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Zusammenfassung

Zeitreihen von dynamischen Bildern aus Medizin und Biologie werden oft mit Hilfe von
Kompartimentmodellen untersucht. Kompartimentmodelle liefern eine parametrische,
nichtlineare Funktion von interpretierbaren Parametern, die beschreibt, wie sich eine
beobachtbare Konzentration im Zeitverlauf entwickelt. Will man die kinetischen Parameter
schätzen, so führt dies zu einem nichtlinearen Regressionsproblem. In vielen Anwendungen
ist die Anzahl der im Modell benötigten Kompartimente aus biologischen Gesichtspunkten
unbekannt und sollte vielmehr gemeinsam mit den kinetischen Parametern aus den Daten
geschätzt werden. Da die Daten in medizinischen und biologischen Experimenten oft als
Bilder vorliegen, muss dabei die räumliche Struktur der Bilder mit berücksichtigt werden.

Diese Arbeit befasst sich mit der Aufgabe der Parameterschätzung und Modellselektion
in Kompartimentmodellen. Neben einem penalisierten likelihoodbasierten Ansatz werden
zur Lösung dieser Aufgabe mehrere Bayesianische Ansätze vorgeschlagen und bewertet,
darunter ein hierarchisches Modell mit Gauss-Markov-Zufallsfeld-Prioris und ein Ansatz
mit flexibler Modelldimension. Bestehende Methoden werden für die Parameterschätzung
und Modellselektion in komplexeren Kompartimentmodellen erweitert. Im nichtlinearen
Regressionsmodell und besonders in komplexeren Kompartimentmodellen können jedoch
Redundanzprobleme auftreten. Diese Arbeit untersucht die Schwierigkeiten, die durch Pa-
rameterredundanzen auftreten und zeigt mehrere Lösungsansätze auf, die Probleme durch
Regularisierung des Parameterraumes zu mildern.

Wir bewerten das Potential der vorgeschlagenen Schätz- und Modellselektionsverfahren
anhand von Simulationsstudien sowie für zwei in vivo Bildgebungsanwendungen: eine
Brustkrebsstudie mit Bildgebung durch dynamische kontrastmittelverstärkte Magnetreso-
nanztomographie und eine Studie zum Bindungsverhalten von Molekülen in lebenden Zell-
kernen, welches in einem Photobleichungsexperiment mit Hilfe der Fluoreszenzmikroskopie
beobachtet wird.





Abstract

Dynamic imaging series acquired in medical and biological research are often analyzed with
the help of compartment models. Compartment models provide a parametric, nonlinear
function of interpretable, kinetic parameters describing how some concentration of interest
evolves over time. Aiming to estimate the kinetic parameters, this leads to a nonlinear
regression problem. In many applications, the number of compartments needed in the
model is not known from biological considerations but should be inferred from the data
along with the kinetic parameters. As data from medical and biological experiments are
often available in the form of images, the spatial data structure of the images has to be
taken into account.

This thesis addresses the problem of parameter estimation and model selection in
compartment models. Besides a penalized maximum likelihood based approach, several
Bayesian approaches—including a hierarchical model with Gaussian Markov random field
priors and a model state approach with flexible model dimension—are proposed and evalu-
ated to accomplish this task. Existing methods are extended for parameter estimation and
model selection in more complex compartment models. However, in nonlinear regression
and, in particular, for more complex compartment models, redundancy issues may arise.
This thesis analyzes difficulties arising due to redundancy issues and proposes several ap-
proaches to alleviate those redundancy issues by regularizing the parameter space.

The potential of the proposed estimation and model selection approaches is evaluated
in simulation studies as well as for two in vivo imaging applications: a dynamic contrast
enhanced magnetic resonance imaging (DCE-MRI) study on breast cancer and a study on
the binding behavior of molecules in living cell nuclei observed in a fluorescence recovery
after photobleaching (FRAP) experiment.
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Chapter 1

Introduction

Compartment models form a powerful model class to describe dynamical systems. With
the help of such models the exchange of material or energy between different pools, called
compartments, can be described analytically. Like this, the evolvement of material over
time can be parametrically described with the help of meaningful kinetic parameters de-
scribing size and exchange properties of the compartments. Enjoying the advantage of
providing interpretable model parameters, compartment models are at present widely used
in medical (Slifstein and Laruelle, 2001; Parker and Buckley, 2005) and biological re-
search (Sprague and McNally, 2005), but they have formerly also been used in other fields,
for example, in social sciences (Herbst, 1963) or in ecology (Eriksson, 1971).

The function describing the evolution of the compartmental system is—given as so-
lution of differential equations—always nonlinear and comprises exponentials of kinetic
parameters and time. Quantitative analysis with compartment models uses noisy obser-
vations of the state of material over time, and, from this time series, one aims to infer on
the underlying kinetics of the system. In the nonlinear regression problem arising, time
is the only measurable explanatory variable of the system, and the parameters describing
size and kinetic properties of the compartments have to be estimated. Though the number
of model parameters is rather small, parameter redundancy is frequently an issue due to
the nonlinear form of the regression model (Seber and Wild, 1989). In this thesis, we pro-
pose different estimation approaches for compartment models. Those approaches address
redundancy issues by using different ways of regularizing the parameter space.

For a given compartment model, the form of the nonlinear function can analytically
be derived. However, the choice of a compartment model with suitable architecture and
adequate model complexity is an unsolved question in many applications. Especially, the
number of compartments needed to adequately describe a dynamic system may not be
known a priori, for instance, from biological or physical considerations. Often, the number
of compartments itself is characteristic for the behavior of the system and should, hence,
be inferred from the observed behavior. For example, the number of compartments may
indicate how heterogeneous cancerous tissue is in the analysis of dynamic contrast en-
hanced magnetic resonance imaging (DCE-MRI). In biochemical experiments, the number
of binding partners may be interesting to draw conclusions about the diffusion and binding
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pattern of some protein.
Motivated by those questions arising in medical and biological applications, this the-

sis addresses the problem of parameter estimation and model selection in compartment
models. The focus is on developing and extending statistical tools to approach this task.
The proposed approaches are thoroughly evaluated and compared to existing approaches.
Furthermore, finding a suitable model goes hand in hand with understanding possible
underlying biological processes and taking this knowledge into account.

Prior knowledge—for example about biological processes—is most intuitively accounted
for in a Bayesian framework. Basing inference on the posterior distribution, the Bayesian
framework considers both observed data and prior knowledge. Most of the estimation
approaches for compartment models presented in this thesis are based on Bayesian hier-
archical models. Those models allow to impose prior distributions on model parameters,
e.g., reflecting typical expected ranges for kinetic parameters. Furthermore, in this thesis,
spatial smoothing of parameters is incorporated in a Bayesian hierarchical model using
Gaussian Markov random field priors. Finally, the number of model parameters itself is
considered a random variable and, hence, treated as part of the parameter space, trans-
forming the Bayesian hierarchical model into a model state approach.

In this thesis, inference is mainly done for the nonlinear regression problem as is without
linearization. When studying whether an estimation approach is suitable for nonlinear
regression models, an important point is to analyze its ability to cope with redundancy
issues. For comparison, we linearize the nonlinear regression model and evaluate estimation
and model selection in the linearized model based on a newly developed spatially penalized
maximum likelihood approach.

Software and applications

In Bayesian nonlinear regression the posterior distribution is typically analytically not ap-
proachable and has to be calculated with the help of Markov chain Monte Carlo (MCMC)
simulations. As part of this thesis, the corresponding algorithms for all Bayesian esti-
mation approaches considered were implemented in C and interfaced in R. The Bayesian
approaches for DCE-MRI were implemented extending the R-package dcemriS4 (Whitcher
and Schmid, 2009, 2011). As computationally competitive alternative, we present a penal-
ized maximum likelihood based inference approach for compartment models. The corre-
sponding algorithm was implemented in R.

All inference approaches considered are evaluated with simulation studies as well as for
real data from biological and medical imaging applications. Most estimation and model
selection approaches are designed and evaluated for the quantitative analysis of DCE-MRI.
This noninvasive in vivo imaging technique makes the perfusion of blood observable with
the aid of a tracer. Typically, one acquires two-dimensional or three-dimensional images
over time. We analyze DCE-MRI data from a breast cancer study using the time series in
each voxel, since the resolution of the data allows to do so. Like this, parameter estimates
are obtained per voxel and local heterogeneities of the tissue can be modeled. This is
important in the analysis of tumorous tissue as tumors are believed to be heterogeneous
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and information on tissue heterogeneity is diagnostically informative.
The second data set used in this thesis is from a fluorescence recovery after photobleach-

ing (FRAP) experiment. This imaging technique produces a series of two-dimensional
images over time. FRAP is used to study biochemical experiments, and, hence, for this
imaging application completely different research questions arise. Nevertheless, the data
structure and the compartment models used for the analysis of DCE-MRI and FRAP data
share some similarities. Both data sets consist of time series of images acquired over time.
As the resolution in the FRAP data set is considerably lower, it is analyzed on a region of
interest level here, that is, working with concentrations averaged over all voxels of interest.

Outline

This thesis is organized as follows. Chapter 2 introduces compartment models and its
potential applications, it describes the underlying assumptions of those models and estab-
lishes the differential equations arising from compartment models. Based on this, inference
approaches are introduced and parameter redundancy issues arising in corresponding non-
linear regression models are characterized.

Chapter 3 raises research questions analyzed with the help of DCE-MRI. An overview
of existing compartment models for the quantitative analysis of DCE-MRI is given and—in
order to account for tumor heterogeneity—more complex models are proposed to describe
DCE-MRI data on a voxel level. At the end of this chapter, we introduce a DCE-MRI in
vivo breast cancer study serving as real data example in several chapters.

The first model selection approach, described in Chapter 4, is to fit models with one or
two tissue compartments and to decide which model is more suitable based on the deviance
information criterion (DIC). We base estimation on a hierarchical Bayesian framework in-
corporating prior information on the parameters and estimate parameters for each voxel
independently. The analysis of parameter redundancy issues arising in a two tissue com-
partment model is an important, new contribution. We analyze the effects of parameter
redundancy and the results of model selection for simulated data as well as for the DCE-
MRI breast cancer study. Chapter 4 is considered preliminary work for Chapter 5.

In Chapter 5, we propose and analyze a spatial Bayesian model for a two tissue com-
partment model. With this approach, spatial information is modeled assuming Gaussian
Markov random field priors on the kinetic parameters. Like this, parameter maps are
spatially smoothed and the parameter space is regularized. We compare the estimation
results of the newly developed spatial two tissue compartment model with an existing spa-
tial one tissue compartment model (Schmid et al., 2006; Kelm et al., 2009) and with the
corresponding models without spatial smoothing. This is done for simulated data and for
the DCE-MRI breast cancer study.

In Chapter 6, the nonlinear regression problem is transformed into a linear regression
problem. Due to construction, explanatory variables in this linear regression problem are
highly correlated and pure maximum likelihood estimates are unstable. Hence, we propose
spatially penalized maximum likelihood estimation with an elastic net for the analysis of
DCE-MRI. With this approach, a flexible number of compartments is chosen per voxel and
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parameters are estimated simultaneously. We evaluate how the newly developed spatial
version of the elastic net performs compared to the ordinary elastic net for simulated data
and for the DCE-MRI breast cancer study.

Finally, in Chapter 7, we propose a Bayesian model space approach, allowing to simul-
taneously estimate model parameters as well as the model complexity in a compartment
model with the help of a reversible jump Markov chain Monte Carlo (RJMCMC) proce-
dure. To this end, birth and death steps are derived for the estimation in a nonlinear
regression problem. The RJMCMC procedure is evaluated for simulated data and for data
from a FRAP experiment.

In Chapter 8, we conclude and discuss.

Several chapters of this thesis are to large parts based on the following publica-
tions and working papers. Some of them are currently under review. The manuscripts
were adapted for this thesis such that the notation is consistent and redundancy is avoided.

Chapter 4 is based on

Kärcher, J.C., Schmid, V.J.: Two tissue compartment model in DCE-MRI: A
Bayesian Approach. IEEE International Symposium on Biomedical Imaging.
From Nano to Macro. 724-727. Peer-reviewed proceedings. (Kärcher and
Schmid, 2010),

Chapter 5 and parts of Chapters 3 and 4 are based on

Sommer, J.C., Schmid, V.J.: Spatial two tissue compartment model for DCE-
MRI. arXiv:1209.0901. Under review. (Sommer and Schmid, 2012),

Chapter 6 is based on

Sommer, J.C., Gertheiss, J., Schmid, V.J.: Spatially regularized estimation for
the analysis of DCE-MRI data. Department of Statistics: Technical Reports,
Nr. 132. Under review. (Sommer et al., 2012),

and preliminary work for Chapter 6 can be found in

Gertheiss, J., Kärcher, J.C., Schmid, V.J.: Analysis of DCE-MRI Data using a
Nonnegative Elastic Net. Department of Statistics: Technical Reports, Nr. 90.
(Gertheiss et al., 2010).



Chapter 2

Compartment models

In this chapter, we give a general introduction to compartment models starting with some
applications of such models in Section 2.1. We present a general compartment model with
one basic compartment and K non-nested compartments which includes the applications
presented in this thesis as special cases. We introduce the system of differential equations
which generally describes a compartment model and describe the form of solution in such
systems (Section 2.2). Then, we present possible inference approaches for the corresponding
nonlinear regression problems arising from compartmental systems (Section 2.3). Special
focus is on parameter redundancy—a well known problem in nonlinear regression.

2.1 Applications

We start with giving some examples of different fields that benefit from the analysis with
compartment models. In social sciences, human behavior is studied with the help of com-
partmental models, e.g., the number of entrants in an organization is modeled as time de-
pendent quantity depending on the current number of members in the organization (Herbst,
1963). In physiology, organs are modeled as compartments exchanging blood and, hence,
oxygen (Jacquez, 1972). In ecological systems, the exchange of energy is modeled with the
help of compartments (Eriksson, 1971). In this thesis, we focus on estimation and model
selection in compartment models used in medical and biological imaging applications.

For example, compartment models are frequently used in medical tracer experiments.
In such experiments one is interested in the uptake of a tracer to certain sections of the
body. The tracer’s uptake over time can be observed using in vivo imaging techniques
like magnetic resonance imaging (MRI), positron-emission tomography (PET), or single-
photon emission computed tomography (SPECT). The quantitative analysis of DCE-MRI
is based on compartment models to describe the exchange of blood (and hence tracer)
between different, well-mixed compartments. Typically, contributing compartments are
the arterial plasma, other plasma compartments and interstitial space compartments (see
Chapter 3). Compartment models allow to link physiological properties of interest, like
capillary permeability and perfusion, to the observed uptake of tracer. Chapters 3–6 build
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on compartmental analysis for a DCE-MRI breast cancer study.

In quantitative models for DCE-MRI, the compartments can be thought of being phys-
ically separated, e.g., by a membrane. However, this does not need to be the case as
compartments can also represent a concept or a state such as, for example, the state of
molecules in a chemical process. This is the case in the analysis of PET, SPECT and
FRAP data as described in the following.

Compartment models—in this context also referred to as kinetic models or pharma-
cokinetic models—are very commonly used in PET and SPECT neuroreceptor imaging
studies. The aim of such studies is to quantitatively describe how a target receptor is dis-
tributed throughout the brain and to estimate receptor parameters, i.e. the binding rates
of a tracer. A radiotracer is injected and its uptake in the brain is recorded. The arterial
plasma concentration of tracer forms the basic compartment (and is often calculated from
blood samples during the PET scan). The activity of radiotracer in brain tissue can be
decomposed in three contributing compartments: unbound, non-specifically bound, and
specifically bound radiotracer. Often, one combines unbound and non-specifically bound
tracer into one compartment, assuming that those compartments come to equilibrium very
fast compared to the kinetics of specific binding. Slifstein and Laruelle (2001) give an
overview of how PET and SPECT studies are analyzed with the help of compartment
models.

Besides those medical imaging applications, compartmental modeling is also used in
biochemical experiments that give insight to the binding behavior of molecules in living
cells (Sprague and McNally, 2005). In such experiments, each molecule can adopt different
states: it can either be free (unbound) or it can be bound to one of several binding
partners. The class of unbound molecules forms one compartment, the class of molecules
bound to a binding partner forms an additional compartment. Such models are used in the
analysis of fluorescence recovery after photobleaching (FRAP) experiments. In Chapter
7, an approach to estimate the number of compartments—corresponding to classes of
binding partners with different binding properties—is proposed and evaluated for data
from a FRAP experiment.

2.2 Compartment models: assumptions and model

equations

As the concept of compartmental systems is broad and used in various fields, a definition
of such a system sounds rather abstract. A compartmental system consists of a certain
number of pools—or compartments—that exchange some material with each other. Addi-
tionally, there may be inflows to and outflows from the system (open system with sources
and sinks). If there are no in- and outflows in the system, the system is called closed. Com-
partmental systems are often depicted in connectivity diagrams as, for example, shown in
Figure 2.1. The system depicted consists of two compartments A1 and A2, exchanging some
material, as well as an external source with time dependent inflow b1(t) to compartment
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A1 A2

a21−−−−−−→←−−−−−−
a12

source

↓ b1

sink

↓ b2

Figure 2.1: Connectivity diagram for a model with two compartments, an inflow and an
outflow

A1, and time dependent outflow b2(t) from compartment A2 to an external sink.
When modeling with compartmental systems, one usually makes several assumptions:

Within one compartment, the material is assumed to be well-mixed and homogeneous.
Furthermore, the exchange between compartments is assumed to follow certain rules. The
amount of outflow from compartment A1 to compartment A2 is assumed to be proportional
to the current amount in compartment A1 and vice versa. The proportionality factors, a12

and a21, however, are constant with respect to time and are called rate constants. Like this,
the amount of material in both compartments, denoted with C1(t), C2(t), varies with time.
The underlying parameters describing the exchange, a12 and a21, however, are constant.

Systems of ordinary differential equations

Generally, compartmental systems which obey the above assumptions can be described
by a system of linear ordinary differential equations, more precisely, a non-homogeneous
linear system of differential equations with constant coefficients (Seber and Wild, 1989):

d

dt
C1 = a11C1(t) + a12C2(t) + . . .+ a1KCK(t) + b1(t)

d

dt
C2 = a21C1(t) + a22C2(t) + . . .+ a2KCK(t) + b2(t)

...
d

dt
CK = aK1C1(t) + aK2C2(t) + . . .+ aKKCK(t) + bK(t) (2.1)

with starting conditions C1(0) = c10, . . . , CK(0) = cK0. Here, Ck(t) denotes the con-
centration or fraction of material in the kth compartment at time t. The rate constant
aki determines the rate of flow from compartment i to compartment k, and bk is the in-
put/output to/from compartment k from/to an external source/sink. In Matrix-Notation
this system of differential equations can be summarized as

d

dt
C(t) = AC(t) + b(t),C(0) = c0. (2.2)
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The system has a unique solution (see for example Heuser, 1995, Chapter VII) of the form

C(t) = exp(At)c0 +

∫ t

0

exp(A(t− τ))b(τ)dτ. (2.3)

Hence, the evolution of concentration over time can be described with a known parametric
function that depends on the architecture of the model and, of course, on its parameters.
Typically, one aims to determine the model parameters given the model architecture and
after observing the concentration over time in some compartments. Often, not even the
model architecture is known a priori and in this case, both the estimation of model param-
eters and the selection of the model need to be based on the observed concentration over
time. Different approaches for this model selection problem are proposed in this thesis.

For the computation of the matrix valued exponentials in equation (2.3), the spectral
decomposition A = SΛS−1 has to be computed. Here, S consists of eigenvectors of A
and Λ = diag(λ1, . . . , λK) is a diagonal matrix with the corresponding eigenvalues at the
diagonal. The integral in equation (2.3) is derived to be (Seber and Wild, 1989, p. 381)∫ t

0

exp(A(t− τ))b(τ)dτ = S

∫ t

0

exp(Λ(t− τ))S−1b(τ)dτ (2.4)

where [∫ t

0

exp(Λ(t− τ))S−1b(τ)dτ

]
j

=
K∑
k=1

sjk
∫ t

0

exp(λj(t− τ))bk(τ)dτ︸ ︷︷ ︸
=bk∗exp(λjt)

(2.5)

and sjk are the elements of S−1. Here, ∗ denotes the convolution operator, i.e. (f ∗ g)(t) =∫ t
0
f(τ)g(t − τ)dτ . This means that given the initial condition c0 = 0, the concentration

in each compartment can be written as a sum of up to K convolved exponentials. The
exponential rates are the eigenvalues of the connectivity matrix A.

Compartment models considered

In this thesis, we will consider compartment models with a special model architecture
depicted in Figure 2.2. We assume a basic compartment with known concentration CB(t),
which may be constant or varying over time. This basic compartment exchanges with K
other compartments with concentrations C1(t), . . . , CK(t). As the compartments 1, . . . , K
do not exchange material among each other, we call this system non-nested. The exchange
into and out of the kth compartment happens at constant rates bink and boutk and depends
only on the actual concentrations in the basic and the kth compartment:

d

dt
Ck(t) = −boutk Ck(t) + bink CB(t), (2.6)

with boundary condition Ck(0) = ck0. This compartmental system is a special case of the
system given by equation (2.2) with connectivity matrix A = diag(−bout1 , . . . ,−boutK ). Here,
the basic compartment takes the role of an external source determining the input b to all
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Figure 2.2: Connectivity diagram of a non-nested compartment model with K compart-
ments and a basic compartment

other compartments: b(t) = (bin1 CB(t), . . . , bink CB(t))
T

. This non-nested compartmental
system is general enough to comprise the biomedical applications discussed in this thesis.
In this system, the concentration Ck in the kth compartment has a simple functional form
given by the solution of (2.6):

Ck(t) = ck0 exp(−boutk t) + bink CB ∗ exp(−boutk t). (2.7)

However, in the imaging applications considered in this thesis, the concentrations Ck(t)
in each compartment cannot be observed separately, but only the total concentration is
observed and modeled. The total concentration of all compartments, C(t), is given as sum
of the individual concentrations

C(t) = vBCB(t) +
K∑
k=1

vkCk(t) (2.8)

where vB denotes the volume fraction of the basic compartment, and vk the volume fraction
of the k-th compartment. For the boundary condition ck0 = 0 and with Ck given by (2.7)
for k = 1, . . . , K the total concentration is then

C(t) = vBCB(t) + CB ∗
K∑
k=1

vkb
in
k exp(−boutk t). (2.9)

For the FRAP application considered in Chapter 7, the concentration of the basic
compartment, CB(t), is assumed to be constant. For CB(t) ≡ 1, the convolution with an
exponential simplifies to CB ∗ exp(−bt) = 1

b
− 1

b
exp(−bt) (see Appendix A.1.2) and the



10 2. Compartment models

total concentration is described by

C(t) = vB +
K∑
k=1

vkb
in
k

(
1

boutk

− 1

boutk

exp(−boutk t)

)

= vB +
K∑
k=1

vkb
in
k

boutk

−
K∑
k=1

vkb
in
k

boutk

exp(−boutk t). (2.10)

So, for a constant concentration in the basic compartment the convolution is simple, and
the concentration can directly be described by a sum of K exponentials.

In the model for DCE-MRI considered in Chapters 3–6, however, CB(t) is a non-
constant function and, hence, one deals with sums of convolved exponentials. In DCE-
MRI, one assumes the influx and outflux rates to be the same: bk = bink = boutk . Then, the
volumes of the compartments can be determined from the parameters ak and bk: vk = ak

bk
.

CB C1 C2

k3−−−−−−→←−−−−−
k4

k1−−−−−−→←−−−−−
k2

Figure 2.3: Connectivity diagram for model with two nested compartments

Nested versus non-nested model architecture

In DCE-MRI and PET applications some authors have proposed models of different ar-
chitecture than the one depicted in Figure 2.2. For example, in Gunn et al. (2002) a two
tissue compartment model for PET experiments is described with two nested tissue com-
partments only one of which exchanges with the basic compartment, see Figure 2.3. For
this model, the corresponding model equations are

d

dt
C1 = −(k2 + k3)C1(t) + k4C2(t) + k1CB(t)

d

dt
C2 = k3C1(t)− k4C2(t). (2.11)

Here, the connectivity matrix A =

(
−(k2 + k3) k4

k3 −k4

)
is not diagonal and, therefore, the

concentration cannot be described as directly with exponentials of the rate constants as
in equation (2.9). However, the solution of (2.11) is still a sum of two convolved exponen-
tials (Gunn et al., 2002)

C(t) = C1(t) + C2(t) = CB ∗
∑

ψk exp(λkt). (2.12)

In this case, the coefficients ψk and the exponential rates λk are computed from the eigen
decomposition of A and, hence, functions of (k1, k2, k3, k4). Therefore, one would have to
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estimate the parameters ψk and λk in such a model and then translate those to physiological
interpretable model parameters k1, k2, k3, and k4.

Similarly, models with nested tissue compartments have been proposed for the analysis
of DCE-MRI (Sourbron and Buckley, 2011). The functional form of the total concen-
tration and, hence, the nonlinear regression problem arising in models with two nested
compartments (2.12), is mathematically the same as in the models with two non-nested
compartments (2.9). This is why one can always translate a model with nested compart-
ments to an equivalent model with non-nested compartments. In this thesis, we prefer to
assume model architectures with non-nested compartments as given in Figure 2.2, as for
those models the estimated parameters directly correspond to physiologically interpretable
model parameters. A large part of our methods and conclusions, however, can be transfered
to nested model architectures as well.

2.3 On inference and parameter identifiability in com-

partment models

In Section 2.2 we have shown how—with the help of compartment models—some concen-
tration can analytically be described as a function of time and physiologically interpretable
model parameters. For example, for the model with K non-nested compartments described
by equation (2.9) the model parameters are the volume fractions and rate constants, sum-
marized in the parameter vector θ = (vB, v1, . . . , vK , b1, . . . , bK). Assuming that we observe
a noisy version yj of the concentration at time point tj described by the parametric function
C(θ; tj), this leads to

yj = C(θ; tj) + εj, j = 1, . . . , n (2.13)

where εj is a stochastic noise term. We will assume additive Gaussian noise terms through-
out this thesis. Equation (2.13) describes a nonlinear regression problem when C(θ; tj) is
nonlinear in θ. This is the case when C(θ; tj) is the concentration described by a com-
partment model. Here, the time points t1, . . . , tn are the explanatory variables and θ are
the unknown model parameters; we denote more generally θ = (θ1, . . . , θp).

Then, we aim to find an estimate for θ such that this estimator is optimal in some sense.
Best known inference approaches are least squares, maximum likelihood or Bayesian in-
ference. Theoretical properties of parameter estimation in nonlinear regression models are
thoroughly discussed in Seber and Wild (1989), Bates and Watts (1988) and Ratkowsky
(1990). Estimation in nonlinear regression models differs from estimation in linear regres-
sion models concerning several aspects. In Seber and Wild (1989, p. 91 ff) three typical,
interconnected problem areas are described: First, iterative methods searching for extrema
may fail to converge. Second, estimates in a nonlinear regression problem may not have de-
sired properties (like unbiased, asymptotically normally distributed and minimum variance
estimation). Third, one often deals with ill-conditioning in parameter estimation. Here, we
give a short introduction to inference in nonlinear regression with focus on compartment
models.
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Inference in nonlinear regression

The least-squares estimator θ̂, e.g., is found by minimizing the sum of squares

S(θ) = ‖y − C(θ)‖2 =
n∑
j=1

(yj − C(tj,θ))2 . (2.14)

When C(tj,θ) is nonlinear in θ, S(θ) may have several relative minima. If C(tj,θ) is dif-

ferentiable with respect to θ, then the argmin θ̂ of S(θ) will satisfy the necessary condition

∂S(θ)

∂θr
= (yj − C(tj,θ))

∂C(tj,θ)

∂θr

∣∣∣∣
θ=θ̂

= 0 (2.15)

for j = 1, ..., n and r = 1, ..., p written as

C.(θ̂)(y − C(θ̂)) = 0. (2.16)

In contrast to the linear regression model, here, the normal equation (2.16) cannot be solved
analytically, and iterative procedures or search algorithms have to be applied. Those algo-
rithms start with an initial guess θ0 for the parameter vector and then iteratively improve
the current estimate until convergence. The algorithms can find local extrema of a nonlinear
function, however, convergence to an absolute extremum is not guaranteed. Common algo-
rithms searching for local extrema of a nonlinear function are the Gauss-Newton method—
using a linear approximation of C—and the Levenberg-Marquardt method (Ahearn et al.,
2005)—which interpolates between Gauss-Newton increments and increments in the direc-
tion of gradient descent (ascent). The linear approximation corresponds to the first order
Taylor series

C(θ) ∼= C(θ∗) + C.(θ∗)(θ − θ∗) (2.17)

and therefore a lot depends on the behavior of C.(θ∗) and on how good this linear ap-
proximation is. Other iterative methods use quadratic approximations. Several of those
iterative procedures are available in R, see e.g. the functions nls, nls.lm and optim. If the
error terms, εj, are independently identically normally distributed, the maximum likelihood
estimator corresponds to the least squares estimator (see Seber and Wild, 1989, p. 32ff),
and so the same methods apply.

In linear regression models with normally distributed additive errors, least squares es-
timators and maximum likelihood estimators, respectively, do have nice properties: They
are unbiased, asymptotically normal and minimum variance estimators. In contrast, in
nonlinear regression models, least squares estimators achieve those desired properties only
asymptotically, that is, for infinite sample size, given some regularity assumptions (see
Seber and Wild (1989), Chapter 12). Ratkowsky (1990) calls nonlinear regression models
’close-to-linear ’ if the estimators are close to being unbiased, normally distributed, mini-
mum variance estimators for relatively small sample sizes. Otherwise, models are classified
to be ’far-from-linear ’.

Inference based on least squares or maximum likelihood assumes that there is one true
underlying parameter vector θ, and the aim is to find an optimal point estimate for θ. In
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contrast, in the Bayesian approach θ itself is considered to be a random variable with some
distribution, and the aim is to describe this distribution based both on prior knowledge
and the observed data (Robert, 2001; Gelman et al., 2004).

More precisely, Bayesian inference on a parameter vector θ given the observed data
y is based on the posterior distribution p(θ|y) which by the Bayesian theorem can be
expressed by

p(θ|y) =
p(y|θ)p(θ)∫

Θ
p(y|θ)p(θ)dθ

. (2.18)

Probabilistic models need to be specified both for the data, specified by the likelihood
p(y|θ), and for the parameters, specified by the prior p(θ). Ignoring the normalizing
constant in the denominator, the posterior distribution is proportional to the product of
the likelihood p(y|θ) and the prior distribution p(θ):

p(θ|y) ∝ p(y|θ)p(θ). (2.19)

In nonlinear regression models, the posterior p(θ|y), on which Bayesian estimation
relies, is usually not analytically approachable. Hence, MCMC algorithms are needed
to generate samples from the posterior distribution. For an introduction to MCMC see
Gilks et al. (1996) and Green (2000). Theoretically, after a sufficiently large burnin phase,
MCMC samples can be considered as a Markov chain having the posterior as its stationary
distribution. In order to achieve stationarity in finite sampling time, however, it is crucial
to have well mixing MCMC chains.

In the Bayesian approach, one is not as much interested in optimal properties of an
estimator, because inference is not mainly based on point estimators, but on the whole
posterior distribution. Like this, uncertainty in estimation becomes visible in the posterior
densities of the parameters. We claim that ’far-from-linear’ models will be recognized by
flat, plateau-shaped or multimodal posterior densities. Thus, in a Bayesian framework one
becomes well aware of possible difficulties such as estimation uncertainty or correlation of
parameters. Furthermore, using an appropriate prior distribution may help to regularize
the parameter space. Different ways to do so are proposed in this thesis.

For the inference in compartment models one approach considered in this thesis is to
transform the nonlinear regression problem into a linear regression problem, using adequate
nonlinear basis functions as predictors. A penalized maximum likelihood approach for
such a linearized regression problem is used in Chapter 6. In Chapters 4, 5 and 7 we
base inference and model selection on hierarchical Bayesian approaches working with the
original nonlinear regression model.

Ill-conditioning, parameter identifiability, parameter redundancy

In nonlinear regression, parameter estimation may often be of poor precision. It is impor-
tant to note that—while some identifiability issues are similar to problems known from
estimation in linear regression—the problem of parameter redundancy is different and in-
trinsic to some nonlinear models.
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The problem of ill-conditioning as well occurs in the linear model

y = Xβ + ε

when the columns of the regressor X are highly correlated. This problem is known as
multi-collinearity. In general, the sum of squares surface has elliptical contours in the
linear model, and least squares estimators of β can be calculated analytically. Confidence
intervals of β̂ are ellipsoids. In the case of multi-collinearity, X ′X is nearly singular and
has small eigenvalues. The confidence ellipsoid expands in the corresponding direction,
and estimation precision is poor. The same problems may arise in the nonlinear model, in
case C.(θ)′C.(θ) is ill-conditioned.

Additionally, in nonlinear regression, complications arise when the contours of the sum
of squares surface S(θ) are curved. In curved contours one finds long curves along which
S(θ) remains constant. In this case, any iterative optimization algorithm will fail to
converge to global extrema of S(θ). In a Bayesian framework, MCMC simulations will show
bad mixing behavior and posteriors will be flat or multimodal (see Chapter 4). Note that
the posterior distribution will partly depend on the likelihood and, hence, on the sum of
squares S(θ). Sometimes, the problem of ill-conditioning can be eased by reparametrizing
θ such that the contours of S(θ) become less curved. Or careful choice of the time points
tj may help.

Besides ill-conditioning problems, which might be solved by reparametrization, one can-
not overcome parameter redundancy with reparametrization, optimal design nor reduced
observation error. Parameter redundancy is also termed approximate lack of identifiabil-
ity (Seber and Wild, 1989), meaning that (at least) two parameter vectors exist that—even
without observation error—describe approximately the same curve

∃θ1,θ2 with θ1 � θ2 and such that C(t,θ1) ∼= C(t,θ2) for all t. (2.20)

Those parameter redundancy problems are different from identifiability problems encoun-
tered in linear regression as they are intrinsic to the model and may exist independently
from the data or the noise level. There is a measure of parameter redundancy that—
prior to data collection—aims to measure how redundant the parameters of a model are
as described in the following.

Redundancy measure

A desirable property of a model is sensitivity to changes in its parameters. If the out-
put of a model changes a lot when varying its parameters, it is easier to estimate those
parameters given a measured output. In contrast, if a model lacks sensitivity, one deals
with parameter redundancy. As redundancy is high when sensitivity is low, Reich (1981)
proposes a measure for parameter redundancy based on the following sensitivity matrix:

Mθ =
1

tmax

∫ tmax

0

δC(t,θ)

δθ

δC(t,θ)

δθ′
dt. (2.21)
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The elements mii of the matrix Mθ measure sensitivity with respect to one parameter
θi, the elements mij sensitivity with respect to two parameters θi, θj varying together
(cross-sensitivity). The sensitivity matrix is scaled

Rθ = [ri,j] = D−1MθD
−1 (2.22)

with rij =
mij√
miimjj

. Here, D = diag(
√
m11,

√
m22, . . .) and dii measures sensitivity. Then,

the inverse of its determinant, |Rθ|−1, is used as measure for parameter redundancy. Reich
(1981) proposes to use a threshold value for |Rθ|−1.

0 5 10 15 20 25 30

0
5

1
0

1
5

t

C
(t

)

Figure 2.4: Concentration C(t,θ) from a sum of two exponentials for θ1 = (α1, α2, β1, β2) =
(7, 11, 1/2, 1/7) (gray curve) and θ2 = (11.78, 6.06, 1/3.1, 1/9.4) (black dashed curve); mod-
ified from Seber and Wild (1989)

Redundancy in compartment models

As described in Section 2.2, the concentration in a compartment model can be described
by a sum of exponentials or a sum of convolved exponentials. The nonlinear function

C(t,θ) = α1 exp(−β1t) + α2 exp(−β2t), (2.23)

a sum of two exponentials, has been thoroughly discussed in nonlinear regression literature:
In Ratkowsky (1990, p. 112 f.) this function is classified as often ’far-from-linear’. Fur-
thermore, in Seber and Wild (1989, p. 118 ff) sum of exponential models are considered
as a typical example for parameter redundancy. In Figure 2.4 we show C(t,θ) for two
parameter vectors θ1 and θ2. Though θ1 and θ2 are quite different, the two curves C(t,θ1)
and C(t,θ2) almost coincide. For the model described by a sum of two exponentials (2.23),
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redundancy has been investigated in more detail by Reich (1981) who used |Rθ|−1 in order
to specify how redundant it is for different parameters θ.

The scaled sensitivity matrix Rθ depends on the decay rates β1 and β2 only and is
independent of the coefficients α1 and α2. With θ = (α1, α2, β1, β2) the partial derivatives
are simple exponentials and the calculation of the integrals mij is straightforward (Reich,
1981). Due to the special simple model structure, the determinant of |Rθ| and hence the
redundancy measure depends only on the ratio of the decay rates β1 and β2. One can
conclude that parameter redundancy is high, if the decay rates are too similar. Using a
threshold of 100 for |Rθ|−1 the parameters are judged to be redundant if the decay rates
differ by less than a factor of five (Seber and Wild, 1989, p.124, example 3.6). This result
inspired us to use regularizing priors on the decay rates, a priori assuming that decay rates
of different compartments in expectation differ by a factor of five and, like this, avoiding
parameter redundancy, see Chapter 7. The calculation of the redundancy measure Rθ for
a sum of K exponentials is given in Appendix A.2.

For the model with two convolved exponentials,

C(t,θ) = CB(t) ∗ (α1 exp(−β1t) + α2 exp(−β2t)) , (2.24)

the analysis of parameter redundancy is not as easy. This type of model is relevant in
the analysis of DCE-MRI with the help of a two tissue compartment model as proposed
in Chapters 3–5. For this model the partial derivatives are much more complicated, and
the integrals for the calculation of Rθ become difficult (see Appendix A.3). We do not
expect that for this model the redundancy measure can analytically be shown to depend
on the ratio of the decay rates only. Yet, it is evident that even when convolved with the
concentration in the basic compartment, parameters will be redundant if the decay rates
differ too little. This is also what we experienced in the simulation studies described in
Chapter 4.

Regularized estimation as solution to redundancy issues

Due to redundancy issues, for the different estimation and model selection approaches for
compartment models that are proposed in this thesis, the crucial point is to regularize the
parameter space taking into account additional, prior information about the parameters
and their relationship. We investigate different methods of regularizing the parameter space
of compartment models. For the analysis of a FRAP experiment in Chapter 7, we use a
regularizing prior on the binding rates inspired by the quantification of redundancy in a sum
of two exponentials model developed by Reich (1981). For the analysis of DCE-MR images
parameters are estimated per voxel, and hence spatial smoothing is an evident option.
Therefore, we propose two different ways of spatially regularizing the parameter space, see
Chapters 5 and 6. Like this, voxelwise estimates borrow strength from neighboring voxels
and, hence, spatial regularization takes into account the intrinsic information contained in
an image.

Regularized estimation is a common technique in generalized linear regression models,
especially in non-parametric and semi-parametric regression. Often, in such regression
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models there is a large number of predictors, and pure maximum likelihood estimators
may be unstable or not unique. Therefore, the parameter space is regularized by imposing
a penalty term on the parameters or—in a Bayesian framework—by assuming priors on
the parameters. Penalized maximum likelihood based approaches include ridge regression,
the lasso, and the elastic net (Hastie et al., 2009). Those shrinkage methods differ in the
penalty term that is imposed on the parameters and are also known as continuous alter-
natives to subset selection procedures. Bayesian automated variable selection approaches
include Gibbs variable selection, stochastic search variable selection, and adaptive shrink-
age (O’Hara and Sillanpää, 2009). With hierarchical mixture prior formulations promising
subsets of predictors may be found in terms of large posterior probability.

However, those methods of regularized estimation are designed for generalized linear
regression models only, and hence, in order to use those methods for compartment models,
the corresponding nonlinear problem has to be linearized first. A nonlinear model can
be linearized by using a bundle of nonlinear basis functions as potential predictors (see
Chapter 6). Like this, the nonlinear model is approximated by a linear model on a grid.

Working with the nonlinear regression problem as is (not linearized) is conceptually
different. In nonlinear regression, redundancy issues may occur even for a small number of
parameters, and hence different methods are suitable. Bayesian methods in image analysis
using spatial priors have been proposed for a nonlinear model arising in the analysis of DCE-
MRI (Schmid et al., 2006; Kelm et al., 2009) and for linear models arising in the analysis
of functional MRI (fMRI) (Gössl et al., 2001; Brezger et al., 2007). Spatial smoothing
is an efficient way of regularizing the parameter space in image analysis (see Chapter 5).
However, to the best of our knowledge there is no literature analyzing how regularization
helps to alleviate parameter redundancy issues in more complex—and hence potentially
parameter redundant—nonlinear regression models.
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Chapter 3

Introduction to the analysis of
DCE-MRI

Large parts of this thesis deal with the regularized estimation and model selection in com-
partmental models used for the analysis of DCE-MRI. DCE-MRI is an imaging technique
which allows to image the blood supply to some tissue of interest in vivo. After injection of
a contrast medium, a series of images is obtained. This series shows the uptake dynamics
of the contrast medium into the tissue over time.

In this chapter, we describe what is measured with DCE-MRI and motivate research
questions that can potentially be analyzed with the help of DCE-MRI. Then, we intro-
duce different compartment models which are typically used to quantitatively describe
DCE-MRI data. As observed concentration time curves (CTC) are often not adequately
described by the commonly used Tofts model (see Section 3.2.1), we propose a two tissue
compartment model (2Comp) and as further extension a multi tissue compartment model
(qComp) which account for heterogeneity in tumorous tissue. This is important as tumor
heterogeneity is diagnostically informative. The statistical performance of those models—
applied on a voxel level—is analyzed and compared to the Tofts model in Chapters 4–6.
Finally, we present data from a DCE-MRI breast cancer study for which the methods used
in Chapters 4–6 are evaluated.

Parts of Section 3.2 are based on Sommer and Schmid (2012).

3.1 DCE-MRI: physical and physiological background

What is measured with DCE-MRI?

DCE-MRI is based on a dynamic series of conventional MRI acquired using a contrast agent
enhancing specific magnetic properties. Generally, conventional MRI uses the property of
atomic nuclei to align in a magnetic field (nuclear magnetic resonance property). The
MRI scanner produces a varying electromagnetic field. Each time this field is turned off,
the spins of the atomic nuclei return to their normal state (they relax), energy is set
free, and this energy is recorded. One MR image records the T1 relaxation time for every
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t = 0 seconds t = 12 seconds t = 24 seconds t = 36 seconds

t = 85 seconds t = 182 seconds t = 279 seconds t = 376 seconds

Figure 3.1: DCE-MRI scan of a breast cancer patient’s breast showing the contrast agent
concentration over time (patient 6, central slice)

voxel after the MRI-device transmitted a magnetic disturbing pulse. For every voxel, the
average relaxation time T1 is measured. For a detailed introduction to the physics of MRI
see Edelmann and Warach (1993) and Dössel (2000). In a gradient procedure, several
disturbing pulses with different direction are used. Therefore, the average relaxation time
can be calculated more precisely and two-dimensional or three-dimensional images can be
obtained (Parker and Padhani, 2003).

With DCE-MRI a whole series of MR images is recorded. At the beginning of the
image acquisition, a low-molecular-weight contrast medium—typically a Gadolinium com-
plex, e.g. gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) (Mitchell, 1997)—is
injected to the patient. The contrast medium acts as a tracer, its distribution within the
tissue of interest can be assessed over time. The contrast medium shortens the relaxation
times and hence induces increased contrast (Caravan, 2006). From this change in relaxation
time one infers on the concentration of the contrast medium.

Commonly, in the analysis of DCE-MRI one assumes that the contrast agent concen-
tration Ct at time t is related to the change in relaxation rate in the following way

Ct(t) =
1

r1

∗
[

1

T1(t)
− 1

T10

]
. (3.1)

This means that the change in the T1 signal intensity (due to injection of a contrast
medium) is assumed to be proportional to the concentration of contrast medium (Tofts,
1997; Parker and Padhani, 2003). Here, T10 is the T1 of the tissue in absence of contrast
agent and r1 is the longitudinal relaxivity of the contrast agent which is influenced by
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the strength of the magnetic field as well as by properties of the tissue and the contrast
agent (Parker and Padhani, 2003). Buckley and Parker (2005) give an overview of how
contrast agent concentration is calculated from the T1 signal intensity changes. The imaging
technique is called T1-weighted DCE-MRI to distinguish it from T2- and T ∗2 - weighted DCE-
MRI which has a higher temporal and lower spatial resolution. Here, we will generally write
DCE-MRI when we actually mean T1-weighted DCE-MRI.

Summarizing, a dynamic series of contrast enhanced MR images enables to noninva-
sively observe the uptake of contrast medium by the tissue and its washout from the tissue
in vivo. Assuming that the contrast agent is transported via the blood plasma, one observes
blood perfusion. Figure 3.1 depicts parts of a patient’s DCE-MRI series from a study on
breast cancer described in Section 3.3 which will be used later on. Even at first glance,
one can identify regions with increased and accelerated blood supply or regions with low
blood supply.

Why is the tracer concentration of any interest?

The analysis of dynamic contrast medium uptake is especially important in the analysis
of tumorous tissue. In tumors, one observes increased blood flow due to abnormal growth
of blood vessels (angiogenesis) and due to increased permeability of the capillary wall
(capillary leakage) (Parker and Buckley, 2005). Thus, in order to understand the disease
process and to analyze the disease progression, one needs to characterize perfusion and
permeability of the tissue of interest. Another property observed in tumors is heterogeneity
of the tissue (Schmid, 2010). Commonly, compartmental kinetic models are used in order
to obtain quantifiable parameters characterizing perfusion and permeability. In this thesis,
we aim to additionally characterize and account for tissue heterogeneity by allowing for
increased model complexity on a voxel level.

Quantitative analysis of DCE-MRI is successfully used to early detect and diagnose
cancer and allows to specify malignancy, type, and grading of tumors. As tumor growth
largely depends on the tumor blood supply, many therapies target on destroying tumor
vasculature. Other therapies aim to stop the process of angiogenesis. Thus, DCE-MRI
helps to check on changes in tumor angiogenesis, to evaluate the response to therapy and,
hence, to plan further treatment (Parker and Buckley, 2005). Furthermore, DCE-MRI is
useful in the clinical evaluation and development of antiangiogenic and vascular disrupting
compounds (Leach et al., 2005; O’Connor et al., 2007; Steingoetter et al., 2011).

DCE-MRI is most frequently used for the assessment of breast cancer (Padhani et al.,
2005) but has also shown good results in cancer diagnosis of many other organs, e.g., the
brain (Parker and Padhani, 2003; Sourbron et al., 2009), the prostate (McMahon et al.,
2009), and the cervix (Donaldson et al., 2010). However, in organs that move with the
breathing of the patient, image preprocessing becomes more important, image registration
is quite challenging, and signal to noise ratios are comparable low.

Contrast-enhanced perfusion MRI is not only useful in the analysis of cancer but also
in quantifying the blood flow in myocardial tissue, e.g., for the evaluation of ischemic heart
disease (Schmitt et al., 2002; Schmid, 2011). Furthermore, characteristics like perfusion
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and permeability have been shown to be of interest for the diagnosis of retinal disease
and multiple sclerosis, and hence DCE-MRI has shown to be useful for the analysis of
those diseases as well (Parker and Buckley, 2005). Finally, DCE-MRI has been used in
rheumatology for many years, e.g., to assess disease progression and treatment response in
rheumatoid arthritis (Hodgson et al., 2008).

Comparison to other imaging modalities

DCE-MRI provides functional information about the tissue of interest combined with mor-
phological information. With DCE-MRI the patient is not exposed to ionizing radiation.
This is the main advantage compared to alternative imaging modalities like single pho-
ton emission computed tomography (SPECT), positron emission computed tomography
(PET), and perfusion computed tomography—also known as dynamic contrast enhanced
computed tomography (DCE-CT) or multidetector row computed tomography (MDCT).
DCE-MRI offers a better spatial resolution compared to PET and SPECT, but a lower
spatio-temporal resolution compared to DCE-CT (Schmid, 2010).

DCE-CT uses contrast agents based on iodine and can potentially be used for similar
examinations in oncology as DCE-MRI. A main advantage over DCE-MRI is that in DCE-
CT the relation between contrast concentration enhancement and iodine concentration is
linear, facilitating the absolute quantification of perfusion. Goh and Padhani (2006) give a
detailed overview of the similarities and differences between DCE-MRI and DCE-CT, and
for some anatomic regions (upper abdomen, mediastinum, and pulmonary hila) explicitly
advise the use of DCE-CT. For serial examinations and brain imaging, however, the use of
DCE-MRI is recommended as the radiation burden of DCE-CT becomes unacceptable (Goh
and Padhani, 2006).

Another related imaging technique is dynamic susceptibility contrast MRI (DSC-MRI).
Similar to DCE-MRI, magnetic properties of a contrast agent are used to describe perfusion
in tissue. However, DSC-MRI contrast agents are designed to alter the tissue’s magnetic
susceptibility resulting in changes of T2 and T ∗2 (Rosen et al., 1990). DSC-MRI is very
common in brain perfusion imaging and is, for instance, helpful in the analysis of acute
and chronic cerebrovascular disorders (Wintermark et al., 2005).

One has to trade off temporal and spatial resolution when defining an acquisition pro-
tocol for DCE-MRI. A high spatial resolution is important when morphological features
are of interest. This is, for example, the case when one tries to detect primary tumors or to
assess the extent of a known tumor. A high temporal resolution allows a better description
of dynamic features needed, for instance, to determine if a previously identified region is
malignant (Padhani et al., 2005). Sometimes, diagnosis may benefit from combining infor-
mation from several imaging modalities. For example, functional imaging techniques like
DCE-MRI, PET and SPECT can be combined with morphological information obtained
with X-ray computed tomography (CT).

In the screening of breast cancer, other radiologic imaging techniques are successfully
used, such as X-ray mammography and ultrasound. However, X-ray mammography shows
a reduced sensitivity in tumor detection for dense breasts, it exposes the patient to ra-
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diation, and it has only limited use in postsurgical examinations. Therefore, the use of
DCE-MRI is recommended for those cases (Padhani et al., 2005).

3.2 Compartment models for DCE-MRI

Model-free analysis—also referred to as semi-quantitative analysis—of contrast medium
uptake quantifies simple characteristics like the peak concentration, the time to maximal
enhancement, and the initial area under the curve. Those characteristics are easy to derive,
but they provide quantities that are difficult to interpret, often largely effected by noise,
and hence not reproducible (Padhani et al., 2005). In contrast, compartment models
allow to describe the observed uptake behavior with the help of physiologically meaningful
parameters linked to properties like blood flow and capillary permeability. Those tissue
properties are helpful when diagnosing tumor type and malignancy and when quantifying
treatment success. Also, quantitative analysis with compartmental models makes DCE-
MRI studies less dependent from scanners, sites, injection protocols, etc. and, hence, more
objective, better reproducible, and easier to compare (Padhani et al., 2005). Compartment
models assuming various tissue architectures of different complexities have been proposed
for the quantitative analysis of DCE-MRI data as described in the following.

3.2.1 One tissue compartment model (1Comp): Tofts and ex-
tended Tofts model

Around 1990, three groups independently proposed very similar compartment models to
describe signal enhancement of measured T1 series as a function of time (Brix et al., 1991;
Larsson et al., 1990; Tofts and Kermode, 1991). Tofts (1997) gives an overview of similar-
ities and differences of those models, and in Tofts et al. (1999), a standardized notation
is proposed to make the results of different groups comparable. There are two versions
of the compartment model assuming negligible or non-negligible amount of intravascular
tracer. In the context of DCE-MRI analysis the first model is most often referred to as the
(standard) ”Tofts model”, the second one as ”extended Tofts model”.

Tofts model

Both Tofts models describe the diffusion of some contrast medium with the help of the
arterial plasma compartment and one interstitial space compartment (Tofts, 1997; Tofts
et al., 1999). The contrast medium is assumed to enter only the interstitial space and not
the cells. This assumption is typically fulfilled for low-molecular-weight tracers such as
Gd-DTPA. To emphasize that blood plasma and cells are not included in the interstitial
space, it is often referred to as extravascular extracellular space (EES). Figure 3.2 depicts
the spaces considered in the Tofts model.

In the standard Tofts model, also referred to as 1Comp model here, the observed CTC
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Figure 3.2: Physiological model for distribution of contrast medium (small circles) be-
tween plasma and EES modified from Parker and Padhani (2003)

Ct(t) is described by
d

dt
Ct(t) = KtransCp(t)− kepCt(t). (3.2)

Given the initial condition Ct(0) = 0, the concentration in the observed tissue can be
described by the solution of this differential equation:

Ct(t) = KtransCp(t) ∗ exp(−kept). (3.3)

Here, Cp(t) describes the concentration of contrast agent in the blood plasma over time.
The standard Tofts model assumes negligible blood plasma volumes in the observed tissue
region such that the observed concentration is due to the concentration in the EES exclu-
sively, see Figure 3.3. The concentration is hence described by two parameters, i.e. the
transfer rate from blood plasma to EES, Ktrans, and the rate constant for transfer between
EES and plasma, kep. Alternatively, the model can be described using the EES fractional

volume ve, which relates rate and transfer constants by kep = Ktrans

ve
(Tofts et al., 1999). As

any two of the three parameters kep, Ktrans, and ve suffice to describe the concentration,
one can use different parametrizations.

Extended Tofts model

In the extended Tofts model, one assumes that the volume fraction of plasma within the
region of interest, denoted as vp, cannot be neglected. Then, the observed concentration of
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Figure 3.3: Connectivity diagram for the standard Tofts model (left) and extended Tofts
model (right)

contrast medium is given as sum of the concentration in plasma and in the EES weighted
with the corresponding fractional volumes, Ct = vpCp + veCe, resulting in

Ct(t) = vpCp(t) +KtransCp(t) ∗ exp(−kept). (3.4)

Thus, the exchange mechanism is the same as in the simple Tofts model, but in the extended
Tofts model the plasma compartment is additionally included in the observed space, see
Figure 3.3. The inclusion of blood plasma volume in the observed space is important for
tissue with high blood flow; for tissue with slow blood flow it can be neglected and the
standard Tofts model applies.

Physiological interpretation of parameters

Generally, the rate constant kep describes the shape of the CTC, whereas the transfer
constant Ktrans and the fractional volume ve relate to absolute values of the CTC. There
are several physiological interpretations of the transfer constant. In a situation where
tracer flux is flow limited (capillary permeability is high), Ktrans is equal to the blood
plasma flow per unit volume of tissue. In a situation where tracer flux is permeability
limited (low permeability, high plasma flow), Ktrans is equal to the permeability surface
area product between blood plasma and the EES (Tofts et al., 1999).

In Buckley (2002) the uncertainty in estimation of the kinetic parameters has been
investigated with the help of a simulation study. Results of this study indicate that Ktrans

tends to be overestimated and vp tends to be underestimated. In Sourbron and Buckley
(2011) conditions are identified under which the Tofts and extended Tofts models can be
applied. The authors find that the model parameters can be accurately interpreted only if
the tissue is weakly vascularized or highly perfused. In tissues for which those conditions
do not hold, the fit to the data may be bad or, despite a good fit, the physiological
interpretation of the parameters may be unclear.
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Historical development and relation to other compartment models

The Tofts model is a special case of the general compartment model given by equation (2.6),
where the arterial plasma compartment forms the basic compartment, and there is only
one additional compartment, namely the EES compartment. Therefore, we refer to this
model as 1Comp model, also. For simplicity, we will sometimes refer to the compartments
as plasma and tissue compartments.

Note that similar compartment models have been proposed much earlier, but using
different notation and assumptions on model parameters (Kety, 1960; Renkin, 1959; Crone,
1963). The Kety model was developed to model the distribution of an inert gas into
the whole tissue including the intracellular spaces and assuming high permeability (Kety,
1960). Renkin (1959) defined an extraction ratio, assuming that capillary blood flow is
reduced when it passes through tissue. The Renkin-Crone model relates the entities flow,
permeability, and extraction (Renkin, 1959; Crone, 1963). The relation of those models to
the Tofts model are described in Tofts et al. (1999).

A refinement of the Tofts model has been suggested by St. Lawrence and Lee (1998).
With a tissue homogeneity model (Johnson and Wilson, 1966) differences of plasma con-
centration along the capillaries are accounted for, and the tracer concentration in plasma
is modeled as a function of space and time. Using an adiabatic approximation, that is,
assuming that concentration of the contrast medium in the interstitial space changes slowly
compared to changes in the capillary plasma space, a closed form solution can be derived
which is related to the Tofts model and makes the tissue homogeneity model practically
applicable (St. Lawrence and Lee, 1998). Other extensions of the Tofts model result in
models with more compartments and are described in the next section.

Arterial input function

The concentration in plasma, Cp, is also called arterial input function (AIF) as it describes
the input of contrast agent through the blood stream. Ideally, one observes the concentra-
tion of tracer in the plasma compartment and the concentration in the EES compartment
separately. This is, for instance, the case when one samples blood from the patient every
some seconds and in parallel a DCE-MRI series is recorded. However, blood sampling
is inconvenient for the patient, and the calculation of the AIF is technically demanding.
Therefore, one usually prefers a noninvasive examination of the patient and records DCE-
MR images only. In breast DCE-MRI, however, the input function cannot be measured
from an artery due to the lack of big vessels in the field of view. Hence, using a population
based AIF from literature is the standard procedure, and an ideal AIF is assumed which
is derived from typical blood sampling curves observed for a group of healthy volunteers.

Frequently, a population based AIF is used which was proposed by Tofts and Kermode
(1991). Tofts and Kermode (1991) use a bi-exponential function of the form

Cp(t) = D(a1 exp(−m1t) + a2 exp(−m2t)) (3.5)

with dose D depending on the experimental conditions and fixed values a1 = 3.99 kg/l,
a2 = 4.78 kg/l, m1 = 0.144 min−1, m2 = 0.0111 min−1. Precise parameters of this
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Figure 3.4: Form of population based AIF proposed by Tofts and Kermode (1991) (assum-
ing dose D = 0.1, time t in minutes)

AIF were derived by fitting plasma concentrations which were measured in normal control
subjects by Weinmann et al. (1984) after a bolus injection of Gd-DTPA. The form of this
AIF is depicted in Figure 3.4. The concentration of contrast medium in plasma is highest
directly after its injection; then, there is a fast washout phase followed by a slow washout
phase. Throughout this thesis, we will assume this population based AIF. With this AIF,
the convolved exponential (3.3) describing the observed concentration is of the form

Ct(t) = KtransCp(t) ∗ exp(−kept)

= DKtrans

(
a1

exp(−kept)− exp(−m1t)

m1 − kep

+ a2
exp(−kept)− exp(−m2t)

m2 − kep

)
.

The derivation of this form is given in Appendix A.1.
Another population-averaged AIF has been proposed in Parker et al. (2006). Attempts

have been made to measure the AIF noninvasively (Fritz-Hansen et al., 1996). The AIF can
be measured noninvasively if there is an artery in the imaged field and if this artery is close
to the tissue of interest. When measuring the input function from an artery is feasible, a
deconvolution procedure is necessary in order to make the AIF comparable with an AIF
from blood samples. As alternative, reference tissue approaches aim to simultaneously
extract the AIF and kinetic parameters from DCE-MRI data (Yang et al., 2007; Fluckiger
et al., 2009).

3.2.2 Two tissue and multi tissue compartment model (2Comp
and qComp)

Compartment models are based on several simplifying assumptions. Therefore, a com-
partment model (like any other model) cannot describe full reality but can only offer an
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approximation of the underlying physiologic processes. In the Tofts model, many potential
factors of contrast medium diffusion are not explicitly taken into account but are seen as
confounding factors. Factors that—besides blood flow and permeability—could have an
effect on contrast agent distribution include ”the rate of lymphatic drainage, the rate or
degree of contrast agent mixing within compartments, and the degree of tracer diffusion
in regions without an effective blood supply”(Parker and Buckley, 2005, p. 83). Further-
more, Parker and Buckley (2005) stress that in tissue voxels examined with DCE-MRI one
deals with multiple membranes rather than with a single cell membrane. Therefore, one
should be aware that the parameters estimated in a compartment model are always bulk
parameters.

Tumor heterogeneity

In healthy tissue, observed tracer kinetics is often sufficiently well described by the Tofts
or extended Tofts models despite the simplifying assumptions made. However, the mi-
crovasculature in tumors often shows a high degree of heterogeneity (Yang and Knopp,
2011) and the Tofts and extended Tofts models fail in describing its observed uptake
dynamics (Schmid et al., 2009). In Port et al. (1999) models with up to three tumor com-
partments have been proposed for the analysis of contrast medium uptake in mammary
tumors, and the different models have been compared using a likelihood-ratio criterion.
Analysis was performed on a region of interest level, not per voxel. According to their
results, more than one tumor compartment was needed in 85% of the carcinomas in order
to describe the contrast medium kinetics. The authors conclude that kinetic heterogeneity
within tumors is characteristic of malignant tumors.

The heterogeneity of curve shapes observed in tumors is judged to be diagnostically
informative (Padhani et al., 2005), and therefore ”analysis and presentation of imaging data
needs to take into account the heterogeneity of tumor vascular characteristics” (Parker and
Padhani, 2003, p. 356). Several authors claim that tumor heterogeneity is linked to the
malignancy and aggressiveness of tumors and can be a biomarker for the failure of cancer
treatments (Giesel et al., 2006; Wyss et al., 2007; Agrawal et al., 2009; Rose et al., 2009).
However, the quantification of tissue heterogeneity is still an unsolved issue (Yang and
Knopp, 2011). To this end, models with more compartments have been proposed. However,
these models are based on a region of interest (ROI), that is, the CTC are summed up
over the ROI and not used on a voxel level (Port et al., 1999; Brix et al., 2009; Sourbron
and Buckley, 2011). By analyzing summed curves on a ROI level one loses information on
the spatial structure contained in the data.

Another approach to assess tumor heterogeneity is the analysis of small ROIs, for ex-
ample predefined semi-automatically using clustering methods (Liney et al., 1999; Mohajer
et al., 2012). Though, as these approaches use an independent analysis for each of the small
ROIs they still lose spatial information for the kinetic analysis. As an alternative, texture
analysis (Karahaliou et al., 2010) and fractal approaches (Rose et al., 2009) have been used
on DCE-MRI data in order to quantify tissue heterogeneity. However, both approaches do
not account for the underlying kinetics of the contrast medium in the tissue.
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Therefore, we aim to characterize tissue heterogeneity with the help of a two tissue
compartment model. Applied on a voxel level, the proposed approach allows to assess
the heterogeneity of contrast medium uptake in the tissue (see Chapters 4 and 5). In the
following, we introduce the two tissue compartment model deterministically. Based on
this, corresponding statistical models can be defined either on a voxel level or on a ROI
level.
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Figure 3.5: Sketch of physiological model and connectivity diagram of 2Comp model.
Compartments used to model the diffusion of contrast medium (small circles) are sketched
left: the concentration in the capillary vascular plasma space is Cp(t), the concentration in
normal EES is Ct1(t), and in EES with increased permeability (ruled) it is Ct2(t). Contrast
medium does not enter the cells. The corresponding abstract two tissue compartment
model is sketched right.

Two tissue compartment model (2Comp)

In order to adequately describe the uptake dynamics of contrast medium in tumor tissue,
we propose a compartment model that allows for tissue heterogeneity. We assume that
there may be two tissue compartments with different kinetic properties that exchange with
plasma at distinct rates kep1

and kep2
(see Figure 3.5). Hence, we assume a model with two

tissue compartments (2Comp) which can be interpreted as parts of the interstitial space
with normal blood supply happening at rate kep1

and parts with increased (abnormal)
blood supply happening at rate kep2

> kep1
. However, one should carefully interpret

the kinetic parameters and be aware that those parameters are always bulk parameters
describing an average exchange rate rather than the exchange rate of a single membrane.
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This is because, at a voxel scale, one actually observes a system of multiple membranes
(Parker and Buckley, 2005). The assumption of a single average exchange rate works well in
healthy tissue, in heterogeneous tumor tissue it is too simplistic (Schmid, 2010). At tumor
edges, for instance, one typically observes a fast contrast medium uptake followed by a
slow washout. This leads to plateau shaped CTCs which cannot adequately be described
by the Tofts model. CTCs of tumor edge voxels are, for example, depicted in Figure 4.5
b) and 5.3 c).

As kepk
= Ktrans

k /vtk (Tofts et al., 1999), the volume vtk of tissue tk per unit volume
of tissue can be computed as vtk = Ktrans

k /kepk
. As described in Chapter 2, the implicit

assumption in a compartment model is that the outflux of concentration of a certain com-
partment is proportional to the current concentration in this compartment, and the influx
to this compartment is proportional to the current concentration in the source compart-
ment. Therefore, here the changes in tissue concentrations are given by

vt1
d
dt
Ct1(t) = Ktrans

1 [Cp(t)− Ct1(t)]
vt2

d
dt
Ct2(t) = Ktrans

2 [Cp(t)− Ct2(t)] .
(3.6)

The solution of these differential equations is given by

Ctk(t) = Cp(t) ∗
Ktrans
k

vtk
exp

(
−K

trans
k

vtk
t

)
, (3.7)

for k=1,2 denoting the different tissue compartments. Given the initial conditions Ct1(0) =
Ct2(0) = 0, the total (observable) concentration is then given as Ct = vt1Ct1 + vt2Ct2 by

Ct(t) = Cp(t) ∗
(
Ktrans

1 exp(−kep1
t) +Ktrans

2 exp(−kep2
t)
)
. (3.8)

Summarizing, the 2Comp model allows for tissue heterogeneity. With this model applied
on a voxel level, CTCs in heterogeneous tissue can be more adequately described, especially
at tumor margins, and tissue heterogeneity becomes accessible, see Chapters 4 and 5.

Relation to other compartment models

In the proposed 2Comp model, the observed concentration Ct(t) is described by an impulse
response function (sum of two exponentials) convolved with the AIF, see equation (3.8).
In the two compartment exchange model (2CXM) proposed by Brix et al. (2009) the
interstitial space and the interstitial plasma are modeled with separate compartments.
This leads to a model with nested compartments (see Section 2.2). Though explained
by different compartment designs, the impulse response of the 2CXM is also a sum of
two exponentials. Hence, the 2Comp model and the 2CXM lead to the same nonlinear
regression problem. We prefer to use the 2Comp model due to the charming fact that the
impulse response is directly expressed by interpretable parameters Ktrans

1 , Ktrans
2 , kep1

and
kep2

. In contrast, in the 2CXM the impulse response is expressed by auxiliary variables
(called F+, F−, K+ and K−) which are complicated functions of interpretable quantities—
see Lemma 3 of Sourbron and Buckley (2011).
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For the case that the exchange rates are the same, kep1
= kep2

, or when one of the tissue
volumes vanishes, vt1 = 0 or vt2 = 0, the impulse response reduces to a single exponential
and the 2Comp model corresponds to the standard Tofts model (1Comp model).

For the case that one exchange rate becomes infinite, kep2
= ∞, the observed concen-

tration is of the form

Ct(t) = vt2Cp(t) + Cp(t) ∗Ktrans
1 exp(−kep1

t). (3.9)

In this case, the second tissue compartment takes the role of an interstitial plasma com-
partment, Ct2 = Cp, and the 2Comp model corresponds to the extended Tofts model.

Multi tissue compartment model (qComp)

As a further generalization of the extended Tofts model and its extensions described above,
the multi-compartment model with q tissue compartments (qComp model) can be defined
by

Ct(t) = vpCp(t) +

q∑
k=1

Cp(t) ∗Ktrans
k exp(−kepk

t). (3.10)

With this model local physiological effects are even more flexibly modeled compared to the
2Comp model. The model allows for q tissue compartments and the inclusion of a plasma
volume fraction in the observed space. The connectivity diagram of the qComp model is
depicted in Figure 3.6.
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Figure 3.6: Connectivity diagram of qComp model

The idea is to allow for this very general model and to determine the adequate model
complexity from the data. Models with more compartments have previously been used in
the analysis of PET data; e.g., in Gunn et al. (2002) a basis pursuit strategy has been used
to determine the adequate number of compartments per voxel, however, not taking into
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account the spatial structure of an image. In Steingoetter et al. (2011) a multi compartment
model is used to model DCE-MRI data from simultaneously acquired CTCs for different
ROIs (muscle, liver and tumor tissue). In Chapter 6, we analyze data from a DCE-MRI
breast cancer study with the help of the proposed qComp model, and for each voxel we
determine the number of tissue compartments q and decide whether the plasma volume
term is actually needed.

3.3 DCE-MRI data from a breast cancer study

In the following, we introduce a DCE-MRI data set which is analyzed in Chapters 4–6
to evaluate the clinical use of proposed models and estimation approaches. This dataset
was graciously provided by Dr. A.R. Padhani at Paul Strickland Scanner Center, Mount
Vernon Hospital, Northwood, U.K.. It consists of DCE-MRI scans of breast cancer patients
which were previously reported about (Ah-See et al., 2004; Schmid et al., 2005, 2006).

The dataset is part of a study aiming to assess the role of DCE-MRI in predicting
success or failure of neoadjuvant chemotherapy. Data were acquired for twelve patients
with primary breast cancer treated with chemotherapy. Informed consent was obtained
from all patients and the study was acquired in accordance with recommendations given by
Leach et al. (2005). Chemotherapy is expected to stop the process of angiogenesis, i.e.to
lower the elevated blood flow to the tumor, and hence to lower the kinetic parameters
Ktrans and kep. Therefore, one attempts to predict the response to therapy with the help
of DCE-MRI scans. Like this, one can react early and—in case of nonresponse—plan
alternative treatment.

In total, the chemotherapy lasted six weeks. The first DCE-MRI scan was acquired
shortly before the beginning of chemotherapy and is referred to as pre-treatment scan.
A second scan was acquired after two weeks, termed post-treatment scan. The question
under study was if success or failure of chemotherapy for a patient could be predicted
using pre-treatment and post-treatment scans. After the second scan, the chemotherapy
continued for four more weeks. At the end of therapy, tumors were removed and, as clinical
evaluation, the response to therapy was evaluated histologically. Six of the twelve patients
were identified as responders, the other six as nonresponders.

The scans were acquired with a 1.5 T Siemens MAGNETOM Symphony scanner, TR
= 11 ms and TE = 4.7 ms. The breasts were restrained during the acquisition and no
motion was visible in the scans. Each scan consists of three slices of 230× 256 voxels. The
field of view for all scans was 260× 260× 8 mm per slice, and thus the voxel dimension is
1.016×1.016×8 mm. A dose of D = 0.1 mmol/kg body weight Gd-DTPA was injected at
the start of the fifth acquisition using a power injector. The first four scans were used to
compute average T10 values. Regions of interest cover the tumor and surrounding normal
tissue (Schmid et al., 2006).

Scans were acquired every 12.14 seconds over 36–46 equidistant time points after con-
trast medium injection, the total acquisition time was about ten minutes. Thus, the
DCE-MRI data studied here have four dimensions—two dimensions within one image, the
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third dimension for the slices, and the fourth dimension is time. However, only the central
slice of the DCE-MR images is used for our analysis. Thus, we are dealing with a series
of two-dimensional images over time. Figure 3.1 depicts a part of an DCE-MR imaging
sequence taken from one of the breast cancer patients pre-treatment. This series shows the
uptake dynamics of blood (and hence contrast medium) into the tissue over time. One can
consider this either as a series of images, or as a concentration time series in each voxel.

We will analyze this data set on a voxel level. Hence, when implementing and evaluating
estimation algorithms one has to deal with the described model complexity, i.e. for each
scan concentration time curves of up to 230 × 256 = 58, 880 voxels are to be described
with the help of biologically meaningful parameters. For a voxelwise analysis of DCE-MRI
typically parametric maps are used to visualize estimation results.
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Chapter 4

Bayesian independent estimation per
voxel

In Chapter 3, we have described how DCE-MRI data can be described with the help of
compartment models linking observed concentration time curves (CTCs) to physiologically
meaningful parameters. However, there are competing models, and the form and complex-
ity of the compartment model is not known and should be seen as part of the scientific
problem. On the one hand, knowledge about the true underlying biological or physiological
processes has to be taken into account and should be represented in the model. On the
other hand, the model has to match the observation made about reality in an experiment.

Often, scientists assume that certain underlying processes are more likely than others,
and they can guess how reasonable parameter values might look like. The Bayesian theory
offers a framework where prior knowledge can be explicitly taken into account and is
brought in accordance with observations made. The posterior distribution obtained with
a Bayesian approach provides valuable information on model fit and complexity as well as
criteria for model selection.

We aim to decide how heterogeneous tissue in a DCE-MRI breast cancer study is
and whether more complex models are needed than the standard Tofts model. Our first
approach, presented in this chapter, is a Bayesian framework to estimate the parameters
of the 1Comp and 2Comp models proposed in Section 3.2.2 independently per voxel. The
proposed framework allows one to decide which model is more suitable per voxel based on
the deviance information criterion (DIC). We analyze for which parameter constellations
redundancy issues occur in a voxelwise 2Comp model based on simulation studies. We
discuss how those redundancy issues can be detected by the effect they have on the posterior
distribution obtained from MCMC sampling. Finally, we fit the voxelwise 1Comp and
2Comp models to data from the breast cancer study described in Section 3.3 and search
for areas where the 2Comp model outperforms the 1Comp model. Our results show that
this happens basically at tumor edges. However, due to redundancy issues the parameters
of the voxelwise 2Comp model are not stably estimable for all voxels. Also, the use of the
DIC is limited when dealing with multimodal posteriors due to redundancy issues.

This Chapter is mainly based on Kärcher and Schmid (2010). Sections 4.1.4 and 4.1.5
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are in parts based on Sommer and Schmid (2012).

4.1 Methods

Using a compartment model, the theoretical form of the contrast medium concentration
can be described with the help of an analytical function of kinetic parameters and time
as explained in Chapter 3. Due to observation error, the observed contrast medium con-
centration Yi,j at time tj, j = 1, ..., T in voxel i = 1, ..., N can hence be described by the
theoretical concentration time curve Ct depending on the voxel-specific kinetic parameters
φi plus a stochastic error term εi,j

Yi,j = Ct(φ
i; tj) + εi,j. (4.1)

Here, we assume Gaussian noise, more specifically εi,j ∼ N(0, σ2
i ), such that the nonlinear

regression problem can be expressed via

Yi,j ∼ N
(
Ct(φ

i; tj), σ
2
i

)
, (4.2)

with σ2
i the voxel-specific variance of the Gaussian noise (Schmid et al., 2006). The form of

Ct and the number of kinetic parameters is fixed, given a specific compartment model. Here,
we compare the simple Tofts model (1Comp) with kinetic parameters φi = (kiep, K

trans,i)
and the two tissue compartment model (2Comp) proposed in Section 3.2.2 with φi =
(Ktrans,i

1 , Ktrans,i
2 , kiep1

, kiep2
).

For each voxel, the parameters φi of the 1Comp and 2Comp models are estimated in-
dependently using a Bayesian non-linear regression approach (Schmid et al., 2006; Orton
et al., 2007). As the Bayesian approach allows to use prior knowledge on the biological pa-
rameters, it is more stable than a least squares approach. This is important as the number
of parameters grows with model complexity. The Bayesian approach offers another advan-
tage: the posterior distribution contains additional valuable information on the suitability
of model fit and complexity. We exploit this by developing a model selection technique
based on the DIC (Spiegelhalter et al., 2002) and propose to use the number of effective
parameters to measure tissue heterogeneity.

In a Bayesian approach, probabilistic models have to be specified both for the data and
the model parameters before observation (Gelman et al., 2004). Here, we choose the priors
on the model parameters such that they reflect both uncertainty and physiological facts or
assumptions. Inference is based on the posterior distribution which is typically calculated
with the help of MCMC simulations (Gilks et al., 1996; Robert and Casella, 2004).

4.1.1 Bayesian 1Comp model voxelwise

The Tofts model with one tissue compartment was introduced in Section 3.2.1 and the
form of the contrast medium concentration Ct in the nonlinear regression problem (4.1)
is deterministically described by equation (3.3). In Schmid et al. (2006), the following



4.1 Methods 37

probabilistic model is used to incorporate prior knowledge on the kinetic parameters in
this compartmental model. Gaussian priors on the logarithmic transforms of the kinetic
parameters are assumed

log(Ktrans,i) ∼ N(0, 1)

log(kiep) ∼ N(0, 1)

for all voxels i independently. With this parametrization the rate constant and transfer
constants, Ktrans,i and kiep, are insured to be positive, and with this prior they do not exceed
values of 20 min−1 with 99,86% probability a priori (Schmid et al., 2006). This prior
reflects our assumption for reasonable kinetic parameter values. A relatively flat inverse
Gamma prior is used for the noise variance: σ2

i ∼ IG(c, d) with c = 0.0001, d = 0.0001.
This model is used for comparison with the following model with two tissue compartments.

4.1.2 Bayesian 2Comp model voxelwise

In Section 3.2.2, we proposed a model with two tissue compartments as alternative to the
Tofts model. For this model the form of Ct in the nonlinear regression problem (4.1) is de-
terministically described by equation (3.8). We choose the parametrization with fractional
volumes and rate constants and denote θi = (vit1 , v

i
t2
, kiep1

, kiep2
, σ2

i ) ∈ R5
+.

The parameters θi are estimated for each voxel independently using a Bayesian ap-
proach (Schmid et al., 2006; Orton et al., 2007). We assume the following prior distribu-
tions for every voxel i = 1, ..., N :

vit1 , v
i
t2
∼ Beta(a, b)

with a = b = 1, i.e., a uniform distribution on [0, 1], as the volume of each compartment
cannot exceed 100 percent. Note that vitj ∼ U [0, 1] is equivalent to Ktrans,i

j |kiepj
∼ U [0, kiep1

]

as proposed in Orton et al. (2007). Using the fact that rate constants are non-negative,
we assume

log(kiep2
) ∼ N(0, 1)

as in Schmid et al. (2006). In Section 3.2.2, we defined that the rate constant kiep in the first
compartment is smaller than in the second compartment. Therefore, we use the following
prior

kiep1
|kiep2

∼ U
[
0, kiep2

]
.

The Bayesian model is complete with an Inverse Gamma prior for the observation variance,
σ2
i ∼ IG(c, d) with c = 0.1, d = 0.001.

4.1.3 Implementation

In order to obtain parameter estimates and the posterior probability density function
(PDF), we use MCMC methods. By Bayes’ theorem, the posterior density for the param-
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eters in voxel i, θi is given by

p(θi|Ci
t(t)) =

p(Ci
t(t)|θi)p(θi)∫

p(Ci
t(t)|θ̃i)p(θ̃i)dθ̃i

∝ p(Ci
t(t)|θi)p(θi), (4.3)

where the joint density of the parameters p(θi) is given by

p(θi) ∝ p
(
vit1
)
p
(
vit2
)
p
(
kiep1
|kiep2

)
p
(
kiep2

)
p
(

1
σ2
i

)
= 1

(
vit1 ∈ [0, 1]

)
× 1

(
vit2 ∈ [0, 1]

)
× exp

(
−1

2

(
log(kiep2

)
)2
)

× 1
kiep2

1
(
kiep1
∈
[
0, kiep2

])
×

(
1
σ2
i

)c−1

exp
(
− d
σ2
i

)
,

(4.4)

and the likelihood p(Ci
t(t)|θi) is

p(Ci
t(t)|θi) ∝

1

σi
exp

(
− 1

2σ2
i

T∑
j=1

(Ci(t)− f (θi, tj))
2

)
. (4.5)

Let εij = Yi,j − Ct(φi, tj) denote the random noise terms. Then, the full conditional of
the inverse noise variance τ iε = 1

σ2
i

is a Gamma-distribution

τ iε |· ∼ Ga

(
c+

T

2
, d+

1

2

T∑
j=1

ε2ij

)
. (4.6)

Hence, we can use Gibbs updates to update τ iε . For all other parameters, the full condi-
tionals do not have a closed form to sample from. Thus, Metropolis-Hastings steps are
performed. Parameters of the first compartment (vit1 , k

i
ep1

) are updated in one block, the

parameters of the second compartment (vit2 , k
i
ep2

) are updated in a second block using ran-
dom walk proposals. The proposal variance is tuned such that acceptance rates are about
40 %. For each voxel, we run 25.000 iterations and discard 12.000 iterations as burnin. For
storage purposes samples are thinned; every tenth sample is saved.

We implemented the proposed 2Comp model extending the R-package dcemriS4

(Whitcher and Schmid, 2009, 2011). The MCMC update steps are implemented in a C-
procedure which is embedded in R. For efficiency, the MCMC procedure is run in parallel
for several voxels.

4.1.4 Measure of model fit and complexity

Work has been done on model selection in compartment models used for DCE-MRI or
PET analysis, however, not in a Bayesian framework. In Turkheimer et al. (2003), model
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selection in PET studies is based on the Akaike information criterion (AIC), and model
averaging is proposed to be based on Akaike weights. Similarly, Brix et al. (2009) base
multimodel inference for DCE-MRI data on the AIC and on Akaike weights. Both in
Turkheimer et al. (2003) and Brix et al. (2009), model choice is done on a ROI level, not
on a per voxel level. In Ingrisch et al. (2010), the use of the AIC for model choice in DCE-
MRI is evaluated, and model selection strongly depends on the length of acquisition time.
Dependence of AIC based model selection on the sample size is a known problem and the
use of a corrected AIC is recommended for small sample sizes (Burnham and Anderson,
2002). As alternative, Schwarz (1978) proposed the Bayesian information criterion (BIC)
derived as an approximation of the logarithmized marginal likelihood of a model.

Similar to the AIC and the BIC, most information criteria share a similar form: They
include a measure of lack of model fit plus a penalty term for increasing model size (Burn-
ham and Anderson, 2002). Model size in this context is typically synonymous with the
number of model parameters. In a Bayesian framework, however, the size of a model is not
as clearly defined as the level of hierarchy may vary and still lead to the same marginal
distributions. Therefore, Spiegelhalter et al. (2002) propose that the model complexity
should also reflect the difficulty in estimation. They propose a measure of model complex-
ity pD which estimates the effective model complexity from the data. Based on the effective
number of parameters pD the DIC has been derived (Spiegelhalter et al., 2002). As, here,
we base inference on a Bayesian hierarchical framework, we use the DIC to evaluate the
model fit and to compare the 1Comp and 2Comp models per voxel. Furthermore, we use
pD maps to visually assess tissue heterogeneity.

The DIC is defined as the posterior median deviance plus the effective number of
parameters pD (Spiegelhalter et al., 2002)

DIC = D(θ̄) + pD. (4.7)

The deviance, defined as D(θ) = −2l(θ), with l(θ) the log-likelihood, measures the fit of
the estimated parameters to the data. In contrast to other model selection criteria with
penalty terms for higher model dimensions that are based on the a priori fixed number
of model parameters, the DIC penalizes for the effective number of parameters which
is calculated from the posterior distribution. The effective number of parameters pD is
calculated as difference of the posterior median of the deviance and the deviance evaluated
at the posterior median value (Spiegelhalter et al., 2002)

pD = D̄ −D(θ̄). (4.8)

However, as Spiegelhalter et al. (2002) point out, pD can become small or even negative in
cases where the posterior mean or posterior median is a poor estimator. This is certainly
the case when dealing with multimodal posteriors due to parameter redundancy. Hence,
we can implicitly detect redundancy issues by looking at the pD.

Higher pD values indicate an increased effective model complexity in the data observed,
and hence we suggest using pD to measure tissue heterogeneity. Here, we compute the
pD and the DIC for each voxel. The deviance in voxel i is D(θi) = −2 ∗ l(θi) where
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l(θi) = log(p(Ci
t(t)|θi)) is the log-likelihood function which is easily derived from equation

(4.5). It is evaluated at the posterior median values of θi in order to calculate the deviance
of the median and it is evaluated at each sample value of θi in order to calculate the median
deviance.

4.1.5 Redundancy issues in the independent voxelwise model
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Figure 4.1: Similar CTCs for two different parameter vectors. Black line: CTC described by
kep1

= 2.07, kep2
= 2.07, Ktrans

1 = 0.55, Ktrans
2 = 0.15 (can as well be described by only one

compartment with kep1
= 2.07 and Ktrans

1 = 0.7). Gray line: CTC described by kep1
= 2.19,

kep2
= 5.02, Ktrans

1 = 0.62, Ktrans
2 = 0.24. The dashed lines show the contribution of the

first compartment and the dotted lines those of the second compartment.

The independent voxelwise 2Comp model leads to unstable estimates due to redundancy
issues. Obviously, redundancy issues occur when the contribution of one compartment
vanishes. However, they may as well occur when the exponential rates are too similar.
As described in Section 2.3, there are theoretical results on parameter redundancy in sum
of exponentials models (Seber and Wild, 1989). However, a generalization for the case of
convolved exponentials is tricky. In Reich (1981) a redundancy measure was used to show
that parameters in a sum of two exponentials model are highly redundant if the exponential
rates differ by less than a factor of five. Even though this result does not directly transfer
to the convolved exponentials given in equation (3.8), this result still helps to understand
parameter redundancy in the 2Comp model. In Figure 4.1 we show an example for data
simulated from a two-compartment model where the exponential rates differ by a factor of
four. In this case, a solution from a compartment model with only one tissue compartment
exists that fits the observed concentration reasonably well. Therefore, several quite distinct
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parameter vectors describe very similar CTCs, meaning that parameters are redundant (as
defined in equation (2.20)).

An advantage of Bayesian analysis is, of course, that posteriors can be calculated no
matter if the parameters are redundant. From the form of the posterior one can identify
how profound the information about certain parameters is. In a Bayesian framework,
rather flat or multimodal posteriors are obtained in case of redundancy. From these, point
estimates are difficult to obtain and will be unstable. In the analysis of DCE-MRI data,
one deals with a large number of parameters due to the large number of voxels. Not being
able to look at the posterior distribution of every single voxel, point estimates are necessary
in order to visualize results with the help of parametric maps.

4.1.6 Simulation and data

In order to evaluate the proposed approach, CTCs for different parameter combinations
were simulated. First, we simulated the 2Comp model, keeping kep2

= 2 and vt2 = 0.2
fixed and varying kep1

= 0.05, . . . , 0.5 and vt1 = 0.1, 0.2, 0.3, 0.4 (simulation A). Secondly,
we simulated the 2Comp model, keeping kep1

= 0.3 and vt1 = 0.2 fixed and varying
kep2

= 1, . . . , 10 and vt1 = 0.1, 0.2, 0.3, 0.4 (simulation B). For comparison, we simulated
the 1Comp model as well, with kep = 0.5, . . . , 2.5 and vt = 0.1, . . . , 0.5 (simulation C).
Gaussian noise was added at different contrast to noise ratios (CNR = 5, 10, 15). For
all simulated CTCs, the posterior PDFs of the 1Comp model and the 2Comp model were
calculated.

To evaluate the clinical use of our approach, we use a subset of the DCE-MRI study
on breast cancer described in Section 3.3.

4.2 Results

4.2.1 Simulation results

Figure 4.2 shows the true underlying CTCs, the simulated data points series (with
CNR=10), and the fitted 1Comp- and 2Comp-curves for different parameter values. Fig-
ure 4.2 a) shows an example where the 2Comp model describes the simulated curve more
adequately than the 1Comp model (fast uptake, slow washout). In this case, the DIC of
the 2Comp model is smaller than for the 1Comp model, and the pD of the 2Comp model
exceeds the pD of the 1Comp model: pD2 = 3.77, pD1 = 1.65. As the 2Comp model has
more parameters, one can expect that pD2 > pD1 holds. In c) the estimated posterior PDF
of vt1 for example a) is plotted. For this parameter constellation with distinct rate con-
stants (kep1

= 0.3, kep2
= 6), model choice based on the DIC would correctly identify the

2Comp model as clearly superior to the 1Comp model (DIC2 = 43.29 < DIC1 = 46.55).
The situation is different for voxels with more similar rate constants. In Figure 4.2 b) the

CTC simulated from the 2Comp model (with kep1
= 0.45, kep2

= 2) differs only slightly from
a 1Comp model curve. There seems to be no need for a second compartment to adequately
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Figure 4.2: Examples of simulated CTCs and the fitted 1Comp- and 2Comp-curves a), b)
with corresponding estimated posterior PDF c), d). Underlying parameters: a) kep1

= 0.3,
kep2

= 6, vt1 = vt2 = 0.2; b) kep1
= 0.45, kep2

= 2, vt1 = vt2 = 0.2

describe the data. Figure 4.2 d) shows the estimated posterior PDF of vt1 . Though the
true values for the volume of the two compartments are vt2 = vt1 = 0.2, the posterior
PDFs for these parameters are multimodal with maxima at parameter constellations that
actually correspond to a situation where the volume of one compartment is near zero and
the parameter constellation of the other compartment is similar to the 1Comp model. The
samples for the volume parameters alternate between the cases where vt1 is almost zero
or vt2 is almost zero, see Figure 4.3. For a multimodal PDF, estimates of the kinetic
parameters are not reliable as the median does not provide a good point estimate in this
case. Furthermore, the effective number of parameters pD is underestimated. Here, the
estimated number of effective parameters in the 2Comp model is even smaller than for the
1Comp model (pD2 = 0.37, pD1 = 2.03).

For a bimodal or multimodal posterior PDF, the estimation of pD and DIC is not
reliable (Spiegelhalter et al., 2002). Hence, model selection is done comparing the DIC
of the 1Comp and 2Comp models and accounting for the cases where the posterior PDF
is multimodal as in example 4.2 b). We use small pD values or a large deviation of kep1

samples as indicators for multimodal posteriors. We define the following criterion for model
selection: choose the 2Comp model if

(i) the standard deviation of the 2Comp model is not too large (sd(kep1
)/kep1

< 0.25)
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Figure 4.3: Thinned sampling paths for vt1 , vt2 , kep1
, and kep2

for data simulated from
kep1

= 0.45, kep2
= 2, vt1 = vt2 = 0.2 (simulation A, CNR=10)

AND

(ii) the pD of the 2Comp model exceeds typical values of the 1Comp model (pD2 > 1.5)

AND

(iii) the DIC of the 2Comp model is smaller than the DIC of the 1Comp model (DIC2 <
DIC1).

Our simulation results show that parameter redundancy has to be taken into account in
parameter estimation and model selection. In Section 2.3, we have described how parameter
redundancy can be classified in a sum of exponential model with the help of a redundancy
measure. From this theory, parameters in a sum of two exponentials model are redundant
if the exponential rates differ too little (less than a factor of five). Here, we obtain insight
into parameter redundancy in the 2Comp model (sum of two convolved exponentials) by
evaluating simulation studies with different parameter constellations.

Table 4.1 shows how often the 2Comp model was selected for simulation A, B and C.
For every combination of parameters and at every noise level, there are 50 simulated CTCs.
The median DIC and the median pD are shown for the CTCs selected to be modeled better
by the 2Comp model. Both the shape of the underlying curve (Figure 4.4) and the noise
level (Table 4.1) influence how often the 2Comp model is selected. At lower noise levels
the specificity for a model increases: The percentage of cases where the 2Comp model is
preferable, the difference of the 1Comp and 2Comp model DIC, and the effective number
of parameters pD increase with increasing CNR (Table 4.1).

There are parameter combinations for which the 2Comp model is rarely selected even
at a low noise level (Figure 4.4). For this parameter combinations the CTC of the 2Comp
model can be approximated well by a 1Comp-curve as discussed in example 4.2 b). We
state that this is the case in situations where the contribution of the first compartment
is too small (e.g., vt1 < vt2) or the uptake behavior of both compartments is too similar
(kep1

≈ kep2
). This result is in accordance with the theoretic results on redundancy in a

sum of two exponentials described in Section 2.3 and in Appendix A.2.
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Table 4.1: Results of model choice: cases where 2Comp model is selected, median DIC for
the 2Comp (1Comp) model and median pD2 (pD1) for these cases. Median DIC (2Comp)
is significantly smaller than median DIC (1Comp) in all combinations (Wilcoxon rank sum
test, p-values < 0.01).

Simulation A B C
CNR 5 5 5

2Comp 49% 47% 33%
DIC 46.85 (48.53) 46.98 (48.29) 46.28 (48.03)
pD 2.14 (1.87) 2.49 (1.77) 1.85 (1.88)

CNR 10 10 10
2Comp 50% 69% 30%

DIC 45.39 (47.12) 45.83 (47.47) 43.88 (45.55)
pD 2.69 (1.88) 3.05 (1.77) 1.92 (1.83)

CNR 15 15 15
2Comp 56% 80% 25%

DIC 42.40 (45.59) 43.51 (46.87) 39.30 (40.81)
pD 2.85 (1.88) 3.21 (1.77) 1.87 (1.86)

Simulation A
(kep2

= 2, vt2 = 0.2 fixed)
Simulation B
(kep1

= 0.3, vt1 = 0.2 fixed)
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Figure 4.4: Selection of 2Comp model in percent for different combinations of kinetic
parameters (simulation A and B, CNR=10)
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Table 4.2: Model selection for twelve scans pre- and post-treatment: Median DIC, pD,
percentage of voxels where 2Comp model selected

Patient/ DIC DIC pD pD 2Comp
scan 1Comp 2Comp 1Comp 2Comp
P1 pre 46.28 44.29 1.91 2.37 61.86%
P1 post 44.61 42.84 1.87 2.09 54.46%
P2 pre 47.76 46.07 1.89 2.34 53.85%
P2 post 44.68 42.60 1.92 2.28 51.86%
P3 pre 48.00 46.32 1.88 2.54 54.94%
P3 post 45.65 43.37 1.89 2.18 39.53%
P4 pre 45.98 44.03 1.90 2.20 40.27%
P4 post 36.16 33.39 1.87 2.22 41.30%
P5 pre 35.30 32.23 1.89 2.46 43.81%
P5 post 36.87 33.37 1.89 2.72 56.16%
P6 pre 36.71 34.56 1.91 2.30 42.33%
P6 post 35.17 32.74 1.90 2.29 41.77%

4.2.2 DCE-MRI breast cancer study

To evaluate the clinical value of the proposed method, we fitted the 1Comp and 2Comp
models to CTCs of twelve DCE-MRI scans of the breast cancer study described in Section
3.3. Table 4.2 shows the percentage of voxels for which the 2Comp model was selected.
For these voxels, the median DIC and the median pD for the 1Comp and 2Comp models
are listed. Other voxels were excluded due to multimodal posteriors. As described in the
simulation study, for those voxels, the pD and DIC values as well as parameter estimates
are not reliable. For about 40–60 % of the voxels analyzed the 2Comp model is preferable.

In Figure 4.5, typical CTCs are shown for three voxels from the pre-treatment scan of
patient 2. The concentration uptake in a voxel outside the tumor is rather slow (Figure 4.5
a)). For this voxel the fitted 1Comp- and 2Comp-curves look quite similar. Still, the
2Comp-model is preferable based on the DIC values (DIC2 = 45.20 < DIC1 = 46.39), and
the estimated effective number of parameters in the 2Comp model is higher (pD2 = 2.49,
pD1 = 1.92). For a voxel at the tumor edge, the CTC has a plateau shaped form (fast
uptake, slow washout, see Figure 4.5 b)). For this voxel, the superiority of the fitted 2Comp-
curve is obvious as the fitted 1Comp-curve cannot adequately describe the plateau shape.
Furthermore, the estimated pD for the 2Comp model is considerably higher (pD2 = 3.42,
pD1 = 1.97, DIC2 = 47.73 < DIC1 = 49.35). For the voxel inside the tumor, there is
a fast uptake but also a fast washout of the contrast medium (Figure 4.5 c)). For this
voxel, the 1Comp model adequately describes the observed CTC. In contrast, the 2Comp
model fails to adequately describe the CTC. This is because, due to redundancy issues,
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the posterior marginal densities are multimodal leading to bad point estimates and hence
to bad fits to the data. Here, a small pD value indicates that the posterior density is
multimodal in the 2Comp model and the DIC is not reliable (pD2 = 0.29, pD1 = 2.02,
DIC2 = 44.79 < DIC1 = 48.39).

Figure 4.6 shows the model decision per voxel and Figure 4.7 the parameter maps for
the pre-treatment scan of patient 2. The parameter estimates of the 2Comp model were
plotted only for voxels where the 2Comp model was selected. Within the tumor, the 2Comp
model is rarely selected. This indicates that the 1Comp model is usually appropriate to
describe the uptake behavior inside the tumor. At the tumor margins, however, the 2Comp
model outperforms the 1Comp model. For voxels at the tumor margins the DIC is smaller
for the 2Comp model and the effective number of parameters pD is significantly larger than
for the 1Comp model (Figure 4.7 pD2 - pD1). Also, the sum of squared errors (SSE) shows
good improvement when using a second tissue compartment, especially at the tumor edges
(Figure 4.6).
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Figure 4.6: Differences in SSE and model choice for patient 2 pre-treatment
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4.3 Conclusions

We have fitted the 1Comp and 2Comp models introduced in Section 3.2 on a voxel level.
Based on the DIC, we decided which model is more adequate for each voxel. We have
found that the 2Comp model outperforms the 1Comp model regarding the contrast medium
uptake behavior at tumor margins. Those results confirm that the model complexity of
the proposed 2Comp model is actually needed to adequately describe concentration uptake
behavior observed in tumorous tissue and that areas with increased tissue heterogeneity
exist which cannot be modeled with a 1Comp model.

However, in other tissue areas like, for example, in the tumor core, a 1Comp model suf-
fices to model the observed uptake behavior. In those areas, the 2Comp model is redundant
and point estimates for the kinetic parameters, the number of effective parameters pD, and
the DIC are not reliable. Therefore, a statistical procedure would be useful that allows for
two tissue compartments and sets one of the compartment volumes to zero for voxels where
one tissue compartment suffices. Approaches with this wanted variable selection property
are analyzed in Chapters 5–7.

The Bayesian framework is suitable to evaluate model fit and complexity and the DIC
allows to compare the two models. Besides the DIC, the posterior distribution obtained
from MCMC sampling provides useful information that a least squares approach cannot
offer. This information has to be considered when deciding among different models. We
have described how a Bayesian framework allows to analyze redundancy issues. Multi-
modal or flat PDFs lead to small or even negative pD-values which can be used to indicate
redundancy issues.

Here, we have modeled voxels independently from each other. Like this, the spatial
information contained in an image is not accounted for. The voxelwise analysis of the
1Comp and 2Comp models in this chapter can be considered the basis needed for the
extension to a spatial analysis as proposed in Chapter 5.



Chapter 5

Bayesian spatial regularization

In this chapter, we propose a spatial Bayesian framework for the 2Comp model proposed in
Section 3.2.2 extending the approach considering all voxels independently from each other
(Chapter 4). With the help of this framework, we determine the kinetic parameters on
a voxel level, using prior biological knowledge on the parameters and accounting for the
spatial structure of the image. The approach makes use of the intrinsic spatial information
given by the voxel structure of the image. With the help of Gaussian Markov random
fields as priors on the kinetic parameters, we incorporate our prior belief that the exchange
rates between plasma and tissue observed in two neighboring voxels are likely to be similar.
With this smoothness assumption the parameter space is spatially regularized.

We analyze to what extent this spatial regularization helps to avoid parameter redun-
dancy and to obtain stable parameter point estimates in the 2Comp model. Choosing a full
Bayesian approach, we obtain posteriors and point estimates running MCMC simulations.
An advantage of the Bayesian framework is that the posterior can still be computed in the
case of parameter redundancy; however, the redundant parameters will have multimodal
marginal posteriors. This may lead to unstable parameter estimates and bad fits when
analyzing voxels independently from each other as described in Chapter 4.

We find that assuming spatial smoothness on the exponential rates is an efficient way to
regularize the parameter space and to make parameters of a 2Comp model identifiable. The
proposed spatial 2Comp model has advantageous variable selection properties. In voxels
which are well described by a 1Comp model, the contribution of one of the compartments is
set to values close to zero. As a result, we obtain stable parameter estimates for all voxels.
Hence, one can describe heterogeneity of the tissue without losing spatial information. The
proposed approach is evaluated for simulated concentration time curves as well as for in
vivo data from the breast cancer study introduced in Section 3.3.

This Chapter is based on Sommer and Schmid (2012).
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5.1 Methods

Gaussian Markov random fields are a powerful tool for modeling spatial information. Appli-
cations of spatial Markov random fields, at their beginnings, often focused on agricultural
field experiments (Besag, 1974). Later, spatial Markov random fields became popular in
image analysis, e.g., Besag (1986) discusses the use of Markov random fields for image
restoration. Markov random fields have become especially important in Bayesian image
analysis (Geman and Geman, 1986) and in Bayesian hierarchical models in general. Hid-
den Markov fields are, for instance, successfully used for image restoration (Marroquin
et al., 2003). For an overview of applications, theoretical results, and efficient algorithms
for Gaussian Markov random fields see Winkler (1995) and Rue and Held (2005).

In the context of DCE-MRI analysis, Gaussian Markov random field priors have previ-
ously been proposed and shown to be useful by Schmid et al. (2006) and Kelm et al. (2009)
for the 1Comp model. With Gaussian Markov random field priors, one can incorporate
smoothness assumptions on parameter maps. Here, we propose Gaussian Markov random
field priors for the kinetic parameters of the 2Comp model.

As before, the observed contrast medium concentration Yi,j at time tj, j = 1, ..., T
in voxel i = 1, ..., N can be described by the theoretical concentration time curve Ct(t)
depending on the voxel-specific kinetic parameters φi plus Gaussian noise, i.e., Yi,j ∼
N (Ct(φ

i; tj), σ
2
i ) (see equation (4.2)) with σ2

i the voxel-specific variance of the Gaussian
noise (Schmid et al., 2006). The form of Ct and the number of kinetic parameters is fixed,
given a specific compartment model. For the 2Comp model, the form of Ct is a sum of
two convolved exponentials as described by equation (3.8). Parameters are estimated with
the help of MCMC simulations. However, in contrast to Chapter 4, kinetic parameters of
the different voxels φi are no longer assumed to be independent. Hence, MCMC update
schemes have to take into account potential dependencies in the parameters of different
voxels.

5.1.1 Bayesian 2Comp model voxelwise

A voxelwise two tissue compartment model is used for comparison with a corresponding
spatial model. In a voxelwise approach, the CTCs of all voxels are fitted independently
from each other. Similar to Section 4.1.2, we define priors on the parameters. Here, we
use slightly different prior distributions that are better comparable with the priors used
in Schmid et al. (2006) for the 1Comp model. However, the type of prior information
incorporated with this prior and the observed estimation behavior is very similar to the
prior used in Section 4.1.2.

We use an exponential parametrization that insures the rate and transfer constants

to be positive (see Schmid et al., 2006, and references therein): θik = log
(
kiepk

)
, γik =

log
(
Ktrans,i
k

)
, for k = 1, 2. Similar to the voxelwise Bayesian 1Comp model evaluated in

Schmid et al. (2006), we impose Gaussian priors on the logarithmic rate constants θik

θik|τθk ∼ N
(
µθk , (τθk)−1

)
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and on the logarithmic transfer constants γik

γik|τγk ∼ N
(
µγk , (τγk)−1)

independently for all voxels i = 1, . . . , N with fixed precisions τθk = τγk = 1 and µθ1 =
µγ1 = µγ2 = 0, µθ2 = log(5). With this prior, all rate and transfer constants kiepk

and

Ktrans,i
k remain positive. Rate and transfer constants of the first compartment with a priori

probability of 99.86% do not exceed 20 min−1. The dynamics in the second compartment
is assumed to be faster with a priori expected kiep2

values of five.

5.1.2 Spatial Bayesian 2Comp model

In the following, we will introduce a spatial prior which accounts for the spatial information
intrinsic in the DCE-MR images. This prior reflects our view about the physiology in
tumorous tissue, and spatial regularization helps to solve the problem of redundancy.

We assume that the average permeability of capillaries is a rather persistent property
given that the capillary walls are intact or amiss. However, the volume fractions of in-
tact and disrupt capillaries (and hence normal or abnormal EES) recorded in a specific
voxel may vary randomly. Therefore, in the proposed spatial model, we assume that rate
constants kiepk

vary smoothly in space and hence that the exchange properties of each tis-
sue compartment are rather smooth. In contrast, the contribution of differently behaving
compartments in each voxel is assumed to be quite flexible, meaning that the tissue vol-
umes vitk = Ktrans,i

k /kiepk
may vary strongly from voxel to voxel. Then, the transfer rate as

product of rate and volume Ktrans,i
k = kiepk

vitk inherits the spatial smoothness of kiepk
but is

less smooth due to varying vitk values. The spatial smoothness of the kinetic parameters is
modeled using a Gaussian Markov random field on its logarithmic transforms θik, γ

i
k (Rue

and Held, 2005; Schmid et al., 2006).
We use a neighborhood structure where adjacent voxels of a two-dimensional image are

neighbors, that is, each voxel has four neighbors unless it lies at the edge of the image.
From this, a prior distribution can be defined by assuming a Gaussian distribution on the
differences of neighboring logarithmic rate and transfer constants:

θik − θ
j
k|τθk ∼ N

(
0, (τθk)−1) for i ∼ j

and

γik − γ
j
k|τγk ∼ N

(
0, (τγk)−1) for i ∼ j.

Here, i ∼ j denotes that voxel i is a neighbor of voxel j.
This spatial prior on the logarithmic rates leads to smooth parameter maps of kiep1

and

kiep2
, Ktrans,i

1 and Ktrans,i
2 . However, a priori we assume much smoother maps for kiep1

and

kiep2
and less smooth maps for Ktrans,i

1 and Ktrans,i
2 . Hence, we use Gamma priors on the

precisions

τθk ∼ Ga (aθk , bθk)
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for k = 1, 2 with aθ1 = aθ2 = 1000 and bθ1 = bθ2 = 1 and

τγk ∼ Ga (aγk , bγk)

for k = 1, 2 with aγ1 = aγ2 = 0.0001 and bγ1 = bγ2 = 0.01.
Furthermore, we assume the noise variance to be the same for all voxels i, i.e. σ2

i = σ2.
For the observation variance, we assume an Inverse Gamma prior σ2

i ∼ IG(a, b) with a
and b such that the a priori expected signal to noise ratio (SNR) corresponds to values
typically observed in breast tumor DCE-MRI data (voxelwise SNR ranges from 10 to 20
for the data analyzed here). We choose this prior to be more informative with increasing
number of voxels.

5.1.3 Implementation

The posterior distribution is obtained with Markov chain Monte Carlo methods (see also
Section 4.1.3). The likelihood and full conditionals are calculated as follows.

The log-likelihood depends on the voxel-specific kinetic parameters φi and the inverse
noise variance τε = 1

σ2 :

l
(
φi, τε

)
=

T

2
log (2πτε)−

1

2
τε

T∑
j=1

(
Yi,j − Ct(φi, tj)

)2
.

In the spatial model, the full conditional distribution of the logarithmic rate constant
in voxel i, θik, given the logarithmic rate constants of all other voxels, θ−ik ,

p(θik|θ−ik , τθk) ∝ exp

−τθk
2

∑
j∈∂(i)

(
θik − θ

j
k

)2


depends only on those of its direct neighbors for k = 1, 2. Here, ∂(i) denotes the set of
direct neighbors of voxel i. The full conditionals of the logarithmic transfer constants γik
have the same form.

Let εij = Yi,j − Ct(φi, tj) denote the random noise terms. Then, the full conditional of
the inverse noise variance τε in the full spatial model is a Gamma distribution

τε|· ∼ Ga

(
a+

NT

2
, b+

1

2

N∑
i=1

T∑
j=1

ε2ij

)
.

The full conditional of the precision τθ1 is

τθ1|· ∼ Ga

aθ1 +
N − 1

2
, bθ1 +

1

4

N∑
i=1

∑
j∈∂(i)

(
θi1 − θ

j
1

)2

 .
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Similarly for τθ2 , τγ1 and τγ2 .
We implemented the proposed spatial 2Comp model extending the R-package dcemriS4

(Whitcher and Schmid, 2009, 2011). For each voxel, we simulate from the posterior of the
model parameters with an MCMC algorithm (Gilks et al., 1996). Starting with random
values, the voxels are subsequently updated in random order using the current parameter
values of neighboring voxels where needed. More precisely, starting values are drawn from
uniform distributions per voxel with vstartt1

∼ U [0, 1], vstartt2
= 1 − vstartt1

, and kstartep1
∼

U [0.1, 0.3], kstartep2
∼ U [1.75, 5.25]. The logarithmic rate and transfer constants θi1, θi2, γi1,

γi2 are updated with Metropolis-Hastings steps with random walk proposal. Gibbs update
steps are used for the hyper parameters σ2, τ iθk , and τ iγk as its full conditionals are Gamma
distributions that can be sampled from directly.

The proposal variances of the random walk proposals are tuned such that the
Metropolis-Hastings acceptance rates are approximately 20%. After a burn-in of 5,000
iterations, 50,000 iterations are performed. As samples of the parameters are calculated
for up to 230×256 voxels, thinning is necessary for storage purposes, and only every tenth
sample is saved. For parameter point estimation we use the median of the MCMC sample.
As a convergence analysis on a voxel level is too extensive, we have checked convergence
comparing the obtained results with results obtained with a considerably shorter MCMC-
chain with different starting values (5,000 iterations after a burnin of 5,000, every third
sample saved). We find that the estimated parameter maps obtained from both chains
are visually not distinguishable and conclude that the MCMC chains have converged at
burnin. Sampling paths and autocorrelations of the kinetic parameters are shown in the
results (Figure 5.6).

5.1.4 Measure of model complexity

Similar to Chapter 4, the number of effective parameters pD is used to assess the model
complexity per voxel and hence the tissue heterogeneity as introduced in Section 4.1.4.
Higher pD values indicate an increased effective model complexity in the observed data,
and hence we suggest using pD to measure tissue heterogeneity. Here, although we are
dealing with a joint model for all voxels, i.e., a model for the whole image, we will also
compute a voxelwise pD using the deviance in each voxel. This allows us to visually assess
the model complexity per voxel and hence the tissue heterogeneity.

5.2 Simulation study

5.2.1 Simulation setup

In order to evaluate the proposed voxelwise and spatial 2Comp models, we simulated a
DCE-MR image of 25 × 25 voxels with different parameter combinations in a two tissue
compartment model. The parameter configuration is given in Figure 5.1. For three blocks
of different size, we simulated CTCs from a true 2Comp model, i.e., a mixture of two
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Figure 5.1: Sketch of simulation design

tissue compartments with very different exchange rates kep1
= 0.2 and kep2

= 4. Both
compartments contribute equally with volumes vt1 = vt2 = 0.5. In the lower left block, the
exchange rate kep1

varied smoothly from 0.2 in the middle to 0.5 at the corner.

For two blocks, we simulated CTCs from a 1Comp model. One of those blocks is
described by a tissue compartment exchanging rather slowly with plasma at rate kep1

=
0.2 and having volume vt1 = 1 (the fast exchanging compartment with kep2

= 4 has no
contribution, i.e. vt2 = 0). For the other block, the exchange with plasma is rather fast:
kep2

= 4, vt2 = 1 (the slow exchanging compartment kep1
= 0.2 has no contribution, i.e.

vt1 = 0).

Within each block, uniformly distributed noise U [0.8, 1.2] was multiplied to the param-
eters kep1

, kep2
, Ktrans

1 and Ktrans
2 per voxel and the corresponding CTC was computed from

these kinetic parameters. Gaussian noise was added to the simulated CTCs with standard
deviation σ = 0.05. With this simulated data we try to rebuild typical behavior observed
in real data with realistic signal to noise ratios and smooth parameter maps with some
random variation.

5.2.2 Results

As discussed above, when fitting a model with two tissue compartments one often deals
with identifiability issues. In these cases, the model is overparametrized and one observes
unstable point estimates of all parameters. The Bayesian approach allows the evaluation of
the posterior anyway; however, in the case of redundancy, the marginal posteriors typically
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Figure 5.2: Posterior marginal densities for curve simulated from 1Comp. Left: Voxelwise
2Comp fitted. Right: Spatial 2Comp fitted

are multimodal.
For example, in the blocks simulated from a 1Comp model parameters are redundant,

and hence point estimates are unstable in the lower right of the simulated image. For
one of these voxels, Figure 5.2 depicts the marginal posteriors of volume fractions vtk and
rate constants kepk

. With the voxelwise approach, the posteriors are multimodal, and
hence there is no good point estimator for the kinetic parameters. In comparison, the
spatial approach produces unimodal posteriors and good point estimates can be gained
by computing the median of the MCMC sample. In contrast to the voxelwise model, the
contribution of the two compartments are well separated (kep1

and kep2
samples are not

too similar) and the estimated volume of the first compartment is close to zero.
Using the point estimates for the kinetic parameters, we obtain estimated CTCs and

refer to them as fit. In Figure 5.3, we compare the fit of the 1Comp model, the voxelwise,
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and the spatial 2Comp model. For a curve simulated from a 1Comp model (Figure 5.3
(a)), the fit of the spatial 2Comp model is similar to the fit of the 1Comp model. However,
using the point estimates to obtain a CTC estimate, the voxelwise 2Comp model fails to
adequately fit the curve due to redundancy issues. The sum of squared errors (SSE) is
about 0.14 for the voxelwise 2Comp model and about 0.1 for the 1Comp model as well as
for the spatial 2Comp model. For a curve simulated from a 2Comp model (Figure 5.3 (b)),
both the spatial and voxelwise 2Comp models clearly outperform the 1Comp model with
similar fits. Here, the SSE is about 0.12 for the spatial and voxelwise 2Comp models and
0.2 for the 1Comp model.

In Figure 5.4, the SSE per voxel is depicted for the 1Comp model and the voxelwise and
the spatial 2Comp model. Considerable differences in SSE for the 1Comp model compared
to both 2Comp models can be observed for the three blocks simulated from a true 2Comp
model. The voxelwise and spatial 2Comp models have similar SSE, with increased SSE
in the voxelwise model for voxels with multimodal posteriors. These differences cannot be
distinguished at this scale and were shown for a specific curve above (Figure 5.3 (a)).

In order to visualize the model complexity on the voxel level, we depict pD maps in
Figure 5.4. Please note that for voxels with multimodal posteriors, the estimates of pD
are not meaningful. Hence, in the voxelwise 2Comp model estimated pD values are often
negative due to parameter redundancy. For the spatial 2Comp model, the pD map visualizes
the adaption of the model to the complexity in the tissue. Values range between 0.5 and 1
with median 0.68 in the 1Comp blocks. In the 2Comp blocks, pD values between 0.8 and
1.6 with median 1.2 show increased tissue heterogeneity.

In Figure 5.5, we show the parameter maps for the point estimates of kep1
, kep2

, Ktrans
1 ,

and Ktrans
2 from the voxelwise and the spatial model as well as the true underlying param-

eter values. As the voxelwise approach leads to unstable point estimates, the estimation
results differ strongly from the true underlying values. Especially for the voxels simulated
from a 1Comp model, the voxelwise 2Comp model leads to unstable point estimates. For
instance, for voxels in the lower right simulated from a true 1Comp model with vt1 = 0,
kep1

is overestimated, Ktrans
1 is overestimated, and consequently Ktrans

2 is underestimated.
Compared to the voxelwise model, the spatial model leads to smooth parameter maps that
can be interpreted more intuitively and to stable point estimates that better match the
true underlying parameter values.

In the spatial model, the parameter maps for kep1
and kep2

are smooth and the estimates
match the true underlying values quite well. There is some oversmoothing such that the
higher kep1

values in the lower left corner are underestimated and as a consequence also
the corresponding kep2

are underestimated. The estimates of Ktrans
1 and Ktrans

2 perfectly
match the true underlying values. For the blocks simulated from a 1Comp model either
the Ktrans

1 estimate or the Ktrans
2 estimate becomes zero. Like this, model redundancy is

avoided and the posteriors are unimodal.
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Figure 5.4: Evaluation of model fit: sum of squared errors (SSE) and pD
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Figure 5.5: Parameter maps for simulation study: Voxelwise (left column) and spatial fit
(center) of 2Comp model for true underlying values (right)



62 5. Bayesian spatial regularization

5.3 DCE-MRI breast cancer study

To evaluate the clinical use of our approach, we use the DCE-MRI study on breast cancer
described in Section 3.3.

The sampling paths and corresponding autocorrelation plots for two voxels are depicted
in Figure 5.6. The autocorrelation of kep1

and kep2
samples is stronger than for vt1 and

vt2 due to the stronger smoothness assumption. For the global parameters updated with
Gibbs steps (τθk , τγk , and σ2) autocorrelations are smaller.

In Figures 5.7 and 5.8 the parameter maps from the spatial 2Comp model are shown
for pre- and post-treatment scans of patients 2, 4, 5, and 6. Similar to the results of the
simulation study and in accordance with the prior assumptions, the estimated parameter
maps for the DCE-MR images are quite smooth for the exponential rates kep1

and kep2
,

whereas the Ktrans
1 and Ktrans

2 estimates show more spatial variation. The contribution of
the second compartment vanishes (Ktrans

2 close to zero) in healthy tissue. In those regions,
the 1Comp model suffices to describe the observed uptake dynamics, meaning that the
tissue is homogeneous there. Interestingly, tissue inside of the tumor is often homogeneous
as well. Note that with the spatial prior meaningful parameter estimates are obtained for
all voxels whereas in the voxelwise model no stable point estimates could be obtained for
voxels inside the tumor, see Figure 4.7. The second compartment has nonzero contribution
and improves the fit of observed CTCs at tumor margins and in parts of the surrounding
tissue, see for example Figure 5.3 c). In those regions, the tissue is heterogeneous as both
the slow and the fast exchanging compartments contribute to the uptake dynamics. Larger
pD values and improved fit compared to the 1Comp model reflect this heterogeneity.

For patients 4 and 5 (nonresponder to therapy) the parameter maps for the pre-
treatment scan depict increased Ktrans

1 and Ktrans
2 values for a large tissue region. For

patient 4, the kinetic parameters kep1
, kep2

, Ktrans
1 and Ktrans

2 have higher values post-
treatment, but the tissue region with increased blood flow becomes smaller and more
dense. Reduced tumor volume could easily be misinterpreted as treatment success. Here,
the pD map contains additional information that might help to assess treatment success.
For patient 4 voxelwise pD values are even higher in the post-treatment scan. For patient
5 both increased pD values and increased tumor volume indicate treatment failure.

For patients 2 and 6 (responder to therapy) parameter maps of kep1
and kep2

are quite
smooth. The contribution of one compartment—Ktrans

1 or Ktrans
2 —is close to zero inside

of the tumor and in surrounding healthy tissue. Non-vanishing contribution of both com-
partments is observed at tumor margins and in surrounding tissue. After treatment, the
number of voxels where the second compartment contributes decreases notably. For pa-
tients 2 and 6 tumor margins and extensions around the tumor are heterogeneous and
better described with the aid of an additional second compartment. Both the pD values
and the size of the tissue region with increased pD decrease after treatment.
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Figure 5.7: Spatial 2Comp model: parameter maps for patients 4 and 5 (nonresponders)
pre- and post-treatment
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and post-treatment
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5.4 Conclusion and discussion

In this chapter, we have proposed a spatial Bayesian model for the estimation of kinetic
parameters in a two tissue compartment model used for the analysis of DCE-MRI. Com-
pared to existing alternatives, this approach allows to model tissue heterogeneity on a voxel
level. We have developed suitable spatial priors for the kinetic parameters. On the one
hand, those priors reflect smoothness assumptions which are biologically intuitive (maps of
kep parameters are smoother than maps of Ktrans parameters). On the other hand, those
spatial priors regularize the parameter space and assure parameter identifiability. With
this prior, a 2Comp model can be fitted at a voxel level and CTCs in heterogeneous tis-
sue, especially at tumor margins, can be described better than with the standard 1Comp
model. An important advantage of the proposed spatial regularization is that it impli-
cates good variable selection properties. For CTCs that are adequately described by the
1Comp model, the estimates of one of the compartment volumes is close to zero. Like this
and in contrast to a voxelwise approach, parameter point estimates are stable and easy to
interpret.

Another important innovation of the proposed approach is the use of heterogeneity
maps obtained when calculating the number of effective parameters pD per voxel. We have
proposed pD as a measure that contains additional information about the heterogeneity of
the tissue whereas the kinetic parameters contain information about the uptake dynamics
only. We find it interesting that estimates of the effective number of parameters pD rarely
exceed values of 1.5, even for CTCs simulated from a 2Comp model with four kinetic
parameters. Besides evaluating changes in the kinetic parameters, comparing pD maps
pre-treatment and post-treatment (i.e. after two weeks of chemotherapy) may help in
predicting treatment response.

In our approach, we use an informative prior for the kep parameters implying a very
smooth kep surface in order to handle the redundancy issue. That is, we use a compromise
between the assumption of kep parameters having the same value in a region of interest and
an independent voxel by voxel estimation of kep parameters. The prior on the smoothing
parameter of the Ktrans parameters has a large variance, implying a much lesser degree
of smoothing. As can be seen in Figure 5.8, in practice the smoothing of the Ktrans

maps is very small. Therefore, the proposed method can still depict boundaries and sharp
features in the tumor tissue. As an alternative for global smoothing, adaptive smoothing
has been proposed for 1Comp models (Schmid et al., 2006) but is computationally very
expensive (Brezger et al., 2007). Due to the redundancy issues in the 2Comp model,
estimation of an adaptive spatial 2Comp model including a lot of additional local smoothing
parameters seems not feasible.

We have used a neighborhood structure for two-dimensional images as only the central
slice of the DCE-MRI data was used. When modeling several slices, this neighborhood can
be extended to a three-dimensional setting. The strength of spatial smoothing, however,
has to be diminished in the third direction as the spatial intervals between slices are large
compared to the spatial intervals between voxels of the same slice.

In summary, we proposed and evaluated spatial regularization for two-compartment
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models, allowing a more comprehensive insight into tissue perfusion, in particular in het-
erogeneous tissue. Spatial regularization allows us to overcome the redundancy issues by
”borrowing strength” across the tissue of interest, and hence allows us to fit complex com-
partment models even on voxel level with low signal to noise ratio. Additional clinical
studies should be performed to further explore the clinical potential of this model.
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Chapter 6

Spatially penalized ML-estimation
and model selection

As described in Chapter 3, competing compartment models of different complexities have
been used for the quantitative analysis of DCE-MRI data. A model can never reflect full
reality but helps to describe reality by means of some important factors, and it is not clear
which factors have to be considered. Hence, model selection is an important statistical
task. In this chapter, we present a spatial elastic net approach that allows to estimate
the number of compartments for each voxel such that the model complexity is not fixed a
priori.

A multi-compartment approach is considered which is translated into a restricted least
squares model selection problem. We do so by using a set of basis functions for a given set
of candidate rate constants. The form of the basis functions is derived from a kinetic model
and thus describes the contribution of a specific compartment. Using a spatial elastic net
estimator, we chose a sparse set of basis functions per voxel, and hence, rate constants of
compartments. The spatial penalty takes into account the voxel structure of an image and
performs better than a penalty treating voxels independently. We evaluate the proposed
estimation method for simulated images and apply it to data from the breast cancer study
introduced in Section 3.3.

This Chapter is based on Sommer et al. (2012).

6.1 Introduction

Quantitative characterization of contrast agent uptake can be done with model-driven
methods or with data-driven methods. With data-driven methods like nonparametric re-
gression using a spline basis, no a priori compartment-structure has to be defined (Schmid
et al., 2009). Model-driven methods are based on pharmacokinetic models describing the
exchange of contrast agent between different, well-mixed compartments. Such compart-
ment models provide quantitative physiological parameters characterizing the amount and
rate of capillary leakage (see Chapter 3).



70 6. Spatially penalized ML-estimation and model selection

However, several compartmental models with different, a priori fixed, numbers of com-
partments have been proposed, and it remains unclear which model to use. This is par-
ticularly the case when the imaged tissue is heterogeneous as often observed in cancerous
tissue. Therefore, several authors propose more complex models to describe perfusion in
tissue as described in Chapter 3. However, the adequate number of compartments might
be different in different types of tissue and—as cancerous tissue is often heterogeneous—it
might even vary over a field of voxels. That is why, in this chapter, we aim to estimate
the number of compartments per voxel from the data. This is important as the degree of
tissue heterogeneity itself is diagnostically informative.

To this end, a multi-compartment model is fitted using likelihood based regularization
techniques. We use a bundle of exponential basis functions, each of which is derived from
the differential equation describing the tracer uptake of a tissue compartment. Like this,
corresponding coefficients remain interpretable and linked to physiological parameters. The
coefficients are sparsely selected and estimated while penalizing for an increasing number of
parameters. By selecting clusters of nonzero coefficients, the number of used compartments
is implicitly selected as well. With this approach we combine the advantages of model-
driven and data-driven methods, i.e., a good fit to the data and biologically interpretable
parameters.

An approach of sparse basis selection—not considering the spatial image structure
though—has also been proposed for compartment models used in PET (Gunn et al., 2002).
The basis pursuit approach proposed there corresponds to unrestricted lasso (Tibshirani,
1996) estimation. However, compared to the lasso, ridge regression (Hoerl and Kennard,
1970) has often been shown to produce better results in case of highly correlated covariates.
Therefore, we use a restricted elastic net, combining the advantages of ridge and lasso
estimation (Zou and Hastie, 2005).

Spatial information is frequently used in image processing, most prominently in neu-
roimaging (Gössl et al., 2001; Zou et al., 2004; Christensen and Yetkin, 2005). For DCE-
MRI, several authors have proposed Bayesian hierarchical models (assuming a fixed number
of compartments) to account for the spatial structure intrinsic in an image (Schmid et al.,
2006; Kelm et al., 2009; Sommer and Schmid, 2012, see Chapter 5).

For our approach we need to (1) restrict the parameters to be non-negative to ensure
the positiveness of the physiological parameters; (2) we include prior spatial information
by assuming spatial smoothness of the parameters. We do so by penalizing quadratic
differences of neighboring coefficients. With this spatially penalized maximum likelihood
(ML) approach we use the intrinsic spatial information given by the voxel structure of the
image.

The chapter is organized as follows. First, we introduce a linearized regression problem
for the multi tissue compartment model introduced in Section 3.2.2. In Subsection 6.2.2
and 6.2.3 the proposed estimation techniques—the voxelwise elastic net and spatial elastic
net—are introduced. Then, the proposed approach is evaluated for simulated data (Section
6.3) as well as for in vivo data from a breast cancer study (Section 6.4). Section 6.5
concludes.
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6.2 Methods

6.2.1 Multi tissue compartment model

As a generalization of the Tofts model with one tissue compartment (3.4), the multi-
compartment model with q tissue compartments (3.10) has been proposed in Section 3.2.2.
With this multi-compartment model, tumor heterogeneity is taken into account on a voxel
level. Due to measurement error, the observed concentration Yi,t at time points t = 0, . . . , T
in voxel i = 1, . . . , N is modeled as:

Yi,t = Ci
t(t) + εi,t

= vp,iCp(t) +

q∑
k=1

Ktrans
k,i Ψk(t) + εi,t, (6.1)

where εi,t ∼ N(0, σ2
i ) is a Gaussian noise term and Ψk(t) = Cp(t) ∗ exp(−kepk

t) are basis
functions. Each tissue compartment k is characterized by how fast it exchanges with the
plasma compartment, expressed by its rate constant kepk

. As candidate values we con-
sider log(kepk

) ∈ {−3,−2.9,−2.8, . . . , 2.9, 3}, and the adequate values need to be selected.
Moreover, each compartment is characterized by its transfer constant Ktrans

k . The trans-
fer constant is obtained by the product of the volume fraction vk and the rate constant
of the compartment and is hence non-negative: Ktrans

k = kepk
· vk ≥ 0. Thus, for voxel

i, the vector θi = (θi,0, . . . , θi,q)
T = (vp,i, K

trans
i,1 , . . . , Ktrans

i,q )T is unknown and has to be

estimated. Wherever the estimated transfer constant is positive (K̂trans
i,k > 0), the corre-

sponding compartment, respectively kepk
value, is selected. From (6.1) it can be seen that a

linear regression problem with predictors Cp(t),Ψk(t), k = 1, . . . , q, is to be solved. Figure
6.1 depicts a subset of those predictors.

When estimating the parameter vector θi with simple ML inference, under the assump-
tion of independent Gaussian distributed observation errors εi,t, the residual sum of squares∑

t(Yi,t − Ĉi
t(t))

2 has to be minimized. However, here the θi need to be non-negative, and
hence the pure ML-estimate is

θ̂ML

i = argminθi≥0

{∑
t

(
Yi,t − z(t)Tθi

)2

}
, (6.2)

with
z(t) = D(Cp(t),Ψ1(t), . . . ,Ψq(t))

T , t = 1, . . . , T.

Since, however, we have a large number of θi parameters and adjacent entries of z(t)
are highly correlated (due to construction), pure ML-estimates are unstable or even not
unique. Therefore, we use two penalized approaches.

6.2.2 Voxelwise regularized estimation

In order to stabilize the estimation of parameter vector θi, the log-likelihood is additively
corrected by a penalty term J(θi). More precisely, for a fixed voxel i, we use the estimator
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Figure 6.1: Subset of predictors (every fifth predictor is shown). Gray line: Cp(t), black
lines: Ψ1(t), . . . ,Ψq(t)

θ̂i = argminθi≥0

{∑
t

(
Yi,t − z(t)Tθi

)2
+ λJ(θi)

}
, (6.3)

with z(t) as given in (6.2). The strength of penalization is controlled by λ. The crucial
point, however, is to choose an appropriate penalty J(θi). For example, Vega-Hernandez
et al. (2008) discussed the use of different penalties for solving the so-called inverse problem
of the electroencephalography (EEG) in neuroscience.

A well established regularization technique which was constructed in particular for
high-dimensional problems with highly correlated explanatory variables (as found in z) is
the so-called elastic net (Zou and Hastie, 2005), with penalty

J(θi) = α

q∑
k=0

θ2
i,k + (1− α)

q∑
k=0

|θi,k|. (6.4)

Alternatively, the corresponding estimate can be written as

θ̂i = argminθi≥0

{∑
t

(
Yi,t − z(t)Tθi

)2
+ λ

q∑
k=0

θ2
i,k

}
,

subject to

q∑
k=0

|θi,k| ≤ s. (6.5)

This optimization problem can be solved using quadratic programming methods, for exam-
ple, the R package quadprog (Turlach and Weingessel, 2011). Before running the optimiza-
tion algorithm, entries of z are scaled to have unit variance over time, because otherwise
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θk corresponding to entries of z with smaller variance would implicitly undergo higher
penalization.

Seeking for a sparse solution in a high-dimensional predictor space, we use a two-stage
estimation procedure that separates model selection from parameter shrinkage similar to
the relaxed lasso (Meinshausen, 2007). In a first step, a set of basis functions is selected
with the aid of restrictive L1- and L2-penalties. Due to the L1-type penalty term in (6.5),
coefficients from {θ̂i,0, . . . , θ̂i,q} = { ˆvp,i, K̂

trans
i,1 , . . . , K̂trans

i,q } may be set to zero (see e.g. Zou
and Hastie (2005)) which means that corresponding arterial plasma or tissue compartments
are excluded. As the basis functions are highly correlated, non-vanishing coefficients mostly
appear in clusters. From each cluster, only the basis function with maximal contribution
is selected to obtain a sparse basis. Like this, the selected predictors correspond to com-
partments the exchange rates of which are different enough to be biologically meaningful.
In a second step, we refit the sparse model without penalization (pure ML-estimates).

Tuning parameters λ and s can, for example, be determined using the Bayesian infor-
mation criterion (BIC) as described in Hastie et al. (2009). For given (λ, s) the BIC can
be calculated as

BIC(λ,s) = −2 log(L(Y , θ̂(λ,s))) + p · log(N · T ). (6.6)

Here, p = q̂+ 1(v̂p > 0) corresponds to the number of selected predictors, and L(Y , θ̂(λ,s))
is the Likelihood of the observed concentration Y evaluated at the elastic net estimates
(6.5) of all voxels.

6.2.3 Spatially regularized estimation

So far, voxels have been treated separately, and for each voxel i parameters θi have been
fitted independently of each other. Since, however, there is some spatial structure across
voxels, parameters θ = (θ1, . . . , θN)T from all voxels should be estimated taking this struc-
ture into account. As done in Section 5.1.1, we assume a two-dimensional neighborhood
structure where adjacent voxels are neighbors. That is, each voxel has four direct neighbors
unless it lies at the edge of the image. Therefore, parameters for voxel i are now estimated
by

θ̂i = argminθi≥0

{∑
t

(
Yi,t − z(t)Tθi

)2
+ λJi(θ)

}
, (6.7)

with penalty

Ji(θ) = αQi(θ) + (1− α)

q∑
k=0

|θi,k|. (6.8)

Similar to the voxelwise regularization, the L1-type penalty term only penalizes parameters
of voxel i and favors some of the coefficients to be set to zero. The quadratic penalty term
Qi, however, enforces some spatial smoothness of parameters θ by penalizing differences
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of neighboring θj:

Qi(θ) =
∑
j∈∂(i)

‖θi − θj‖2 =
∑
j∈∂(i)

q∑
k=0

(θi,k − θj,k)2 . (6.9)

Here, ∂(i) is the set of voxels that are direct neighbors of voxel i. Note that the penalty
terms Ji and Qi do depend only on parameters corresponding to neighboring voxels:
Qi(θ) = Q(θi,θ∂(i)) and Ji(θ) = J(θi,θ∂(i)) with θ∂(i) = (θj)j∈∂(i).

Computational issues

For the computation of the spatially regularized estimates, we introduce pseudo-observa-
tions; see also Zou and Hastie (2005). More precisely, for voxel i, we define the vector of
“response values”

yi = (Yi,0, . . . , Yi,T ,
√
λ · ξi)T ,

where ξi =
(
θj
)
j∈∂(i)

are the parameter values of neighboring voxels used as pseudo-

observations. The design matrix

X =

(
Z√
λ ·Di

)
consists of

Z =


z(0)T

z(1)T

...
z(t)T


and

Di =

 I
...
I


 |∂(i)| times

where I is the identity matrix of dimension (q + 1)× (q + 1). Thus, we have

θ̂i = argminθi≥0

{
(yi −Xθi)T (yi −Xθi)

}
,

subject to

q∑
k=0

|θi,k| ≤ s. (6.10)

Since parameters for neighboring voxels, θ∂(i), are unknown but needed for the calcula-

tion of ξi, we plug in current estimates θ̂∂(i) and iterate this procedure over all voxels until
convergence. For efficiency, we use a parallel update of voxels following a checkerboard
pattern that uses conditional independence from other voxels given all neighboring vox-
els. As starting values, we use the estimates which describe the mean concentration time
curve (CTC) over all voxels. Predictors are selected using the same two-step estimation
procedure as for the voxelwise regularized estimation.
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6.3 Simulation study

6.3.1 Simulation setup

To evaluate the proposed voxelwise and spatial elastic net, we simulated a DCE-MR image
of 75 × 75 voxels. We chose different parameter combinations of the multi-compartment
model with blocks simulated from one, two or three compartments (q = 1, 2, 3) with or
without contribution of the plasma compartment (vp = 0.1 or vp = 0). In the left block,
the true underlying parameters for the CTCs are kep1

= 0.2 and Ktrans
1 = 0.2; in the central

block kep1
= 0.2, kep2

= 4, Ktrans
1 = 0.1, and Ktrans

2 = 2; in the right block kep1
= 0.2,

kep2
= 1, kep3

= 4, Ktrans
1 = 0.07, Ktrans

2 = 0.3, and Ktrans
3 = 1. Gaussian noise was added to

the CTCs for each voxel with standard deviation σ = 0.05. Figure 6.2 shows the simulated
CTCs, and Figure 6.3 gives a more detailed sketch of the simulation design. The optimal
penalization parameters λ∗ and s∗ for the proposed methods were chosen corresponding to
lowest BIC values.
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Figure 6.2: Simulated CTCs with un-
derlying parameters vp = 0, kep1

= 0.2,
kep2

= 1, kep3
= 4. q = 1: Ktrans1 = 0.2.

q = 2: Ktrans1 = 0.1, Ktrans3 = 2. q = 3:
Ktrans1 = 0.07, Ktrans2 = 0.3, Ktrans3 = 1

q = 1

vp > 0

q = 2

vp > 0

q = 3

vp > 0

q = 1

vp = 0

q = 2

vp = 0

q = 3

vp = 0

Figure 6.3: Sketch of simulation design.
The simulated image consists of 75× 75
voxels divided into three main blocks
(q = 1, 2, 3). Each main block is split
up into a block with vp > 0 or vp = 0.1.

6.3.2 Results

Figure 6.4 summarizes the model selection for the simulated image comparing the extended
Tofts model and the voxelwise and spatially regularized multi-compartment models; it
shows the number q of selected basis functions Ψk and whether the AIF Cp was included as
predictor. The extended Tofts model has a fixed number of compartments (one tissue and
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Figure 6.4: Results of simulation study: estimated number of tissue compartments q̂,
estimated inclusion of plasma compartment v̂p and sum of squared errors (SSE)

one plasma compartment) for all voxels. With the voxelwise and spatial elastic net, one to
four tissue compartments (q̂) are selected as well as—optionally—a plasma compartment
(v̂p). The spatial regularization helps to select the number of parameters more sparsely
compared to the voxelwise model. The estimated model complexity corresponds very well
to the true underlying model.

Figure 6.4 also depicts the sum of squared errors (SSE) per voxel. For the voxelwise
and spatial elastic net, the SSE is at a similar level. In the left block, the spatial elastic
net has a slightly increased SSE. For the extended Tofts model, the SSE is much higher
in the second and third blocks, as the Tofts model does not account for the contribution
of additional tissue compartments. This is why both restricted multi-compartment models
have considerably lower BIC values compared to the extended Tofts model. In Table 6.1,
the BIC as well as the average number of selected coefficients per voxel is shown. The BIC
is lowest for the spatial elastic net.

Let’s now discuss the model selection with the spatial elastic net in more detail. Fig-
ure 6.6 depicts the results of the spatial elastic net for three of the simulated voxels: one
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k=0 k=14 k=30 k=46

Figure 6.5: Maps of true underlying coefficients Ψk of the simulation study and corre-
sponding estimated coefficients (spatially regularized)

from the left, center and right block respectively. For the voxel from the left block (q = 1),
only one basis function is selected and the true estimated coefficient is close to the true
underlying coefficient (Figure 6.6). The number of compartments q is correctly estimated
to be one for almost all voxels in the left block (Figure 6.4). In the center block, q is some-
times overestimated—occasionally three instead of two basis functions are selected. This is
mainly because the first basis function is often additionally selected. For a CTC simulated
from three compartments (right block, q = 3), the contributing basis functions are too sim-
ilar and—in the voxel depicted—only two basis functions are selected (Figure 6.6). Also,
for other voxels in the right block, the estimate for q is often two, sometimes three. This
result could be expected. In all of the three blocks, the fitted CTCs (gray) and the true
underlying CTCs (blue) coincide (Figure 6.6). Model selection for the vp-term matches the
true underlying models: in the upper half the AIF is mostly included in the model, in the
lower half it is mostly excluded (Figure 6.4). Furthermore, with the spatial regularization
smooth parameter maps are obtained that match the true underlying parameters very well
(see Figure 6.5).
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Table 6.1: Comparison of extended Tofts model and the voxelwise or spatially penalized
multi-compartment model: BIC(λ∗,s∗) and average number of compartments per voxel (q̂+
1(v̂p > 0)) for simulated image and scans from breast cancer study.

extended Tofts voxelwise spatial

simulation λ∗ – 0.1 200
BIC 462,317 438,313 436,423
q̂ + 1(v̂p > 0) 2.00 2.90 2.51

scan 1 λ∗ – 10−10 10−10

BIC 758,745 764,613 717,703
q̂ + 1(v̂p > 0) 2.00 2.22 1.80

scan 2 λ∗ – 10−10 10−7

BIC 619,243 587,659 561,450
q̂ + 1(v̂p > 0) 2.00 1.86 1.53

scan 3 λ∗ – 10−10 10−10

BIC 539,332 535,391 508,484
q̂ + 1(v̂p > 0) 2.00 2.20 1.86

scan 4 λ∗ – 10−10 10−10

BIC 638,952 630,269 610,377
q̂ + 1(v̂p > 0) 2.00 2.26 1.89

scan 5 λ∗ – 10−7 10−10

BIC 296,972 287,248 276,943
q̂ + 1(v̂p > 0) 2.00 2.30 2.05

scan 6 λ∗ – 10−10 10−10

BIC 440,293 428,462 407,239
q̂ + 1(v̂p > 0) 2.00 2.00 1.67

scan 7 λ∗ – 10−7 10−10

BIC 866,187 805,909 781,456
q̂ + 1(v̂p > 0) 2.00 1.78 1.59

scan 8 λ∗ – 10−7 10−10

BIC 672,523 618,126 584,098
q̂ + 1(v̂p > 0) 2.00 2.00 1.69

scan 9 λ∗ – 10−10 10−10

BIC 855,938 796,163 763,135
q̂ + 1(v̂p > 0) 2.00 2.23 1.77

scan 10 λ∗ – 10−10 10−7

BIC 777,398 704,287 675,509
q̂ + 1(v̂p > 0) 2.00 2.53 2.13

scan 11 λ∗ – 10−7 10−10

BIC 567,411 567,171 534,742
q̂ + 1(v̂p > 0) 2.00 2.35 2.02

scan 12 λ∗ – 10−7 10−7

BIC 582,249 587,292 559,053
q̂ + 1(v̂p > 0) 2.00 2.53 2.24
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6.4 DCE-MRI breast cancer study

To evaluate the clinical use of our approach, we use a subset of the DCE-MRI breast cancer
data set introduced in Section 3.3. Optimal penalization parameters for the voxelwise and
spatial elastic net were s∗ = 5 for all scans and λ∗ = 10−7 or λ∗ = 10−10, see Table 6.1.
The dependence of the BIC on the penalty parameter λ is depicted in Figure 6.7 for one
scan. For the voxelwise and spatially penalized multi-compartment models as well as for
the extended Tofts model, the BIC and the average number of selected coefficients per
voxel are listed in Table 6.1. The spatial elastic net has the lowest BIC for all scans. This
indicates that this approach is suitable to sparsely select parameters in DCE-MR images
and still allowing for increased model complexity where needed.

The estimation results of the spatial elastic net for the pre- and post-treatment scans
of patient 6 are depicted in Figure 6.8. The estimated number of tissue compartments q̂
and the inclusion of the AIF (1(v̂p > 0)) are shown separately and sum up to the total
number of compartments. The estimated number of tissue compartments q̂ ranges between
one and four and is two for a large number of voxels. In the pre-treatment scan, inside the
tumor (top of the image), the tissue is relatively homogeneous (q̂ = 1 and v̂p = 0), whereas
in surrounding tissue and especially at tumor margins, the tissue is more heterogeneous
(q̂ ≥ 1). In the post-treatment scan, tumor size is reduced, and the model complexity in
the shrunk tumor has increased. From the difference in SSE compared to the extended
Tofts model we find that the maximal benefit of additional compartments is at tumor
margins. Here, the tissue is too heterogeneous to be adequately described by the extended
Tofts model.

For most voxels, the AIF is not selected as predictor. It is selected more frequently at
tissue borders, indicating a relevant amount of vascular space. If selected, the correspond-
ing estimated vp terms are rather small compared to contributions of other compartments:
the median of non-zero vp estimates ranges from 0.01 to 0.05 in the different scans. Sum-
marizing, the average number of plasma and tissue compartments per voxel (q̂+1(v̂p > 0))
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Figure 6.7: BIC(λ,s) in the spatial elastic net for s = s∗ and varying λ for the pre-treatment
scan of patient 1
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in a single scan ranges from 1.55 to 2.24 depending on the volume of homogeneous tissue,
see Table 6.1.

The spatial elastic net estimates provide good fit to the observed contrast agent con-
centration in different tissue regions. For exemplary voxels inside the tumor, at the tumor
edge, and in surrounding tissue the selection of basis functions and the final curve fits are
shown in Figure 6.9. Exemplary voxels are taken from the pre-treatment scan of patient 2,
see Figure 6.10 for precise location of the voxels. Parameter estimates for the entire scan
are also shown in Figure 6.11.

pre post

q̂

1

2

3

4

v̂ p

=0

>0

∆
S
S
E

−0.04

−0.02

0.00

0.02

0.04

0.06

Figure 6.8: Results of spatially regularized estimation. Parameter maps for the mid-
slice of patient 6 pre-treatment and post-treatment scans: estimated number of tissue
compartments q̂, estimated inclusion of plasma compartment v̂p and difference in SSE
(∆SSE = SSEext.Tofts − SSEspatial)
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Figure 6.9: Results of spatially regularized estimation: Selection of basis functions and
corresponding curve fits for a voxel in normal tissue (21, 20), at the tumor edge (35, 33)
and inside the tumor (51, 41); voxels from the mid-slice of patient 2 pre-treatment scan
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Figure 6.10: Concentration map at a fixed time point (patient 2 pre-treatment). Voxels
(21, 20), (35, 33) and (51, 41) are marked.
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Figure 6.11: Maps of estimated coefficients Ψk, k = 0, . . . , 61 (patient 2 pre-treatment)
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6.5 Conclusion and discussion

Based on a multi-compartment model, we have proposed two penalized ML based ap-
proaches for data driven model choice and parameter estimation in DCE-MRI. Choos-
ing basis functions based on the contribution of corresponding compartments, both ap-
proaches combine the advantages of data-driven and model-driven approaches, and param-
eters remain interpretable. The spatial elastic net which—as a newly developed feature—
incorporates the spatial structure intrinsic in an image performed better than the voxelwise
elastic net. Due to ”borrowing strength” from neighboring pixels, the spatial elastic net is
more robust compared to the independent voxelwise elastic net. Hence, the spatial elastic
net provides a sparser solution with similar fit to the data.

With a simulation study and the analysis of twelve DCE-MRI scans we found that the
spatially penalized multi-compartment model outperforms the commonly used extended
Tofts model as well as the voxelwise elastic net. Our results indicate that additional
model complexity is needed to adequately describe observed CTCs, especially at tumor
margins and surroundings. These results are in accordance with those obtained for the
spatial Bayesian model described in Chapter 5. As the number of contributing tissue com-
partments (and the plasma compartment) is estimated per voxel, important information
about the tissue heterogeneity is gained that cannot be obtained with a priori fixed model
architectures.

The spatial L2-penalty is comparable with a Bayesian model with Gauss-Markov ran-
dom field priors on the parameters as proposed in Chapter 5. The analogy of ridge estimates
with the posterior mode of a simple normal Bayesian model with Gaussian prior is, for
example, described in Hastie et al. (2009, p. 64). Besides the general differences in the
viewpoints of Bayesian inference and ML inference, the penalized ML approach proposed
here and the spatial Bayesian approach proposed in Chapter 5 differ in several aspects.
First, the nonlinear regression problem arising from compartmental modeling is linearized
with the help of basis functions, here. Hence, the exchange rates are not continuous vari-
ables but can take values on a predefined grid only. Considering this aspect, the linearized
approach is less general then the approach analyzed in Chapter 5. In contrast, the lin-
earized approach is more flexible considering the model architecture. Here, the number of
compartments is not fixed a priori but is determined from the data.

Compared to the Bayesian approach, the spatial elastic net is easier to implement (e.g.
no tuning of proposal variances is needed), easier to parallelize, and the calculation is much
faster. As a main advantage, the degree of optimal spatial smoothing is determined from
the data and does not have to be specified a priori. To this end, the iterative optimization
algorithms has to be run for different values of the smoothing parameters λ and s. Even
with this computationally expensive step the computation time is competitive with MCMC
simulations run for the spatial Bayesian model.



Chapter 7

Bayesian model selection with
reversible jump MCMC with
application to FRAP experiments

In this chapter, we propose a Bayesian model selection approach based on reversible jump
Markov chain Monte Carlo (RJMCMC) (Green, 1995). Basing inference on a hierarchical
Bayesian framework including the model dimension as unknown parameter, the RJMCMC
procedure allows for simultaneous parameter estimation and model selection. In Chapter 4,
we have described how the choice between two competing models can be based on an
information criterion. The RJMCMC approach is different, as the model dimension is
treated as unknown parameter, i.e., it is considered part of the parameter space. Like this,
the number of compartments is determined along with other unknown parameters, and the
uncertainty in model selection can be quantified. Here, we develop a RJMCMC procedure
for compartment models. In contrast to the variable selection approach of Chapter 6, no
approximation with a linear model needs to be done.

7.1 Introduction

The RJMCMC algorithm is a special case of a MCMC algorithm which allows to jump
between different models. More precisely, in our case, it can either jump from a model
with K compartments to a model with K + 1 compartments (birth step) or to a model
with K−1 compartments (death step). The number of compartments K is then estimated
from how frequently the Markov chain takes which value (posterior distribution). To our
knowledge, the RJMCMC algorithm has not been applied to nonlinear regression problems
yet. We have adapted the RJMCMC algorithm to parameter estimation in a sum of
exponentials model which arises in a certain class of compartment models. In contrast to
many problems in linear regression models, there is no one-to-one transformation between
models with different dimension K in nonlinear regression. Hence, the crucial point is to
define adequate birth and death transformations. We have designed a mapping from a
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model with K exponentials to a model with K+1 exponentials using an adequate variable
transformation.

In this chapter, we focus on the special case (2.10) of the general compartment model
(2.9) with constant concentration in the basis compartment. This compartment model is,
for example, used in biochemical experiments that give insight to the binding behavior of
molecules in living cells (Sprague and McNally, 2005). In such experiments, each molecule
can adopt to different states: it can either be unbound (i.e. free) or it can be bound to one of
several binding partners. The class of unbound molecules forms one compartment, the class
of molecules bound to a binding partner forms a second compartment. However, there may
be binding partners with different binding properties which form additional compartments
(also called mobility classes, see Schneider (2009)). Such models are, for example, used in
the analysis of fluorescence recovery after photobleaching (FRAP) experiments.

In FRAP experiments, one is confronted with yet another model selection problem in
compartment models. The number of mobility classes is unknown, but is a very interesting
parameter to know and to infer from the data. Therefore, we aim to determine the number
of mobility classes along with other parameters of interest with the help of RJMCMC.

As described before, parameter estimation in nonlinear regression is challenging because
of parameter redundancies. With the aid of a redundancy measure, Reich (1981) showed
that there is high parameter redundancy in a sum of two exponentials if the exponential
rates differ by less than a factor of five (see Section 2.3). From the definition of a mobility
class as a class of binding partners with certain binding properties it is clear that different
mobility classes should have well distinguishable binding properties. Hence, we propose
a suitable regularizing prior on the exponential rates (Section 7.2). We a priori assume
that the binding rates of two mobility classes in expectation differ by a factor of five and,
hence, that the mobility classes are distinguishable. With this prior, we obtain robust
estimation results. Estimation is furthermore stabilized by the automated model selection
approach: In case of parameter redundancy, the Markov chain more likely jumps to a
simpler model with identifiable parameters. This is an advantage over model selection
based on information criteria which is done after and separately from parameter estimation.

In Section 7.2, we give a short introduction to the model equations and to the cor-
responding Bayesian nonlinear regression model. As main part of our work, we propose
birth and death transformations for a RJMCMC algorithm, suitable for estimation and
model selection in compartmental models (Section 7.2.4, Appendix B). We evaluate the
performance of the proposed algorithm in a simulation study with different parameter
constellations and different prior assumptions in Section 7.3, as well as in the analysis of
FRAP data in Section 7.4. Finally, we summarize and discuss our results.
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7.2 Methods

7.2.1 Compartment model

We assume a compartment model with constant concentration in the basis compartment.
As derived in Section 2.2, the observed concentration can in this case be described by a
sum of exponentials. We rewrite equation (2.10) and work with

C(t) = vB +
K∑
k=1

vkb
in
k

boutk

−
K∑
k=1

vkb
in
k

boutk

exp(−boutk t)

= 1− a0 −
K∑
k=1

ak exp(−boutk t), (7.1)

writing ak =
vkb

in
k

boutk
and vB +

∑K
k=1

vkb
in
k

boutk
= 1 − a0. The parameters bink and boutk are the

transfer rates per volume unit whereas ak = vkb
in
k can be interpreted as weighted transfer

coefficients or as volume adjusted influx rates. Note that the outflux rates boutk can be
directly obtained from (7.1), the influx rates, however, cannot. In the following, we will
write bk instead of boutk for simplicity. Here, the limit at equilibrium is assumed to be one.
In FRAP experiments, this is ensured by normalization of the observed variable. With a0

one allows for deviations from the limit one at equilibrium. Non-zero a0 values can be due
to erroneous pre-processing or can indicate the existence of a compartment with very slow
diffusion, i.e., very small outflux rates.

7.2.2 Bayesian nonlinear regression model

The unknown parameters θ = (a0, . . . , aK , b1, . . . , bK) and K in the compartmental model
specified above can be inferred from the observed concentrations C(ti) at time points ti
using the nonlinear regression approach

C(ti) = 1− a0 −
K∑
k=1

ak exp(−bkti) + εi, for i = 1 . . . T, (7.2)

where εi ∼ N(0, σ2) are independent Gaussian noise terms. As hyper prior for the noise
variance we assume an inverse Gamma distribution σ2 ∼ IG(a, b).

For the number of compartments K we use a Poisson distribution with parameter µ > 0,

that is p(K) ∝ µK

K!
with µ = 0.5. This prior sets more probability mass on models of lower

dimension.
Considering that amplitudes shall all be positive and not too large, we propose a uniform

prior of the form
ak ∼ U [0, 5],

for k = 1, . . . , K. For the constant coefficient a0 we allow for negative values and assume

a0 ∼ U [−0.5, 0.5].
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The exchange rates bk are known to be non-negative but not too large, and without
loss of generality, rates are ordered: 0 ≤ b1 < b2 < . . . < bK ≤ 10. The simplest way
of modeling this prior knowledge is with the corresponding uniform distribution (joint
density: p(b1, . . . , bK) ∝ 1(0 ≤ b1 < b2 < . . . < bK ≤ 10)).

In sum of exponential models with similar exponents bk, these parameters are known
to be not identifiable (Seber and Wild, 1989). Hence, parameter estimation is unstable
when assuming a uniform prior on the exchange rates, as can be seen from the simulation
study in Section 7.3. Furthermore, a model with compartments that have distinct binding
properties is more plausible and better interpretable. Therefore, in the next section we
will propose a regularizing prior which produces more stable results.

7.2.3 Regularizing prior on exponential rates

In order to avoid identifiability issues, we assume that the exchange rates bk are not too
similar. In addition, the positiveness and the sorting property specified above apply. A
log-normal prior ensures non-negative exchange rates (Schmid et al., 2006) and allows to
incorporate expected differences between them:

log(b1) ∼ N(µ1, τ
2
1 )

log(b2)|b1 ∼ N(µ2, τ
2
2 )

...

log(bK)|bK−1 ∼ N(µK , τ
2
K). (7.3)

The hyper parameters µk have to be chosen so that redundancy can be avoided. This can
be done using a redundancy measure in a model with two compartments (see Section 2.3).
Reich (1981) has shown that in a model with a sum of two exponentials the parameter
redundancy is high if the bk parameter differ by less than a factor of five (Reich, 1981, p.
48): ”If we accept 0.01 as a limit (which means a factor of 10 in the transformation from
measurement error to parameter error), then parameters are redundant if decay constants
differ by less than a factor of five.” Therefore, we choose our prior such that the exchange
rates bk are expected to differ by a factor of five and use µ1 = −2, µk = log(bk−1) + log(5)
for k = 2, . . . , K and τ 2

1 = 2.5, τ 2
2 = τ 2

3 = . . . = τ 2
K = 0.5.

Details on regularizing prior

Choosing µ1 = −2 and τ 2
1 = 2.5 we obtain E[b1] ≈ 0.5 and Var[b1] ≈ 2.5. In order for the

expected exponentials to differ by a factor of five, i.e., E[bk|bk−1] ≈ 5bk−1, we choose the
hyperparameters µk = log(bk−1) + log(5) and τ 2

2 = τ 2
3 = . . . = τ 2

K = 0.5. As

E[bk|bk−1] = exp

(
µk +

τ 2
k

2

)
Var[bk|bk−1] = exp

(
2µk + τ 2

k

) (
exp

(
τ 2
k

)
− 1
)
,
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this is achieved. For example,

E[b2|b1] = 5b1 exp

(
τ 2

2

2

)
≈ 6.4 · b1 and

Var[b2|b1] = (5b1)2 exp
(
τ 2

2

) (
exp

(
τ 2

2

)
− 1
)
≈ 25 · b2

1 · 1.07 ≈ 26.7 · b2
1.

7.2.4 RJMCMC on number of compartments

As an extension of the MCMC algorithm (Gilks et al., 1996; Robert and Casella, 2004), the
RJMCMC procedure was proposed for statistical problems where the dimension of the vari-
able space is itself unknown (Green, 1995). Including the model dimension in the variable
space, the RJMCMC procedure allows to accomplish model selection and model averag-
ing. The main idea is simple: each model corresponds to a subspace of variables with a
certain dimension. Jumps between those subspaces are performed additionally to ordinary
MCMC update steps within each subspace. Before proposing RJMCMC jumps for sum of
exponentials models, let us introduce to the RJMCMC procedure as proposed by Green
(1995) and establish the notation. For an introduction to RJMCMC as a generalization of
MCMC procedures see Green (2000).

Let θ be a parameter of dimension K. For a reversible jump step with change in
dimension, a jump to a parameter θ∗ of dimension K∗ is proposed. For the transition of
the variable space with dimension K to the variable space with dimension K∗ a bijection
g has to be specified. This bijection g maps (θ, u) to (θ∗, u∗) and vice versa. The random
numbers u and u∗ are auxiliary random variables. They have density q and are needed
in order to map between spaces of different dimension. The bijective mapping g itself
is completely deterministic. The proposal of a new state is random due to the auxiliary
random variables u and u∗. In order for the Markov transition kernel to meet the detailed
balance equation the dimensions must match, meaning that

dim(θ) + dim(u) = dim(θ∗) + dim(u∗).

As the dimension is part of the parameter space, we denote the unknown parameter as
Θ = (θ,K). The acceptance probability for a move from Θ to Θ∗ for a Metropolis-Hastings
step in general is

α(Θ,Θ∗) = min

{
1,
π(Θ∗)

π(Θ)

h(Θ|Θ∗)
h(Θ∗|Θ)

}
where h is the proposal density. We use

π(Θ) = p(θ,K) = p(θ|K) · p(K)

and the special way of proposing a new state by proposing auxiliary variables u and u∗

and by applying the deterministic mapping g. Then, the acceptance probability of a jump
with change in dimension is

α(Θ,Θ∗) = min

{
1,
p(θ∗|K∗)
p(θ|K)

p(K∗)

p(K)

q(u∗)

q(u)
det

(
∂(θ∗, u∗)

∂(θ, u)

)}
,
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a special case of the general Metropolis-Hastings acceptance rate. Here, det
(
∂(θ∗,u∗)
∂(θ,u)

)
denotes the determinant of the Jacobian matrix of the bijection g. Green (1995, 2000)
gives the exact derivation of the acceptance probabilities by use of the detailed balance
condition.

In RJMCMC procedures, the common way of changing the dimension are so called
birth and death moves. Those birth and death moves are restricted to jumps between
neighboring variable subspaces. In a birth step, one increases the dimension of the
subspace and proposes a jump from K to K∗ = K + 1. A death step is a move from K to
K∗ = K − 1. We have designed the following birth and death variable transformations for
sum of exponential models of the form (7.2).

Birth move (K −→ K + 1):
Given the actual state x = (a1, ..., aK , v1, ...vK , u1, u2), a new state y =

(
a∗1, ..., a

∗
K+1,

v∗1, ..., v
∗
K+1,

)
is proposed as follows:

Draw two random numbers in order to extend the variable space:

u = (u1, u2) ∼ q(u1, u2) = U [0, 1]× U [0, 1].

Draw an index n ∈ {0, ..., K}. Divide the amplitude an to the amplitudes a∗n
and a∗n+1 determining their proportion using u1. Divide vn into the new volumes
v∗n and v∗n+1 determining their proportion using u2. The birth transformation
gB(x) is given by:

a∗j = aj for j < n
a∗n = u1an
a∗n+1 = (1− u1)an
a∗j = aj−1 for j ≥ n+ 2

and
v∗j = vj for j < n
v∗n = u2vn
v∗n+1 = (1− u2)vn
v∗j = vj−1 for j ≥ n+ 2.

Death move (K −→ K − 1):
Given the actual state y = (a1, ..., aK , v1, ...vK), a new state x =

(
a∗1, . . . , a

∗
K−1,

v∗1, . . . , v
∗
K−1, u

∗
1, u
∗
2

)
is proposed as follows:

Draw an index n ∈ {1, ..., K}. Join the volume vn and vn+1 to v∗n and the
amplitudes an and an+1 to a∗n. The death transformation gD(y) is given by:

a∗j = aj for j < n
a∗n = an + an+1

a∗j = aj+1 for j ≥ n+ 1
u∗1 = an

an+an+1
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and
v∗j = vj for j < n
v∗n = vn + vn+1

v∗j = vj+1 for j ≥ n+ 1
u∗2 = vn

vn+vn+1
.

The auxiliary random variables u∗1 and u∗2 are chosen such that gD(y) is the inverse trans-
formation of gB(x). The determinants of the Jacobian matrices of birth or death transfor-
mations as derived in Appendix B.1 are

det(Jbirth) = det

(
∂y

∂x

)
= anvn

and

det(Jdeath) =
1

a∗nv
∗
n

=
1

(an + an+1)(vn + vn+1)
.

Birth and death mappings are designed such that the curve corresponding to the new
proposed parameters is not too different from the curve represented by the actual parame-
ters. For the proposed mapping, the curves have the same value at t = 0 (an = a∗n + a∗n+1)
and the area under the curves are approximately the same (vn = v∗n + v∗n+1). A derivation
of those conditions is given in Appendix B.2.

7.2.5 Sampling

Ordinary MCMC update steps or reversible jump moves are performed, depending on
whether the new proposed dimension K∗ does or does not equal the current dimension K.
First, the new dimension K is proposed using the following proposal kernel:

p(K∗|K) =


pc · pbirth, K∗ = K + 1, K < Kmax

pc · pdeath, K∗ = K − 1, K > 1
1− pc, K∗ = K

where pc is the probability to propose a change in dimension and pbirth and pdeath are the
probabilities to propose birth or death steps. Here, we use pc = pbirth = pdeath = 0.5. With
pbirth = pdeath = 0.5, the kernel is symmetric for birth and death steps, except for K = 1
and K = Kmax.

If there is a change in dimension (K∗ 6= K), a birth or death step is performed as
described before. If the dimension of the parameter stays the same (K∗ = K), ordinary
MCMC update steps are performed.

For the coefficients ak, we can derive full conditionals in closed form

ak∗ |C, b, a−k∗ ∼ N trunc
[0,5]

(
m

v
,

1

v

)
with m =

∑T
i=1

{C(ti)−1+a0+
∑

k 6=k∗ ak exp(−bkti)} exp(−bk∗ ti)
σ2 and v =

∑T
i=1

exp(−2bk∗ ti)
σ2 . With

N trunc
[α,β] we denote the truncated normal distribution with zero density for ak∗ /∈ [α, β].
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We can use Gibbs-update steps to update the coefficients ak, as we can directly sample
from the full conditionals. Similarly, σ2 can directly be sampled from an inverse Gamma
distribution. We cannot directly sample from the full conditional of bk, and hence we use
a Metropolis-Hastings update step for the exponents bk. As proposal we use a log-normal
distribution.

In cases where the model dimension is not clearly identifiable, the estimation of the
model dimension K may become unstable and may depend on the starting values. There-
fore, we use ten parallel Markov chains with random starting values.

We estimate the mean frequency fk of samples with model dimension K = k using all
parallel chains. Furthermore, we estimate the model dimension K∗ for each curve as mode
of the dimension in all runs. Once the model dimension K∗ is estimated, the exponential
rates bk are estimated using only the samples with model dimension K = K∗. Estimates for
ak are obtained correspondingly. We also calculate the corresponding 90 percent credibility
intervals.

7.3 Simulation study

In order to evaluate the performance of the proposed RJMCMC algorithm, a simulation
study was done. We simulated curves from a sum of two exponentials with equal amplitudes
a1 = a2 = 0.2 and a0 = 0. For the exponents bk, the following parameter settings were
used: b1 = 0.2 and b2 = c · b1 with c = 1, 1.5, 2, 3, 5, 10. For c = 1, the parameters b1

and b2 are equal. This corresponds to the case of only one exponential (K = 1), and we
can as well write a1 = 0.4, a2 = 0 in this case. All other constellations correspond to
a sum of two exponentials. However, for c = 1.5, 2, 3, the rates b1 and b2 are still quite
similar, and parameters are highly redundant in this case as they differ less than a factor of
five (see Section 2.3). Thus, for those parameter constellations, we would expect a model
dimension somewhere between one and two (1 < K < 2). For c = 10, we have b1 = 0.2
and b2 = 2. As the exponents differ by a factor of ten, we consider this a model where the
sum of two components should be clearly identifiable (K = 2). The curves for parameter
constellations with c = 1, c = 2, and c = 10 are shown in Figure 7.1.

For each set of parameters we simulated ten curves, each from the corresponding sum of
exponentials model with added Gaussian noise with standard deviation σ = 0.08, σ = 0.02,
σ = 0.008, σ = 0.004. Time points where chosen equidistant between t0 = 0 to t150 = 15
at a distance of 0.1 each. For each of the simulated curves the proposed reversible jump
algorithm was performed with 70, 000 iterations for the parameter updates. The first
50, 000 samples were discarded as burnin and the samples were thinned for storage purposes
(every third sample was saved).
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7.3.1 Simulation results using a uniform prior on the exponential
rates

First, we use a uniform prior on the exponential rates bk as described in Section 7.2.2. Here,
the mixing between models of different dimension is good. However, the model complexity
is often overestimated.

For simulated curves with c = 1 (and hence true model dimension K = 1) and mod-
erate noise (σ = 0.004 and σ = 0.008), about 90% of the RJMCMC-samples have model
dimension K = 1. In Figure 7.2, we see a part of the samples for the parameter setting with
c = 1. The posterior model dimension, hence, corresponds to the true model dimension
in this case. However, for simulated curves with c = 1.5, c = 2 or c = 3 (and hence true
model dimension 1 < K < 2) and moderate noise, the posterior model dimension is K = 2
or even K = 3. The RJMCMC chain rarely jumps to the parameter space of dimension
K = 1. For c = 10 and moderate noise, the mode of the posterior dimension is K = 3; see
Figure 7.3.

The model dimension is overestimated for two reasons. First, some RJMCMC-samples
become very small (e.g. b1 ≈ 0 and a1 ≈ 0), such that the contribution of the first com-
partment to the observed concentration vanishes, but nevertheless increases the estimated
model dimension. Secondly, in many cases, two compartments have similar sample values
for bk (e.g. b2 ≈ b3). The contribution of the two compartments is then not distinguishable
due to redundancy issues. In this case, the estimates of the corresponding ak have high
variance and are highly dependent. As the posterior distribution of ak is bimodal or even
multimodal, parameter estimation becomes difficult.

With larger noise (σ = 0.08), the estimated frequencies are similar for the different
values of c: (f1, f2, f3) ≈ (0.50, 0.30, 0.15). The different models cannot be distinguished,
as with more noise the differences of the parameter constellations can hardly be detected
from the observed curves and the prior on the model dimension becomes a determining
factor.

Due to the redundancy issues of the sum of exponentials model, the algorithm cannot
distinguish between a model with one compartment and a model with two compartments
and similar bk. Hence, we propose a regularizing prior (7.3) so that the algorithm only
selects compartments with distinguishable bk. This also improves the interpretability of
the model.



94 7. Bayesian model selection with reversible jump MCMC

0
5

1
0

1
5

0.00.20.40.60.81.0

t

C(t)

0
5

1
0

1
5

0.00.20.40.60.81.0

t

C(t)

0
5

1
0

1
5

0.00.20.40.60.81.0

t

C(t)

C
(t

)

n
o

is
y
 C

(t
)

a
1
e
x
p
(−

b
1
t)

a
2
e
x
p
(−

b
2
t)

F
ig

u
re

7.
1:

S
im

u
la

te
d

cu
rv

es
w

it
h

n
oi

se
(g

ra
y
)

an
d

w
it

h
ou

t
n
oi

se
(b

la
ck

)
an

d
co

n
tr

ib
u
ti

on
of

si
n
gl

e
co

m
p
ar

tm
en

ts
fo

r
d
iff

er
en

t
p
ar

am
et

er
co

n
st

el
la

ti
on

s:
b 1

=
b 2

=
0.

2
(l

ef
t)

,
b 1

=
0.

2
an

d
b 2

=
0.

4
(c

en
te

r)
,
b 1

=
0.

2
an

d
b 2

=
2

(r
ig

h
t)

.
N

oi
se

le
ve

l
σ

=
0.

00
8.



7.3 Simulation study 95

l

l

l

l

l

llllllllllllll

l

llll

lllllllll

ll

l

l

l

l

l

lll

ll

lllllllllllllll

l

ll

l

l

l

ll

l

llll

l

ll

l

llllll

ll

l

llllll

l

llll

llllll

ll

l

ll

ll

lllllllllllllllllll

lll

l

ll

llllllll

l

l

llllllll

l

llllll

ll

lllllllllllll

l

l

lllllllllll

l

llllllll

l

lll

ll

llll

l

llll

l

ll

llllllll

lll

l

l

l

ll

l

lll

l

llll

lll

l

l

ll

l

l

l

lll

l

lll

l

l

ll

l

l

lllllll

l

l

llll

lllll

l

l

l

l

l

ll

ll

llll

l

lll

lll

lllll

llll

ll

l

l

l

lllll

l

l

ll

l

lll

l

llll

l

l

ll

llll

ll

l

lllllll

l

lllll

ll

l

lll

l

ll

l

lll

ll

llllllllll

l

lll

ll

llllllll

l

ll

l

ll

l

ll

l

lllllll

ll

ll

ll

lll

ll

l

lllll

llllllll

l

llllllllll

l

lll

lll

ll

l

ll

lllllll

llll

lllll

llll

lllll

llllllllll

l

ll

ll

ll

l

llllll

l

lll

l

lllllllll

llll

l

ll

lll

ll

ll

lllllllllllllll

0 100 200 300 400 500

0
1

2
3

4
5

samples K

Index

s
a

m
p

le
 v

a
lu

e

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

samples a

Index

a1

a2

a3

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

samples b

Index

b1

b2

b3

Figure 7.2: Samples for simulation with uniform prior and b1 = b2 = 0.2 (c = 1). For
better visualization only a small part of thinned samples is shown.
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Figure 7.3: Samples for simulation with uniform prior and b1 = 0.2, b2 = 2 (c = 10). For
better visualization only a small part of thinned samples is shown.
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Table 7.1: Estimation results for regularizing prior and noise level σ = 0.008: median and
90% credible interval

K b1 b2 a1 a2

(c = 1) estimates K = 1 0.2 0 0.4 0
credibility 1 (0.2,0.2) (0,0) (0.39,0.41) (0,0)

(c = 1.5) estimates K = 1 0.24 0 0.4 0
credibility 1 (0.24,0.25) (0,0) (0.39,0.4) (0,0)

(c = 2) estimates K = 2 0.2 0.43 0.21 0.19
credibility 0.67 (0.08,0.24) (0.31,0.78) (0.03,0.34) (0.07,0.37)

(c = 3) estimates K = 2 0.2 0.62 0.21 0.2
credibility 0.95 (0.16,0.23) (0.48,0.85) (0.13,0.27) (0.14,0.27)

(c = 5) estimates K = 2 0.2 1.02 0.2 0.2
credibility 0.98 (0.18,0.22) (0.82,1.25) (0.17,0.23) (0.17,0.22)

(c = 10) estimates K = 2 0.2 2.03 0.2 0.2
credibility 0.99 (0.19,0.22) (1.75,2.38) (0.19,0.21) (0.18,0.22)

7.3.2 Simulation results using a regularizing prior on the expo-
nential rates

Using the regularizing prior (7.3) we analyze the same simulated data set as before. Table
7.1 lists the estimated parameters for different parameter constellations at moderate noise
level (σ = 0.008). For c = 1, the Markov chain remains in a one-dimensional model
(K = 1) for all samples after burnin. The model dimension K and the parameters a1 and
b1 are correctly estimated. For c = 10, the Markov chain remains in a two-dimensional
model (K = 2) for 99% of the samples. The parameter estimates for K, a1, a2, b1, and b2

perfectly match the true underlying values.

For the parameter constellation with exponential rates differing only by a factor of two
(c = 2, 1 < K < 2), the model dimension is K = 1 for 33% of the samples and K = 2
for 67% percent. This result correctly displays a model with redundant parameters and
model uncertainty. The estimates for b1, b2, a1, and a2 match the true underlying values.
Credibility intervals for a1 and a2 are very broad in this case due to parameter redundancy.

With the regularizing prior, mixing between models of different dimensions is not as
good as without regularization. In the model with uniform prior proposed in Section 7.3.1,
a jump from model dimension K = 1 to K = 2 is more likely, as a jump from one com-
partment to two very similar compartments is not penalized by the regularizing prior.
Estimated model dimensions for a single chain may depend on the starting values. Using
parallel chains, however, we obtain appropriate estimates for the model dimension. Sum-
marizing, the regularizing prior helps to avoid models with too similar compartments or
compartments with little contribution. With its help, the model dimension is no longer
overestimated and the parameter estimates become more stable.
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Naturally, the estimated model dimension depends on the noise level. Figure 7.4 depicts
the estimated model frequencies f1, f2, and f3 for different parameter constellations (c =
1, 1.5, 2, 3, 5, 10) and different noise level (σ = 0.004, σ = 0.008, σ = 0.02). For values
c = 1 and c = 1.5, the model dimension is K = 1 for all samples, as the rates b1 and b2 are
too similar to be distinguished. With increasing c, the model dimension is K = 2 for more
samples, indicating that the more complex model can still be identified. However, this is
only the case if the noise is not too large. For large noise variance σ2 the samples most
often have model dimension K = 1. Even if the curve was generated from a more complex
model, it cannot be distinguished from the simpler model if there is too much noise.
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Figure 7.4: Model frequencies fk in percent for different parameter constellations and and
different noise level (simulation using regularizing prior)



98 7. Bayesian model selection with reversible jump MCMC

7.4 Application: Analysis of molecular binding in a

FRAP experiment

7.4.1 Biological background, experimental setup and motivation

Figure 7.5: FRAP recovery over time after half of the nucleus was bleached, from Schneider
(2009)

We use a data set from a FRAP experiment to show the practical relevance of the
proposed approach. FRAP is a common application of compartmental models. The aim of
FRAP experiments is to describe the dynamic behavior of molecules in a living cell nucleus
and to determine number, rate, and strength of their binding interactions (Sprague and
McNally, 2005; Phair et al., 2004). Here, DNA methyltransferase 1 (Dnmt1) was labeled
with a green fluorescent protein (GFP). In order to make the protein’s mobility visible,
the fluorescent molecules in one half of the nucleus are permanently bleached. Then, the
recovery of fluorescence in the bleached region is observed, see Figure 7.5. From this
recovery, one can infer the diffusion and the binding of the molecule to chromatin.

A cell passes through different cell cycle phases consisting of the first gap phase (G1),
the synthesis phase (S), the second gap phase (G2), and the mitosis phase (M). Normally,
the DNA methylation pattern is maintained over many cell cycles. If the methylation
pattern is not maintained, the risk that tumor cells are formed is increased. The binding
patterns of Dnmt1 in different cell cycle phases is of interest, as it is important for the
maintenance of DNA methylation patterns. For a more detailed description see Schneider
(2009), Dargatz (2010), and McNally (2008).

The dynamic behavior of recovery in the bleached part is modeled via one perfectly
mixed compartment of free, unbound molecules and one or several compartments of bound
molecules (see Figure 7.6). Here, the free (unbound) molecules form the central compart-
ment. The dynamics of the molecules’ binding and unbinding is characterized by constant
rates. The binding behavior is assumed to be the same in the bleached and the unbleached
part of the cell. Only the fluorescence in the bleached part is used as observed variable.
More precisely, one observes the mean gray value in the bleached section over time, here de-
noted as frap(t). It can be calculated as fraction of unbleached molecules (in the bleached
section) with respect to the total number of molecules (in the bleached section). The total
amount of free molecules is assumed to be constant during observation. Thus, the observed
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Figure 7.6: Compartment model for FRAP experiment with K binding classes. The ob-
served variable is calculated only from the bleached part of the cell.

fraction of unbleached molecules in the region of interest frap(t) is obtained as

frap(t) = 1− a0 −
K∑
k=1

ak exp(−bkt),

where bk is the off-rate of binding of the kth mobility class. This model is called diffusion-
uncoupled FRAP (McNally, 2008) and assumes that the diffusion dynamics of unbound
molecules is very fast compared to the binding dynamics and can, hence, be ignored.

The FRAP experiment was conducted at the LMU Biocenter Martinsried and was
previously reported about (Schneider, 2009; Dargatz, 2010; Schneider et al., 2013). For
biological processing and image processing details see Schneider (2009). The observed data
were normalized in order to account for the decrease of fluorescence over time, and the gray
value was normalized such that the frap-value was one after full recovery (Dargatz, 2010),
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that is, after the two cell parts are again in equilibrium. Observations were gained every
0.15 seconds for 780 post-bleach frames. Here, we use the observed concentration curves
of GFP-labeled Dnmt1 in G1 and early S phase of the cell cycle and observed curves of
unconjugated GFP. For each class, ten cells were observed.

7.4.2 Results

The parameter estimates for GFP-labeled Dnmt1 in cell cycle phases G1 and early S and
for unconjugated GFP are shown in Tables 7.2–7.4. For the G1 and the early S phase,
the number of compartments is nearly always chosen to be K = 2. However, there are
differences in the exponential rates for the different cell cycle phases. For the G1 phase,
the smaller exponential decay rate b1 is estimated to be about 0.15 and the larger rate
b2 to be about 0.5 to 1.2. The contribution of the second compartment, a2 exp(−b2t), is
rather small. Figure 7.7 depicts the observed concentration curve, the fitted curve, and the
contributions of each compartment for one of the cells for unconjugated GFP and Dnmt1
in G1 and early S phase.

For the early S phase, there is one binding class with very strong binding leading to a
slow exponential rate b1 of about 0.07 as shown in Table 7.3. The second binding class has
estimated exponential rates b2 of about 0.15 to 0.4. Both mobility classes have considerable
contributions (see Figure 7.7). Here, a0 is positive in all cases but one. This indicates a
third binding class with very slow binding.

For unconjugated GFP, the estimated number of mobility classes is K = 1 for most
of the cells. As shown in Table 7.4, the estimates of the exponential rate vary from
b1 = 0.9 to b1 = 1.26 over the ten cells. The diffusion of unconjugated GFP is very fast
compared to the diffusion of GFP-tagged chromatin. This result is in agreement with
what biologists would expect and even require as premise for FRAP experiments: ”The
premise of this experiment is that unconjugated GFP should not bind to cellular structures,
and should simply diffuse.” (McNally, 2008, p.340) The parameter a0 is around 0 in all
cells. In two cases, the 90% credibility interval only covers small negative values. Here,
the normalization mentioned above may be erroneous. A typical time series observed for
unconjugated GFP and the fitted sum of exponential curve are shown in Figure 7.7.

7.4.3 Sensitivity analysis

In order to check the sensitivity to the prior assumptions, we run the RJMCMC procedure
with different priors on b1:

(i) Prior as above, that is µ1 = −2 and τ 2
1 = 2.5.

(ii) Prior with µ1 = −5 and τ 2
1 = 5 such that E[b1] ≈ 0.08 and Var[b1] ≈ 1.

(iii) Prior with µ1 = −5.5 and τ 2
1 = 6 such that E[b1] ≈ 0.08 and Var[b1] ≈ 2.7.

(iv) Prior with µ1 = −1 and τ 2
1 = 0.8 such that E[b1] ≈ 0.54 and Var[b1] ≈ 0.37.
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We found that the estimates of the model dimension K and all model parameters stay the
same for different prior mean and variance of b1. Only the width of the credibility intervals
varies slightly (wider for larger variance or when the prior mean is in conflict with data).
In Table 7.5, we show the estimates for K and b1 for the G1 curves. Summarizing, we
found that parameter estimates for the FRAP experiment are not very sensitive to the
prior on b1.
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7.5 Conclusion and discussion

We have proposed a RJMCMC algorithm for the nonlinear regression problem (7.2) arising
from compartmental models. To this end, new birth and death transformations were de-
veloped. With this RJMCMC procedure, the number of compartments is determined from
the observed data, the algorithm allowing to jump between models of different dimensions.

As the simulation study shows, a uniform prior on the exponents bk leads to an over-
estimation of compartments. Models with lots of compartments are fitted with vanishing
contribution of some of them or with some compartments having similar exchange rates
and not being distinguishable. This can be explained by the redundancy of parameters in
the sum of exponential model. Using a redundancy measure, we have designed a regulariz-
ing prior on the exchange rates. With this regularizing prior, the number of compartments
is no longer overestimated as the fitted compartments are distinguishable. The algorithm
chooses the right dimension for cases where the number of compartments is well-defined.
In cases, where there is parameter redundancy and the number of compartments is not as
clearly defined, model averaging (Hoeting et al., 1999) occurs.

For the FRAP experiments, for which the observed variable commonly is on a region
of interest level (here the bleached part of the cell), we have proposed to use a regularizing
prior on the binding rates. This makes sense also from a biological viewpoint as one is
interested in finding binding classes that summarize binding partners with similar binding
behavior. As the data observed in FRAP experiments are images, another option would
be to perform the analysis on a pixel level—if the spatial resolution allows to do so. Then,
a spatial regularization as proposed in Chapter 4 could be helpful.

The proposed algorithm allows to estimate the model complexity from the data. Of
course, the estimated model complexity does not equal the ”true” underlying physical
model complexity. With the help of our simulated examples we have shown that a complex
underlying model is not always detectable. Either, because there is parameter redundancy,
which is a severe problem in nonlinear regression. Or, because there is too much noise.
Thus, the model complexity is adequately estimated if non-redundant contributions are
detected at reasonable noise.

Markov chain mixing is a problem in the RJMCMC algorithm when using the regular-
izing prior. This is due to the fact that there is no one-to-one mapping from a exponential
curve to a sum of two exponentials. With the regularizing prior, mixing of the model
dimension is poor. Though the algorithm provides the right dimension in cases where the
number of compartments is clearly defined, the outcome depends on the starting value in
cases where the model dimension is not as clearly defined as, e.g., in parameter redundant
models. We use parallel Markov chains to alleviate the dependence on starting values.
Nevertheless, one should interpret the obtained model frequencies with care.

Constructing appropriate jump moves is known to be one of the main difficulties in
the reversible jump methodology, even for simple linear nested regression models. Though
RJMCMC is a generalization of the standard Metropolis-Hastings to general state spaces
(Tierney, 1998), other challenges arise as for fixed dimensional MCMC. In fixed dimensional
Metropolis-Hastings steps, one can always choose a random walk proposal and achieve
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high acceptance rates by tuning the proposal’s variance (Brooks et al., 2003). In variable
dimensional MCMC, there is no corresponding natural choice of proposal that ensures
high acceptance rates. Brooks et al. (2003) propose two methods to construct a more
efficient reversible jump proposal: one uses the Taylor series expansion of the acceptance
probabilities, the other one is a saturated space approach using data augmentation. Both
methods help to adjust the proposal density of the auxiliary variables, here denoted as
q(u), and take the deterministic birth and death transformations, here gB() and gD(), for
granted. As there is no one-to-one mapping between sums of one or two exponentials, see
Section 7.2.4, methods adjusting q(u) will bring—if at all—little improvement but they
will not cope with the intrinsic problems caused by the nonlinearity.

RJMCMC has been successfully applied to very distinct model selection problems,
e.g. for DNA segmentation (Boys and Henderson, 2004) and for recovery/recapture data
(King and Brooks, 2002). In those applications, the advantage of model selection with
RJMCMC over model choice with information criteria is obvious as the number of compet-
ing models is large. For compartmental models, the number of competing models under
consideration is rather small. In theory, model selection with RJMCMC has important
advantages over model choice with information criteria, even for a small number of com-
peting models: First, RJMCMC makes regularization possible and estimation more stable
by enforcing simpler—and hence better interpretable—models for redundant parameter
constellations. For model choice with information criteria, one would have to fit complex
models, for which parameters may often not be estimable due to parameter redundancies.
Second, with the model selection approach, the model uncertainty is captured and made
visible with model frequencies and credibility intervals.

Summarizing, RJMCMC has theoretic merits that encouraged us to adapt the algorithm
to the nonlinear regression problem arising in compartmental modeling. However, from our
practical experience we cannot fully advise the use of RJMCMC for nonlinear regression
problems.



Chapter 8

Summary and discussion

In this thesis, we have proposed and evaluated different approaches coping with the estima-
tion and model selection in compartment models, after giving some theoretical background
(Chapter 2) and motivating the need for more complex compartment models (Chapter 3).
For the main application, a DCE-MRI breast cancer study, two hierarchical Bayesian mod-
els have been newly developed for parameter estimation in a two tissue compartment model
on a voxel level: one with independent voxelwise priors (Chapter 4) and one with spatial
priors on the kinetic parameters (Chapter 5). Allowing for two tissue compartments on
a voxel level, the proposed models account for heterogeneity in tumor tissue. Comparing
estimation results with the standard Tofts model with one tissue compartment, we found
that additional model complexity is actually needed in tumorous tissue. For the DCE-MRI
breast cancer data the 2Comp model outperforms the 1Comp model at tumor margins and
in tumor surrounding tissue. Inside the tumor, the tissue is adequately described with the
Tofts model.

We have analyzed how redundancy issues may occur in voxels of certain tumor regions,
especially, inside the tumor. Using theoretical results on parameter redundancy and with
the help of simulation studies, we have identified parameter constellations for which re-
dundancy issues occur. For voxels with redundant parameters, we have observed flat or
multimodal posterior distributions and small or negative pD values. As sampling paths
and the posterior distribution of parameters cannot be examined for every single voxel,
parameter maps of the number of effective parameters, pD, were suggested as helpful tool
in evaluating redundancy issues and in measuring effective tissue heterogeneity (Chapters
4 and 5).

Evaluating simulation studies and in vivo DCE-MRI data, we have shown that assum-
ing smoothness of the exponential rates is an effective—and from a biological perception
reasonable—way of regularizing the parameter space in a two tissue compartment model
(Chapter 5). With a spatial prior, implicit model selection is achieved as the contribution
of one compartment is set to zero for voxels where the additional model complexity is not
needed. Explicit model selection based on a model selection criterion like the DIC was also
studied, however, one has to carefully take into account that pD and DIC values are not
meaningful for multimodal posteriors (see Chapter 4).
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With the spatial elastic net, a completely different inference approach has been pro-
posed in Chapter 6. For this penalized maximum likelihood based approach, the nonlinear
regression model was linearized using a bundle of basis functions. We have developed a new,
spatial version of the elastic net, penalizing for differences in parameters of neighboring
voxels. Compared to an ordinary elastic net, with this spatially penalized approach, basis
functions are selected more sparsely and, hence, model dimension and model parameters
are robustly estimated per voxel from the data.

Finally, we have proposed a reversible jump MCMC algorithm for compartment models
(Chapter 7). With this Bayesian model state approach, the number of compartments is
flexibly treated as model parameter. For this approach, birth and death steps were designed
which are suitable for a nonlinear regression problem. Furthermore, a regularizing prior was
proposed to obtain compartments behaving different enough to be distinguishable. The
usefulness of the proposed model space approach was discussed and analyzed in simulations
and for data from a biochemical experiment. Due to the unfavorable mixing behavior,
however, we were not completely satisfied with the performance of this approach.

Discussion on compartmental modeling

In compartmental modeling several assumptions are made. An assumption which is intrin-
sic in all compartment models is that compartments are homogeneous and well-mixed. If
those assumptions are not fulfilled in a simple compartment model, more compartments
with different kinetic properties may be needed in the model. When choosing the num-
ber of compartments from the data, one avoids strong divergence from those assumptions.
Another assumption of the compartment models considered is that the rate of exchange
remains constant over time. Though the exchange properties may vary in the long run,
the assumption of constant exchange properties seems feasible for the short duration of the
image acquisition. Furthermore, in compartment models one has to assume some initial
condition. In DCE-MRI, for example, the concentration of contrast medium at time t0,
before injection of the contrast medium, is assumed to be zero. This assumption intuitively
makes sense. However, as there may be some time delay from the time of injection to the
first arrival of contrast medium in the imaged tissue, t0 is not as clearly defined. Often, one
pragmatically defines t0—the enhancement onset time—to be the last time point before
observing enhancement of contrast medium. As alternative, one can include a variable for
the time delay in the model and, like this, account for the uncertainty in this parameter
(Orton et al., 2007; Schmid et al., 2009).

Besides those intrinsic assumptions in compartment models, in the quantitative analysis
of DCE-MRI, important assumptions are made regarding two important physical quanti-
ties: assumptions about the calculation of the contrast medium concentration and assump-
tions about the form of the arterial input function (AIF). First, one should be well aware
that MRI cannot measure the concentration of contrast medium directly. MRI can only
measure relaxation times. Only by assuming proportionality to the change in relaxation
times with and without contrast medium, the concentration of contrast medium can be
calculated (see equation (3.1) and Buckley and Parker (2005)). If the assumed relation
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between contrast medium concentration and changes in relaxation times does not hold, the
validity and interpretability of quantitative results will be strongly affected.

Second, in the analysis of the DCE-MRI data studied here, we had to assume a pop-
ulation based form of the AIF because the concentration of contrast medium in plasma
could not be measured separately. Although common practice, this is a sensitive assump-
tion. Methods that separately measure the AIF avoid this source of error (Fritz-Hansen
et al., 1996). In case that separate measurement of the AIF is not possible, methods that
simultaneously estimate the AIF along with other model parameters include this source of
error and resulting uncertainties in the model, though not avoiding it (Yang et al., 2007;
Fluckiger et al., 2009). Such approaches open a promising area for further research.

Alternative modeling approaches compete with compartmental modeling. One alter-
native to the compartmental modeling approaches considered in this thesis is modeling
with Markov process models (Seber and Wild, 1989, p. 415 ff.). With the compartmental
modeling approach used in this thesis, one assumes to observe a noisy version of some de-
terministic dynamic behavior. When modeling with Markov process models, the dynamic
behavior of molecules is assumed to be stochastic and can be described by stochastic dif-
ferential equations. For example, in Dargatz (2010) the state of a molecule in a FRAP
experiment is modeled with the help of Markov jump processes and its diffusion approxima-
tion. Modeling with Markov processes is more flexible with regard to the error structure.
The error in such a stochastic model may depend on the concentration and, hence, may
vary with time. An error term varying with concentration and time is not captured in
a deterministic dynamic model with additive Gaussian noise as assumed throughout this
thesis. For the analyzed DCE-MRI and FRAP datasets we have, however, not experienced
any difficulties with those restrictions on the error term.

Model-free approaches offer another alternative to modeling with compartment models.
Such approaches assume a linear combination of nonlinear basis functions as predictor. Like
this, one does not have to deal with a nonlinear regression problem. For example, Schmid
et al. (2009) use Bayesian penalized B-splines for the analysis of DCE-MRI data. With
model-free approaches, the observed data can be even more flexibly modeled. Those models
do without any assumptions on the model architecture and on the number and properties
of compartments. The disadvantage of those models is that there is no direct link between
model parameters and biologically meaningful quantities. Using basis functions describing
the behavior of a compartment, the elastic net approach presented in Chapter 6 offers a
compromise between model-free and model-based approaches.

Discussion on methods

Different inference approaches and ways to deal with parameter estimation and model
uncertainty have been considered in this thesis. Here, we highlight the differences of the
approaches studied and discuss their strength and weaknesses.

First, the approaches differ in their flexibility with respect to the model dimension.
While the spatial elastic net approach and the RJMCMC model state approach allow for a
completely flexible model dimension (K = 1, . . . , Kmax), the model dimension is fixed for
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the two tissue compartment model (K = 2). In the spatial two tissue compartment model,
however, the model dimension is implicitly reduced in voxels where only one compartment is
needed, as the estimated contribution of one compartment is close to zero. The contribution
of a third tissue compartment would, however, be missed for a fixed model dimension of
K = 2. Yet, we have experienced that the contribution of a third tissue compartment
rarely brings considerable improvement of fit. When constructing simulation studies, it
was not easy to find parameter constellations of a three tissue compartment model that
cannot properly be described by a two tissue compartment model.

Second, the approaches differ in the way they deal with the nonlinearity of the model.
For the elastic net approach, the nonlinear regression problem was linearized (see equation
(6.1)). All other approaches proposed here work with the nonlinear regression problem
without linearization. The main advantage of working with the linearized problem is
that well established estimation and model selection techniques for linear models can be
applied. However, in a linearized model, parameters have to be restricted to lie on a
predefined grid. This may lead to imprecise estimation results, especially, if the grid is
defined too coarse or if the grid covers an inappropriate range of parameter values. In the
nonlinear regression model, in contrast, the parameters are continuous variables. However,
estimation in nonlinear regression may be challenging due to redundancy issues, and there
are few estimation methods which have been designed for the specific needs of estimation in
those models. This thesis, therefore, contributes with evaluating and developing methods
in this field.

Last, the approaches differ in the underlying principles employed for inference. While
most of the methods presented in this thesis are based on Bayesian inference, the elastic
net approach is based on the concept of penalized maximum likelihood estimation. There
is an uncompromising debate between ”frequentists” and ”Bayesians” about if and in
what way prior knowledge may be incorporated in a statistical model. Considering that
for a large class of priors in Bayesian models there exists a one-to-one correspondence to
some L1 or L2 penalty in the penalized maximum likelihood setting, this controversy is
put into perspective. In case of a one-to-one correspondence, the point estimates and its
dependence on priors respectively penalization are comparable. For instance, there are
Bayesian alternatives for the common penalized maximum likelihood based approaches in
the linear regression problem: The Bayesian regression with Gaussian prior corresponds to
ridge regression. Similarly, the lasso and the elastic net have their Bayesian correspondents.
In a Bayesian model, a Gaussian prior corresponds to a L2-penalty and a Laplace prior to
a L1-penalty (Park and Casella, 2008; Li and Lin, 2010; Hastie et al., 2009).

What really is different for Bayesian and maximum likelihood based inference is the
algorithms for parameter estimation and, most notably, the interpretation of estimation
results. As discussed for the spatial elastic net approach in Chapter 6, the computational
burden of parameter estimation in a penalized maximum likelihood based approach is con-
siderably lower compared to a Bayesian approach. Generally, Bayesian inference requires
MCMC simulations and is, hence, computationally more demanding. In structured addi-
tive regression models, MCMC sampling can be avoided as good approximations of the
marginal posteriors can be gained using an integrated nested Laplace approximation (Rue
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et al., 2009). However, for a nonlinear regression model such an approximation is not
feasible.

Concerning the interpretation of estimation results, the inference approaches differ con-
siderably. While least squares or maximum likelihood based inference typically provides
point estimates and confidence regions for those estimates, Bayesian inference is based on
the posterior distribution of the parameters. The posterior contains a lot of information
that helps to understand how adequate and reliable parameter estimates are. When devel-
oping adequate regularizing priors for parameter redundant constellations within the scope
of this thesis, looking at the sampling paths and marginal posteriors of the parameters was
very helpful for getting an intuition if things are working and—if they are not—why they
are not working.

The Bayesian approach is flexible enough to treat the model dimension itself as un-
known parameter. Like this, the Bayesian approach allows to explicitly account for model
uncertainty. When estimating the model complexity, the results of a penalized maximum
likelihood based approach is a point estimate for the model dimension (maximizing the pe-
nalized likelihood), whereas, in a Bayesian model state approach one obtains the posterior
model probabilities of all candidate models. Furthermore, the Bayesian approach offers
a framework for model averaging (Hoeting et al., 1999). Correspondingly, in a maximum
likelihood based approach, model uncertainties and model averaging can be accounted for
using Akaike weights as proposed in Turkheimer et al. (2003) for model averaging in PET
compartmental modeling. However, for models which are nonlinear in parameters, average
model parameters—calculated as linear combination of model parameters as in Turkheimer
et al. (2003)—are not meaningful. We would, therefore, not recommend this kind of model
averaging in compartment models.

The methods proposed in this thesis may be helpful in different applications using
compartmental modeling. Bayesian spatial regularization and spatially penalized maxi-
mum likelihood estimation offer a solution to parameter redundancy issues that can be
applied in other fields as well, e.g., in the quantitative analysis of PET and SPECT im-
ages. In PET and SPECT neuroreceptor imaging studies, the kinetics of ligand uptake
in the brain is described with the help of compartment models (Slifstein and Laruelle,
2001). The data structure and the compartment models used in the analysis of PET and
SPECT are comparable to those used in the analysis of DCE-MRI. When estimating re-
ceptor parameters, one copes with similar identifiability issues encountered in DCE-MRI
analysis.

Discussion on application results

In applications using compartment models such as, for example, the analysis of DCE-MRI,
commonly used models may be too simplistic to adequately describe the observed behavior.
Thus, the need for more complex models arises. Generally, users prefer to use simple models
they are familiar with, and they are not easily convinced to use more complex models.
Therefore, the proposed 2Comp model for the analysis of DCE-MRI data is unlikely to
being used by physicians in the day-to-day routine of cancer diagnosis and treatment in
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the near future. We are, however, convinced that this thesis and the proposed models with
increased model complexity give important insights to heterogeneity in tumorous tissue.

Analyzing the heterogeneity of enhancement patterns in tumors is considered the key
factor for understanding the mechanisms of cancer growth and for the development of
new treatment approaches (Yang and Knopp, 2011). In this thesis, we have proposed
two ways of quantifying tissue heterogeneity. In the Bayesian framework, the number of
effective parameters, pD, measures model complexity and, hence, quantifies the degree of
heterogeneity (Chapters 4 and 5). In the elastic net approach, the number of selected
compartments reflects the degree of heterogeneity (Chapter 6). Both, pD and the num-
ber of selected compartments, q̂, were calculated per voxel and are easily visualized with
parametric maps. Like this, a map of heterogeneity is obtained. Our results about tissue
heterogeneity for both estimation approaches, though being conceptually very different,
are consistent.

The results obtained for the DCE-MRI breast cancer study confirm conjectures about
increased heterogeneity in cancerous tissue. Typically, there is a tumor rim showing in-
creased heterogeneity. In the tumor core, in contrast, one often observes homogeneous,
poorly perfused tissue. Such poorly perfused regions are assumed to develop during a
phase of fast tumor growth, when tumor cells proliferate faster than angiogenesis (Yang
and Knopp, 2011). With studies of DCE-MRI sequences acquired more frequently, perhaps
even daily, the dynamics and pattern of tumor growth could be further exploited. Likewise,
it would be interesting to further evaluate the potential of measuring tumor heterogeneity
with more extensive clinical studies including patients with different kinds of benign and
malignant tumors. Different heterogeneity patterns could then be used to classify tumor
type and disease progression.

In the analysis of FRAP experiments, the estimation of the model complexity from
the data may bring important insights about the binding behavior of proteins (Chapter
7). Like this, one can learn about the protein mobility in living cells and about how the
binding behavior of proteins regulates cellular processes. In Chapter 7, inference was done
on a region of interest level and, hence, estimated binding rates are average binding rates.
Extending the approach to a spatial model and allowing to estimate binding rates and the
number of binding partners on a voxel level would bring additional insight about the spatial
distribution of binding partners in the nucleus. Such an extension is, however, challenging
due to the low spatial resolution of FRAP images.

Technical progress will most likely bring improvement of spatial and temporal resolution
of imaging devices, both for medical and biological imaging applications. Consequently,
observed concentration time curves are likely to have higher signal to noise ratios in the
future. Looking ahead, this development will generally facilitate inference in more and
more complex compartment models and will, hence, allow to describe underlying processes
in more detail. However, some of the estimation challenges which are due to parameter
redundancy issues may occur even for low noise levels. Therefore, suitable regularization
will remain an important issue even with increasing signal to noise ratios.



Appendix A

Calculating redundancy in sums of
(convolved) exponentials

A.1 Convolved exponentials

A.1.1 Bi-exponential input function

Assuming a bi-exponential arterial input function

Cp(t) = a1 exp(−m1t) + a2 exp(−m2t)

and denoting

E(t) = exp(−bt),

the convolution is

(Cp ∗ E) (t) =
∫ t

0
Cp(τ) exp(−b(t− τ))dτ

=
∫ t

0
(a1 exp(−m1τ) + a2 exp(−m2τ)) exp(−bt) exp(bτ)dτ

= exp(−bt)
∫ t

0
(a1 exp((b−m1)τ) + a2 exp((b−m2)τ)) dτ

= exp(−bt)
[(

a1
(b−m1)

exp((b−m1)τ) + a2
(b−m2)

exp((b−m2)τ)
)]t

τ=0

= exp(−bt)
{

a1
(b−m1)

exp((b−m1)t) + a2
(b−m2)

exp((b−m2)t)

· · · − a1
(b−m1)

− a2
(b−m2)

}
= a1

(b−m1)
(exp((b−m1)t) exp(−bt)− exp(−bt))

+ a2
(b−m2)

(exp((b−m2)t) exp(−bt)− exp(−bt))
= a1

b−m1
(exp(−m1t)− exp(−bt)) + a2

b−m2
(exp(−m2t)− exp(−bt))

= a1
m1−b (exp(−bt)− exp(−m1t)) + a2

m2−b (exp(−bt)− exp(−m2t)) .
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A.1.2 Constant input function

Assuming a constant input function, CB(t) ≡ 1, and denoting E(t) = exp(−bt), the
convolution with an exponential simplifies to

(CB ∗ E) (t) =
∫ t

0
exp(−b(t− τ))dτ

= exp(−bt)
∫ t

0
exp(bτ)dτ

= exp(−bt)
[

1
b

exp(bτ)
]t

0

= 1
b
− 1

b
exp(−bt).

A.2 Redundancy measure in sum of exponentials

In Reich (1981) the sensitivity matrix Mθ, the scaled sensitivity matrix Rθ, and a closed
form solution of its determinant |Rθ| were calculated for a sum of two exponentials model
in order to measure parameter redundancy. Here, we calculate the elements of Mθ and Rθ

for a general sum of K exponentials model. Let θ = (θ1, . . . , θ2K) = (a1, . . . , aK , b1, . . . , bK)
and

f(t,θ) =
K∑
i=1

ai exp(−bit).

Then the matrices’ elements can be calculated in four blocks:
For 1 ≤ i, j ≤ K

mij =
∫∞

0
δf
δai

δf
δaj
dt

=
∫∞

0
exp(−(bi + bj)t)dt

=
[
− 1
bi+bj

exp(−(bi + bj)t)
]∞

0

= 1
bi+bj

rij =
2
√
bibj

bi+bj
.

For 1 ≤ i ≤ K, K + 1 ≤ j ≤ 2K (j
′
= j −K)

mij =
∫∞

0
δf
δai

δf
δb

j
′
dt

=
∫∞

0
exp(−bit)aj′ (−t) exp(−bj′ t)dt

= −aj′
∫∞

0
exp(−(bi + bj′ )t)dt

= −aj′
([
t

exp(−(bi+bj′ )t)

−(bi+bj′ )

]∞
0

+ 1
(bi+bj′ )

∫∞
0

exp(−(bi + bj′ )t)dt

)
= −

a
j
′

(bi+bj′ )
2

rij = −
2b

j
′
√

2bibj′

(bi+bj′ )
2 .

For K + 1 ≤ i ≤ 2K, 1 ≤ j ≤ K
mij = mji

rij = rji.
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For K + 1 ≤ i, j ≤ 2K (i
′
= i−K and j

′
= j −K)

mij =
∫∞

0
δf
δb

i
′
δf
δb

j
′
dt

=
∫∞

0
ai′ (−t) exp(−bi′ t)aj′ (−t) exp(−bj′ t)dt

= ai′aj′
∫∞

0
t2 exp(−(bi′ + bj′ )t)dt

=
...

=
a
i
′ a

j
′

(b
i
′+b

j
′ )3

rij =

(
2b

i
′ b

j
′

b
i
′+b

j
′

)3

.

For K = 2, elaborate matrix manipulations yield a closed form solution for the deter-
minant of the scaled sensitivity matrix (Reich, 1981)

|Rθ| =
1

4

(
1− b2

b1

1 + b2
b1

)8

.

Reich (1981) proposes to judge parameters redundant using a threshold value |Rθ|−1 ≥ 100.
Here, this is equivalent to b2

b1
≥ 0.2 or b1 ≤ 5b2. This means that in a sum of two

exponentials parameters are judged redundant if the decay rates differ by less than a
factor of five. Interestingly, the redundancy measure does not depend on the parameters
a1 and a2. Table A.1 shows |Rθ|−1 for different parameter constellations in a sum of two
exponentials model (K = 2).

For more complex models the derivation of a closed form solution for the determinant
|Rθ| is not feasible. In those cases, one can calculate the determinant numerically. We
have implemented the calculation of Mθ, Rθ, and |Rθ|−1 in R. Table A.2 displays the
redundancy measure for a sum of three exponentials model (K = 3). Alike in the case of
K = 2, the redundancy measure depends only on the exponential rates b1, b2, and b3, on
their relation among each other, and not on the values of a1, a2, and a3. Given b1 = 0.05
and b2 = 5, parameters are judged redundant (|Rθ|−1 ≥ 100) if b3 and b2 differ less then a
factor of six. Given that b1 = 0.2 and b2 = 5, b3 and b2 have to differ by at least a factor
of nine for the model parameters to be judged non-redundant.



118 A. Calculating redundancy in sums of (convolved) exponentials

Table A.1: Redundancy measure |Rθ|−1 for K = 2, b2 = 5 fixed and b1 = c ∗ b2 varying.
Using a threshold of 100 parameters are redundant for b1 ≥ 1 given that b2 = 5.

b1 c = b1
b2

|Rθ|−1

5 1.00 Inf
4.5 0.90 67934252567.87

4 0.80 172186884.07
3.5 0.70 4252862.33

3 0.60 262144.00
2.5 0.50 26244.00

2 0.40 3514.59
1.5 0.30 566.01

1 0.20 102.52
0.5 0.10 19.92

0.05 0.01 4.69
0.005 0.00 4.06

Table A.2: Redundancy measure |Rθ|−1 for K = 3, b1, b2 fixed and b3 = c ∗ b2 varying.
Left: b1 = 0.05 and b2 = 5. Right: b1 = 0.2 and b2 = 5.

b1 = 0.05, b2 = 5 b1 = 0.2, b2 = 5

b3 c = b3
b2

|Rθ|−1

5 1 Inf
10 2 66725.73
15 3 2535.02
20 4 581.76
25 5 248.43
30 6 142.29
35 7 95.94
40 8 71.52
45 9 56.96
50 10 47.50
55 11 40.96
60 12 36.21

b3 c = b3
b2

|Rθ|−1

5 1 Inf
10 2 137135.42
15 3 4809.30
20 4 1060.39
25 5 442.09
30 6 249.19
35 7 166.11
40 8 122.77
45 9 97.13
50 10 80.57
55 11 69.17
60 12 60.92
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A.3 Redundancy measure in sum of convolved expo-

nentials

The calculation of the sensitivity matrix Mθ is much more complicated for a sum of con-
volved exponentials needed in the analysis of DCE-MRI (Chapters 3–6). This is because for
convolved exponentials the partial derivatives and its integrals are more complex. Consider
a model with one convolved exponential

f(t,θ) = vbCp(t) ∗ exp(−bt) = vb (Cp ∗ E) (t)

with θ = (v, b) and E(t) = exp(−bt).
The partial derivatives of f(t,θ) are

df
dv

= d
dv

(vbCp(t) ∗ exp(−bt))
= bCp(t) ∗ exp(−bt)
= b (Cp ∗ E) (t)

and
df
db

= d
db

(vbCp(t) ∗ exp(−bt))

= vCp(t) ∗ exp(−bt) + vb
d

db
(Cp(t) ∗ exp(−bt))︸ ︷︷ ︸

:=I(t)

.

With
I(t) = d

db
(Cp(t) ∗ exp(−bt))

= d
db

∫ t
0
Cp(τ) exp(−b(t− τ))dτ

=
∫ t

0
Cp(τ) d

db
exp(−b(t− τ))dτ (apply Leibniz rule)

=
∫ t

0
Cp(τ)(−1)(t− τ) exp(−b(t− τ))dτ

=
∫ t

0
Cp(τ)(τ − t) exp(b(τ − t))dτ

=

∫ t

0

Cp(τ)τ exp(b(τ − t))dτ︸ ︷︷ ︸
I1(t)

− t (Cp ∗ E) (t)︸ ︷︷ ︸
I2(t)

= I1(t)− I2(t)

this simplifies to

df
db

= v (Cp ∗ E) (t) + vbI(t)
= v (Cp ∗ E) (t) + vb [I1(t)− I2(t)]
= v (Cp ∗ E) (t) + vb [I1(t)− t (Cp ∗ E) (t)]
= v (1− bt) (Cp ∗ E) (t) + vbI1(t).

The product of the partial derivatives is

df
dv

df
db

= b (Cp ∗ E) (t) {v (1− bt) (Cp ∗ E) (t) + vbI1(t)}
= bv (1− bt) [(Cp ∗ E) (t)]2 + vb2 (Cp ∗ E) (t)I1(t).
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Then, the elements ofMθ can be expressed with the help of several complicated integrals

m11 =
∫∞

0
df(t)
dv

df(t)
dv
dt

= b2
∫∞

0
(Cp ∗ E(t))2 dt

and

m12 = m21 = bv

∫ ∞
0

[(Cp ∗ E) (t)]2 dt︸ ︷︷ ︸
=m11/b2

− b2v

∫ ∞
0

t [(Cp ∗ E) (t)]2 dt︸ ︷︷ ︸
:=I3

+ vb2

∫ ∞
0

(Cp ∗ E) (t)I1(t)dt︸ ︷︷ ︸
:=I4

= v
b
m11 − b2vI3 + b2vI4

and

m22 =
∫∞

0
df(t)
db

df(t)
db
dt

=
∫∞

0
{v (1− bt) (Cp ∗ E) (t) + vbI1(t)}2 dt

= v2
∫∞

0
(1− bt)2 ((Cp ∗ E) (t))2 + 2b (1− bt) (Cp ∗ E) (t)I1(t) + b2I2

1 (t)dt

= v2


∫ ∞

0

((Cp ∗ E) (t))2 dt︸ ︷︷ ︸
m11/b2

−2b

∫ ∞
0

t ((Cp ∗ E) (t))2 dt︸ ︷︷ ︸
=I3

+ b2

∫ ∞
0

t2 ((Cp ∗ E) (t))2 dt︸ ︷︷ ︸
I5

+2b

∫ ∞
0

(Cp ∗ E) (t)I1(t)dt︸ ︷︷ ︸
I4

− 2b2

∫ ∞
0

t (Cp ∗ E) (t)I1(t)dt︸ ︷︷ ︸
I6

+ b2

∫ ∞
0

I2
1 (t)dt︸ ︷︷ ︸
I7


= v2 { m11/b

2 − 2bI3 + b2I5 + 2bI4 − 2b2I6 + b2I7} .

Closed form solutions for all integrals needed to calculate m11, m12, m21, and m22

are derived in Section A.3.1. Based on those, the calculation of Mθ, Rθ, and |Rθ| was
implemented in R. This allows to calculate the redundancy measure for a given arterial
input function and given parameter values for v and b.

Our numerical calculations of the redundancy measure |Rθ|−1 indicate that there is
typically no parameter redundancy in a sum of one convolved exponential model. However,
if b takes values very close to the parameters m1, and m2 of the arterial input function,
parameter redundancy may occur. Similar to the case of a simple exponential, for the
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convolved exponential the redundancy measure |Rθ|−1 does not depend on values of v but
only on values of the exponential rate b.

For a sum of two or more convolved exponentials the derivation of all partial derivatives
and its integrals seems not feasible. From the results of a sum of two (simple) exponentials
(Section A.2) we expect that similar or slightly increased redundancy issues occur for a
sum of two convolved exponentials. This is also what we have experienced in simulation
studies (see Chapter 4).

A.3.1 Calculation of integrals

Here, we calculate the integrals needed to obtain Mθ. All integrals can be expressed as
functions of t, v, b and the parameters a1, a2, m1, and m2 of the arterial input function

Cp(t) = a1 exp(−m1t) + a2 exp(−m2t).

We will use

∫ ∞
0

exp(−βt)dt =

[
−exp(−βt)

β

]∞
t=0

= 0− (−exp(0)

β
) =

1

β
, (A.1)

∫ ∞
0

t exp(−βt)dt =

[
−exp(−βt)(βt+ 1)

β2

]∞
t=0

= 0− (−exp(0)(0 + 1)

β2
) =

1

β2
, (A.2)

and

∫ ∞
0

t2 exp(−βt)dt =

[
exp(−βt)(−βt(βt+ 2)− 2)

β3

]∞
t=0

= 0− (
exp(0)(0(0 + 2)− 2)

β3
) =

2

β3
. (A.3)
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Let us first calculate

m11 =
∫∞

0
df(t)
dv

df(t)
dv
dt

= b2
∫∞

0
(Cp ∗ E(t))2 dt

= b2
∫∞

0

(
a1

b−m1
(exp(−m1t)− exp(−bt))

+ a2
b−m2

(exp(−m2t)− exp(−bt))
)2

dt

= b2
∫∞

0

(
a1

b−m1

)2

(exp(−m1t)− exp(−bt))2

+ 2 a1
b−m1

a2
b−m2

(exp(−m1t)− exp(−bt)) (exp(−m2t)− exp(−bt))

+
(

a2
b−m2

)2

(exp(−m2t)− exp(−bt))2 dt

= b2
∫∞

0

(
a1

b−m1

)2

(exp(−2m1t)− 2 exp(−(m1 + b)t) + exp(−2bt))

+ 2 a1
b−m1

a2
b−m2

{exp(−(m1 +m2)t)− exp(−(m1 + b)t)

· · · − exp(−(m2 + b)t) + exp(−2bt)}
+

(
a2

b−m2

)2

(exp(−2m2t)− 2 exp(−(m2 + b)t)− exp(−2bt)) dt

= b2

{(
a1

b−m1

)2 [
− 1

2m1
exp(−2m1t) + 2

(m1+b)
exp(−(m1 + b)t)

· · · − 1
2b

exp(−2bt)
]∞
t=0

+ 2 a1
b−m1

a2
b−m2

[
− 1

(m1+m2)
exp(−(m1 +m2)t) + 1

(m1+b)
exp(−(m1 + b)t)

· · ·+ 1
(m2+b)

exp(−(m2 + b)t)− 1
2b

exp(−2bt)
]∞
t=0

+
(

a2
b−m2

)2 [
− 1

2m2
exp(−2m2t) + 2

(m2+b)
exp(−(m2 + b)t)

· · · − 1
2b

exp(−2bt)
]∞
t=0

}
= b2

{(
a1

b−m1

)2 [
1

2m1
− 2

(m1+b)
+ 1

2b

]
+ 2 a1

b−m1

a2
b−m2

[
1

(m1+m2)
− 1

(m1+b)
− 1

(m2+b)
+ 1

2b

]
+

(
a2

b−m2

)2 [
1

2m2
− 2

(m2+b)
+ 1

2b

]}
.
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For the calculation of m12 and m21 we need to calculate

I1 = exp(−bt)
∫ t

0
τCp(τ) exp(bτ)dτ

= exp(−bt)
∫ t

0
τ (a1 exp(−m1τ) + a2 exp(−m2τ)) exp(bτ)dτ

= exp(−bt)
∫ t

0
τ (a1 exp((b−m1)τ) + a2 exp((b−m2)τ)) dτ

= exp(−bt)
[
a1 exp((b−m1)τ)((b−m1)τ−1)

(b−m1)2
+ a2 exp((b−m2)τ)((b−m2)τ−1)

(b−m2)2

]t
τ=0

= exp(−bt)
[
a1 exp((b−m1)t)((b−m1)t−1)

(b−m1)2
+ a2 exp((b−m2)t)((b−m2)t−1)

(b−m2)2

· · ·+ a1
(b−m1)2

+ a2
(b−m2)2

]
= t

[
a1

b−m1
exp(−m1t) + a2

b−m2
exp(−m2t)

]
+ a1

(b−m1)2
(exp(−bt)− exp(−m1t))

+ a2
(b−m2)2

(exp(−bt)− exp(−m2t))

using
∫
t exp(βt)dt = exp(βt)(βt−1)

β2 .



124 A. Calculating redundancy in sums of (convolved) exponentials

Next,

I3 =
∫∞

0
t [(Cp ∗ E) (t)]2 dt

=
∫∞

0
t
(

a1
b−m1

(exp(−m1t)− exp(−bt))

+ a2
b−m2

(exp(−m2t)− exp(−bt))
)2

dt

=
∫∞

0
t
(

a1
b−m1

)2

{exp(−m1t)− exp(−bt)}2

+ 2t a1
b−m1

a2
b−m2

{exp(−m1t)− exp(−bt)} {exp(−m2t)− exp(−bt)}

+ t
(

a2
b−m2

)2

{exp(−m2t)− exp(−bt)}2 dt

=
∫∞

0
t
(

a1
b−m1

)2

{exp(−2m1t)− 2 exp(−(m1 + b)t) + exp(−2bt)}
+ 2t a1

b−m1

a2
b−m2

{exp(−(m1 +m2)t)− exp(−(m1 + b)t)

· · · − exp(−(m2 + b)t) + exp(−2bt)}
+ t

(
a2

b−m2

)2

{exp(−2m2t)− 2 exp(−(m2 + b)t)− exp(−2bt)} dt

=
(

a1
b−m1

)2 [
1

(2m1)2
− 2

(m1+b)2
+ 1

(2b)2

]
+ 2 a1

b−m1

a2
b−m2

[
1

(m1+m2)2
− 1

(m1+b)2
− 1

(m2+b)2
+ 1

(2b)2

]
+

(
a2

b−m2

)2 [
1

(2m2)2
− 2

(m2+b)2
+ 1

(2b)2

]
using equation (A.2) and correspondingly

I5 =
∫∞

0
t2 [(Cp ∗ E) (t)]2 dt

=
∫∞

0
t2
(

a1
b−m1

(exp(−m1t)− exp(−bt))

+ a2
b−m2

(exp(−m2t)− exp(−bt))
)2

dt

= . . . same steps as for I3

=
(

a1
b−m1

)2 [
2

(2m1)3
− 4

(m1+b)3
+ 2

(2b)3

]
+ 2 a1

b−m1

a2
b−m2

[
2

(m1+m2)3
− 2

(m1+b)3
− 2

(m2+b)3
+ 2

(2b)3

]
+

(
a2

b−m2

)2 [
2

(2m2)3
− 4

(m2+b)3
+ 2

(2b)3

]
using equation (A.3).

Then, we calculate
I4 =

∫∞
0

(Cp ∗ E) (t)I1(t)dt
=

∫∞
0
P (t)dt
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with

P (t) = I1(t) · (Cp ∗ E) (t)

=
{
t
[

a1
b−m1

exp(−m1t) + a2
b−m2

exp(−m2t)
]

+ a1
(b−m1)2

(exp(−bt)− exp(−m1t))

+ a2
(b−m2)2

(exp(−bt)− exp(−m2t))
}

·
{

a1
b−m1

(exp(−m1t)− exp(−bt)) + a2
b−m2

(exp(−m2t)− exp(−bt))
}

= t
(

a1
b−m1

)2

exp(−m1t) (exp(−m1t)− exp(−bt))
+ t a1

b−m1

a2
b−m2

exp(−m1t) (exp(−m2t)− exp(−bt))
+ t a1

b−m1

a2
b−m2

exp(−m2t) (exp(−m1t)− exp(−bt))

+ t
(

a2
b−m2

)2

exp(−m2t) (exp(−m2t)− exp(−bt))

− a21
(b−m1)3

(exp(−m1t)− exp(−bt))2

− a1
(b−m1)2

a2
b−m2

(exp(−m1t)− exp(−bt)) (exp(−m2t)− exp(−bt))
− a2

(b−m2)2
a1

b−m1
(exp(−m1t)− exp(−bt)) (exp(−m2t)− exp(−bt))

− a22
(b−m2)3

(exp(−m2t)− exp(−bt))2

= t
(

a1
b−m1

)2

(exp(−2m1t)− exp(−(m1 + b)t))

+ t a1
b−m1

a2
b−m2

(2 exp(−(m1 +m2)t)− exp(−(m1 + b)t)

· · · − exp(−(m2 + b)t))

+ t
(

a2
b−m2

)2

(exp(−2m2t)− exp(−(m2 + b)t))

− a21
(b−m1)3

(exp(−2m1t)− 2 exp(−(m1 + b)t) + exp(−2bt))

− a1
(b−m1)2

a2
b−m2

(exp(−(m1 +m2)t)− exp(−(m1 + b)t)

· · · − exp(−(m2 + b)t) + exp(−2bt))
− a2

(b−m2)2
a1

b−m1
(exp(−(m1 +m2)t)− exp(−(m1 + b)t)

· · · − exp(−(m2 + b)t) + exp(−2bt))

− a22
(b−m2)3

(exp(−2m2t)− 2 exp(−(m2 + b)t) + exp(−2bt)) .
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Using equations (A.2) and (A.1) we obtain

I4 =
∫∞

0
P (t)dt

=
(

a1
b−m1

)2 (
1

(2m1)2
− 1

(m1+b)2

)
+ a1

b−m1

a2
b−m2

(
2

(m1+m2)2
− 1

(m1+b)2
− 1

(m2+b)2

)
+

(
a2

b−m2

)2 (
1

(2m2)2
− 1

(m2+b)2

)
− a21

(b−m1)3

(
1

2m1
− 2

m1+b
+ 1

2b

)
− a1

(b−m1)2
a2

b−m2

(
1

m1+m2
− 1

m1+b
− 1

m2+b
+ 1

2b

)
− a2

(b−m2)2
a1

b−m1

(
1

m1+m2
− 1

m1+b
− 1

m2+b
+ 1

2b

)
− a22

(b−m2)3

(
1

2m2
− 2

m2+b
+ 1

2b

)
.

Using equations (A.3) and (A.2) we obtain

I6 =
∫∞

0
t (Cp ∗ E) (t)I1(t)dt

=
∫∞

0
tP (t)dt

=
(

a1
b−m1

)2 (
2

(2m1)3
− 2

(m1+b)3

)
+ a1

b−m1

a2
b−m2

(
4

(m1+m2)3
− 2

(m1+b)3
− 2

(m2+b)3

)
+

(
a2

b−m2

)2 (
2

(2m2)3
− 2

(m2+b)3

)
− a21

(b−m1)3

(
1

(2m1)2
− 2

(m1+b)2
+ 1

(2b)2

)
− a1

(b−m1)2
a2

b−m2

(
1

(m1+m2)2
− 1

(m1+b)2
− 1

(m2+b)2
+ 1

(2b)2

)
− a2

(b−m2)2
a1

b−m1

(
1

(m1+m2)2
− 1

(m1+b)2
− 1

(m2+b)2
+ 1

(2b)2

)
− a22

(b−m2)3

(
1

(2m2)2
− 2

(m2+b)2
+ 1

(2b)2

)
.

Finally, for the calculation of

I7 =
∫∞

0
I2

1 (t)dt
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we first need

I2
1 =

{
t
[

a1
b−m1

exp(−m1t) + a2
b−m2

exp(−m2t)
]

+ a1
(b−m1)2

(exp(−bt)− exp(−m1t))

+ a2
(b−m2)2

(exp(−bt)− exp(−m2t))
}2

= t2
[

a1
b−m1

exp(−m1t) + a2
b−m2

exp(−m2t)
]2

+
a21

(b−m1)4
{exp(−bt)− exp(−m1t)}2

+
a22

(b−m2)4
{exp(−bt)− exp(−m2t)}2

+ 2t
[

a1
b−m1

exp(−m1t) + a2
b−m2

exp(−m2t)
]

a1
(b−m1)2

{exp(−bt)− exp(−m1t)}

+ 2t
[

a1
b−m1

exp(−m1t) + a2
b−m2

exp(−m2t)
]

a2
(b−m2)2

{exp(−bt)− exp(−m2t)}
+ 2 a1

(b−m1)2
{exp(−bt)− exp(−m1t)} a2

(b−m2)2
{exp(−bt)− exp(−m2t)}

= t2
[(

a1
b−m1

)2

exp(−2m1t) + 2 a1
b−m1

a2
b−m2

exp(−(m1 +m2)t)

· · ·+
(

a2
b−m2

)2

exp(−2m2t)

]
+

a21
(b−m1)4

{exp(−2bt)− 2 exp(−(b+m1)t) + exp(−2m1t)}
+

a22
(b−m2)4

{exp(−2bt)− 2 exp(−(b+m2)t) + exp(−2m2t)}
+ 2t

a21
(b−m1)3

[exp(−(b+m1)t)− exp(−2m1t)]

+ 2t a1
(b−m1)2

a2
b−m2

[exp(−(b+m2)t)− exp(−(m1 +m2)t)]

+ 2t a2
(b−m2)2

a1
b−m1

[exp(−(b+m1)t)− exp(−(m1 +m2)t)]

+ 2t
a22

(b−m2)3
[exp(−(b+m2)t)− exp(−2m2t)]

+ 2 a1
(b−m1)2

a2
(b−m2)2

{exp(−2bt)− exp(−(b+m2)t)

· · · · · · − exp(−(b+m1)t) + exp(−(m1 +m2)t)} .
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Then, using equations (A.1–A.3) we obtain

I7 =
∫∞

0
I2

1 (t)dt

=
(

a1
b−m1

)2
2

(2m1)3
+ 2 a1

b−m1

a2
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2
(m1+m2)3

+
(

a2
b−m2

)2
2

(2m2)3

+
a21

(b−m1)4
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1
2b
− 2

b+m1
+ 1

2m1

}
+

a22
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{
1
2b
− 2

b+m2
+ 1

2m2

}
+ 2

a21
(b−m1)3
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1

(b+m1)2
− 1

(2m1)2

]
+ 2 a1

(b−m1)2
a2

b−m2

[
1

(b+m2)2
− 1
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]
+ 2 a2
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[
1

(b+m1)2
− 1

(m1+m2)2

]
+ 2

a22
(b−m2)3

[
1

(b+m2)2
− 1

(2m2)2

]
+ 2 a1

(b−m1)2
a2
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{
1
2b
− 1

b+m2
− 1

b+m1
+ 1

m1+m2

}
.
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Details in reversible jump MCMC
birth and death transformations

B.1 Determinants of Jacobian matrices for birth and

death transformations

In order to determine the determinant of Jacobian matrix Jbirth =
∂(a∗1,...,a

∗
K ,v
∗
1 ,...,v

∗
K)

∂(a1,...,aK−1,v1,...,vK−1,u1,u2)

for the birth transformation gB(x), it suffices to consider the parameters with changes
(i.e. a∗n, a∗n+1, . . ., v

∗
n, v∗n+1, . . .). We thus consider the submatrix of the Jacobian J∗birth

J∗birth =
∂(a∗n,a∗n+1,a

∗
n+2,v

∗
n,v
∗
n+1,v

∗
n+2)

∂(an,an+1,vn,vn+1,u1,u2)

=


u1 (1− u1) 0 0 0 0
0 0 1 0 0 0
0 0 0 u2 (1− u2) 0
0 0 0 0 0 1
an −an 0 0 0 0
0 0 0 vn −vn 0

 .
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The determinant of this matrix is

det(J∗birth) = det


u1 (1− u1) 0 0 0 0
0 0 1 0 0 0
0 0 0 u2 (1− u2) 0
0 0 0 0 0 1
an −an 0 0 0 0
0 0 0 vn −vn 0



= (−1)det


u1 (1− u1) 0 0
0 0 u2 (1− u2)
an −an 0 0
0 0 vn −vn



= (−u1)det

 0 u2 (1− u2)
−an 0 0

0 vn −vn

+ (1− u1)det

 0 u2 (1− u2)
an 0 0
0 vn −vn


= −u1andet

(
u2 (1− u2)
vn −vn

)
+ (1− u1)(−an)det

(
u2 (1− u2)
vn −vn

)
= (−u1an − an + u1an)(−u2vn − (1− u2)vn)
= an(u2vn + vn − u2vn)
= anvn

and det(Jbirth) = det(J∗birth). The determinant for the Jacobian of the death transformation
gD(y) is

Jdeath = 1
a∗nv
∗
n

= 1
(an+an+1)(vn+vn+1)

.

B.2 Derivation of birth and death transformation

Here, we derive mapping conditions for jumps from K = 1 to K∗ = 2 which can be
generalized to jumps from K to K∗ = K + 1. In a model of one exponential (K = 1)

C(ti) = 1− a1 exp(−b1ti) + εi, for i = 1 . . . T,

we want to propose parameters (a∗1, a
∗
2, b
∗
1, b
∗
2) for a model with two exponentials (K∗ = 2)

C(ti) = 1− a∗1 exp(−b∗1ti)− a∗2 exp(−b∗2ti) + εi, for i = 1 . . . T.

Assuming that the model with one exponential well describes the observed curve C(ti), we
would like to propose (a∗1, a

∗
2, b
∗
1, b
∗
2) such that the new fitted curve is similar to the actual

fitted curve. Ideally, the two curves coincide:

a1 exp(−b1ti) = a∗1 exp(−b∗1ti) + a∗2 exp(−b∗2ti) for all ti,
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Figure B.1: Curves corresponding to parameters with model dimension K = 1 (black ) and
K = 2 (gray). Underlying parameters for K = 1: a1 = 0.5, u1 = 0.2, b1 = 0.2, u2 = 0.4;
for K = 2: a1 = 0.1, a2 = 0.4, b1 = 0.1, b2 = 0.27.

for i = 1 . . . T . This equation does not have solutions except the trivial ones, where either
(a∗1 = 0 and a∗2 = a1) or (a∗2 = 0 and a∗1 = a1) or (b1 = b∗1 = b∗2 and a1 = a∗1 + a∗2).

For ti = 0, we obtain the following condition for mapping the amplitudes:

a1 = a∗1 + a∗2. (B.1)

Integrating over the interval of the measurement times, we obtain∫ T

0

a1 exp(−b1t)dt =

∫ T

0

a∗1 exp(−b∗1t) + a∗2 exp(−b∗2t)dt

and hence

−a1

b1

(1− exp(−b1T )) = −
2∑
i=1

a∗i
b∗i

(1− exp(−b∗iT )) .

Assuming that T is large enough and that therefore

exp(−b1T ), exp(−b∗1T ), exp(−b∗2T ) ∼= 0,

we obtain the following requirement

a1

b1

=
a∗1
b∗1

+
a∗2
b∗2

depending on the ratios of amplitudes over decay rates. Writing these ratios as volume
fractions v = a

b
, we gain

v1 = v∗1 + v∗2. (B.2)

This is a plausible requirement for the mapping as the volumes in both models add up to
the same value. We use both requirements (B.1) and (B.2) to construct a mapping between
models of different dimensions. Figure B.1 shows how the proposed birth step maps a curve
described by one exponential to a curve described by a sum of two exponentials.
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