampling for the truncation radius of a galaxy with 1′′

cosmology free Einstein radius into (1σ and 2σ) confidence contours for σGR and rt,GR and
show them in Fig. 7.7. If we would be able to constrain only the mass M(< Rm) within one
scale Rm (as it is the case for strong lensing analysis of galaxies with one multiple image or
one Einstein radius only) then the contours would extend to infinite truncation radius and
also smaller minimum value, given by Eq. 7.4 as

σ2 =
GM(< Rmass,p)

π

[
Rmass,p + rt −

√
R2

mass,p + r2t

]−1

. (7.16)

Hence the contours in Fig. 7.7 demonstrate that the degeneracy between the two free param-
eters is broken (albeit not yet completely). This implies that not only the enclosed mass at
some radius but also the gradient of the mass profile at this radius must be constrained by
the observables, i.e. there must exist a scale Rmass,p, where the profile is best determined, i.e
where the enclosed mass is most equal for all σGR and rt,GR pairs of the Chain output. We use
Eq. 7.4 for all MCMC sample output pairs and find this scale to be Rmass,p = 4.7′′=̂26.6 kpc.
The enclosed mass at this scale becomes M(< Rmass,p) = 7.3 × 1011M⊙ for the most likely
σGR and tt,GR pair. The curve of this constant enclosed mass is added as thick dashed line
in Fig. 7.7. As expected it traces the degeneracy in the σGR and rt,GR parameter space.
We then use Eq. 7.4 at this fixed enclosed mass radius and calculate the mass within
Rmass,p = 4.7′′ for each pair in the MCMC sample. From this distribution of enclosed masses,
we take the central 68 % as the error interval and get an enclosed mass of M(< Rmass,p) =
7.3± 0.6× 1011M⊙ at the fixed enclosed mass radius of Rmass,p = 4.7′′. These 68% upper and
lower confidence values are plotted as dashed lines in Fig. 7.7.
Thus we conclude that our lens model is indeed not only sensitive to the total mass asso-
ciated with galaxies but also to the size of the galaxy dark matter halos. There remains a
degeneracy between halo velocity dispersion and truncation radius at a level of a factor of 2
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for the truncation radius. For the reference halo within radius Rmass,p = 4.7′′=̂26.6 kpc the
enclosed mass is M(< Rmass,p) = 7.3 ± 0.6 × 1011M⊙
For galaxies with different luminosity and thus velocity dispersion and truncation radius the
radius where the mass is best known and the mass within this radius scales like Rmass,p ∝
rt/rtGR and M(< Rmass,p) ∝ σ2rt/(σ

2
GRrtGR).

To constrain the truncation scaling even further, we need to trace the lensing signal at various
galaxy distances more densely. This is achieved with the pixel by pixel image reconstruction of
the giant arc since every pixel has a different distance to the several centers of the surrounding
galaxies.

7.7 Strong lensing modeling of the full surface brightness of
the giant arc and its counterimage

We aim to further constrain the scaling relation for the truncation radius in this section. For
that, we take a different approach, reproducing the full surface brightness of the giant arc
and its counterimage. The full surface brightness not only contains information about the
deflection angle, but also about its derivative, making it a good tool to explore galactic halo
truncation in this system.

We use data from the F435W, F606W and F814W bands for the extended image reconstruc-
tion. We take different filters to minimize effects of light pollution of the surrounding galaxies.
The cluster galaxies are significantly dimmer in the F435W filter, therefore minimizing possi-
bility of galaxy light disturbing the arc light. Since the arc is already faint in this filter (The
average signal–to–noise ratio in the used cluster area is ∼ 0.5), we do not consider even bluer
bands. We also include a redder filter (F606W) in which the arc but also the surrounding
galaxies become brighter. We add the F814W filter with an even brighter arc. In this filter
the systematic uncertainty from the subtraction of the surrounding galaxies’ light gets com-
parable to the noise in the arc region, hence we refrain from investigating even redder bands.
We apply Galfit from Peng et al. (2010) to subtract the light of the surrounding galaxies
G1 to G5, see Fig. 7.9. For the F435W and F606W-filter data, we fit a de Vaucouleurs profile
(de Vaucouleurs, 1948) as a light model to the data and subtract it. For these 2 filters, the
subtracted fluxes at the position of the arc are small compared to the intrinsic noise of the
images for these pixels, so the impact of the exact details of the subtracted galaxy’s light
model are small. This is not the case for the F814W filter, therefore we create a best-fit
de Vaucouleurs, a best-fit Sérsic (Sérsic, 1963) and a best-fit King profile for galaxies G1 to
G5. From these 3 light models, we create a mean model and subtract that from the observed
image. To account for the systematic error introduced by the light subtraction in this filter,
we add the difference of the maximum and minimum value in each pixel for this 3 models to
the error image derived before. We limit the analysis to a small region around the arc and
its counterimage for computational reasons. This masked region is shown in Fig. 7.9.

The region is chosen by eye based on the arc visible in the F814W filter and used in all 3
bands.
As a systematic test, we choose the region to be reconstructed also by a signal–to–noise larger
than 2 cut on the F814W frame. Before the modeled area is selected, the signal–to–noise map
is block–smoothed with a length of 7 pixels. This leads to a slightly different selection of the
modeled region. The changes introduced on the truncation law by changing the mask however
are small, as described below.
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(a) (b)

Figure 7.9: This frame shows the used region around the giant arc 7.9(a) and its counterimage 7.9(b) in this galaxy
cluster. The mask is outlined in black. The underlying image is the F814W observed image for this cluster. The
galaxies marked with G1 to G5 in Fig. 7.9(a) have been subtracted to minimize possible contamination of the arc
light from the galaxies. One pixel corresponds to 0.05′′. North is up and east is left.

For the source reconstruction, we use a 9×9 pixel grid with a free pixel scale and source plane
position, therefore the physical size of the reconstructed source is unrestricted by the number
of source pixels. We compare different numbers of source pixels later on. For details of the
extended surface brightness reconstruction, see Suyu et al. (2006); Suyu & Halkola (2010).
It uses a linear inversion method (Warren & Dye, 2003) with curvature regularized source in
a Bayesian framework (Suyu et al., 2006). We search for the most probable solution of the
nonlinear lens mass parameters by maximizing the posterior in reconstructing the source (see,
Eq. 11 of Suyu & Halkola 2010). The lens parameter space is sampled by MCMC methods.
We tried both the curvature and gradient forms of regularization, and find that the resulting
lens parameters are insensitive to the choice of regularization.
We now concentrate on the galaxies G1 to G5 around the arc which are already subtracted
in Fig. 7.9. We fix all parameters (shear, cluster halo, source redshifts, galaxy parameters)
to its best-fit values from Sec. 7.6.2, and now only model galaxies G1 to G5. For the galaxies
G1, G2, G4, and G5, we allow each galaxy its own orientation and Einstein radius, keeping a
joint truncation scaling law following Eq. 7.13 for these galaxies. The values derived in Secs.
7.6.1 and 7.6.2, used as starting values, are stated in Table 7.4.

We do not enforce the scaling law on G3, since it is doubtable whether it is a cluster member
or not (it has a different photometric redshift and is formally not in our cluster member
catalog). Therefore G3 is modeled with 3 free parameters: its orientation, Einstein radius
and truncation radius. We obtain a best fit model using this 12 free parameters, optimizing
the F435W, F606W and F814W filter data simultaneously.
The best-fit data, model and residuals for each of the 3 filters are shown in Figs. 7.10, 7.11
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Table 7.4: Galaxies G1 to G5; results from the point-like model in Sec. 7.6.2

z Θ1
1 Θ2

1 q Θpt σpt rt,pt MB

(′′) (′′) (◦) (kms−1) (kpc)

G1 0.44492 21.592 5.996 0.79 18.5 121+16
−15 13+15

−6 -19.46

G2 0.46 ± 0.063 17.846 4.499 0.68 -47.3 190+26
−25 24+28

−11 -21.06

G3 0.53 ± 0.043 20.365 1.021 0.91 -68.9 143+19
−20 16+19

−8 -

G4 0.43802 19.473 -3.083 0.80 25.5 139+19
−19 16+18

−7 -19.94

G5 0.44462 20.862 -6.007 0.71 -74.9 104+14
−14 11+12

−5 -18.94

The errors give 95%c.l., derived from the respective errors in Sec. 7.6.2. MB is measured
independently from the HST photometry, assuming a galaxy redshift of z=0.44 1relative to

the center of the BCG at 12:06:12.134 RA (J2000) -08:48:03.35 DEC (J2000)
2spectroscopic redshift 3photometric redshift estimate, 95% confidence

Table 7.5: most likely values and errors for the full surface brightness model of the arc and its counterimage

rt,1′′ Θ σ rt
1

(kpc) (◦) (kms−1) (kpc)

G1 4*34.2+1.2
−1.2 −1.5+3.3

−3.7 130+10
−11 21+4

−4

G2 −49.9+0.8
−0.8 165+2

−2 29+2
−2

G4 −1.4+2.3
−2.3 143.1+1.2

−1.2 24.1+1.5
−1.5

G5 −41.2+2.5
−2.7 114.9+1.5

−1.5 17.9+1.5
−1.5

Given are the 95% c.l. errors. The best fit cluster model from Sec. 7.6.2 is used as the
cluster model. 1calculated for the galaxies from the scaling law

and 7.12.

The statistical error is estimated again using a MCMC sampling of the parameter space. The
most likely values and the errors for rt,1′′ and the truncation radius for each of the galaxies
can be seen in Table 7.5.

The truncation for the individual galaxies is still following Eq. 7.13 with σ⋆ = 186kms−1.
For every galaxy we give its most likely values and the 95% c.l. errors. The truncation
uncertainties for each of the galaxies are derived from the uncertainties on the Einstein radii
and the truncation scaling law. Especially by comparing Tables 7.4 and 7.5, we note that the
truncation scaling amplitude and the Einstein radii for the galaxies agree within the errors,
but giving tighter constraints from the extended image reconstruction. The orientations of
the galaxies in Tables 7.4 and 7.5 change by ≈ 20 to 30◦, meaning that there is a misalignment
between light and total mass for these galaxies. This misalignment value is slightly higher
than the ≈ 18◦ found by Bolton et al. (2008b) on isolated early type strong lensing galaxies.
Suyu & Halkola (2010) quote a misalignment of their satellite light and dark matter major
axis of about 50◦. Knebe et al. (2008) show from N–body simulations that satellite halos as
a whole prefer to be radially aligned with respect to the centers of their host halos, but not
the satellites’ inner parts (which predominantly trace the light distribution). This leads to a
misalignment between light and dark matter of satellite galaxies. Our misalignment is not as
high, but nevertheless it would be worth to study how tidal effects can alter the major axis
of dark matter halos.
In Fig. 7.13 the observed arc (Fig. 7.13(a)) and its counterimage (Fig. 7.13(b)) are shown
in the left column and the top row of the middle column; alongside with this, the same is
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(a) (b) (c)

Figure 7.10: The arc and its counterimage reconstruction in the F435W filter, from left to right are shown the
data, the model and the residuals. The top row shows the counterimage, the bottom row shows the giant arc. The
levels of gray are the same in each image. For this figure, a source size of 20× 20 pixels is used.

shown for a replacement of the arc and its counterimages with its full surface brightness
reconstruction from its best-fit models in the left column (Fig. 7.13(f)) and the bottom
row of the middle column (Fig. 7.13(e)). The angular scales are given in the figures. The
reconstructed source can also be seen in this Figure as the two panels in the middle column
(Figs. 7.13(c) and 7.13(d)). It is fully lensed into the counterimage and only partly lensed into
the arc itself. There are 2 versions of the source, one with 50 × 50 pixels, giving a resolution
superior to HST/ACS and a 25 × 25 pixels source, giving the same source as it would be
observed at approximate HST/ACS resolution. Both sources show the same field of view of
0.94′′ in x and 1.42′′ in y direction, respectively.

To estimate the magnification of the counterimage, we map the masked area in Fig. 7.9(b)
(ACI = 6.3arcsec2) back into the source plane and get an area of Asr = 1.1arcsec2. Therefore,
the magnification of the counterimage is µcounterimage = 5.8. We repeat this with the signal-
to-noise based mask mentioned above (ACI = 5.2arcsec2,Asr = 0.9arcsec2) and get the same
value for the magnification. Also, a direct calculation of the Jacobian matrix at the position
of the counterimage gives a similar value.
While the above statements are made for the best fit cluster model we now marginalize
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(a) (b) (c)

Figure 7.11: same as Figure 7.10, this time for the F606W filter.

over the variety of cluster distributions compatible with the observations. To estimate the
uncertainty related with the cluster model, we repeat the extended model analysis for 30
random cluster representations. These representations are taken from the MCMC sampling
calculated in Sec. 7.6.2 to estimate the error. The results are presented in Table 7.6.
We see that the errors on the parameter estimates are increased compared to Table 7.5 by
taking the uncertainties from the cluster model into account. For the truncation, we still get
tighter constrains than the point-like model described in Eq. 7.15 in Sec. 7.6.2. We get:

rt = 35 ± 8kpc ×
( σ

186kms−1

) 4
3

.

The velocity dispersions and truncation radii for galaxies G1, G2, G4 and G5 for the different
clusters are plotted in Fig. 7.14.

Tests for systematic errors

The statistical error for the truncation scaling scale in this galaxy cluster is on the order of
25%, making this method in principle a good tool to study truncation of galaxies.
We now investigate the robustness of the truncation and Einstein radii results derived in
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(a) (b) (c)

Figure 7.12: same as Figure 7.10, this time for the F814W filter.

Sec. 7.7 against possible sources of systematic errors. Possible systematic effects might stem
from the treatment of the data of the filters or the frames itself, the analyzed arc region, the
number of source pixels or the forced scaling law. First, we repeat the analysis in each of
the filters individually. The results for the different filters are summarized in Table 7.7: All
values agree with each other within the 95% c.l. intervals, implying that the surface brightness
distribution in different filters gives consistent results regarding the halo truncation. Since
the F435W band data have lower signal to noise for the arc than the data in the two redder
filters considered in this work, the best fit parameters for the the model using all 3 filter data
simultaneously are driven by the two redder bands.
Next, we change the investigated region around the arc based on a 2σ cut of a smoothed
signal to noise map in the F814W filter. We again use the data of all three filters at the same
time. For the mask based on the signal to noise level we get slightly different but consistent
values for the truncation scale and the individual Einstein radii, see Table 7.7(“mask2”).
Next we use different numbers of source pixels. For the analysis, we use only the F814W
filter and the standard mask. Starting from a 8 × 8 pixel grid and going up to a 13 × 13
grid, we calculate the best fit for each model. The results are again given in Table 7.7(“sr
pix”). We get a systematic uncertainty from the source pixel size comparable to the statistic
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(a)

(b)

(c) (d)

(e)

(f)

Figure 7.13: This figure shows, from left to right: The observed arc on the left. In the middle, from top to bottom: The
observed counterimage, the reconstructed source with different resolutions and the model counterimage. On the right: The
model arc. All images are combinations of the F435W, F606W and F814W bands, respectively. On the left, the numbers
mark the multiple image input positions on the arc for the point-like model. We overplot the critical line structure in cyan
on the left for the point-like model, on the right for full surface brightness reconstruction, respectively. The critical lines are
calculated from a pixelated magnification map, the lines define regions above a absolute magnification value of 100, not taking
parity into account. For the sources, the left source (7.13(c)) shows the source galaxy at a 50 pixel grid, giving a better than
HST resolution, the right hand source (7.13(d)) shows the same source at approximate HST resolution.
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Table 7.6: most likely values and errors for the full surface brightness model of the arc and its counterimage, taking
different cluster models into account

rt,1′′ Θ σ rt
(kpc) (◦) (kms−1) (kpc)

G1 4*35 ± 8 1.2 ± 20.6 128 ± 18 22 ± 7
G2 −47.0 ± 6.1 165 ± 6 30 ± 6
G4 9.3 ± 17.6 140 ± 6 24 ± 6
G5 −45.3 ± 19.1 124 ± 13 20 ± 4

From the MCMChain used to calculate the errors in Sec. 7.6.2, 30 random cluster
representations are drawn. The analysis outlined for the best-fit cluster model is repeated
for each of the random cluster models. The errors give the r.m.s errors on the parameters

from this different cluster models.

uncertainties for the best fit cluster model when we fix the cluster potential. We verify that
this is also true for much different numbers of source pixels. Using a 25×25 and 30×30 pixel
grid and get values consistent with the ones stated in Table 7.6. Recent spectroscopic results
indicate that G3 could be a member of the galaxy cluster. Hence we repeat the above outlined
analysis including G3 as a cluster member allowing for a free central velocity dispersion and
orientation. Doing this, there is no change in the truncation scaling or a decrease of the
errorbars.
Finally we investigate how the truncation results depend on the assumed Faber-Jackson index
δ. We use δ = 0.25 instead of δ = 0.3, still keeping ϵ = 0. We restart the modeling
for the point-like images, fixing the global parameters and then turn again to the extended
image modeling. The corresponding truncation radii are shown in the last column of Table
7.7(“FJ,δ = 0.25”). Here, the truncation law gets:

rt = 41.8kpc ×
( σ

186kms−1

)2
.

The individual velocity dispersions and derived truncation radii, however agree with the ones
derived before within the errors, see Tables 7.6 and 7.7. This means, there is no indication for
the preferred exponent of the scaling law in this work since both scaling laws give similarly
good fits.
Our tests show that the systematic errors are smaller than the ones from the uncertainty of
the cluster potential, making our estimates robust with respect to systematic effects. Sum-
marizing we conclude that if we vary the weighting of the extended image input data (SFB in
different filters), the masking regions or modeling details as the assumed Faber Jackson index
then these changes the estimated halo sizes less than our “statistical errors” due to different
global halo models from the MCMC sample.

7.8 Discussion & conclusion

7.8.1 Lens modeling and cluster mass distribution

Using positions of multiply imaged galaxies we measured the mass distribution in the cen-
ter of MACSJ1206.2-0847 based on a parameterized model, where the smooth dark matter
was described with an elliptical NFW-profile and the matter traced by cluster galaxies was
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Figure 7.14: The velocity dispersions and calculated truncation radii for the galaxies G1, G2, G4 and G5 for the
different cluster realizations. Each cluster representation has one entry for each galaxy. The color coding is the
following: red: G1, black: G2, green: G4, blue: G5.

described with elliptical truncated isothermal spheres. Using scaling relations between lumi-
nosity and velocity dispersion and between luminosity and truncation radius, the essential
halo parameters (velocity dispersions and truncation radii) of all dark matter halos are mod-
eled with just 2 free parameters. The best fit model reproduces the observed multiple image
positions with a mean accuracy of 0.86′′. The level of the positional mismatch is in agree-
ment with expectations from unaccounted substructure or LOS contamination. For the same
cluster Zitrin et al. (2012b) get a slightly higher value of ≈ 1.3′′ for the average image–plane
reproduction uncertainty per image.
In general the match of multiple image position seems to depend on the number of multiple
images that have been identified (Zitrin et al., 2011; Richard et al., 2010b; Limousin et al.,
2008; Halkola et al., 2006). Given the number of multiple image systems a mean image plane
distance below 1′′ is a rather good value.
Finally we found out that the model becomes better and requires a more reasonable value for
the external shear if we account for the intra-cluster light which has an almost rectangular
shape and a major axis in the direction of the major cluster axis, indicating stripped stars.
This offers prospects to constrain the properties (e.g.. mass) of the intra cluster light compo-
nent, which is however beyond the scope of this work.
Our total mass profile agrees with that from the previous work of Zitrin et al. (2012b) and
Umetsu et al. (2012). Regarding values for concentration and scale radius for the total cluster
mass distribution we refer the reader to the work of Umetsu et al. (2012) since in this work
the mass profile has been constrained on much larger scale (using strong- and weak-lensing
shear and magnification information).
In addition to previous work we pay special attention to match the extended surface brightness
distribution of the giant arc and its counterimage as observed in the F435W-, the F606W-
and the F814W-filters. This helps us to constrain the velocity dispersion and truncation
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Table 7.7: Parameter estimates, systematic tests of the full surface reconstruction

F435W1 F606W1 F814W1 mask2 sr pix2 FJ,δ = 0.25

rt,1′′ (kpc) 35.1+6.3
−4.7 36.0+2.1

−2.0 36.9+2.2
−2.0 35.6 34.9 ± 0.9 41.8

α
δ

4
3

4
3

4
3

4
3

4
3 2.00

σG1 (kms−1) 115+5
−6 126.4+1.4

−1.4 129.1+1.3
−1.4 124 124 ± 8 133

rt,G1 (kpc) 18.2 22.6 21.6 20.1 20.2 ± 1.6 21.5

σG2 (kms−1) 161+6
−7 161+2

−2 166+2
−2 164 162 ± 3 165

rt,G2 (kpc) 28.4 31.1 30.1 29.3 29.0 ± 0.8 32.5

σG4 (kms−1) 132+4
−5 140.7+2.4

−2.5 141.9+1.2
−1.2 139 140.7 ± 1.8 143

rt,G4 (kpc) 21.9 25.9 24.6 23.7 24.1 ± 0.6 24.7

σG5 (kms−1) 117.9+1.5
−1.5 117.9+1.5

−1.5 113.4+1.5
−1.5 119 117.9 ± 3.5 116

rt,G5 (kpc) 19.3 20.8 18.0 19.3 19.0 ± 0.8 16.2
1The errors given are the 95 % c.l. on the input parameters

2given are the r.m.s. errors We omit errors for the truncation radii of the individual galaxies
since these can be derived from the truncation law for the individual filters. We omit all
errors for the mask2 and FJ,δ = 0.25 models since these are similar to the ones stated in

Table 7.5.

parameters of cluster galaxy halos considerably beyond the result obtained from our point
source modeling alone. We ensured that the results are robust regarding modeling details
and regarding the exact information used from the extended light distribution of the arc.

7.8.2 Halo velocity dispersion versus Faber-Jackson relation

The amplitudes for the luminosity vs velocity dispersion scaling law (and the luminosity
vs truncation radius scaling law) were constrained without any reference to optical galaxy
properties. We obtain for the relation between the apparent AB-magnitude in the F160W -
filter and the halo velocity dispersion

m160,AB = −8.333 log(σ[kms−1]) + 37.39 . (7.17)

In the above relation the value for the slope was assumed and the zeropoint determined. On
the other hand it is known from field elliptical strong lenses that multiple image systems can
be well reproduced assuming an isothermal total mass profile with an amplitude given by the
central stellar velocity dispersion. This isothermality is measured out to two Einstein radii
(Koopmans et al. (2006); Grillo et al. (2010); Eichner et al. (2012)). However, since Einstein
radii of elliptical galaxies are typically of the order of the effective radius, the mass distribu-
tion is only measured out to one effective radius with strong lensing of field elliptical galaxies.
This is the scale where the stellar mass is still dominating or at most the dark matter and
luminous matter are of the same order. The lensing derived velocity dispersion in this work
agrees also with measured stellar velocity dispersion for the BCG. Recent measurements also
indicates an agreement of the lensing derived and measured velocity dispersion for GR.
We have shown in Sec. 7.6.2 that we constrain the mass profile of our cluster galaxies most
strongly at a scale of ∼ 5 effective radii. This is where dark matter dominates and thus we
now can compare the halo velocity dispersion derived from lensing with the stellar velocity
dispersion amplitude. An estimate for the stellar velocity dispersion amplitude can be ob-
tained from the Faber-Jackson relation (Faber & Jackson, 1976) or the Fundamental Plane
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(Bender et al., 1992).
Using the FJ-relation we proceed as follows: For all galaxies in our cluster member catalog
we fit the spectral energy distribution (SED) using their full 16-filter photometry (see Fig.
10 of Postman et al. 2012) and assuming that they are at z = 0.44. We in this way obtain for
each cluster member the SED-type and an estimate for the restframe absolute magnitude in
the Bessel B-band, MB (in the Vega system). We then use redshift evolution of the ellipticals
fundamental planes mass to light ratio, which we then assume to be due to aging of stellar
population (luminosity evolution). Saglia et al. (2010) measured this in the EDISC sample
with cluster (and field) ellipticals and obtained an evolution of the mass to light ratio of
cluster ellipticals of ∆ logM/LB = −1.6 ∗ (1 + z) which gives a flux dimming by a factor of
1.8 from z = 0.44 to z = 0. We plot the luminosity evolved absolute B-band magnitudes of
red cluster members versus their halo velocity dispersion in Fig. 7.15.

KB 2012

local Faber Jackson relation

Figure 7.15: This Figure shows with a green line the local Faber-Jackson relation in absolute Vega B-Magnitudes
vs the central stellar velocity dispersion from Kormendy & Bender (2012). The red triangles show the absolute
B-magnitude of MACSJ1206.2 red cluster members corrected for the luminosity evolution to redshift zero by a
factor of 1.8 versus the halo velocity dispersion obtained from the lens modeling. Note that we do not model
each galaxy separately but only the amplitude of the relation for the assumed scaling law (in this case δ = 0.25).
The filled yellow circles show the same galaxies for the assumed scaling law of δ = 0.30. The scatter around the
δ = 0.25-slope is due to the fact that the luminosity-σ scaling was applied using the NIR F160W-data and not the
restframe B-magnitude obtained from the SED-fitting. The small scatter demonstrates that the SEDs of the red
galaxies are fairly uniform.

(The velocity dispersion results for the δ = 0.3 case are shown in yellow, and those for the
δ = 0.25 case in red). We do not change the halo velocity dispersion when evolving the
cluster ellipticals to redshift zero, since at fixed stellar mass there is hardly any evolution of
the stellar velocity dispersion from redshift 0.44 to zero according to the Fig. 22 of Saglia
et al. (2010) and we assume the same to hold also for the halo velocity dispersion. We also
draw errors of 10 % for the velocity dispersion to guide the eye, since this is the accuracy at
which we can determine the amplitude of the luminosity versus velocity dispersion scaling. In
the same Figure we added the local Faber-Jackson relation from Kormendy & Bender (2012)
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as a green line. Its slope (in our notation) is δFJ = 0.273 and thus in between our assumed
δ = 0.25 (red triangles) and δ = 0.3 (yellow circles) cases. Both results agree within their
errors with the Faber-Jackson relation, although the δ = 0.3 case is shifted to lower velocity
dispersions at the faint end. Stars in elliptical galaxies are dynamically colder than their dark
matter halo (see Gerhard et al. (2001)) and their velocity dispersion is linked to the maximum
circular halo velocity as σstars = 0.66vmax

circ (at least for the sample of ellipticals investigated
in Gerhard et al. (2001), see their Eq. (2)). Therefore we would expect the halo velocity
dispersion to be σhalo = 1.07σstars. Our best fit halo velocity dispersions are slightly smaller
than those of the stars according to the FJ relation, but the approximate 10 percent error in
measuring the velocity dispersion amplitude makes it also compatible that the halo velocity
dispersion is a few percent larger than the stellar velocity dispersion. We would need a more
precise global cluster (to decrease the error on the halo velocity dispersions) and spectroscopic
stellar velocity dispersions for the red cluster members to measure the relation between halo
and stellar velocity dispersion more precisely.

7.8.3 Halo truncation and stripped mass fraction

The truncation radius vs velocity dispersion relation for the halo of cluster members is

rt = (35 ± 8kpc)
( σ

186kms−1

) 4
3

, (7.18)

from the full surface brightness reconstruction of the extended arc and its counterimage,
based on 4 nearby cluster galaxies. We get a very similar relation for the point-like modeling,
which includes all cluster members statistically. We have shown in Fig. 7.8 that the galaxies
contributing most strongly to our point-like halo truncation measurement have velocity dis-
persions between 100kms−1 and 200kms−1. In the Eq. 7.18 the exponent 4

3 is assumed to be
known and the amplitude is determined. As can be seen in Fig. 7.16 the errorbars on this
relation in the range of 100kms−1 and 200kms−1 are quite large, hence different exponents
for the truncation vs velocity dispersion law fit the multiple image positions equally well, as
long similar values for the actual truncation radii of the most relevant individual galaxies are
predicted. If the exponent was changed to 2 the results are still very similar for the majority
of galaxies and we get a similar fit quality. Our velocity dispersion vs truncation radius re-
lation is shown in Fig. 7.16 where the error intervals obtained from the point like modeling
are in red and the smaller errors for the extended SFB modeling are in blue.
Since the halo velocity dispersion is not a direct observable a more practical relation than Eq.
7.18 is to rephrase the upper equation as a function of apparent mAB,160 magnitude,

log rt = log(35 ± 8) − 0.16mAB,160 + 2.96 , (7.19)

such that it gives a recipe to model the galaxy halos also for other clusters at the same
redshift. To obtain a redshift independent relation we transform Eq. 7.19 to relate the
truncation radius of each galaxy directly to its absolute B-band magnitude (in Vega). We
obtain:

log rt = log(35 ± 8) − 0.16MB − 3.372 , (7.20)

This equation holds for the red galaxies in Fig. 7.1. We now compare our results with previous
work on the truncation of galaxies halos in clusters of galaxies: Halkola et al. (2007) do a
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Figure 7.16: This figure shows our results for the halo truncation radius vs velocity dispersion for the point source
modeling (red region marks the 68% confidence interval) and the SFB-modeling of the arc (best fit is the black line,
and the 1 sigma confidence region is shown in blue). The triangles mark constraints (and their 1 sigma errors) for
individual galaxies obtained by Donnarumma et al. (2011), the star marks the result for one galaxy from Richard
et al. (2010a), the point is taken from Suyu & Halkola (2010). The light green and light orange marks the 1σ
confidence intervals obtained from halkola for two different scaling relations, rt ∼ σ and rt ∼ σ2, analyzed in their
work.

statistical analysis of all galaxies in the strong lensing regime of the cluster A1689. Although
they include galaxies in the modeling with (Fundamental plane and Faber-Jackson) velocity
dispersion estimates from about 300kms−1 down to about 20kms−1 (see Fig. 5 Halkola et al.
2006) in their sample it seems that their sensitivity for halo truncation is mostly due to
massive galaxies with a velocity dispersion of 220kms−1. This can be seen in Fig. 7.16 which
shows that the halo truncation size for the two parameterizations (s ∝ σ and and s ∝ σ2)
agrees for σ = 220km/s galaxies where the halo size then is equal to about 65kpc with a one
sigma error of about 15kpc−20kpc. Besides this their Fig. 1 shows that their χ2 starts to rise
steeply only for halo sizes smaller than 30kpc. This implies that their result is in agreement
with ours.

The work of Richard et al. (2010a) and Donnarumma et al. (2011) allows a more direct
comparison to our results since they analyze a situation more similar to ours. Their cluster
galaxies have mostly low velocity dispersion (triangle and stars in Fig. 7.16) and they typically
have a projected distance to the cluster center of the order of ≈ 10′′.
Our median “lensing-weighted” cluster galaxy distance to the cluster center is ∼ 26′′ (the 4
cluster members close to the arc have a distance of ∼ 20′′ which is 6% of the virial radius of
this cluster by Umetsu et al. (2012)). This means that our galaxy sample and that of Richard
et al. (2010a) and Donnarumma et al. (2011) is likely to have undergone a similar amount
of stripping (assuming that the central cluster density and the collapse state of their clusters
is similar to ours). The results of Richard et al. (2010a) and Donnarumma et al. (2011) are
inserted into Fig. 7.16 and are in agreement with ours.
Suyu & Halkola (2010) measure the individual truncation of a satellite halo embedded in a
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group (for which we estimate a velocity dispersion of about 400kms−1 to 500kms−1 based on
their lensing model) where the satellite is only ∼ 26kpc away in projection from the group
center. They estimate the velocity dispersion of the satellite galaxy to be around 120km/s
and have a truncation radius of only 4 − 9kpc at 95% c.l.. Their result shows that indeed
halo truncation can be severe close to centers of groups (and thus even more for clusters).
With a different method, Limousin et al. (2007a) measure the truncation of cluster galaxies
with weak lensing for 5 different clusters and get similar results within the errors. Pu et al.
(2010) investigate 3 nearby group members using dynamical modeling. They use a common
cutoff-radius for all three galaxies with velocity dispersions between σ ≈ 200kms−1 and σ ≈
300kms−1, somewhat higher than our sample. Their best-fit value is Rc = 60kpc which would
agree with our measurement if we extrapolate to higher velocity dispersions.
We compare our value for the truncation radius with the half mass radius derived in Limousin
et al. (2009) from simulations of halo stripping in 2 numerically simulated clusters, one with
a similar virial mass as MACSJ1206.2-0847. Our galaxy G4 in Table 7.6 has a truncation
radius of 24 ± 6kpc and a R-band rest-frame luminosity of LR,rf ≈ 3 ∗ 1011LR,⊙. At this
luminosity, Limousin et al. (2009) get a half mass radius of r1/2 ≈ 20kpc for a galaxy close to
cluster center in projection, which agrees well with our result.
We can infer the amount of stripped dark matter for cluster galaxies if we compare their
truncation radii with the truncation radii of the corresponding galaxies in the field. Brimioulle
et al. (2013) measure a truncation radius of s = 245+64

−52h
−1
100kpc for a reference galaxy with σ =

144kms−1, with red SED and in underdense environments. For the same velocity dispersion
our cluster galaxies have a truncation radius of rt = 25±6 kpc. Consequently the ratio for the
total halo mass in the field and in the cluster for this kind of galaxy are Mtot,field/Mtot,cluster =
13.9+4.9

−4.4. In the last step we have assumed that “the velocity dispersion” (i.e. kinematics of
stars and central dark matter particles) of a halo does not change when it is stripped during
cluster infall. Models of massive galaxies Pu et al. (2010) indeed suggest that a change in the
halo truncation radius (as long as it happens beyond ∼ 5Reff) has no detectable influence on
the stellar kinematics inside ∼ 5Reff . (J. Thomas, private communication). The truncation
radius for GR is ∼ 5 times higher than the effective radius of this galaxy. Romanishin (1986)
give a relation for the absolute B-band magnitude MB ∼ −2.06 logReff . This means that Reff

drops faster with fainter MB than rt in Eq. 7.20, implying that the rt/Reff rises for smaller
fluxes and hence stripping of the galaxies does also not affect the kinematics of the lower
luminosity galaxies.

The large mass loss of the cluster galaxies (close in projection to the cluster center) agrees with
results from numerical modeling of the stripping (see also introduction), which shows that
mass losses up to 90% are common for cluster galaxies close to the cluster center (Warnick
et al. (2008) ).
If we assume that all cluster galaxies considered in our model have halo masses of only 10%
of their infall mass then the total stripped mass amounts Mstripped = 5.1+1.8

−1.5 × 1013M⊙ out

to a projected radius of ≈ 100kpc. The total mass estimate at the same radius is 7.11+0.04
−0.03 ×

1013M⊙. Within a projected radius of ≈ 400kpc, the ratio of stripped to total cluster mass
gives values of 25 to 50%. This will be an upper value, since the fractional stripped galaxy
halo masses will be smaller in the outskirts. Nevertheless it implies that a significant fraction
of the smooth dark matter component in the cluster core originates from cluster members
stripped during the formation and relaxation of the cluster.
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Table 7.8: apparent magnitudes of the counterimage (CI) and modeled source (SR)in AB

Filter F435WF475WF606WF625WF775WF814WF850LPF105WF110WF125WF140WF160W

CI 22.20 22.14 21.73 21.52 20.92 20.76 20.39 20.25 20.06 19.93 19.81 19.72
SR 24.11 24.05 23.64 23.43 22.83 22.67 22.30 22.16 21.97 21.84 21.72 21.63

7.8.4 The SFB-distribution of the source of the giant arc

Since not all of the arc source is lensed into the giant arc – basically, all parts above image
1c.1 on the counterimage are outside of the caustic and therefore only imaged one time in the
counterimage and not in the arc – only the observed counterimage can be used to obtain the
source properties. The observed counterimage and the best-fit source model can be seen in
Fig. 7.13, both at HST resolution and better than HST resolution. Comparing the observed
counterimage and the source at HST resolution, the increase in the level of detail due to
lensing in this case can be seen. The observed counterimage (Fig. 7.13(b)) and the high
resolution delensed counterimage (Fig. 7.13(c)) reveal the magnification of the source due
to lensing. The magnification is approximately equal to ∼ 5.8, this corresponds to a flux
brightening by about 2 magnitudes.
A three color representation of the counterimage in the F775W, F125W and F160W filters
and an approximately delensed version of it is shown in Fig. 7.17. The filters are chosen to be
equal to the restframe B, R and I band filters. The color image suggests that the source is a
fairly inclined, spiral star-forming galaxy with a core hosting more evolved stars. Comparing
with CANDLES results (Fig.2 of Wuyts et al. 2012) we conclude that the lensed galaxy is
a fairly normal redshift one galaxy. Results of the 3D-HST project indicate that about half
of the 1 < z < 1.5 galaxies have Hα emission lines width with rest-frame equivalent widths
for the detected galaxies within a 10Å to 130Å (van Dokkum et al. (2011)) and that star
formation occurs inside out with Hα-emission lines in the outskirts of galaxies and continuum
emission from their centers, Nelson et al. (2012). Thus it is likely that our source has emission
lines, too. This makes the galaxy an ideal target for measuring the 2D kinematics with the
ground based NIR IFUs of KMOS at the VLT.

In Table 7.8, the magnitudes of the counterimage and the source are stated. The increase in
brightness due to the lensing effect makes this galaxy at z = 1.036 much easier to observe
than the unlensed source would be.
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(a) (b)

Figure 7.17: Color images using the F775W, F125W and F160W frames, corresponding to approximate BRI
restframe colors, left is the HST observation of the counterimage; right is the unlensed source at a pixel size
observed by HST for the unlensed source. The unlensed source is convolved with a Gaussian function in each filter
representing the approximate PSF. In the source plane 1′′ corresponds to 8.13kpc, we gain an increase in spatial
resolution by the gravitational telescope of ∼

√
5.8. The images are false color images from the F775W, F125W

and F160W frames, respectively

Baden Württemberg Stiftung. The Dark Cosmology Centre is funded by the DNRF

7.9 Galaxy lenses list

In this appendix, we present the list of derived galaxy lenses used for the strong lensing model
in Table 7.9. We show the position relative to the BCG, the ellipticity and orientation and
the best fit Einstein and truncation radius from the best-fit model presented in Sec. 7.6.2.
The positions are again given relative to the BCG.

Table 7.9: Derived galaxy lenses

x1 y1 q Θq σ rt
(′′) (′′) (◦) (kms−1) (kpc)

0.000 0.000 0.59 14.6 296.3 57.8
-51.961 -18.520 0.85 28.2 235.7 42.6
52.028 -23.567 0.87 -47.1 196.6 33.4
70.454 -24.260 0.42 -78.3 191.3 32.2
79.369 -16.726 0.49 62.4 188.9 31.7
-75.133 -19.806 0.56 36.5 185.7 31.0
17.846 4.499 0.68 -47.3 182.3 30.2
16.918 -18.981 0.37 36.7 182.3 30.2
-19.523 -12.957 0.92 89.3 181.9 30.2
-58.427 -2.920 0.66 8.6 180.5 29.8
36.181 44.994 0.83 57.2 179.8 29.7
-27.249 52.149 0.53 58.0 174.4 28.5
-25.792 57.782 0.75 56.9 167.0 26.9
60.244 -20.431 0.77 28.4 165.9 26.7
65.420 45.366 0.24 -70.9 159.9 25.4

Continued on next page
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x1 y1 q Θq σ rt
-8.492 75.149 0.76 31.2 154.6 24.3
56.269 39.858 0.67 -88.2 147.2 22.7
-78.600 -29.236 0.81 62.5 146.7 22.6
-5.413 26.620 0.86 59.3 144.0 22.1
9.396 8.386 0.69 -10.1 135.6 20.4
19.473 -3.083 0.80 25.5 133.9 20.0
93.544 -8.950 0.61 -29.5 133.3 19.9
-8.863 -49.294 0.82 39.6 133.0 19.9
17.747 51.281 0.31 -6.5 130.1 19.3
-23.885 17.186 0.84 -8.0 128.2 18.9
-6.973 -48.796 0.55 -13.6 128.1 18.9
-1.892 7.503 0.67 34.0 124.3 18.2
10.517 -52.862 0.91 44.5 121.7 17.6
22.649 -53.029 0.94 -7.4 120.6 17.4
9.135 -16.001 0.56 67.1 117.3 16.8
-8.101 -1.448 0.77 -41.9 116.4 16.6
6.194 14.554 0.75 -37.1 116.4 16.6
21.592 5.996 0.79 18.5 115.7 16.5
59.033 14.592 0.76 54.0 114.5 16.3
-29.284 9.803 0.63 61.5 111.5 15.7
-9.271 -10.396 0.81 -52.7 111.5 15.7
67.743 5.471 0.48 -81.6 111.2 15.6
46.041 -9.524 0.75 83.3 110.8 15.6
-13.786 79.453 0.95 13.8 109.3 15.3
-52.979 -8.875 0.83 60.4 106.9 14.8
-66.483 -38.795 0.87 38.7 105.6 14.6
52.678 -9.056 0.82 -35.2 105.4 14.6
-9.375 -2.275 0.82 -17.6 105.2 14.5
-10.290 -55.387 0.57 -2.6 104.3 14.4
-72.341 -21.512 0.71 13.0 104.0 14.3
-27.184 9.263 0.46 39.5 102.2 14.0
-1.316 22.373 0.92 4.4 102.2 14.0
33.113 -24.055 0.78 27.2 100.8 13.7
-56.983 -13.861 0.79 19.6 100.5 13.7
20.862 -6.007 0.71 -74.9 98.9 13.4
77.397 -10.026 0.74 -76.1 97.9 13.2
-64.503 18.440 0.74 -66.3 97.6 13.1
-20.902 16.033 0.53 -34.5 96.0 12.9
-21.888 -34.820 0.86 16.5 93.7 12.4
-29.310 -23.851 0.82 -68.7 92.7 12.3
3.169 25.294 0.68 -1.7 92.3 12.2

-19.579 16.272 0.44 77.8 91.7 12.1
34.186 -5.002 0.54 -82.8 91.2 12.0
84.412 -3.159 0.90 67.9 89.5 11.7
-10.054 -32.007 0.92 76.0 85.3 11.0

Continued on next page
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x1 y1 q Θq σ rt
-51.558 -28.504 0.63 -35.0 85.1 10.9
-11.110 -10.114 0.56 28.8 85.0 10.9
-56.052 -46.963 0.82 -29.5 84.0 10.8
-58.147 16.382 0.91 89.8 83.3 10.6
19.309 18.352 0.54 -55.4 82.6 10.5
-62.885 19.793 0.59 59.2 81.9 10.4
44.739 40.229 0.71 -82.0 78.1 9.8
-6.185 23.563 0.69 -4.0 77.7 9.7
-47.318 20.110 0.42 5.7 77.3 9.6
-42.827 -33.806 0.61 21.9 77.2 9.6
18.023 -83.677 0.58 65.9 76.0 9.4
44.578 -39.135 0.80 -89.8 75.7 9.4
45.326 -39.482 0.76 -40.3 75.7 9.4
-54.643 12.139 0.70 -40.9 75.7 9.4
-68.528 12.943 0.95 38.1 75.3 9.3
-8.039 -23.346 0.70 11.6 74.7 9.2
-63.008 9.546 0.18 -37.4 74.0 9.1
-20.924 34.030 0.37 41.5 71.6 8.7
-54.231 -35.225 0.82 -35.1 70.5 8.5
-25.998 7.123 0.54 33.7 68.1 8.1
-34.878 -43.036 0.49 71.2 67.7 8.1
55.964 -49.356 0.58 -83.0 64.8 7.6
28.577 28.456 0.82 0.9 64.7 7.6
26.103 -30.477 0.97 5.7 64.4 7.5
41.714 41.585 0.67 40.0 62.5 7.3
43.372 -11.300 0.70 -73.7 58.1 6.6
20.281 19.628 0.77 -9.3 57.2 6.5
0.946 32.097 0.77 11.2 53.1 5.8

-58.728 33.022 0.61 80.6 51.4 5.6
44.865 52.272 0.60 -11.5 45.3 4.7
55.581 -41.990 0.60 -87.2 42.8 4.4

1relative to the center of the BCG at 12:06:12.134 RA (J2000) -08:48:03.35 DEC (J2000)
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Chapter 8
Summary & outlook

Summary

I used gravitational lensing to measure properties of the studied elliptical galaxies – especially
regarding their dark matter properties.
For the inner mass profile, we study two exceptional gravitational lenses, SDSS J1538+5817
and SDSS J1430+4105. In both cases, the lensed background sources span a large radial
range in the lens plane, allowing us to trace the total mass distribution over 3 and 6 kpc,
respectively. For the inner mass profiles of SDSS J1538+5817 and SDSS J1430+4105 we
adopt one component singular isothermal and power–law elliptical mass profiles and calculate
best–fitting parameters and error intervals. We compare these one component mass profiles
with other reconstructed mass profiles. For SDSS J1538+5817 we employ a non–parametric
reconstruction of the inner mass profile, showing good agreement with the parametric profile.
We reconstruct the inner mass profile of SDSS J1430+4105 using the full surface brightness
of the lensed image, again giving consistent results. Furthermore, both galaxies allow us to
disentangle luminous and dark matter from gravitational lensing alone, since the two matter
components follow different, well–motivated radial profiles. For SDSS J1538+5817 we do this
based on the observed total mass profile, and for SDSS J1430+4105 by a direct decomposition
of the observed lensing signal. Specifically, we find the following:

• In both cases the observed multiple images can be reproduced well by simple parametric
mass models for the lensing galaxy. The distance of the image positions predicted by
the model and the input image positions is on the order of the pixel scale of the input
frames, 0.05′′.

• For SDSS J1538+5817 well–constrained values are achieved for the Einstein radius of
REin ∼ 2.5 kpc and an enclosed total mass within this radius of MEin ∼ 8.2 × 1010M⊙.
For SDSS J1430+4105 the values are: REin ∼ 6.5 kpc and MEin ∼ 5.4 × 1011M⊙.

• We derive for SDSS J1430+4105 a total stellar mass of MdeV = 8.8+1.3
−1.9 × 1011M⊙.

From Bruzual & Charlot composite stellar population models with Salpeter initial mass
function and stellar metalicity, we get a stellar mass of M⋆ = 5.6+0.8

−1.8×1011M⊙, meaning
that the de Vaucouleurs mass agrees with a Salpeter IMF at solar metalicity. Using
the same assumption as before we get for SDSS J1538+5817 a photometric mass of
M⋆,Ein = 7.6+0.4

−1.5 × 1010M⊙ within the Einstein radius. This agrees with the lensing
derived total mass within the same radius.
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• The projected dark matter fractions within the Einstein radius are
Mtot−Mphot

Mtot
= 0.1+0.2

−0.1

and Mtot−MdeV
Mtot

= 0.40+0.14
−0.10 for SDSS J1538+5817 and SDSS J1430+4105, respectively.

• The 3D densities for the dark matter have similar values of ρdark ∼ 4 × 107M⊙kpc−3

in the center for both galaxies at radii of ≈ 3 kpc. At the same radius, however, the
luminous matter densities are ρlum ∼ 1.5× 108M⊙kpc−3 and ρlum ∼ 3.5× 108M⊙kpc−3

for SDSS J1538+5817 and SDSS J1430+4105. These values agree with values measured
for member galaxies of the local Coma cluster with dynamical methods by Thomas et al.
(2011).

• The stellar mass to light ratios of both SDSS J1538+5117 and SDSS J1430+4105 are
determined by composite stellar population fits to the SDSS photometry. The com-
parison with lensing observed masses, combined with the observed luminosities, shows
agreement with Salpeter IMF in both cases, disfavoring a Chabrier or Kroupa IMF.

In conclusion, systems such as the ones studied in this work are ideal candidates for the study
of lensing derived enclosed masses and mass profiles. These mass profiles can be split into
approximate luminous and dark matter components, using well-motivated models for both
components. The direct decomposition of the lensing signal allows these components to be
measured for distant galaxies. A comparison of the mass of the luminous component with the
mass derived from stellar population fits to the observed photometry allows some constraints
on the IMF.

Measurements of the dark matter halo sizes of distant galaxies are rare, since dynamical
methods are not yet sensitive enough to achieve this. Hence, we rely on the gravitational
lensing signal to study truncation of elliptical galaxies in a galaxy cluster. To measure the
galaxy halo truncation in MACSJ1206.2-0847, we first build a model for the cluster mass
distribution based on the observed multiple image systems using 12 image systems with 52
multiple images recently found in this cluster. We model the sizes of the cluster galaxies
employing scaling laws based on the NIR fluxes. We can then derive the average truncation
of the galaxy halos by optimization of these scaling laws. Based on that, we reconstruct the
full surface brightness distribution of the giant arc and its counterimage in this cluster. We
model the truncation of the cluster galaxies surrounding the arc separately, giving agreeing
results for both approaches. In detail, we find:

• We get a mean distance of the model predicted multiple image positions from its input
positions of ∼ 0.85′′. Considering the number of multiple images, this is a good value.

• The central, projected mass profile of MACSJ1206.2-0847 can be determined using
strong gravitational lensing. We derive a mass of Mtot ∼ 7× 1013M⊙ within a radius of
100kpc, which is in good agreement with other studies of this cluster.

• We reconstruct mass profiles for the individual galaxies assuming scaling relations with
the F160W band flux of each galaxy, and keeping the normalizations of these scaling
laws as free parameters. We refer these normalizations to one reference galaxy and
calculate values of rt,GR = 41+34

−18kpc and σGR = 236+29
−32kms−1. We constrain the mass

distribution of cluster galaxies best at ∼ 5 effective radii. Assuming passive luminosity
evolution for the absolute B-band luminosity of the cluster galaxies, we show that our
lensing derived velocity dispersions agree well with values given in Kormendy & Bender
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(2012) for local elliptical galaxies.

• We reconstruct the full surface brightness of the giant arc and its counterimage by indi-
vidually modeling the 4 cluster galaxies closest to it. For these 4 galaxies, we calculated
values for the individual velocity dispersions that agree with those previously derived
from the scaling relation. The truncation law also has a similar normalization with
slightly smaller errorbars. We derive the following truncation law for cluster members
when reconstructing the full surface brightness distribution of the arc:

rt = (35 ± 8kpc)
( σ

186kms−1

) 4
3
.

This truncation law agrees with predictions from simulations and with other measure-
ments carried out in dense environments. Testing different exponents of the truncation
law gives agreeing results for the sizes of the individual galaxies within the error ranges,
meaning that we cannot distinguish between different exponents.

• The above stated truncation law means that large fractions of the dark matter halos of
the cluster galaxies in this cluster have been stripped from their galaxies when compared
to field galaxies of the same velocity dispersion. Again, this agrees with expectations
from simulations.

In summary, the investigated galaxies in MACSJ1206.2-0847 have shrunk significantly and
consistently, derived from both point-like modeling of all multiple image systems as well as
from the full surface brightness of the arc and its counterimage. This truncation mostly affects
the dark matter halos, since it occurs several effective radii away from the galaxies’ centers.
In particular, the results for the sizes of the galaxies in the center of this cluster at z = 0.44
agree with results derived for other clusters at lower redshifts, e.g. Abell 1689 or the Coma
cluster, indicating that truncation of cluster galaxies is already present at this redshift.

Outlook

The analyses carried out in this thesis are only performed on selected individual objects, thus
giving only limited statistical significance. Applying the performed analyses on other galaxies
and galaxy clusters with similar properties to increase the number of objects studied will be
the natural next step for this work.
For the investigation of the central matter profile, three candidates have already been detected
and preliminarily analyzed by Weidinger (2010). These candidates are: SDSS J0728+3835,
SDSS J1250+0523 and SDSS J1630+4520. The multiple images span ranges of 0.6′′ to 1.6′′,
and in the case of SDSS J1630+4520 up to 2.5′′, meaning that physical ranges of ≈ 2 kpc to
≈ 6 kpc are covered, and in the case of SDSS J1630+4520 even up to ≈ 10 kpc. Hence, an
analysis similar to the one carried out in Chapter 6 can be performed with these galaxies,
estimating the dark and luminous matter distributions in the centers of these galaxies.
For the examination of the truncation of galaxies in galaxy clusters, again further candidates
have to be found. Ideal candidates would be well–known, well–studied clusters with tight con-
straints on the cluster potential. These constraints could stem from an abundance of multiple
image systems with known redshifts. We can expect the CLASH survey to fulfill these require-
ments due to its many photometric bands and large spectroscopic follow-up. Hence, systems
similar to MACSJ1206.2-0847 can be searched for in other clusters observed by CLASH.
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(a) (b)

Figure 8.1: Abell 383 and MACSJ1149.6+2223: two candidates for truncation studies. On Abell 383, 8.1(a), two
arcs are adjacent to cluster galaxies(marked with arrows) and can be investigated for their truncation similar to the
work shown in this thesis. For MACSJ1149.6+2223 8.1(b) the situation appears even more promising, since two of
the cluster galaxies(marked with arrows) are completely surrounded by the multiple imaged background galaxy.

Indeed two candidates emerge when inspecting the observed clusters: MACSJ1149.6+2223
and Abell 383, see Fig. 8.1. In MACSJ1149.6+2223, a background face on spiral galaxy at
z=1.491 is lensed multiple times (Smith et al., 2009; Zitrin & Broadhurst, 2009), enclosing
some cluster galaxies. These enclosed cluster galaxies are ideal candidates for studies similar
to that of Chapter 7. The other candidate is Abell 383, a well-studied cluster (e.g. Zitrin
et al. (2011)) with a similar situation to the cluster studied here, but with a less pronounced
arc.
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Friedman, A. 1922: Über die Krümmung des Raumes, Zeitschrift fur Physik, 10, 377
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Gavazzi, R., Schrabback, T., Faure, C., & Anguita, T. 2010: Cosmic Evolution of Virial
and Stellar Mass in Massive Early-type Galaxies, ApJ, 716, 1579

Larson, D., Dunkley, J., Hinshaw, G., Komatsu, E., Nolta, M. R., Bennett, C. L., Gold,
B., Halpern, M., Hill, R. S., Jarosik, N., Kogut, A., et al. 2011: Seven-year Wilkinson
Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-derived
Parameters, ApJS, 192, 16

Larson, R. B. 1974: Dynamical models for the formation and evolution of spherical galaxies,
MNRAS, 166, 585



BIBLIOGRAPHY 167

Lauer, T. R., Faber, S. M., Gebhardt, K., Richstone, D., Tremaine, S., Ajhar, E. A., Aller,
M. C., Bender, R., Dressler, A., Filippenko, A. V., Green, R., et al. 2005: The Centers of
Early-Type Galaxies with Hubble Space Telescope. V. New WFPC2 Photometry, AJ, 129,
2138

Limousin, M., Kneib, J. P., Bardeau, S., Natarajan, P., Czoske, O., Smail, I., Ebeling, H., &
Smith, G. P. 2007a: Truncation of galaxy dark matter halos in high density environments,
A&A, 461, 881

Limousin, M., Richard, J., Jullo, E., Kneib, J.-P., Fort, B., Soucail, G., Eĺıasdóttir, Á.,
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